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ABSTRACT

Polarimetric radar variables are simulated from members of the 2013 Center for Analysis and Prediction of

Storms (CAPS) Storm-Scale Ensemble Forecasts (SSEF) with varyingmicrophysics (MP) schemes and compared

with observations. The polarimetric variables provide information on hydrometeor types and particle size distri-

butions (PSDs), neither of which can be obtained through reflectivity (Z) alone. The polarimetric radar simulator

pays close attention to how each MP scheme [including single- (SM) and double-moment (DM) schemes] treats

hydrometeor types and PSDs. The recent dual-polarization upgrade to the entire WSR-88D network provides

nationwide polarimetric observations, allowing for direct evaluation of the simulated polarimetric variables.

Simulations for a mesoscale convective system (MCS) and supercell cases are examined. Five different MP

schemes—Thompson, DM Milbrandt and Yau (MY), DM Morrison, WRF DM 6-category (WDM6), and WRF

SM 6-category (WSM6)—are used in the ensemble forecasts. Forecasts using the partially DMThompson and fully

DMMY andMorrison schemes better replicate theMCS structure and stratiform precipitation coverage, as well as

supercell structure compared toWDM6andWSM6. Forecasts using theMYandMorrison schemes better replicate

observed polarimetric signatures associated with size sorting than those using the Thompson, WDM6, and WSM6

schemes, in which such signatures are either absent or occur at abnormal locations. Several biases are suggested in

these schemes, including toomuch wet graupel inMY,Morrison, andWDM6; a small raindrop bias inWDM6 and

WSM6; and the underforecast of liquid water content in regions of pure rain for all schemes.

1. Introduction

The nationalWSR-88D S-band weather radar network

has completed its polarimetric upgrade, providing un-

precedented polarimetric radar variable measurements

over the CONUS (ROC 2013). The polarimetric radar

variables provide additional information about the cloud

hydrometeor types and their particle size distributions

(PSDs) compared to reflectivity (Z), in particular infor-

mation on hydrometeor size and diversity. The variables

include 1) differential reflectivity (ZDR) that is sensitive to

hydrometeor shape, orientation, and phase; 2) specific

differential phase (KDP) that is sensitive to rainwater

content/rain rate; and 3) cross-correlation coefficient (rhv)

Corresponding author address: Ming Xue, Center for Analysis

and Prediction of Storms, University of Oklahoma, 120 David

Boren Blvd., Norman, OK 73072.

E-mail: mxue@ou.edu

JANUARY 2017 PUTNAM ET AL . 49

DOI: 10.1175/MWR-D-15-0415.1

� 2017 American Meteorological Society

mailto:mxue@ou.edu


that is sensitive to diverse andmixed-phase hydrometeors

(Bringi and Chandrasekar 2001). Common dynamical

and microphysical processes lead to patterns in these

variables that occur at specific locations and in specific

circumstances within convective storms, referred to as

polarimetric signatures (Kumjian and Ryzhkov 2008).

For example, there is a relative ZDR maximum along the

right-forward flank of supercells as a result of hydrome-

teor size sorting, known as the ZDR arc. In mesoscale

convective systems (MCSs), high ZDR is observed on the

leading edge of the convective line because of the size

sorting of larger drops that fall ahead of the system (Park

et al. 2009).

The hydrometeor variables in microphysics (MP)

schemes of numerical weather prediction (NWP) models,

such as mixing ratio (q), are typically not directly ob-

served. One way to evaluate the model prediction of hy-

drometeor fields and theMP parameterization schemes is

to simulate polarimetric variables from the model output

and compare them with observations. The model state

variables, including MP variables, are connected to the

observed polarimetric fields by the so-called polarimetric

radar data simulator (PRDS; Jung et al. 2008a; Jung et al.

2010, hereafter JXZ10), or the observation operators in

data assimilation terminology. These operators are de-

rived from scattering calculations of polarized radar radio

waves by hydrometeor particles within each radar

sampling volume.

Most MP schemes represent hydrometeor PSDs in

bulk form using the simplified gamma distribution,

N(D)
x
5N

0x
D

ax
x e(2LxD) , (1)

which defines the number of particles of hydrometeor x

with diameter D in a unit volume (Ulbrich 1983;

Milbrandt and Yau 2005a). Three free parameters gov-

ern the distribution: 1) the slope parameter Lx, 2) the

intercept parameterN0x, and 3) the shape parameter ax.

MP schemes can be broadly categorized by the numbers

of these free parameters that they derive from predicted

microphysical variables for each species. For example, q

is proportional to the third PSD moment (mass) and is

used to solve for Lx. Single-moment (SM), double-

moment (DM), and triple-moment (TM) schemes pre-

dict one, two, and three moments of the PSD and can

therefore determine one, two, or three of the PSD pa-

rameters, respectively. Parameters that are not derived

from predicted variables are either diagnosed or set as

constant. Another significant feature of a given MP

scheme is the number of hydrometeor species included.

Five categories are most commonly considered in ice

MP schemes: cloud water (c), cloud ice (i), rainwater (r),

snow (s), and graupel (g) or hail (h), and some but

relatively few schemes [e.g., the Milbrandt and Yau

(MY) scheme (Milbrandt and Yau 2005b)] include

graupel and hail as separate species.

It is important that the observation operators de-

veloped for a PRDS are consistent with the MP scheme

so that the simulated variables reflect the model mi-

crophysical state and dynamical processes. Increasing

the number of model variables predicted (e.g., moving

from an SM to a DM scheme) increases the amount of

predicted microphysical information that can and

should be used in the operators. Some schemes, in-

cluding the Thompson (Thompson et al. 2008) and

WDM6 (Lim and Hong 2010) schemes are partially

double moment, predicting a second moment for rain

(number concentration, Ntr) but only one moment for

the other hydrometeor species. Though most SM and

DM schemes set ax 5 0 by default, resulting in an ex-

ponential distribution, WDM6 uses ar 5 1 for rain and

the Thompson scheme uses a combined exponential and

gamma distribution for snow.

Limitations of MP schemes may preclude the model

from replicating certain polarimetric signatures and

highlight microphysical state differences. Some current

schemes, including the Thompson, WSM6 (Hong and

Lim 2006), WDM6, and Morrison (Morrison et al. 2005;

Morrison et al. 2009) schemes, contain a graupel cate-

gory but not hail.1 In a supercell simulation experiment

by Johnson et al. (2016) using these schemes, the hail

signature in the forward-flank downdraft, a decrease in

ZDR associated with large, dry hail (Kumjian and

Ryzhkov 2008), was not replicated by those schemes

that only include a graupel category due to the small size

of and limited amount of graupel present near the surface

and the associated high rainwater content. Additionally,

Wacker and Seifert (2001) and Milbrandt and Yau

(2005a) have shown that SM MP schemes cannot repre-

sent sedimentation, or size sorting, and thus a DM or

higher-order scheme is required to produce polarimetric

signatures associated with size sorting (JXZ10; Kumjian

and Ryzhkov 2012). Jung et al. (2012) demonstrated that

the ZDR arc signature could be replicated with the DM

MY scheme but not an SM Lin (Lin et al. 1983) scheme

when the states of a supercell are estimated using a cycled

ensemble Kalman filter. Putnam et al. (2014) showed for

an MCS case that the size sorting of large drops and

subsequent increase in ZDR in the convective line com-

pared to the stratiform region could be replicated by the

DM MY scheme but not the SM Lin scheme.

1 The rimed ice category in theMorrison scheme can be switched

to represent either graupel or hail. In this study it was represented

as graupel.
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Since the spring of 2007, the Center for Analysis and

Prediction of Storms (CAPS) at the University of

Oklahoma has been producing Storm-Scale Ensemble

Forecasts (SSEFs) for the CONUS (Kong et al. 2007;

Xue et al. 2007) as part of the NOAA Hazardous

Weather Testbed (HWT) Spring Experiment (Weiss

et al. 2007; Clark et al. 2012). In the spring of 2013, the

SSEF system had a 4-km convection-permitting grid

spacing, allowing explicit representation of convective

storms (Kong 2013). The system used a variety of MP

schemes among its ensemble members, including sev-

eral that predicted two moments of some of the hydro-

meteor species within the schemes. One set of special

products produced from the ensemble forecast output

were simulated polarimetric radar variables using the

PRDS developed at CAPS. The availability of polari-

metric observations from the upgraded WSR-88D net-

work and the PRDS with the ability to simulate

polarimetric variables from a variety of MP schemes

provided an unprecedented opportunity to compare and

contrast the ability of the various MP schemes com-

monly used in storm-scale forecasts in reproducing

known polarimetric signatures.

The purpose of this paper is to document the real-time

implementation of the PRDS, evaluate the simulated

polarimetric variables and polarimetric variable fore-

casts within the SSEF system against WSR-88D polari-

metric observations, and to infer the strengths and

weaknesses of MP schemes as implemented in the 2013

ensemble. Biases identified with the MP schemes can

help the scheme developers to improve their schemes,

and help the scheme users to interpret their simulation

results in their research. As observed quantities are of-

ten more intuitive to forecasters, simulated polarimetric

variables can be used by forecasters to monitor and

nowcast severe weather when the association of polari-

metric signatures with weather events–features is well

recognized. Toward that end, knowledge gained on the

behavior of the MP schemes and the PRDS can help

forecasters better understand the dual-polarization

forecast products.

Up to the time of this exercise, CAPS’s PRDS had

mainly been used with the MY DM scheme (Jung et al.

2012; Putnam et al. 2014); this effort represents the first

time that multiple DM schemes have been evaluated

within a common framework in terms of their ability to

produce polarimetric radar signatures for real cases. The

recent study of Johnson et al. (2016) had a similar goal

but it was based on a set of idealized supercell simulations

and therefore no real radar observations could be used for

comparison. Since significant polarimetric radar signatures

are relatively local and isolated within convective systems,

simple gridpoint-based evaluation scores typically applied

to precipitation forecasts, such as the equitable threat

score, are not very revealing, especially when different

types of convective systems are mixed together (dif-

ferent types of convective systems tend to produce dif-

ferent kinds of polarimetric signatures in different parts of

the systems). Because of the many challenges facing ob-

jective evaluations of the forecast of polarimetric signa-

tures, which tend to be highly localized and in the current

forecasts contain significant biases, we choose to focus on

two cases from the CAPS 2013 Spring Experiment only in

this study: one case with MCSs and one case with super-

cells. Focusing on two cases allows us to perform more

detailed subjective evaluations and at the same time access

the objective evaluation methods and procedures. Such a

study would provide the groundwork for future studies

evaluating the MP and PRDS performances over the

entire Spring Experiment period.

The rest of this paper is organized as follows. The

methodologies, including the general design of the

CAPS SSEF the PRDS and MP schemes used, and

the quality control of observations, are given in section

2. Section 3 presents evaluation results for the MCS and

supercell cases. A summary and our conclusions, re-

viewing notable trends in polarimetric size sorting sig-

natures and biases in graupel and water content, are

given in section 4. Some challenges faced in evaluation

are also noted.

2. Methodology

a. Overview of the 2013 CAPS SSEF

The 2013 CAPS SSEF forecasts were run as part of the

NOAA HWT Spring Experiment (Kong 2013). Official

forecasts began on 6 May 2013 and continued through

7 June 2013. Daily 48-h forecasts initialized at 0000

UTC were run on a CONUS domain using a horizontal

grid spacing of 4 km with 51 vertical levels (Fig. 1).

FIG. 1. Model domain for 2013 CAPS Spring Experiment SSEFs.
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Twenty-nine ensemble members were run using three

mesoscale NWP models: the WRF-ARW model [ver-

sion 3.4.1, 26 members; Skamarock et al. (2008)], the

U.S. Navy’s COAMPS model [two members; Hodur

(1997)], and the CAPSAdvanced Regional Prediction

System [ARPS, version 5.3, one member; Xue et al.

(2003)]. This paper focuses on theWRF-ARWmembers

since the COAMPS and ARPS members used SM MP

schemes only.

The 26 WRF-ARW members varied in terms of their

initial conditions (ICs), boundary conditions (BCs), and

physics packages. The control member IC was obtained

by assimilating surface, upper-air, and WSR-88D radar

observations using the ARPS 3DVAR and complex

cloud analysis system (Xue et al. 2003; Gao et al. 2004;

Hu et al. 2006a,b), with the NCEP 12-km NAM (Rogers

et al. 2009) 0000 UTC analysis used as the background,

and used BCs that were obtained from the 0000 UTC

NAM forecast. An additional 11 members used this IC

and these BCs while 13 members used this IC and these

BCs with added perturbations derived from the

2100 UTC NCEP Short-Range Ensemble Fore-

casting system (SREF; Du et al. 2006) forecasts. One

member was initialized from the NAM analysis directly.

For the purpose of investigating the performance of

various physics packages in the WRF-ARW model, the

subset of members that used the same IC and BCs as the

control member differed in their use of land surface,

boundary layer, radiation, and MP schemes. Since MP

scheme differences are the focus of this study, polari-

metric variable simulations are performed for the con-

trol and for those members that differed from the

control only in their choice of MP scheme (the arw_cn,

arw_m20, arw_m21, arw_m22, and arw_m26 members)

(Kong 2013). These members used the Noah land sur-

face model (Chen and Dudhia 2001) and the Mellor–

Yamada–Janjić boundary layer scheme (MYJ; Mellor

and Yamada 1982; Janjić 2002). More details on the MP

schemes used are provided in section 2c.

b. Polarimetric simulation and general experiment
settings

The PRDS originally developed for ARPS output

(Jung et al. 2008a; JXZ10) was adapted and applied to

the WRF-ARW output with several different MP

schemes. The PRDS calculations include only the rain,

snow, graupel, and hail categories, when applicable.

Despite the important role that cloud water and cloud

ice play in precipitation processes, the radar returns

from these hydrometeors are minimal. Important details

of the PRDS, including the axis-ratio relation, canting

angle of particles, the melting model, and radar scat-

tering amplitudes, are briefly summarized here.

The PRDS operators include complex scattering

amplitudes calculated using the T-matrix method

(Vivekanandan et al. 1991; Bringi and Chandrasekar

2001) for both rain and ice species via numerical in-

tegration over the PSDs. The raindrop axis ratio de-

creases with diameter based on the relation in Brandes

et al. (2002); this ratio is set to 0.75 for hail, graupel, and

snow. The mean canting angle for all hydrometeor types

is 08with a standard deviation of 08 for rain, 208 for snow,
and ranging from 08 to 608 for hail and graupel de-

pending on the water fraction. Since most MP schemes

do not predict mixed-phase hydrometeors, a mixing

ratio fraction of wet (melting) snow, wet hail, or wet

graupel is considered present when rain (qr) coexists at a

particular model grid point with snow (qs), hail (qh), or

graupel (qg), creating mixed-phase mixing ratios de-

noted qrs, qrh, and qrg. The water fraction model used for

the mixed phases is described in detail in Jung et al.

(2008a), and the water fraction model used during the

2013 CAPS Spring Experiment does not vary across the

size spectrum. The density (r) of each mixed-phase

species increases as the fractional amount of rain in-

creases and the dielectric constant is calculated using the

Maxwell-Garnett mixing formula (Maxwell-Garnett

1904). These variables are used in separate calculations

ofZrs,Zrh, andZrg for mixtures, in addition toZr,Zs,Zg,

andZh, with the log of the sum giving the final simulated

Z. A radar wavelength of 107mm is used to match the

WSR-88D S-band network. For reference, from JXZ10,

Z is calculated using their Eq. (3), ZDR from the quo-

tient of their Eqs. (3) and (4), and KDP from their

Eq. (6).

c. Spring Experiment microphysics schemes

The 2013 SSEF WRF-ARW members used six dif-

ferent MP schemes: the MY, Morrison, Thompson,

WDM6,NSSL (Mansell 2010), andWSM6 schemes. The

NSSL scheme has not yet been added to the PRDS be-

cause its representation of hydrometeor PSDs is con-

siderably more complex than the other schemes. The

original PRDS operators were already compatible with

the WSM6 and MY schemes. The Morrison scheme

follows the same PSD and has the same predicted mo-

ments as MY (having either graupel or hail) so it was

easily implemented.Modifications were required for the

other schemes. The Thompson and WDM6 schemes

predict Nt and q for rain but only predict q for the re-

maining categories as used in the PRDS [prediction of

Ntr was added to the Thompson scheme after Thompson

et al. (2008)]. WDM6 diagnoses N0s using temperature

and uses a fixed value for N0g. WDM6 also uses a fixed

shape parameter of 1.0 for ar. The Thompson scheme

has been further updated since Thompson et al. (2008)

52 MONTHLY WEATHER REV IEW VOLUME 145



to use temperature and the mean volume diameter of

rain to diagnose N0g. The Thompson scheme also de-

viates from the typical representation of the bulk PSD

for snow, using a combined exponential and gamma

distribution, but the simulation of polarimetric variables

at and above the freezing level will be the focus of future

studies. Table 1 summarizes whether a fixed value or

predicted model variables are used to calculate N0 and

a for each hydrometeor category for each MP scheme.

d. Polarimetric radar observations

The upgradedWSR-88D radars provide domain-wide

polarimetric observations that are used for comparison

to the simulated variables. The Z and ZDR observations

are filtered using a five-point along-the-radial median

filter, while KDP is calculated from similarly filtered

differential phase (FDP) observations using the least

squares fit method of Ryzhkov and Zrnić (1996). Nine

range gates are used when Z . 40dBZ and 25 range

gates are used for Z , 40dBZ.

The availability of polarimetric observations allows

for extensive quality control of the data using fuzzy logic

(Park et al. 2009). The fuzzy logic method uses ranges of

polarimetric radar data values and weights to determine

the most likely hydrometeor type of the observation.

The Z, ZDR, rhv, standard deviation (SD) of Z (1-km

running average), and SD(FDP) (2-km running average)

membership functions are used along with their re-

spective weights. The confidence vectors are not in-

cluded. Additionally, the temperature profile and the

presence of frozen hydrometeors from the forecast

model are used to help further narrow down potential

hydrometeor types before classification. For example,

frozen categories are not considered at heights where

full melting has occurred in the forecast and rain-

associated categories are not considered above the

freezing level. The MY forecast member was chosen

since this scheme included the largest number of hy-

drometeor categories and produced storms with rea-

sonable structure and intensity based on a qualitative

comparison of the results. Those observations that are

determined to be ground clutter, anomalous propagation,

or biological scatterers are removed. This is important

since SSEF forecasts begin at 0000 UTC and short-term

forecasts in the late spring–early summer months will be

at a time when observed radar blooms due to birds and

insects are prominent (Lakshmanan et al. 2007). An ex-

ample of Z, ZDR, and KDP observations at an elevation

angle of 0.58 before and after the removal of non-

meteorological echoes for one of the cases evaluated in

this study, at 0400 UTC 20 May 2013, is given in Fig. 2.

The locations of the WSR-88D radars used are included

as black dots in Fig. 2a. Obvious clutter from late

evening radar blooms (2200 central standard time) is

almost completely removed. Data points that are de-

termined to be a three-body scatter spike are also re-

moved (Mahale et al. 2014).

3. Evaluation of simulation results

In this section, results for two example cases chosen

from the 2013 Spring Experiment are evaluated. The

first is a 4-h forecast initialized at 0000UTC 20May 2013

for a series of MCSs. The second is a 21-h forecast of

several supercell thunderstorms also initialized at

0000UTC 20May 2013. These cases provide two different

convective modes that contain distinct and different

polarimetric signatures for evaluation. Additionally, the

first case is a short-term forecast with sufficient lead time

to allow for microphysical processes such as size sorting

to develop while not too long for the storm systems

originally initialized from radar data to dissipate. The

divergence between the ensemble of model solutions

and the observations is also relatively small at this point.

Because of the early evening initialization time, a similar

situation is difficult to find for supercell thunderstorms,

which typically dissipate or grow upscale at night. For

these reasons, the 21-h-long forecast valid in the after-

noon of 20 May was chosen. It was also a point of em-

phasis to choose cases that had storm systems that were

well placed so more focus could be put on the differences

in the polarimetric variable values and not storm struc-

ture and placement. For convenience, the chosen en-

semble members (section 2a) are referred to by their

TABLE 1. Reference table for which predictedmodel variables are used to calculate the intercept (N0) and shape (a) parameters for rain

(r), snow (s), graupel (g), and hail (h) from each of the microphysics schemes considered. The values are either fixed and listed, or

calculated as a function of mixing ratio (q), number concentration (Nt), and/or air temperature (T ). Schemes that do not contain a given

hydrometeor category are listed as not applicable (NA).

Scheme N0r N0s N0g N0h ar as ag ah

Thompson F(qr, Ntr) F(qs, T) F(qg, T) NA 0 0.6357 0 NA

MY F(qr, Ntr) F(qs, Nts) F(qg, Ntg) F(qh, Nth) 0 0 0 0

Morrison F(qr, Ntr) F(qs, Nts) F(qg, Ntg) NA 0 0 0 NA

WDM6 F(qr, Ntr) F(T ) 4 3 106m24 NA 1 0 0 NA

WSM6 8 3 106m24 F(T ) 4 3 106m24 NA 0 0 0 NA
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respective MP schemes: TOM (Thompson), MY (Mil-

brandt and Yau), MOR (Morrison), WDM (WDM6),

and WSM (WSM6).

In this study, the forecast results are compared to the

observations by creating a 0.58-elevation mosaic of ob-

served and simulated radar data from allWSR-88D sites

within the domain from data in a ‘‘gridtilt’’ format for

direct comparison. The simulated variables are left on

the model grid in the horizontal but mapped (via

weighted average) in the vertical to the elevation levels

of each radar using the beam-pattern weighting function

given in Xue et al. (2006). Conversely, the radar obser-

vations are interpolated onto the model grid points in

the horizontal but left on the radar elevation levels in the

vertical. As a result, both model and radar data are

transferred to a common gridtilt space with respect to

individual radars. A 0.58-elevation mosaic is created by

combining the lowest available elevation angles (0.58)
from the WSR-88D radars located within the domain,

using the observation closest to the surface where two or

more radars overlap. The 0.58-elevation angle is chosen

and the closest-to-the-surface value is used because

polarimetric signatures associated with hydrometeor

size sorting are most prevalent near the surface. Our

method is similar to how the ‘‘reflectivity at lowest al-

titude’’ (RALA) product is produced in the Multi-

Radar Multi-Sensor (MRMS) system (Smith et al.

2016). A near-surface constant-height mosaic will have

large areas of missing observations because the radar

beam height increases with distance. Additionally, ver-

tical interpolation of radar elevation-level data to a

constant model level can have large errors, as the radar

beamwidth increases with distance from the radar (Sun

and Crook 2001).

a. The 20 May 2013 mesoscale convective system case

Height falls associated with an upper-level trough

moving into the central plains and ample low-level

FIG. 2. Mosaics of observed (a) reflectivity (dBZ), (b) differential reflectivity (dB), and (c) specific differential phase (8 km21) at a 0.58
tilt before ground clutter–biological scatterer removal and (d)–(f) after. The locations of theWSR-88D radars used are included as brown

dots in (a).
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moisture led to the development of multiple areas of

severe thunderstorms during the midafternoon of

19 May 2013. Over time, these clusters grew upscale to

form several MCSs that stretched from the upper Mis-

sissippi valley south into Oklahoma. Themost intense of

these systems resulted from storms initially forming over

central Kansas that continued into eastern Iowa. At

0400 UTC 20 May this system exhibited the elements

of a classic MCS, including leading convection and

trailing stratiform precipitation (Fritsch and Forbes

2001). Additional linear convective storms formed along

an outflow-reinforced cold front that stretched south-

westward into northern Oklahoma. Widespread dam-

aging wind and hail was reported across the Midwest,

and several tornadoes were reported in southwestern

Missouri (SPC 2014a).

1) QUALITATIVE EVALUATION OF FORECASTS

Mosaics of observed and simulated Z, ZDR, and KDP

in the gridtilt format described at the beginning of sec-

tion 3 are plotted in Figs. 3–5. Locations of WSR-88D

radar sites used for both the observed and simulated

variable plots are included in Figs. 3a, 4a, and 5a. A

20-dBZ Z contour is included for reference in Figs. 4

and 5. Overall, the observed features are well placed in

the five forecasts. However, the intensity and structure

of the forecast precipitation differ from the observa-

tions, and differ among the forecast members. The MY

FIG. 3. Mosaics of observed (a) reflectivity (dBZ) at a 0.58 tilt at 0400 UTC 20 May 2013 and simulated values at the same tilt from the

(b) TOM, (c) MY, (d) MOR, (e) WDM, and (f) WSM forecasts. Locations of WSR-88D sites used for both the observed and simulated

variable plots are noted with black dots in (a).
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and MORmembers produce more widespread, high Z in

the convective areas in eastern Iowa (Figs. 3c,d) com-

pared to the observations but show a decrease in intensity

in the stratiform precipitation region further west in

central Iowa. In WDM andWSM, Z is lower than in MY

and MOR in the convective areas and more closely

matches the observations (Figs. 3e,f). However, the

stratiformprecipitation over Iowa is almost nonexistent in

WDM, and is significantly underforecast in WSM. For

theWDMcase, Lim andHong (2010) similarly found that

WDMhad low rain rates in the stratiform region of a 2D-

simulated MCS and attributed these low rates to higher

rain number concentrations and increased evaporation.

TheWSM andWDM forecasts are overall very similar as

only warm rain processes are DM in WDM. The impor-

tance of predicting a secondmoment for ice processeswas

noted in Putnam et al. (2014), who found that a DMMY

forecast, which predicts a second moment for snow and

cloud ice, better maintained separate convective and

stratiform precipitation regions in an MCS compared to

an SM Lin forecast due in part to the improved transport

of frozen hydrometeors between the convective towers

and stratiform precipitation region. The TOM Z appears

most reasonable in terms of both its intensity and cover-

age (Fig. 3b). The placement and structure of convection

in western Missouri and northern Oklahoma, and the

associated Z intensity, match the observations well.

However, the convective region in eastern Iowa is disor-

ganized, with no discrete linear convective line ahead of

the trailing precipitation.

The range of Zmay be due to different hydrometeors

sizes, types, and water contents; simulatedZDR andKDP

FIG. 4. As in Fig. 3, but for differential reflectivity (dB). Features of interest referenced in the text are noted by arrowheads.
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provide further insight to better differentiate the mi-

crophysical states of the members. Additionally, ob-

served ZDR and KDP can be used to diagnose the

hydrometeor categories using the fuzzy-logic method

described in section 2d (Fig. 6). The observed hydro-

meteor classifications are computed for each radar and

plotted as a 0.58-elevation mosaic as described at the

beginning of section 3. For the forecasts, the dominant

category is determined based on which hydrometeor

type provides the majority of the contribution to the

linear simulated Z, including the diagnosed mixed-

phase species described in section 2b. If no category

contributes at least 50% to Z, the category is considered

to be a ‘‘mix.’’ Since themodelMP scheme categories do

not match Park et al.’s (2009) HCA categories, hail, wet

(melting) graupel, and mix are added to the classification

list for identification when present in the PRDS results.

Additionally, the forecast rain category does not differ-

entiate between the ‘‘big drop’’ and ‘‘heavy rain’’ cate-

gories so all rain is combined into one category and wet

(melting) hail from the PRDS results is considered ‘‘rain

and hail.’’ Nonmeteorological categories are not included,

as they were removed during the quality control process.

Observed ZDR is generally greater than 2.0 dB in the

convective regions, with a maximum of around 3.0 dB,

and is less than 2.0 dB in the stratiform regions (Fig. 4a).

This matches the typical observed ZDR pattern in an

MCS caused by differing rain PSDs; areas of convective

precipitation have high ZDR because of the presence of

large raindrops, with the maxima occurring along the

FIG. 5. As in Fig. 3, but for specific differential phase (8 km21).
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leading edge of the convective line where the size sorting

of smaller raindrops, which have a low terminal velocity

and are carried farther rearward in the convective line,

isolates larger raindrops and leads to high ZDR values.

The stratiform region, which is not supported by an in-

tense updraft, contains moderate precipitation with

small- to medium-sized raindrops and lowerZDR values,

respectively (Zhang et al. 2008). MY andMORhave the

highest simulated ZDR results in convective regions,

comparable to the observations, but the coverage of

these high values is more widespread (Figs. 4c,d). The

widespread high ZDR matches the areas of overforecast

highZ, where the presence of larger raindrops in intense

convection would be expected. The high ZDR, along

with very high Z, is also indicative of large oblate wet

graupel, the dominant hydrometeor category in these

convective regions (Figs. 6c,d). TheMY scheme predicts

hail but shows a similar high bias in wet graupel as

MOR. The MY scheme implemented in WRF-ARW as

used in the CAPS SSEF was modified from Milbrandt

and Yau (2005b) to include a strict minimum size

threshold for hail. Hail below this threshold is converted

back to graupel, and this threshold has been shown to

result in forecasts that produce little, if any, hail (Van

Weverberg et al. 2012). This may explain the presence of

too much graupel compared to the observations in this

case. There is an increase in ZDR values toward the

leading edge of the convective lines in southeastern

Kansas and northeasternOklahoma, as well as in central

Missouri and eastern Iowa (indicated by arrowheads in

Figs. 4c,d); high ZDR at the leading edge of convection

is a commonly found polarimetric signature associated

with size sorting. However, there are many convective

areas where large drops are embedded within the con-

vection and a size-sorting signature is not evident.

MORhas a strong size-sorting signature in southwestern

FIG. 6. Mosaic of hydrometeor classification using fuzzy logic for (a) observations at a 0.58 tilt at 0400 UTC 20 May 2013 as well as

classification of highest simulated linear reflectivity at the same tilt for the (b) TOM, (c)MY, (d)MOR, (e)WDM, and (f)WSM forecasts.

Features of interest referenced in the text are noted by arrowheads. Locations ofWSR-88D sites used for both the observed and simulated

variable plots are noted with black dots in (a).
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Missouri (indicated by an A in Fig. 4d), but this corre-

sponds with low Z and weak precipitation. It is not un-

usual to see high ZDR in developing convection as size

sorting begins to occur, but the spike in ZDR may be

because the drop breakup rate in MOR is dependent on

qr, and the rate will be low where qr is small. As a result,

in low-precipitation regions with small qr, the low rate of

drop breakup may lead to a locally high number of large

drops. These spikes in ZDR were also noted in Johnson

et al. (2016).

There is a more significant difference in the micro-

physical state of MOR and MY in the stratiform pre-

cipitation region in central Iowa. There is widespread

moderateZDR inMOR, only 0.5 dB less than theZDR in

the convective line to the east, while ZDR decreases

away from the leading convective lines inMY, similar to

the observations. The distinguishing ZDR that differen-

tiates the PSDs of the convective and stratiform regions

is more prominent in MY; this matches the findings of

Putnam et al. (2014). The difference in the similar DM

MOR and MY forecast results highlights MP scheme

challenges that extend beyond simply adding a second

moment.

In TOM andWDM, ZDR shows no clear organization

based on the structure of the convective systems

(Figs. 4b,e). There is little difference betweenZDR in the

convective and stratiform regions, and no clear size-

sorting signatures that match the observations. In fact,

the highest ZDR in TOM is in an area of light pre-

cipitation on the rear side of the convective line in

western Missouri, to the north and south of the con-

vection in Iowa, and in isolated light showers inMissouri

(indicated by arrowheads in Fig. 4b). Relatively high

ZDR values are often seen with developing storms like

those inMissouri, but the remaining notedZDR patterns

do not match the observations. Both TOM and WDM

are DM for rain but only SM for graupel, and thus there

is no size sorting of graupel, which has a greater impact

on the development of low-level ZDR signatures (along

with hail) than does the size sorting of rain (Dawson

et al. 2014). Despite the apparent lack of size sorting,

which is one of the features tied to maintaining a strat-

iform precipitation region in Putnam et al. (2014), TOM

still represents the coverage of the convective and

stratiform precipitation regions relatively well.

Wheatley et al. (2014) found in their real-case EnKF

study of an MCS that the Thompson scheme replicated

the convective and stratiform regions well because

of broad and intense development of snow aloft.

Thompson is not DM for snow, but it does use a unique

snowPSDanddiagnosticN0s, andTOMcontains stratiform

coverage similar to that produced by the fully DM MOR

and MY results. WDM also has areas where high ZDR is

located along the rear edge of convection in northern

Missouri and southern Iowa (indicated by arrowheads in

Fig. 4e). In fact,ZDR is relatively low in the most intense

areas of convection (Z . 40 dBZ), indicating a large

number of small- to moderate-sized drops. Given that

wet graupel is the dominant category present (indicated

by arrowheads in Fig. 6e), it is likely that the wet graupel

that exists is small and shedding small raindrops. This

differs from MOR and MY, which also show a signifi-

cant contribution to Z from wet graupel but have much

higher ZDR values, indicating larger wet graupel and a

significant difference in the graupel PSDs between the

schemes.

Compared to Z, ZDR differs more substantially be-

tween WDM and WSM (Figs. 3e,f and 4e,f). The ZDR

maxima from the two schemes are about the same, but in

WSM Z and ZDR have a monotonic relationship, with

the highest ZDR collocated with the highest Z; this is

because theWSM scheme with a fixedN0 is incapable of

size sorting. WDM does not improve upon WSM,

however, compared to the observations, since Z and

ZDR do not differ between convective and stratiform

precipitation regions and the size-sorting signatures

appear in the wrong locations. WDM is DM for rain and

cloud droplets, but SM for ice species as inWSM, further

emphasizing the impact that the size sorting of graupel

has on low-level rain PSDs and the associated ZDR

signatures.

Simulated KDP is generally lower in all members

compared to the observations with values mostly less

than 2.08km21. A few more intense convective areas

(Z . 50dBZ) in MY and WSM have KDP higher than

2.08 km21 (Figs. 5c,f) which agrees more closely with the

observations (Fig. 5a). MY and MOR have similar ZDR

maxima but generally lowerKDP values compared to the

observations, so the rain PSDs must contain a lower

concentration of small- to moderate-sized drops (Figs. 5a,

c,d). The convective regions in MY, MOR, and WDM

contain significant wet graupel (Figs. 6c–e). Low ZDR

and KDP are indicative of small wet graupel in WDM

(Figs. 4e and 5e) while significantly higher ZDR in MY

and MOR (Figs. 4c,d) suggests larger wet graupel but

with a low water ratio. Low ZDR is also indicative of the

lack of large raindrops in WDM due to the gamma dis-

tribution with a short tail in the large drop’s end. WSM

has lower ZDR but similar KDP (Fig. 5f) compared to

MY and similarZDR but higherKDP compared to TOM,

indicating a higher concentration of small- to moderate-

sized drops due to a large fixed N0r. A high bias in

graupel compared to the observations (Fig. 6a) could

potentially explain the low KDP (as compared to an all-

rain scenario), butWSM, as well as TOM, have similarly

low KDP values in areas of pure rain.
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Another notable difference in the forecasts com-

pared to the observations is the lack of significant KDP

in the stratiform precipitation region over central Iowa.

Those members that show this trailing precipitation

(TOM, MY, and MOR) only have noteworthy KDP

where Z exceeds 35 dBZ (Figs. 5b–d); the observations

exhibit low (but consistent) KDP throughout the strat-

iform region (Fig. 5a). Although the melting layer

differs between the forecasts, which could contaminate

the KDP results, KDP is also lower in areas of pure

rain. In MOR, ZDR is higher than observed in the

stratiform region, indicating PSDs with a few larger

raindrops and lower water content overall (Fig. 4d).

In TOM and MY, ZDR is closer to the observations

but similarly low KDP values suggest an overall low

bias among the DM schemes in the concentration of

moderately sized raindrops and their water content

(Figs. 5b,c).

2) QUANTITATIVE EVALUATION OF FORECASTS

Although forecast errors at all scales continuously

grow as forecast length increases, the error growth rate

is much larger for smaller-scale phenomenon (e.g.,

convective cells). Additionally, diagnostic metrics are

highly sensitive to displacement errors for storm-scale

forecasts, especially for finescale structures, making

one-to-one quantitative verification even more difficult.

A few differentmethods of quantitative comparison that

help account for these errors are considered.

Percentile histograms of simulated Z, ZDR, and KDP

are calculated over the domain used for Figs. 3–5 to

gauge the overall distribution of values (Fig. 7). The

histograms are created by first ranking all observed and

simulated values individually and then distributing the

simulated values within 10 bins representing the ob-

served percentiles between 0.0 and 1.0. Percentiles rel-

ative to the observations are used to account for

potential biases and outlier values in the model results.

The range of the observed values corresponding to the

0.0–0.2, 0.2–0.4, etc. percentile bins is indicated by co-

ordinating the colors between the observed values used

as the bounds for their respective percentile bins. For

reference, the observed histograms for each variable are

provided in Figs. 7a–c, with a black line indicating the

number of observed values per bin included for all

simulated results and a red line indicating the ideal

distribution of the simulated model values, if these

values were distributed evenly. The total number of

simulated values is also included in each subplot.

There is a high bias in the simulated Z results relative

to the largest observed Z values, indicative of strong

convective precipitation, especially for MY and MOR

(Figs. 7g,j). Qualitative comparisons suggested that the

convective regions contained more intense precipitation

over a larger area and that wet graupel contributed to

high Z. The observed distribution peaks at around

35dBZ (Fig. 7a), which corresponds to Z from the large

region of stratiform precipitation in central Iowa and

FIG. 7. Histograms of observed (a) reflectivity (dBZ), (b) differential reflectivity (dB), and (c) specific differential phase (8 km21) mosaic

values at a 0.58 tilt from Figs. 3–5, as well as percentile histograms of simulated values at the same tilt from the (d)–(f) TOM, (g)–(i) MY,

(j)–(l) MOR, (m)–(o) WDM, and (p)–(r) WSM forecasts distributed into bins based on the observed percentiles (noted by the horizontal

solid black line). The idealized distribution given the number of values in each of the simulated results is indicated by the horizontal red

line. The total number of values is noted in the top-right-hand corner of each panel. The observed values are used as the bounds for the

percentile bins and are similarly color coded in both the observed and simulated value plots.
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contributes to the number of values in the middle per-

centiles. The MOR and TOM distributions are most

similar to the observations in this midrange, though all

forecasts have at least some low bias. MOR has a con-

sistent high bias for low and high Z because of an

overforecast of precipitation coverage (Fig. 7j). Con-

versely, WDM has a consistent low bias at nearly all

percentiles, lacking the stratiform precipitation and

significantly underforecasting precipitation coverage

overall (Fig. 7m).

The observed distribution of ZDR peaks around 1dB

and extends up to 4 dB (Fig. 7b). TOM, and particularly

MY and MOR, have high biases in the higher percen-

tiles because of the overforecast east–west extent of the

convective lines as well as PSDs that contain too many

large drops. MOR has a significant bias above the 90th

percentile (Fig. 7k) related to the large drops in the

stratiform region, oblate wet graupel in the convective

region, and the overforecasting of precipitation cover-

age overall. On the other hand, WDM and WSM have

similar low biases above the 50th percentile. The low

bias in WSM may be related to the relatively high fixed

N0r of 83 106m24 (Fig. 7q). Although WDM is DM for

rain, its behavior is similar to the SM WSM, which was

also noted in the qualitative evaluation.

TheKDPhistogramsare limited tovalues above0.5 8 km21

because values below this threshold can be in-

distinguishable from noise in the observations (Jung

et al. 2008b). This limits the KDP assessment to the

convective regions, where the precipitation coverage for

all members matches the results better as well. The

TOM, WDM, and WSM results are relatively similar to

the observations for the low to middle percentiles while

MY andMOR overestimate these values because of the

broader width of the convective lines in these forecasts

(Figs. 7f,i,l,o,r). However, for the highest percentiles,

which represent the peak of the observed KDP values in

the intense precipitation convective regions, there is a

low bias in all members. In general, all members have

simulated KDP values lower than observed in the con-

vection regions as a result of apparent lower liquid water

contents resulting from contamination by graupel (MY,

MOR, and WDM; see Figs. 7i,l,o), a bias toward larger

drops as indicated by ZDR (TOM, MY, and MOR; see

Figs. 7f,i,l), and a high concentration of small drops due

to the fixed intercept parameter in WSM (Fig. 7r).

Another quantitative measure for evaluating the

PSDs is scatterplots of Z versus ZDR at a given location

for the observations and forecasts (Fig. 8). Data points

where Z . 5 dBZ from the Figs. 3–5 domain are con-

sidered and are categorized by dominant hydrometeor

type using the same process as for Fig. 6. TOM,MY, and

MOR show a broad overall distribution of Z and ZDR

value combinations similar to the observations. The

additional free PSDparameter in theDM scheme allows

for greater flexibilities in the range of possible PSDs in

the forecast. The high density of data points for rain in

the observations results from the broad region of

FIG. 8. Scatterplot of (a) observed reflectivity (dBZ) and differential reflectivity (dB) mosaic values at a 0.58 tilt from Figs. 3–5, as well as

scatterplots of simulated values at the same tilt from the (b) TOM, (c) MY, (d) MOR, (e) WDM, and (f) WSM forecasts.
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stratiform precipitation (Fig. 8a). TOM, MOR, and MY,

which performed well in terms of stratiform precipitation

coverage in the qualitative evaluation, have a similar

concentration of data points for rain (Figs. 8b–d). The

distribution in MOR is shifted toward slightly higher Z

and ZDR because of the widespread coverage of more

moderate to large raindrops in the stratiform region. The

large amount of melting ice species (snow, graupel, or a

mix of both; see Fig. 8d) leads to the overforecast con-

vective intensity in MOR based on a comparison of the

hydrometeor types associatedwith these values in Figs. 3d

and 6d; the same is true to a lesser extent with MY

(Fig. 8c). The ZDR maxima displaced from the leading

edge of the convection inWDMresult fromwet snow and

graupel (Fig. 8e, indicated by arrowheads in Figs. 4e and

6e), while that with TOM is mainly associated with rain

(Fig. 8b, indicated by arrowheads in Figs. 4b and 6b).

WDM and WSM exhibit very similar distributions

(Figs. 8e,f). There is little spread in the data points in

WSM given the one-to-one relationship between Z and

ZDR in an SM scheme. Again,WDM, being only DM for

rain, and with a diagnostic N0s, exhibits the least varia-

tion compared to the more complex TOM and fully DM

MOR and MY. Most of the variation in both WSM and

WDM is associated with the presence of mixed-phase

precipitation where changing liquid and frozen water

contents lead to various Z and ZDR combinations.

Since traditional numerical measures like root-mean-

square error (RMSE) will indicate poor results when

spatial errors are present, neighborhood methods have

been developed to account for placement errors when

the overall storm structure is otherwise good (Ebert

2008). One of these techniques, the fractions skill score

(FSS; Roberts 2008; Roberts and Lean 2008), has been

considered in past studies involving the CAPS SSEF and

is used again here (Schwartz et al. 2009; Cintineo et al.

2014). The FSS is calculated by finding the fraction of

forecast grid points in a neighborhood with a given ra-

dius that exceeds a threshold value compared to the

observations. The FSS is designed so that as the radius

for the neighborhood increases to the size of the domain,

the score will asymptote toward an ideal finite value of 1.

If there is bias present in the forecast, then the score will

be less than 1, except for relatively small-scale neigh-

borhoods (Mittermaier and Roberts 2010). A forecast

can be considered to have measurable skill when

FSS. 0:51
O

domain

2
, (2)

whereOdomain is the domain-wide fraction of grid points

where observations exceed the given threshold (Roberts

and Lean 2008).

The FSS is calculated over the Figs. 3–5 domain for

several thresholds for radii ranging from 0 to 200 km to

account for the regional nature of the MCS coverage

(Fig. 9). Overall precipitation coverage, including both

the convective and stratiform regions, is assessed using a

threshold ofZ. 15dBZ (Fig. 9a). All forecasts perform

well at this threshold. TOM, MY, and MOR show skill,

with initial scores around 0.65 that increase to about 0.9

at the 100-km radius.WDMhas the worst scores overall,

averaging around 0.2 less than other members, likely

because of the low-precipitation coverage bias. When

the Z threshold is increased to 40dBZ, to assess the

prediction of intense convective precipitation (Fig. 9b),

there is more spread between the members, and all

members exhibit very poor scores for small radii when

large spatial errors are present. Interestingly, WDM has

the highest score for the 100-km radius because of the

less extensive east–west coverage bias of the convective

lines compared to the other members. WDM under-

forecasts precipitation overall but matches the obser-

vations better in the convective regions. TOM and MY

show some skill using a 100-km radius, but do not im-

prove much with increased radii. MOR, which exhibits

substantial highZ bias due to the overforecast of intense

convective precipitation, has no measurable skill.

A ZDR threshold of 2.5 dB is chosen to assess con-

vective regions in the observations where the largest

drops are present, specifically the maxima seen with the

polarimetric signatures associated with size sorting on

the leading edges of convective lines (Fig. 9c). Scores are

generally poor; the only skillful forecasts are TOM,

which shows skill at the 100-km radius, and MY, which

shows skill at the 150-km radius. This result indicates the

coverage and intensity of significant ZDR in TOM in

convective regions is closest to the observations without

overforecasting large drops overall within the stratiform

region. However, the qualitative evaluation in section 3a(1)

showed ZDR in TOM is displaced and large radii neigh-

borhoods miss these finescale details. MOR is likely

negatively impacted by the highZDR coverage bias in the

stratiform region and greater east–west extent of the

convective regions. WDM andWSM are biased toward

small hydrometeor sizes.

Similarly to ZDR, a threshold of 0.68 km21 for KDP is

chosen to highlight the convective cores where higher

liquid water content is present (Fig. 9d). The KDP

maximum is generally lower in all members than in the

observations and skill scores at higher thresholds will be

very poor. All members have skill for radii greater than

50km (Fig. 9d). Thus, convective regions with high KDP

are relatively well placed, with the caveat that graupel

contamination may affect the upper range of these

values. The better FSS scores forKDP compared to ZDR
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are likely due to the more direct linkage between high

liquid water content and intense convection while ZDR

patterns associated with size sorting are not collocated

with Z maxima. The quantity ZDR provides a more

stringent assessment of microphysical processes and

states.

Since the range of simulated polarimetric variable

values in each forecast may not match the overall range

of the observations, the FSS scores are calculated again

for the same thresholds using percentiles (Fig. 10). The

percentile value in the observations consistent with each

numeric threshold is used as the threshold to assess the

forecast percentile values. This method normalizes the

scores for those forecasts that do not produce values as

high as the observations, effectively removing biases and

providing a fairer assessment of feature placement, as in

the ZDR values for WDM and WSM. The scores for

Z. 15dBZ andKDP. 0.68 km21 are very similar to the

previous results. However, the new scores are improved

significantly for the Z . 40dBZ convective assessment

andZDR. 2.5 dB, which aremore affected bymaximum

value biases. More specifically, those forecast members

that showed no skill without using percentiles (MOR for

Z . 40 dB; TOM, WDM, and WSM for ZDR . 2.5 dB)

now show skill at higher radii when using percentiles.

The most significant improvement is in WDM and

WSM; these members have a low bias compared to the

other members for high ZDR values. The percentile

calculations show the highest ZDR values from WDM

and WSM forecasts are well placed compared to the

observations but underestimated in value. Future

quantitative assessment methods of polarimetric vari-

ables may need to take into account maximum and

minimum value biases.

b. The 20 May 2013 supercell case

Several supercell thunderstorms developed along a

stationary front across the southern plains during the

early afternoon of 20 May 2013, the most intense of

which occurred over central and southern Oklahoma.

Dewpoints in the low 70s 8F and 5000 J kg21 of CAPE

combined with winds in excess of 50 kt (where 1 kt 5
0.51m s21) at 500 hPa associated with an upper-level

trough to create a volatile severe weather environment.

FIG. 9. FSSs for the TOM, MY, MOR, WDM, and WSM forecast results at increasing neighborhood radii for

(a) reflectivity values . 15 dBZ, (b) reflectivity values . 40 dBZ, (c) differential reflectivity values . 2.5 dB, and

(d) specific differential phase values . 0.68 km21 for the mosaics in Figs. 3–5. The horizontal black line indicates

skill greater than a random forecast.
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Themost intense storm, which produced a tornado rated

EF-5 on the enhanced Fujita scale (EF scale), formed

along the stationary front southwest of the Oklahoma

City, Oklahoma, area shortly before 2000 UTC. The

tornado killed 24 people and caused over 1 billion dol-

lars in damage across the southern Oklahoma City

metropolitan area (NWS 2014). Additional tornadoes

were reported across Oklahoma along with widespread

large hail reports over southern Oklahoma (SPC 2014b).

1) QUALITATIVE EVALUATION OF FORECASTS

Mosaics of 0.58-tilt observed and simulated Z, ZDR,

and KDP for all members at 2100 UTC (Figs. 11–13), as

well as hydrometeor classifications using the same pro-

cess in section 3a(1) (Fig. 14), are evaluated. Locations

of WSR-88D radar sites within the domain used to

create the observed and simulated variable mosaics are

included in Figs. 11a, 12a, 13a, and 14a. A 20-dBZ Z

contour is included for reference in Figs. 12 and 13. The

placement and the coverage of the forecast convection

are worse than in the MCS case because of the longer

forecast lead time, the isolated nature of discrete su-

percell storms, and the fact that the storm development

is not directly influenced by assimilated radar data at the

IC time. The Z patterns for the southern Oklahoma

storms in MY and MOR (indicated by an A in Figs. 11c,

d) both exhibit classic supercell structure with a hook-

echo–rear-flank downdraft, indicative of the presence

of a mesocyclone. It should be noted that the structures

are rather large compared to the observations; this is

often seen in forecasts using 4-km grid spacing (Lean

et al. 2008; Johnson et al. 2013). TOM,WDM, andWSM

have a line of cells that are smaller and have low pre-

cipitation in comparison but have supercell character-

istics (Figs. 11b,e,f). For reference, a plot of the Spring

Experiment hourly maximum updraft helicity product

(Kain et al. 2008; Kong 2013) for 2100 UTC is included

(Fig. 15); the high values greater than 150m2 s22 for the

southern Oklahoma storm in all members are indicative

of a mesocyclone (indicated by arrowheads in Fig. 15).

As in the MCS case, WDM underforecasts the pre-

cipitation coverage, while MOR forecasts the most

widespread, high Z. In the observations (Fig. 11a), Z

generally peaks at a higher value (Z . 50dBZ) than in

the model forecasts; MOR is most similar to the obser-

vations. However, the high Z in MOR is due to the

presence of wet graupel (Fig. 14d), while high Z obser-

vations are mostly due to rain and some hail. There is

spurious convection in the northwest corner of the do-

main in all members.

FIG. 10. As in Fig. 9, but with the FSS scores calculated based on percentile values relative to the observations.
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The observed ZDR is generally higher on the right

(southeastern) edge of the forward flanks of the ob-

served cells (Fig. 12a), exhibiting a distinctive ZDR arc.

In the center of the forward flanks of the central

Oklahoma storms, ZDR is lower, possibly because of a

hail-induced ZDR hole, but the HCA does not identify

widespread, consistent areas of hail (Fig. 14a). The lower

ZDR is associated with higher KDP (Fig. 13a), indicating

moderately sized drops and a high rain rate. Along the

right-forward flank of the dominant southernOklahoma

storm inMOR,MY, and to a lesser extent inWDMZDR

increases (indicated by arrowheads in Figs. 12c–e), while

other convective cells are less organized and do not show

this signature. The HCA identifies wet graupel in MOR,

MY, and WDM along the right-forward flank of this

storm (indicated by arrowheads in Figs. 14c–e), and the

size sorting of melting graupel has been shown by

Dawson et al. (2014) to have a substantial impact on the

model representation of the ZDR arc. MOR shows the

highest ZDR farther downwind of the forward flank

than the extent of the wet graupel, consistent with

Dawson et al. (2014; see their Fig. 17). Wet graupel is

present along the entire right-forward flank in MY

andWDM, and the maximumZDR is not located along

the immediate edge. Dawson et al. (2014) also found

hail better replicated the observed coverage and in-

tensity of the ZDR arc compared to graupel, which can

lead to an overextensive forward flank, as seen in

this case.

TOM and WSM do not exhibit the same ZDR pattern

as the observations (Figs. 12b,f). There is a one-to-one

relationship inWSMwhere highZDR occurs with highZ

FIG. 11. Mosaics of observed (a) reflectivity (dBZ) at a 0.58 tilt at 2100 UTC 20 May 2013 and simulated values at the same tilt for the

(b) TOM, (c) MY, (d) MOR, (e) WDM, and (f) WSM forecasts. Features of interest referenced in the text are noted by capital letters.

Locations of WSR-88D sites used for both the observed and simulated variable plots are noted with black dots in (a).
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in the center of the cells. Like the MCS case, a relative

ZDR maximum occurs along the edges of smaller cells

with less intense precipitation in TOM, MOR, and

WDM. This occurs in the southwest portion of the do-

main for MOR and TOM, in northwest Oklahoma for

MOR, and in central Oklahoma for TOM and WDM

(indicated by 1, 2, and 3 in Figs. 12b,d,e, respectively).

As noted for the MCS case, high ZDR is sometimes as-

sociated with aggressive size sorting in developing con-

vection. The drop breakup scheme in MOR may have

also contributed to the spikes in ZDR values associated

with weak precipitation in that case. The ZDR in TOM

appears to be particularlymisplaced; there is a large area

of ZDR exceeding 2.5 dB that occurs between the areas

of more intense precipitation associated with the storm

cells. The PSDs in this region are heavily weighted

toward a few large drops given the low Z. Compared to

MY andMOR, TOM,WSM, andWDM are not DM for

graupel, which was noted to have an impact on size

sorting in supercells.

In all members, KDP is underforecast compared

to the observations. The observations peak above

3.08 km21 (Fig. 13a), while only TOM has a maximum

above 1.758 km21 (Fig. 13b). Of note, the highest KDP

values are not collocated with the highest ZDR values

in the southern Oklahoma storm in MY and MOR

(Figs. 13c,d). In the center of the storm KDP has a rel-

ative maximum but decreases in the right-forward

flank, where ZDR is higher; another indication that

size sorting has resulted in a few large raindrops in the

ZDR arc compared to elsewhere in the forward flank.

Although there is some graupel present in the forecast

that may contaminate the KDP results, particularly in

MOR, most of the forecast convection is classified as

pure rain, suggesting liquid water content is under-

forecast overall.

FIG. 12. As in Fig. 11, but for ZDR (dB). Features of interest referenced in the text are noted by arrowheads and numbers.
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2) QUANTITATIVE EVALUATION OF FORECASTS

As in section 3a(2), percentile histograms (Fig. 16)

and FSSs (Fig. 17) are considered for quantitative

evaluation. Both are calculated over a subdomain that

focuses on the line of supercells that extends from

southeast Kansas to northwest Texas. The MY and

MOR histograms show an overforecast of precipitation

coverage (Figs. 16g,j); this overforecast is present

but confined to lower percentiles in TOM and WSM

(Figs. 16d,p). Given this circumstance, the mostly even

distribution of intensities in the observations (Fig. 16a)

is matched relatively well by these members. TheWDM

precipitation coverage is underforecast so substantially

that the Z distribution is lower than the observations for

all percentiles (Fig. 16m).

There is a high bias in the amount of ZDR values be-

cause of the greater precipitation coverage in TOM,

MY, and MOR. In MY, ZDR has a relatively even dis-

tribution compared to the observations, with the caveat

that the overforecast coverage of precipitation leads to a

consistently higher number of values at most percentiles

overall (Fig. 16h). After considering the grid scale,

simulated ZDR in MY represents the varying degree of

maximum raindrop size in the rain PSDs well. MOR

has a significant peak at the 70th percentile (Fig. 16k),

corresponding to the widespreadZDR around 2.5 dB and

greater in the central forward-flank regions where wet

graupel is present (Fig. 14d). In WSM, for all but the

lowest percentiles, ZDR is lower than the observations

compared to TOM, MOR, and MY (Fig. 16q); this is

expected given the fixed intercept parameters used in

this SM scheme. InWDM,ZDR has a significant low bias

(Fig. 16n) because of small raindrops and small, wet

graupel in precipitation underforecast in coverage and

intensity.

FIG. 13. As in Fig. 11, but for specific differential phase (8 km21).
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In the forecast KDP distributions (Figs. 16f,i,l,o,r), all

members butWDMhave a similar number of values, with a

generally decreasing trend overall toward the higher per-

centiles. WDM has the lowest number of values compared

to the observations while WSM has the highest number of

values in comparison, particularly for the lowest percentiles.

All forecastmembers appear to have generally lower liquid

water contents than the observations in pure rain areas.

The FSS is calculated for radii only up to 100 km as a

result of the more localized nature of the supercell case.

All members show some skill for radii of 20–40km or

more for a Z threshold of 15 dBZ (Fig. 17a). WSM and

TOM have noticeably higher scores than the other

members because the precipitation coverage is more

similar to the observations; precipitation coverage is

overforecast in MY and MOR and underforecast in

FIG. 14. Mosaic of hydrometeor classification using fuzzy logic for (a) observations at a 0.58 tilt at 2100 UTC 20 May 2013, as well as

classification of the highest simulated linear reflectivity at the same tilt for the (b) TOM, (c) MY, (d) MOR, (e) WDM, and (f) WSM

forecasts. Features of interest referenced in the text are noted by arrowheads. Locations ofWSR-88D sites used for both the observed and

simulated variable plots are noted with black dots in (a).

FIG. 15. 2D plots of maximum updraft helicity (m2 s22) at 2100 UTC 20 May 2013 for the (a) TOM, (b) MY, (c) MOR, (d) WDM, and

(e) WSM forecasts. Features of interest referenced in the text are noted by arrowheads.
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WDM. The qualitative evaluation showedmore realistic

Z and ZDR patterns in MY and MOR compared to

WSM and TOM but the size of the supercells in the

former cases was notably larger. Members generally

show no skill for ZDR (Fig. 17b). The KDP threshold

(Fig. 17c) is decreased slightly compared to the MCS

case since the simulated values are lower overall (0.48
km21 instead of 0.68 km21). MY and WSM, as in the

MCS case, have the best skill for KDP for large radii

(.60km), but these scores are not high (,0.7). Issues

related to grid scale and storm placement leave many

quantitative challenges for the simulated polarimetric

variables, especially in terms of ZDR patterns for a

supercell case.

Figure 18 replicates the FSS calculations for Fig. 17 using

percentile values. As in theMCS case, those forecasts with

very poor scores forZDR. 2.5dB due to lower maximum

values than the observations (WDM and WSM) show

significant improvement. However, all forecasts still show

little to no skill overall. The spatial extent and coverage of

ZDR signatures for the supercell case appear more difficult

to match than for theMCS case. Unlike theMCS case, the

KDP scores are also improved for all members. The his-

tograms for each case show that the distribution of KDP

values is a better match in the MCS case than for the su-

percell casewhere there is a greater lowbias inKDP values.

The use of percentiles helps bettermatch the observed and

forecast distributions for comparison so that all but WDM

show at least some skill at the larger radii values. It is clear

the poorKDP scores when percentiles are not used are due

to the low bias of values in the forecast.

4. Summary and conclusions

Polarimetric variables are simulated from the CAPS

Spring Experiment Storm-Scale Ensemble Forecasts

FIG. 16. As in Fig. 7, but from Figs. 11–13.

FIG. 17. FSSs for the TOM, MY, MOR,WDM, andWSM forecast results at increasing neighborhood radii for (a) reflectivity values.
15 dBZ, (b) differential reflectivity values . 2.5 dB, and (c) specific differential phase values . 0.48 km21 for the mosaics in Figs. 11–13.

The black line indicates skill greater than a random forecast.
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(SSEFs) for evaluation of both single-moment (SM) and

double-moment (DM) model microphysics (MP)

schemes. An existing polarimetric radar data simulator

(PRDS; Jung et al. 2008a; Jung et al. 2010) is modified to

add several newMPschemes includingThompson (TOM),

Morrison (MOR), and WDM6 (WDM); Milbrandt

and Yau (MY) and WSM6 (WSM) were already in-

cluded. Careful attention is paid in the simulation to

the hydrometer types and particle size distributions

(PSDs) of each scheme to properly represent the fore-

cast microphysical state. Two cases are considered: a 4-h

forecast for a series of mesoscale convective systems

(MCSs) from 20 May 2013 and a 21-h forecast of su-

percell thunderstorms from the 20 May 2013 Oklahoma

tornado outbreak. Simulated reflectivity (Z), differen-

tial reflectivity (ZDR), and specific differential phase

(KDP) from a single ensemble member forecast using

each scheme with otherwise similar model settings are

compared to observations from the recently upgraded

WSR-88D radar network.

InMOR andMY in the supercell case,ZDR, as well as

classification of the hydrometeors present, produce re-

sults consistent with Dawson et al. (2014), who demon-

strated the role that the size sorting of graupel plays in

the formation of the ZDR arc. The other schemes ex-

amined are not DM for graupel and do not show this

pattern. In addition, the two schemes that best represent

polarimetric size-sorting signatures (MY and MOR)

also show better coverage of stratiform precipitation

compared to the SM WSM scheme. TOM, only DM for

rain with a unique snow PSD and diagnostic N0s, shows

incorrect size-sorting signatures but still represents the

stratiform precipitation region well. Qualitative and

quantitative evaluation shows that WDM, despite being

DM for rain, has a similar one-to-one relationship

between Z and ZDR as WSM and no stratiform pre-

cipitation development. The other DM schemes include

more complex diagnostic equations (TOM) or are fully

DM (MY and MOR), demonstrating that size sorting of

hydrometeor categories in addition to rain is as impor-

tant in improving the forecast microphysical state.

TOM,MOR, andWDM all have incorrect ZDRmaxima

associated with isolated, weak convection on the back

side of convective lines where isolated large drops are

not expected.

Notable biases are present in each scheme. Both Z

and ZDR in the stratiform precipitation region of the

MCS are too high in TOM, MY, and particularly MOR,

indicating that the forecast rain PSDs contain too many

large drops for stratiform rain. The MY, MOR, and

WDM forecasts contain a large amount of wet (melting)

graupel in convective areas, as determined by the

coexistence of rain and graupel in the model, while a

hydrometeor classification algorithm (HCA) used indi-

cates a small amount of hail but mostly rain in similar

locations in the observations. Although wet graupel is

not included as a category in the classification scheme,

significant graupel would not be expected near the sur-

face for these warm season cases. These areas of wet

graupel contribute to more extensive intense Z com-

pared to the observations. MY includes a hail category

but contains a similarly significant amount of graupel,

likely due to a strict minimum hail size threshold in the

scheme. Finally, simulated KDP values are lower in all

members for both cases, particularly in intense convec-

tive precipitation regions. We find that KDP increases

with large amounts of moderate-sized drops and higher

liquid water contents, but large raindrops and graupel

with a low water ratio are apparent in TOM, MOR, and

MY, while WDM and WSM have a bias toward small

raindrops and graupel. The use of a triple-moment (TM)

MP scheme with an effectively variable shape parameter

would provide greater flexibility to represent awider range

of possible PSDs, including those that have a positive

shape parameter (ax) with a brace-like shape. This leads

to a maximum of moderately sized drops and higher liquid

water contents–rain rates compared to an exponential

distribution, which tends to underestimate the liquid water

FIG. 18. As in Fig. 17, but with the FSS scores calculated based on percentile values relative to the observations.
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content. Additionally, KDP is a measurement related to

mass in a volume. With a 4-km grid the volumes are quite

large for calculating KDP, which may vary greatly over a

few kilometers distance, and more localized maxima that

may be present could be missed, particularly in intense

convective precipitation areas.

There are several challenges inherent in large-domain

storm-scale forecasts that can hamper our ability to gain

information about the different MP schemes from the

simulated variables. A poor forecast of storm structure

for a given supercell or MCS will be missing notable

polarimetric value patterns. For example, TOM,WDM,

andWSMhave poor supercell structures that makeZDR

arc comparisons more difficult. Previous studies have

shown that forecasts performed using a 4-km horizontal

grid spacing may miss some finescale details in convec-

tion (Bryan et al. 2003), result in larger-scale structures

(Lean et al. 2008; Johnson et al. 2013), and impede

processes such as the development of trailing stratiform

precipitation (Bryan and Morrison 2012; Xue et al.

2013). Other studies that have considered simulated

polarimetric variables use a smaller grid scale than 4km:

2 km in Putnam et al. (2014), 1 km in Jung et al. (2012),

and 1km in Li and Mecikalski (2012). These patterns

may also be displaced compared to observations, mak-

ing quantitative comparisons difficult.

Forecast members show some skill in terms of the

fractions skill score (FSS) for Z and KDP in the MCS

case but higher scores require larger radii, and all fore-

casts exhibit very poor skill for ZDR in both cases. Al-

though qualitative comparisons indicate that MY and

MOR representZDR patterns relatively well, substantial

spatial error leads to FSS scores with no skill. Normal-

izing the FSS using percentile values results in a signif-

icant improvement in skill for forecasts that do not

contain simulated values as high as the observations.

Future studies should continue to adapt these methods

as forecasts are refined and improved before general

statistics can be produced for all forecasts over the

Spring Experiment period. Such information could be

used in the future to provide additional forecast prod-

ucts as well as serve research purposes like determining

which MP scheme may best represent polarimetric sig-

natures in supercells for use in dual-polarization data

assimilation experiments.

Finally, we point out that there are also many un-

certainties with the polarimetric radar simulator. There are

various assumptions made on the water drop aspect ratio;

canting angle of snow, hail, and graupel; andwater fraction

formixed-phase species. These are someof the aspects that

still need refinement and tuning, and they can affect the

microphysics evaluation. Dawson et al. (2014) developed

an alternative water fraction model for the mixed phases

that depends on the size spectrum. The relative perfor-

mance of this model should be evaluated in the future.
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Ryzhkov, A., and D. S. Zrnić, 1996: Assessment of rainfall mea-

surement that uses specific differential phase. J. Appl. Me-

teor., 35, 2080–2090, doi:10.1175/1520-0450(1996)035,2080:

AORMTU.2.0.CO;2.

Schwartz,C., andCoauthors, 2009:Next-day convection-allowingWRF

model guidance: A second look at 2-km versus 4-km grid spacing.

Mon. Wea. Rev., 137, 3351–3372, doi:10.1175/2009MWR2924.1.

Skamarock, W., and Coauthors, 2008: A description of the Ad-

vanced Research WRF version 3. NCAR Tech. Note NCAR/

TN-4751STR, 113 pp., doi:10.5065/D68S4MVH.

Smith, T., and Coauthors, 2016: Multi-radar multi-sensor (MRMS)

severe weather and aviation products: Initial operating capa-

bilities. Bull. Amer. Meteor. Soc., 97, 1617–1630, doi:10.1175/

BAMS-D-14-00173.1.

SPC, 2014a: SPC filtered storm reports for 5/19/2013. NOAA/

NWS/Storm Prediction Center. [Available online at http://

www.spc.noaa.gov/climo/reports/130519_rpts.html.]

——, 2014b: SPC filtered storm reports for 5/20/2013. NOAA/

NWS/Storm Prediction Center. [Available online at http://

www.spc.noaa.gov/climo/reports/130520_rpts.html.]

Sun, J., and N. A. Crook, 2001: Real-time low-level wind and

temperature analysis using single WSR-88D data. Wea. Fore-

casting, 16, 117–132, doi:10.1175/1520-0434(2001)016,0117:

RTLLWA.2.0.CO;2.

Thompson,G., P. R. Field, R.M. Rasmussen, andW.D.Hall, 2008:

Explicit forecasts of winter precipitation using an improved

bulk microphysics scheme. Part II: Implementation of a new

snow parameterization. Mon. Wea. Rev., 136, 5095–5115,

doi:10.1175/2008MWR2387.1.

Ulbrich, C. W., 1983: Natural variations in the analytical form of the

raindrop size distributions. J. Appl. Meteor. Climatol., 22, 1764–

1775, doi:10.1175/1520-0450(1983)022,1764:NVITAF.2.0.CO;2.

Van Weverberg, K., A. M. Vogelmann, H. Morrison, and J. A.

Milbrandt, 2012: Sensitivity of idealized squall-line simula-

tions to the level of complexity used in two-moment bulk

microphysics schemes. Mon. Wea. Rev., 140, 1883–1907,

doi:10.1175/MWR-D-11-00120.1.

Vivekanandan, J., W. M. Adams, and V. N. Bringi, 1991: Rigorous

approach to polarimetric radar modeling of hydrometeor

orientation distributions. J. Appl. Meteor., 30, 1053–1063,

doi:10.1175/1520-0450(1991)030,1053:RATPRM.2.0.CO;2.

Wacker, U., and A. Seifert, 2001: Evolution of rain water

profiles resulting from pure sedimentation: Spectral vs. pa-

rameterized description. Atmos. Res., 58, 19–39, doi:10.1016/

S0169-8095(01)00081-3.

Weiss, S. J., and Coauthors, 2007: The NOAAHazardousWeather

Testbed: Collaborative testing of ensemble and convection-

allowing WRF models and subsequent transfer to operations

at the Storm Prediction Center. 22nd Conf. on Weather

Analysis and Forecasting/18th Conf. on Numerical Weather

Prediction, Salt Lake City, UT, Amer. Meteor. Soc., 6B.4.

[Available online at https://ams.confex.com/ams/22WAF18NWP/

techprogram/paper_124772.htm.]

Wheatley, D. M., N. Yussouf, and D. J. Stensrud, 2014: Ensemble

Kalman filter analyses and forecasts of a severe mesoscale

convective system using different choices of microphysics

schemes. Mon. Wea. Rev., 142, 3243–3263, doi:10.1175/

MWR-D-13-00260.1.

Xue, M., D.-H. Wang, J.-D. Gao, K. Brewster, and K. K.

Droegemeier, 2003: The Advanced Regional Prediction Sys-

tem (ARPS), storm-scale numerical weather prediction and

data assimilation.Meteor. Atmos. Phys., 82, 139–170, doi:10.1007/

s00703-001-0595-6.

——,M. Tong, andK. K.Droegemeier, 2006: AnOSSE framework

based on the ensemble square-root Kalman filter for evalu-

ating impact of data from radar networks on thunderstorm

analysis and forecast. J. Atmos. Oceanic Technol., 23, 46–66,

doi:10.1175/JTECH1835.1.

——, and Coauthors, 2007: CAPS realtime storm-scale ensemble

and high-resolution forecasts as part of the NOAAHazardous

Weather Testbed 2007 spring experiment. 22nd Conf.

on Weather Analysis and Forecasting/18th Conf. on Numerical

Weather Prediction, Salt Lake City, UT, Amer. Meteor. Soc.,

3B.1. [Available online at https://ams.confex.com/ams/

22WAF18NWP/techprogram/paper_124587.htm.]

——, F. Kong, K. W. Thomas, J. Gao, Y. Wang, K. Brewster, and

K. K. Droegemeier, 2013: Prediction of convective storms at

convection-resolving 1-km resolution over continental United

States with radar data assimilation: An example case of

26 May 2008 and precipitation forecasts from spring 2009.

Adv. Meteor., 2013, 259052, doi:10.1155/2013/259052.

Zhang, G., M. Xue, Q. Cao, and D. Dawson, 2008: Diagnosing

the intercept parameter for exponential raindrop size

distribution based on video disdrometer observations.

J. Appl. Meteor. Climatol., 47, 2983–2992, doi:10.1175/

2008JAMC1876.1.

JANUARY 2017 PUTNAM ET AL . 73

http://dx.doi.org/10.1175/JAS3446.1
http://dx.doi.org/10.1175/2008MWR2556.1
https://www.weather.gov/oun/events-20130520
https://www.weather.gov/oun/events-20130520
http://dx.doi.org/10.1175/2008WAF2222205.1
http://dx.doi.org/10.1175/MWR-D-13-00042.1
http://dx.doi.org/10.1002/met.57
http://dx.doi.org/10.1175/2007MWR2123.1
http://dx.doi.org/10.1175/2007MWR2123.1
http://www.roc.noaa.gov/WSR88D/PublicDocs/DualPol/DPstatus.pdf
http://www.roc.noaa.gov/WSR88D/PublicDocs/DualPol/DPstatus.pdf
https://ams.confex.com/ams/23WAF19NWP/techprogram/paper_154114.htm
https://ams.confex.com/ams/23WAF19NWP/techprogram/paper_154114.htm
http://dx.doi.org/10.1175/1520-0450(1996)035<2080:AORMTU>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1996)035<2080:AORMTU>2.0.CO;2
http://dx.doi.org/10.1175/2009MWR2924.1
http://dx.doi.org/10.5065/D68S4MVH
http://dx.doi.org/10.1175/BAMS-D-14-00173.1
http://dx.doi.org/10.1175/BAMS-D-14-00173.1
http://www.spc.noaa.gov/climo/reports/130519_rpts.html
http://www.spc.noaa.gov/climo/reports/130519_rpts.html
http://www.spc.noaa.gov/climo/reports/130520_rpts.html
http://www.spc.noaa.gov/climo/reports/130520_rpts.html
http://dx.doi.org/10.1175/1520-0434(2001)016<0117:RTLLWA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0434(2001)016<0117:RTLLWA>2.0.CO;2
http://dx.doi.org/10.1175/2008MWR2387.1
http://dx.doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
http://dx.doi.org/10.1175/MWR-D-11-00120.1
http://dx.doi.org/10.1175/1520-0450(1991)030<1053:RATPRM>2.0.CO;2
http://dx.doi.org/10.1016/S0169-8095(01)00081-3
http://dx.doi.org/10.1016/S0169-8095(01)00081-3
https://ams.confex.com/ams/22WAF18NWP/techprogram/paper_124772.htm
https://ams.confex.com/ams/22WAF18NWP/techprogram/paper_124772.htm
http://dx.doi.org/10.1175/MWR-D-13-00260.1
http://dx.doi.org/10.1175/MWR-D-13-00260.1
http://dx.doi.org/10.1007/s00703-001-0595-6
http://dx.doi.org/10.1007/s00703-001-0595-6
http://dx.doi.org/10.1175/JTECH1835.1
https://ams.confex.com/ams/22WAF18NWP/techprogram/paper_124587.htm
https://ams.confex.com/ams/22WAF18NWP/techprogram/paper_124587.htm
http://dx.doi.org/10.1155/2013/259052
http://dx.doi.org/10.1175/2008JAMC1876.1
http://dx.doi.org/10.1175/2008JAMC1876.1

