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ABSTRACT: Assimilation of dual-polarization (dual-pol) observations provides more accurate storm-scale analyses to

initialize forecasts of severe convective thunderstorms. This study investigates the impact assimilating experimental sector-

scan dual-pol observations has on storm-scale ensemble forecasts and how this impact changes over different data assim-

ilation (DA) windows using the ensemble Kalman filter (EnKF). Ensemble forecasts are initialized after 30, 45, and 60min

ofDA for two sets of experiments that assimilate either reflectivity and radial velocity only (EXPZ) or reflectivity and radial

velocity plus differential reflectivity (EXPZZDR). This study uses the 31 May 2013 Oklahoma event, which included

multiple storms that produced tornadoes and severe hail, with a focus on two storms that impacted El Reno and Stillwater

during the event. The earliest initialized forecast of EXPZZDR better predicts the evolution of the El Reno storm than

EXPZ, but the two sets of experiments become similar at subsequent forecast times. However, the later EXPZZDR

forecasts of the Stillwater storm, which organized toward the end of theDAwindow, produce improved results compared to

EXPZ, in which the storm is less intense and weakens. Evaluation of forecast products for supercell mesocyclones [updraft

helicity (UH)] and hail show similar results, with earlier EXPZZDR forecasts better predicting the UH swaths of the El

Reno storm and later forecasts producing improved UH and hail swaths for the Stillwater storm. The results indicate that

the assimilation of ZDR over fewer DA cycles can produce improved forecasts when DA windows sufficiently cover storms

during their initial development and organization.

KEYWORDS: Severe storms; Cloud microphysics; Radars/Radar observations; Ensembles; Numerical weather

prediction/forecasting; Data assimilation

1. Introduction and motivation

Many significant advancements have been made over the

recent decades in storm-scale data assimilation (DA) and

forecasting, including, but not limited to, the initial concept

paper of Lilly (1990), the establishment of a 10-yr National

Science Foundation Science andTechnologyCenter (Droegemeier

1990), and in more recent years the establishment of the

NOAA Warn-on-Forecast (WoF) program (Stensrud et al.

2009, 2013). Notable advancements have also been made in

convection-allowing operational forecasting systems such as

the Rapid Refresh (RAP; Benjamin et al. 2016) and High-

Resolution Rapid Refresh (HRRR; Alexander et al. 2020).

Under the WoF vision, forecasts of various hazards produced

by severe thunderstorms (e.g., hail, flash flooding, and torna-

does) would provide guidance to operational meteorologists to

use when issuing warnings. Therefore, a principal goal of WoF

is to increase warning lead times compared to those currently

issued, which are mainly based on observations of hazards al-

ready occurring or of their precursors. The WoF system fore-

casts will use increasingly higher-resolution numerical models

needed to represent convective-scale processes (Bryan et al.

2003) in combination with sophisticated parameterization

schemes and will assimilate high-resolution, high-frequency

radar, satellite, and conventional (e.g., surface observations

and radiosondes) observations using advanced DA methods

while providing more frequently updated forecasts. Furthermore,

the WoF system will be ensemble based so that the system can

encapsulate forecast uncertainties to provide probabilistic

guidance.

One of the important goals of theWoF system is to generate

forecast initial conditions (also known as analyses) rapidly

using observations collected over as short a time period as

possible while being able to accurately estimate the internal

states of convective storms, including the cloud microphysics

(Stensrud et al. 2013). Dual-polarization (dual-pol) radar

measurements became valuable new sources of observa-

tional information on precipitating systems when the U.S.

operational WSR-88D network was upgraded to dual-pol

capabilities (RadarOperationsCenter 2013).Meanwhile, phased-

array radar (PAR) technologies with dual-pol capability are

being developed as the next generation operational weather

surveillance radar to replace the aging WSR-88D network

(Lei et al. 2007; Yussouf and Stensrud 2010; Supinie et al. 2017;
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Weber et al. 2017; Stratman et al. 2020). PAR is able to provide

much more frequent volume scans (;2min) of the atmosphere

by focusing on certain storms using sector scans instead of

completing a full 3608 rotation like the current WSR-88D

network (;5min). Additionally, there have been many real

storm case studies that use advanced model microphysics

schemes and DA methods, such as the ensemble Kalman filter

(EnKF; Evensen 1994, 2003), that have shown promising re-

sults in improving storm-scale forecasts (e.g., Snook et al. 2012;

Yussouf et al. 2016; Supinie et al. 2017; Skinner et al. 2018;

Labriola et al. 2019a; Putnam et al. 2019; Snook et al. 2019).

The advancements in these areas are vital to representing

the highly complex nonlinear microphysical and dynamical

processes in convective storms that are intrinsically linked

to dual-pol radar measurements. The availability of dual-pol

observations and advancements in DA methods provide the

tools necessary to better investigate the impact dual-pol

observations have on providing improved, accelerated crea-

tion of initial conditions for storm-scale ensemble forecasts

to further advance WoF capabilities (Putnam et al. 2014;

Wheatley et al. 2015; Putnam et al. 2017; Skinner et al. 2018;

Putnam et al. 2019).

Dual-pol observations provide more insights on the micro-

physical state of convective storms than the single-polarization

radar reflectivity (Z) and radial velocity (Vr) observations can.

For example, differential reflectivity (ZDR) contains informa-

tion on the size of hydrometeors by comparing the reflectivities

of horizontal and vertical polarizations (ZH andZV; Bringi and

Chandrasekar 2001). Larger ZDR, corresponding to larger ZH

compared to ZV, is associated with raindrops that grow more

oblate as they increase in size. Thus, ZDR provides a second

independent observation of the microphysical state and addi-

tional information to adjust the particle size distributions

(PSDs) associated with multimoment microphysics schemes

through DA (Putnam et al. 2019). A double-moment (DM)

microphysics scheme allows for the determination of two in-

dependent parameters of PSDs (Milbrandt and Yau 2005),

which need to be initialized for the forecast. The Z and ZDR

observations together allow formore physical estimation of the

hydrometeor PSDs, which in DM schemes are commonly ex-

pressed in terms of mass mixing ratio (q) and total number

concentrations (Nt) for each species (e.g., Milbrandt and Yao

2005; Morrison et al. 2005; Thompson et al. 2008; Morrison

et al. 2009; Lim and Hong 2010; Mansell et al. 2010).

Studies have shown that multimoment microphysics

schemes lead to better analyses and forecasts, including better

handling of the important process of size sorting (Jung et al.

2012; Dawson et al. 2014; Putnam et al. 2014; Wheatley et al.

2014; Putnam et al. 2017, 2019). Certain patterns of ZDR ob-

servations have been identified among other polarimetric sig-

natures that reveal important microphysical and dynamical

processes in convective storms (Balakrishnan and Zrnić 1990;

Zrnić et al. 1993; Brandes et al. 1995; Zrnić and Ryzhkov 1999;

Loney et al. 2002; Scharfenberg et al. 2005; Kumjian and

Ryzhkov 2008; Van Den Broeke et al. 2008; Snyder et al. 2013;

Dawson et al. 2014; Kumjian et al. 2014; Tanamachi and

Heinselman 2016; Carr et al. 2017; Starzec et al. 2017; Van Den

Broeke 2017; Kingfield and Picca 2018; Lim et al. 2018;

Wu et al. 2018; Matsui et al. 2020; Van Den Broeke 2020).

Examples include higher values of ZDR at low levels along the

right forward flank of supercells, in the form of a ZDR arc, that

are indicative of hail and rain size sorting aloft, while a vertical

column of high ZDR values above the melting layer due to

suspended supercooled rainwater is indicative of the presence

of a strong updraft, commonly referred to as the ZDR column.

Dual-pol observations have been the subject of a number of

real case DA studies that assess the impact of the data on

model state estimation and subsequent forecasts. The studies

of Wu et al. (2000) and Li and Mecikalski (2010, 2012), using

various approaches to assimilate preretrieved hydrometeor

mixing ratios from polarimetric observations, showed short-

term forecast improvements in convective storm structure and

location, although Wu et al. (2000) found that improvements

did not last long into the forecasts. Li et al. (2017) showed that

assimilating specific differential phase (KDP) using a single-

moment (SM) microphysics (MP) scheme helped improve

analyses of rainwater and snow content in a mesoscale con-

vective system. Yokota et al. (2016) assimilated Vr as well as

rainwater content derived from Z and KDP for a supercell

storm and obtained improved prediction of the low-level me-

socyclone within the supercell. Carlin et al. (2017) demon-

strated that limiting the adjustments to the moisture and

temperature fields within a cloud analysis procedure to loca-

tions of the ZDR column improved forecasts of tornadic su-

percell updraft helicity and rotation tracks. The methods used

above are all indirect methods where certain state variables are

first derived from the observed quantities during assimilation.

They differ in how the model state variables are updated but

are similar in that not all state variables are updated because of

the lack of cross covariance among the observed quantities and

the state variables, and the final analyses are thus subject to

gross imbalance.

While several studies investigated the impact of assimilating

dual-pol observations on forecasts, they did not use advanced

multimoment microphysics schemes needed to reproduce

proper polarimetric signatures (e.g., Putnam et al. 2014;

Dawson et al. 2014). Putnam et al. (2019) assimilated ZDR

observations directly using EnKF together with a DM micro-

physics scheme and found that the ZDR assimilation improved

analyzed rain and hail PSDs within a supercell, but no free

forecast was considered. In this study, we expand upon the

work of Putnam et al. (2019) and assess the impact of assimi-

lating dual-pol observations on storm-scale forecasts using the

same 5-min DA cycles as in Putnam et al. (2019) to facilitate

direct comparisons. Apart from assessing the impact of dual-

pol observations on subsequent forecasts, we also want to

consider when and how many DA cycles covering the storm

evolution are needed to achieve significant impacts on these

forecasts. Toward this goal, we launch forecasts after 30, 45,

and 60min of DA and compare forecast performance. This

serves to provide insight on how the addition of dual-pol ob-

servations may alter the length of the DAwindow necessary to

produce adequate analyses to initialize forecasts. Further study

may then further examine the impact of assimilating rapid-scan

dual-pol observations based on the number of DA cycles re-

quired to achieve significant forecast impacts. The 31May 2013

1920 MONTHLY WEATHER REV IEW VOLUME 149

Brought to you by UNIVERSITY OF OKLAHOMA LIBRARY | Unauthenticated | Downloaded 12/08/21 09:17 PM UTC



Oklahoma storm event, which included multiple supercell

storms that produced tornadoes, hail, and widespread flash

flooding, serves as an example case where storm-scale prob-

abilistic forecasts would provide guidance in the warning

process and better prepare the public for widespread and

deadly storms.

We first present a brief overview of the 31 May 2013 storm

event in section 2, including the atmospheric conditions that

produced the storms, their complex evolution, and their sub-

sequent impact on the Oklahoma City, Oklahoma, metropol-

itan area. Second, the experiment settings and methodology

are outlined in section 3 by providing details on the experiment

time line and domain, the processing of radar observations

used, and the various settings for the EnKF DA method and

forecast model used to produce staggered ensemble fore-

casts of the event. Next, the ensemble forecasts are evalu-

ated in section 4 by comparing their structure, evolution,

and progression; the forecast hazards they produce; and the

various microphysical and dynamical states of the storms

that contribute to these differences. Finally, conclusions are

given together with thoughts and suggestions for future

work in section 5.

2. Summary of the 31 May 2013 Oklahoma storm event

A prolonged series of supercell thunderstorms occurred

over central and northern Oklahoma during the afternoon and

evening of 31May 2013. These storms were associated with the

latest in a series of upper-level troughs that led to multiple

significant severe weather outbreaks over the plains in late

May 2013. A strong surface low pressure center (;990 hPa)

was located over the eastern Dakotas. A stationary front

trailed to the south-southwest and passed over northern

Oklahoma where there was a secondary, weaker low pres-

sure center with an associated southwesterly-oriented dryline.

These boundaries along with the southeasterly flow ahead of

the low pressure center led to a region of enhanced con-

vergence. Rich, deep gulf moisture was already in place

from the previous storm systems and was readily accessible

given the late spring timing. Surface dewpoints of 708–738F
(218–238C) and the cold air aloft associated with the upper-

level trough led to extreme CAPE values in excess of

5000 J kg21 (SPC 2019).

An initially stout cap was breached due to continued mois-

ture advection, increasing CAPE, and convergence along the

stationary front and near the dryline–stationary front triple

point after 2100 UTC; numerous storms quickly developed.

The storms included an explosive supercell that produced an

EF-3 tornado near El Reno, Oklahoma, that initiated near the

triple point and at the southern end of a line of additional

thunderstorms developing along the stationary front. This

tornado killed 8 people and was followed by several short-lived

tornadoes across the Oklahoma City metropolitan area. New

storms continued to develop near the stalled triple point due to

the convergence and continued moisture advection and move

east over Oklahoma City. Several hours of training thunder-

storms and torrential rainfall led to prolonged and widespread

flash flooding that killed an additional 14 people (NWS 2019).

3. Experiment methods and settings

a. Experiment domain and time line

The experiment domain as well as the background forecast

and boundary conditions for the dual-pol DA experiments use

the multiscale DA and forecast setup of Stratman et al. (2020)

and are summarized in Fig. 1. There are three experiment

domains with 36 ensemble members that are consecutively

nested for each member. The prediction model used for fore-

casts on each domain is the Advanced Research version of

the Weather Research and Forecasting (WRF-ARW) Model

(version 3.9.1.1; Skamarock et al. 2008). The ensemble for the

first, outermost domain is created by interpolating the first 18

ensemble members of the National Centers for Environmental

Prediction’s (NCEP) Global Ensemble Forecast System

(GEFS; NOAA/NCEP 1992; Toth et al. 2004; Wei et al. 2008)

to a grid with 15-km horizonal grid spacing that covers the

CONUS. The GEFS members are used twice to generate en-

semble members 1 through 18 (GEFS members in order)

and 19 through 36 (GEFS members in reverse order) and use

different physics combinations following Table 2 of Yussouf

et al. (2015). The physics combinations include the Kain–

Fritsch (Kain and Fritsch 1993; Kain 2004), Grell-3 (Grell and

Devenyi 2002), and Tiedtke (Tiedtke 1989; Zhang et al. 2011)

cumulus parameterization schemes; the Yonsei University

(YSU; Hong et al. 2006), Mellor–Yamada–Janjić (MYJ; Janjić

2002), andMellor–Yamada–Nakanishi–Niino level 2.5 (MYNN2.5,

Nakanishi and Niino 2006, 2009) planetary boundary layer

(PBL) schemes; the Dudhia (Dudhia 1989) and RRTMG

(Iacono et al. 2008) shortwave (SW) radiation schemes; and the

RRTM (Mlawer et al. 1997) and RRTMG (Iacono et al. 2008)

longwave (LW) radiation schemes. The members are then in-

terpolated to a convection allowing 3-km grid that uses the

same physics combinations as the 15-km grid except for

omission of the cumulus parameterization. All members on

both the 15-km and 3-km grid use the National Severe Storm

Laboratory (NSSL) DM microphysics scheme (Mansell et al.

2010) and Noah land surface scheme (Tewari et al. 2004).

Forecasts are initialized at 0000 UTC 31 May 2013 for both

the 15-km and 3-km ensembles, with the 15-km ensemble

providing updated boundary conditions for the 3-km ensemble

every hour through 0100 UTC 1 June 2013. Conventional ob-

servations are assimilated every hour on both grids using the

EnKF algorithm (version 1.0; Hu et al. 2015b) implemented in

the Gridpoint Statistical Interpolation system (GSI, version

3.4; Hu et al. 2015a). These include temperature and wind in-

formation from surface Automatic Surface Observing System

(ASOS) and Automatic Weather Observing System (AWOS)

stations as well as radiosondes (NOAA/NCEI 1901a,b, 1905).

The 3-km grid is further interpolated to a 1-km grid at

2100 UTC 31 May 2013 that uses the same physics parame-

terizations as the 15- and 3-km grids. After a 1-h spinup fore-

cast beginning at 2100 UTC, 5-min DA cycling begins at

2200 UTC and continues through 2300 UTC, or approximately

3min before the start of the El Reno tornado noted in section 2

(Fig. 1d). The model forecast time steps 60 s for the 15-km grid,

12 s for the 3-km grid, and 3 s on the 1-km grid. In addition to

the radar observations, conventional observations from the
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OklahomaMesonet (Oklahoma Climatological Survey/Oklahoma

Mesonet 1994; Brock et al. 1995; McPherson et al. 2007) are

assimilated on this grid as well. The closest conventional

observation data in time to the DA cycle are assimilated

while the closest KOUN sector-scan observation volume in

time that begins before a given DA cycle is assimilated. This

makes certain that the radar observations overlap the DA

cycle and that there is no more than 2min of difference in

time between a radar observation and the DA cycle. The

observations from the 2-min sector scans that do not overlap

the 5-min DA cycles are not assimilated. Further details of

the data assimilation and EnKF settings for the 1-km grid are

given in section 3c.

To assess if assimilating the dual-pol observations reduces

the number of cycles required to produce a reasonable fore-

cast, three separate ensemble forecasts are initialized in each of

two DA experiments: one assimilating Z and Vr (EXPZ) and

one assimilating ZDR in addition to Z and Vr (EXPZZDR).

For each experiment, one forecast is initialized after 30min of

DAby the analysis at 2230UTC, one after 45min at 2245UTC,

and another after a more typical 1-h DA window for storm-

scale DA experiments at 2300 UTC. Previous studies have

shown assimilating 10–12 radar volumes of Z and Vr observa-

tions, or up to 1 h of DA for 5-min DA cycles, is necessary to

accurately analyze the storms (Xue et al. 2006; Yussouf and

Stensrud 2010). Experiments are named based on forecast

initialization times (Table 1). The forecast from the 3-km grid

provides updated boundary conditions every hour throughout

the 1-km grid DA and forecast period. The time line of the

forecasts on the outer 15- and 3-km domains as well as for the

assimilation period and forecasts initialized from the 1-km grid

is featured in Fig. 1.

b. Radar observation preprocessing

The NSSL’s experimental dual-pol WSR-88D (KOUN;

Ryzhkov et al. 2005; Scharfenberg et al. 2005) scanned the

31 May 2013 storm using sector scans to provide more rapid

updates (;2-min volumes) while observing convective storms

of interest (Kuster et al. 2017, 2019). The sectors in this case

cover approximately 1108 and shift from the west-northwest to

FIG. 1. Diagram of the (a) 15-km first outer domain, the 3-km second outer domain, and 1-km storm-scale

experimental domain; (b) zoomed-in version of the 1-km storm-scale experimental domain with noted radars and

locations of interest; (c) time line of the multiscale 15-km and 3-km outer domain forecasts; and (d) time line of the

1-km spinup forecast, the KOUN data assimilation period, and the staggered ensemble forecasts [adapted from

Stratman et al. (2020)].
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north over the event period following the movement of the

mesocyclone of the El Reno–Oklahoma City tornadic super-

cell discussed in section 2. KOUN has the same 250m gate

spacing as the current WSR-88D network. These sector scans

provide a focus on the storms of interest and serve as a proxy

for a future upgraded dual-pol PAR observation network.

Several preprocessing steps were used on the raw KOUN

observations. First, the NSSL’s and Cooperative Institute for

Mesoscale Meteorology Study’s (CIMMS) Warning Decision

Support System–Integrated Information (WDSS-II; Lakshmanan

et al. 2007) program was used to provide quality control of the

Z observations by removing spurious radar echoes due to

ground clutter/biological scatterers identified via a hydrome-

teor classification algorithm that uses the available dual-pol

observations (Lakshmanan et al. 2007, 2014). The Z and ZDR

observations are marked as missing where these Z observa-

tions have been identified as clutter/biological scatterers.

The velocity observations were automatically dealiased by

WDSS-II. The ZDR calibration was performed using the

presence of dry snow above the environmental melting layer

in a manner similar to the method presented in Picca and

Ryzhkov (2012). Due to errors during data acquisition, there

are a few elevation scans where the velocity data are incom-

plete and contain anomalous values. These individual elevation

scans aremarked asmissing, and no data are assimilated at those

levels. The observations are interpolated on to the horizontal

model grid points but left at the height of the radar tilt elevations

in the vertical (Xue et al. 2006). Observations of Z, and partic-

ularly ZDR, can be quite noisy and can lead to a noisy analysis

(Putnam et al. 2019). The observations are smoothed in two

passes by first using a five-point along-the-radial running aver-

age on the raw observations and then a square nine-point me-

dian filter after the observations have been interpolated to the

model grid.

One of the critical components of radar DA involves as-

similating clear-air observations that help suppress spurious

convection in the model. However, because the KOUN ob-

servations are sector scans, there is a large portion of the do-

main where coverage from KOUN is not available. Clear-air

observations from the nearbyWSR-88D at KTLX, which have

the same 250-m gate spacing as KOUN, are combined with

each KOUN volume to help suppress spurious convection

outside of the sector scans (NOAA/NCEI 1991; Tong and Xue

2005). Areas where convection is observed byKTLXoutside of

the KOUN sector scans are marked as missing.

c. Data assimilation settings

The observations are assimilated on the 1-km grid using the

ensemble square-root filter (EnSRF;Whitaker andHamill 2002)

originally developed for the Advanced Regional Prediction

System with polarimetric radar data assimilation capabilities

(Xue et al. 2006; Jung et al. 2012; Zhu et al. 2020). The system

also directly supports the WRF model and has an efficient

parallelization implementation for high density observations

(Wang et al. 2013). The prior ensemble spread is restored by a

factor of 0.98 using the Whitaker and Hamill (2012) ‘‘relax-

ation to prior spread’’ covariance inflation method to help

maintain ensemble spread. A covariance localization radius

of 3 km in the horizontal and vertical is used to prevent spu-

rious correlations away from the observations (Gaspari and

Cohn 1999).

TheZ andZDR observations are assimilated using operators

that are based on T-matrix calculations and use lookup tables

to precalculate a portion of the operator for computational

efficiency (Putnam et al. 2019). Specifically, the Zh and

Zy operators of Jung et al. [2010, their Eqs. (3) and (4)],

which require computationally expensive numerical integra-

tion, are modified. A simplified example of the Zh operator is

given here:

Z
h
5

4l4

p4jK
w
j2
ð
jf
a
(p)j2N

0
e2LD dD , (1)

where l is the radar wavelength, Kw is the dielectric factor

for water, fa(p) is the backscattering amplitude for the major

axis of the hydrometeor, N0 is the intercept parameter of the

PSD, L is the slope of the PSD, and D is the hydrometeor

(particle) diameter. The Zh and Zy operators were modified

in Putnam et al. (2019) to precalculate Zh and Zy using a

summation over a range of possible hydrometeor diameters

with the values stored in tables based on the slope (L) pa-
rameter of the PSD for each hydrometeor category prior to

assimilation. The N0 can be taken out of the summation

leaving each summation based onL, with an example for rain

given here:

Z
h
5

4l4

p4jK
w
j2 N0 �

8:0

i50:0

jf
a
(p)j2e2LDDD , (2)

where the summation is performed for drop sizes (i) 0.0 to

8.0mm [Eq. (2) from Putnam et al. (2019)]. The L value is

calculated during assimilation based on the model predicted

hydrometeor q andNt and the corresponding closest value ofL
from the precalculated tables is used to determine Zh and Zy.

Finally, ZH (Z) and ZV are determined by adding up contri-

butions from Zh and Zv for all hydrometeor categories (x)

present:

Z
H
5 10 log

10
(Z

h,x1
1Z

h,x2
1 � � � ), (3)

Z
V
5 10 log

10
(Z

y,x1
1Z

y,x2
1 � � � ), (4)

with ZDR given by the ratio of these contributions from Zh

and Zy:

Z
DR

5 10 log
10

 
Z

h,x1
1Z

h,x2
1 � � �

Z
y,x1

1Z
y,x2

1 � � �

!
(5)

TABLE 1. Experiment names based on the observations assimilated

and forecast initialization time.

Forecast

initialization time

Z 1 Vr

DA expt

Z 1 ZDR 1 Vr

DA expt

2230 UTC (30-min DA) EXPZ_2230 EXPZZDR_2230

2245 UTC (45-min DA) EXPZ_2245 EXPZZDR_2245

2300 UTC (60-min DA) EXPZ_2300 EXPZZDR_2300
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[adapted from Eqs. (14), (15), and (16) of Jung et al. (2008a)].

The graupel and hail categories in the NSSL scheme have

variable density and a range of densities from 100 to 900 kgm3

in 100 kgm3 increments are included for those lookup tables

in addition to L. This method better represents the range

of possible dual-pol values while saving significant computa-

tional time that makes using the T-matrix based calculations

practical.

The observation error standard deviations are assumed to be

6 dB for Z, 4m s21 for Vr, and 0.6 dB for ZDR based on values

determined in Putnam et al. (2019). The observation errors are

assumed to be uncorrelated as required by the EnSRF algo-

rithm used (Whitaker and Hamill 2002), thus the observation

error covariances are assumed to be 0. Partly to account for

potential error correlations, the observation errors used are

higher than the typical measurement errors (Hilton et al. 2009;

Fowler et al. 2018). The assumed errors also include those from

the observation operator, representativeness, and sampling.

Jung et al. (2008b) also found that the assumption the errors

are uncorrelated was practical using the same base EnSRF

code and observation operators for dual-pol assimilation as in

this study. Clear-airZ observations are assimilated everywhere

while Vr observations are assimilated in precipitation areas

where Z . 10 dBZ. A threshold to assimilate ZDR of ZDR .
3.0 dB is used at heights less than 3500m and ZDR . 0.75 dB at

heights greater than 3500m, or the approximate environmental

melting layer. These thresholds are chosen to focus on assim-

ilating the high values of ZDR seen in the ZDR arc signature

below the melting layer and theZDR column above themelting

layer where prior studies have shown that the ZDR observa-

tions have a positive impact on the microphysical and dy-

namical state of the storms (Carlin et al. 2017; Putnam et al.

2019). Outside of these regions of significant values, smaller

ZDR observations can be quite noisy compared toZ (Jung et al.

2008b) and lead to a poor analysis of state variables when

trying to fit them toZDR observations. This differs from a prior

dual-pol DA study (Putnam et al. 2019) where observations

were limited to below the melting layer and allows for obser-

vations from the ZDR column to impact the analysis.

During each assimilation cycle, Z and Vr observations are

assimilated first and then ZDR observations are assimilated.

Putnam et al. (2019) showed improved analyses with such a

sequence because adjustments to the model state variables

based on the ZDR observations can be overwhelmed from

more significant adjustments by Z observations due to the

greater number and range in magnitude of Z observations.

Additionally, the Z, Vr, and ZDR observations are assimilated

at every other grid point following Putnam et al. (2019); as-

similating the data every grid point was found to sometimes

overadjust the model state that can show up as poor combi-

nations of hydrometeor mixing ratios (q) and number con-

centrations (Nt). The insufficient observational constraint and

large uncertainty with the covariance estimation from the rela-

tively small ensemble are believed to be the cause. The reduc-

tion in observation density also helps account for the potential

of observation error correlations that are assumed to be 0 in

our EnKF system (Dando et al. 2007). The conventional sur-

face observations from the OklahomaMesonet are assimilated

prior to the radar observations in the following order with

errors of 1.5m s21 for u and y, 2 K for T, 2 K for Td, and 2 hPa

for p. The localization radius for these observations is

100 km horizontally and 6 km vertically.

4. Results

The results are presented in three sections. First, we assess

the overall storm structure and evolution based on probabi-

listic forecasts of reflectivity. Second, differences in the pre-

dictions of storm hazard products are assessed, including

updraft helicity and hail, which are an important feature of the

WoF system (Stensrud et al. 2009). Finally, the evolution of

model state features including the storm cold pool and updraft

are compared to investigate how assimilating the additional

ZDR observations, specifically those associated with the ZDR

column, over multiple DA cycle windows contributes to dif-

ferences in the subsequent ensemble forecasts.

a. Evaluation of ensemble forecasts

The forecast storm evolution is assessed by comparing ob-

served Z with forecast probability-matched ensemble mean Z

(PMEM; Ebert 2001). The evaluation is done in 30-min in-

crements from 2300 UTC 31 May 2013 until 0100 UTC 1 June

2013 (5 forecast times) for the EXPZ andEXPZZDR forecasts

initialized at 2230 UTC (Fig. 2), 2245 UTC (Fig. 3), and

2300 UTC (Fig. 4). The PMEM first ranks all Z values from all

members in increasing order and all Z values from the en-

semble mean in increasing order separately. The ranked Z

values from the ensemble members are then moved to the lo-

cation on the grid where the Z value of the same rank in the

ensemble mean is located to account for location differences

over small scales where Z values could significantly vary or be

0, which leads to a low bias in mean Z. The observed Z plotted

is fromKTLX, not KOUN, since theKTLXobservations cover

all observed storms and the KOUN sector scans miss storms to

the north and west of the storm of interest. The observations at

2300 UTC include a mature supercell over El Reno as well as

an additional storm to the north that eventually moves over

Stillwater, Oklahoma, at 0000 UTC, with severe winds and hail

reported in the vicinity (SPC 2019). In the discussion of the

results, these storms will be referred to as the ‘‘El Reno’’ and

‘‘Stillwater’’ storms and are noted by the letters A and B, re-

spectively, in Fig. 2d.

Both forecast experiments initialized at 2230 UTC produce

forecasts of the El Reno storm that generally move at a slightly

faster speed and are located in the same vicinity of the ob-

served storm as it passes east over Oklahoma City (Fig. 2).

Additional convection develops to the northwest of the storm,

but the ensembles do not replicate the repeated initiation and

training of thunderstorms over the Oklahoma City region seen

in the observations and discussed in section 2. This convection

in the forecasts is displaced farther north and weakens quickly

as the storms move to the east after 0000 UTC (Figs. 2i,n,j,o).

The forecasts of the El Reno storm overall are similar except

for in EXPZ_2230 at 0100 UTC where stronger convection

develops to the southwest of the storm and begins to move

southeastward, beginning to surpass the progression of the
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observed El Reno storm to the south and east (Fig. 2j), which

differs from EXPZZDR_2230 and the observations. The ex-

periments differ more in the forecast of the northern Stillwater

storm. The stormweakens rapidly by 0000UTC inEXPZ_2230

(Fig. 2h), and the remaining convection at 0100 UTC is not

identifiable as a separate storm from the El Reno supercell

(Fig. 2j). In contrast, the convection is maintained for a longer

period of time in EXPZZDR_2230, with a similar strength cell

compared to the observations at 0100 UTC (Fig. 2o).

The storm development and propagation are more similar

between the forecasts initialized at the later 2245 UTC and

2300 UTC initialization times (Figs. 3 and 4). In Figs. 3f–j, the

core of the El Reno storm in EXPZ_2245 begins to weaken as

it moves east during the forecast period. The reflectivity core

peaks in intensity at 0000 UTC (Fig. 3h) and then decreases in

intensity and loses its identity by 0100 UTC. In contrast, the

similar reflectivity core in EXPZZDR_2245 UTC remains

stronger and continues to move eastward between 0000 and

0100 UTC (Figs. 3m–o). The convection that develops to the

west of the El Reno storm noted in Fig. 2 is more intense rel-

ative to the El Reno storm and actually surpasses the El Reno

storm in intensity by 0030 UTC in EXPZ_2245 (Fig. 3i). This

convection moves southeastward in a similar manner to that

seen in EXPZ_2230 UTC. Both forecasts show this pattern in

FIG. 2. Observed reflectivity (Z) from (a)–(e) 2300 UTC 31 May to 0100 UTC 1 Jun 2013 in 30-min increments as well as forecast

probability-matched mean Z plotted at the first level above the surface from (f)–(j) EXPZ_2230 and (k)–(o) EXPZZDR_2230. The El

Reno and Stillwater storms are noted by the letters ‘‘A’’ and ‘‘B’’ in (d), respectively.

FIG. 3. As in Fig. 2, but for EXPZ_2245 and EXPZZDR_2245.
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EXPZ_2300 andEXPZZDR_2300 (Fig. 4). TheEl Reno storm

weakens while the storm that develops to the west becomes

more dominant as it moves to the southeast, in a manner more

typical of outflow-dominant convection, in contrast to the ob-

servations, where the El Reno storm remains intense and

continues to move east at 0100 UTC (Figs. 4e,j,o). It should be

noted that there is a tendency for the NSSL scheme to produce

higher Z values in the background forecasts and subsequently

the EnKF analyses (Figs. 4f,k), due to the scheme’s tendency to

predict large hail as well as excessive size sorting, and the

tendency for the EnKF to overestimate larger rain drops when

independently estimating the q andNt state variables (Dawson

et al. 2013; Johnson et al. 2016, 2019). Due to the tendency for

the NSSL scheme to produce too high Z values, we focus our

qualitative analysis and interpretation of the forecast PMEMZ

from the two experiments in terms of relative differences be-

tween the two experiments compared to the relative differ-

ences in the observations over time.

The EXPZZDR experiment forecasts that are initialized

after longer DA periods, EXPZZDR_2245 and especially

EXPZZDR_2300, exhibit more similar characteristics to the

EXPZ experiments for the El Reno storm. In contrast to the

evolution of the El Reno storm at later initialization times,

the results for the Stillwater storm in the EXPZZDR experi-

ments continue to improve compared to the EXPZexperiments,

as theDAwindow coversmore of the development of the storm.

The Stillwater storm continues to weaken after 0000 UTC in

EXPZ_2245 and EXPZ_2300 (Figs. 3h–j and 4h–j), while the

storm in EXPZZDR_2300 increases in intensity between 0000

and 0030 UTC before decreasing in intensity (Figs. 4m–o) in a

similar manner to the observations by 0100 UTC (Figs. 4c–e).

The similarities and differences of the location and coverage

of convection for the El Reno and Stillwater storms are even

more obvious when comparing probabilistic forecasts of Z.

Figure 5 contains the 5-km neighborhood ensemble probability

ofZ greater than 15 dBZ at 0000, 0030, and 0100UTC, with the

threshold of 15 dBZ chosen to assess the overall predicted

coverage of precipitation. The differences in the forecasts at all

three forecast initialization times are directly compared in

Fig. 5 in contrast to evaluating the evolution of each of the

forecasts in Figs. 2–4. The precipitation coverage is similar

between the two experiments at all times for the El Reno

storm. Both experiments capture the placement of the eastern

portion of the convection and have noticeable but very low

probabilities for the training storms following the El Reno

storm to the west. The complex development of these training

storms is a possible area for future study. The plots also high-

light the improvement in the prediction of the Stillwater storm

in the EXPZZDR experiments. At all three forecast times

there are higher probabilities compared to the EXPZ experi-

ments, and these probabilities increase with forecasts initial-

ized after more DA cycles that cover the early development of

the storm (Figs. 5k,l).

The forecast initialization times from the EXPZZDR ex-

periments and EXPZ experiments that produce improved

forecasts of the ElReno and Stillwater storms are not the same.

The EXPZZDR forecasts better predict the El Reno storm

after only a fewDA cycles early in the period (EXPZZDR_2230)

while the EXPZZDR experiments better predict the Stillwater

storm at the later forecast initialization times (EXPZZDR_2300).

These results may appear conflicting. However, the El Reno

storm is less sensitive to when the EXPZZDR forecasts are

initialized during the assimilation period because the storm

organized more rapidly early in the period, before the later

forecasts are initialized, while the Stillwater storm evolved

from a cluster of storms later in the period, across the forecast

initialization times (Fig. 5). The later forecasts of the Stillwater

storm increasingly include more DA cycles that cover the

storm organization. Overall, EXPZZDR forecasts initialized

after DA windows that assimilate ZDR for several cycles

covering the earlier stages of storm development and orga-

nization produce the most improved forecasts compared to

FIG. 4. As in Fig. 2, but for EXPZ_2300 and EXPZZDR_2300.
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FIG. 5. Probability of reflectivity (Z) greater than 15 dBZ for EXPZ valid at 0000 UTC 1 Jun 2013 from the forecasts initialized at

(a) 2230, (b) 2245, and (c) 2300 UTC 31 May 2013 and for (d)–(f) EXPZZDR as well as the same probabilities for Z valid at 0030 UTC 1

Jun 2013 for (g)–(i) EXPZ and (j)–(l) EXPZZDR and at 0100 UTC 1 Jun 2013 for (m)–(o) EXPZ and (p)–(r) EXPZZDR. Observed Z

greater than 15 dBZ is outlined in black.
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the EXPZ forecasts. The results also indicate there may be

less need for the help of ZDR data in addition toZ andVr data

for mature storms.

We examined the root-mean-square innovations (RMSIs)

and the ensemble spreads in terms of Z and ZDR for all the

initial conditions. The Z values are calculated in areas where

the predicted or observed Z is greater than 15 dBZ and the

ZDR values are calculated where observed ZDR is greater than

3.0 dB below 3500m or 0.75 dB above 3500m, the thresholds

forZDR assimilation.We found that the RMSIs and spreads do

not differ much between experiments EXPZ and EXPZZDR

for eitherZ orZDR. TheRMSIs forZ andZDR are;7–9 dB, and

;2 dB, respectively, while the corresponding spreads are ;6–

8 dB and ;0.5 dB, respectively. Within EnKF radar DA, and

EnKF DA in general, underdispersion in terms of spread is a

common problem (Dowell and Wicker 2009; Aksoy et al. 2009;

Jung et al. 2012; Yussouf et al. 2013; Houtekamer et al. 2014;

Putnam et al. 2014; Romine et al. 2014; Wheatley et al. 2014;

Snook et al. 2015; Houtekamer and Zhang 2016; Carrió et al.

2019), and here we see more underdispersion in ZDR while the

spreads of Z are actually relatively large. The latter should be

related to the fact that our calculations do not include points

where observed or predicted Z is below 15dBZ. Given that

within EnKF DA cycles the ensemble spread is somewhat arti-

ficially tuned through covariance inflation, forecast quality is

often a better indication of the initial condition quality than the

analysis spread.

One of the additional benefits of using an ensemble forecast

is that the differences between each member provide a char-

acterization of the forecast skill and uncertainty (Ehrendorfer

1997; Sivillo et al. 1997; Toth et al. 2001; Satterfield and

Szunyogh 2010; Yokohata et al. 2012; Loeser et al. 2017), in-

cluding in studies that focused on convective-scale forecasts

(Clark et al. 2011; Evans et al. 2014; Snook et al. 2015; Iyer et al.

2016; Loken et al. 2017; Putnam et al. 2017; Erickson et al.

2019). To assess the performance of the ensemble experiments,

we look at both the area under the relative operating charac-

teristic (ROC) curve (AUC) and forecast reliability. The AUC

is a forecast skill score that considers the probability of a hit

versus the probability of a false alarm between the ensemble

forecasts and the observations (Mason 1982; Mason and

Graham 1999). The AUC is calculated for Z values from the

simulated forecast results and observations from the 0.58 tilt of
KTLX from 10 to 50 dBZ using a 5-km neighborhood (Fig. 6).

The score is calculated for all experiments for the El Reno and

Stillwater storms over the domain and 0000–0100 UTC time

frame considered in Figs. 2–5. A 95% confidence interval is

provided by recalculating the AUC 1000 times using a boot-

strap sampling method. The bootstrapping is performed by

taking a random sample of 36 members from the ensemble and

recalculating the score based on that 36-member sample, with

the range of those scores providing the confidence interval. The

results show that not only are forecasts from both experiments

skillful over the range of Z values considered, but that the

forecasts of EXPZZDR have higher skill than the EXPZ re-

sults for almost all Z values at all forecast times. More im-

provement is seen for EXPZZDR_2230 and EXPZZDR_2245

(Figs. 6a,b,d,e,g,h), which both showed improved forecasts of

the El Reno and Stillwater storms compared to EXPZ_2230

and EXPZ_2245. The EXPZZDR_2245 forecast at 0030 UTC

(Fig. 6e) shows the most improvement in skill for the higher

Z values 45–50 dBZ, which corresponds with the development

of the intense convection west of the El Reno storm in the

EXPZ_2245 forecast noted in Fig. 3i. The least improvement is

seen in EXPZZDR_2300 compared to EXPZ_2300, which

showed similar forecasts of the El Reno storm, with new con-

vection to the west surpassing the El Reno storm in intensity by

0100 UTC (Fig. 6i).

The forecast reliability diagram provides a quantitative as-

sessment of the amount of certainty for an ensemble forecast

by comparing the range of forecast probabilities of an outcome,

in this case the probability ofZ. 15 dBZ, to the frequency that

values of Z . 15 dBZ are observed (Fig. 7; Brown 2001;

Hudson 2017). The calculation uses the same 5-km neighbor-

hood for the same 0.58 tilt of KTLX and timeframe as in Fig. 6.

The 15-dBZ threshold is chosen to evaluate the coverage of

precipitation considered in Fig. 5. Areas above the included

black dashed diagonal line indicate when the probabilities are

underforecast, while areas below the line indicate when the

probabilities are overforecast (overconfident), and blue shad-

ing indicates when the forecast probabilities are skillful. In

general, all forecasts for both experiments are skillful for most

probabilities of Z . 15 dBZ at most forecast times. In partic-

ular, EXPZDR_2230 is more reliable than EXPZ_2230 at

0000 UTC when EXPZ_2230 significantly overforecasts Z .
15 dBZ (Fig. 7a). This corresponds with the improved forecasts

of both the El Reno and Stillwater storms at this time. As with

the AUC, the forecasts are more similar at the later forecast

initialization time (2300 UTC), when the prediction of the

El Reno storm is more similar between the two experiments

(Figs. 7f,i). The EXPZ experiments are more reliable for

some probabilities at some forecast times, specifically when

EXPZZDR_2300 overforecasts higher probabilities of Z .
15 dBZ at 0000 UTC (Fig. 7c). However, in general, the

EXPZZDR experiments are at least similar if not more reli-

able than theEXPZ experiments overall. Alongwith theAUC,

these ensemble forecast verification metrics show that the

EXPZZDR experiments perform at least as well as, and in

many cases improve upon, the EXPZ experiments, indicating

that conclusions drawn from the qualitative evaluation of

the results are reasonable. The results also further demon-

strate how the assimilation of ZDR over a smaller timeframe

covering the earlier stages of storm development provide a

more skillful and certain ensemble forecast of the storms,

specifically the larger improvements seen in EXPZZDR_2230

over EXPZ_2230.

b. Evaluation of derived forecast products and
predicted hazards

The goal of theWoF system is to generate a continuous flow

of rapidly updating probabilistic model guidance of severe

convective hazards once the thunderstorm initiates (Stensrud

et al. 2009). In this section, we evaluate mesocyclone and hail

forecast products to determine if assimilatingZDR over various

DA windows not only improves the forecast coverage and in-

tensity of storms but their associated severity of hazards as
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well. First, probabilistic forecasts of updraft helicity (UH) are

considered. UH is the product of vertical vorticity and updraft

velocity integrated over a given depth (Kain et al. 2008) and

serves as a proxy for mesocyclone strength as well as the as-

sociated increased potential for hail and tornadoes in ensemble

forecasts (Sobash et al. 2011; Clark et al. 2012, 2013; Yussouf

et al. 2015; Gallo et al. 2016; Sobash et al. 2016). Figure 8

contains swaths of the grid-based probability of midlevel

UH (2–5-km) associated with the midlevel mesocyclone ex-

ceeding 50m2 s22 calculated every 5min between 2300 UTC

31 May and 0100 UTC 1 June 2013. Contours of the NSSL’s

Multi-Radar Multi-Sensor (MRMS) azimuthal shear product

(NOAA/NSSL 2014; Smith et al. 2016) calculated using ob-

served Vr (Smith et al. 2004) are overlaid to mark the location

of rotation in the observed storms.

EXPZZDR_2230 (Fig. 8d) predicts a UH swath that better

follows the observed azimuthal shear associated with the El

Reno storm compared to the swath in EXPZ_2230, which veers

too far south and east (Fig. 8a). This increasingly southeasterly

movement appears to follow the track of the new convection

to the west of the El Reno storm seen in Fig. 2j, suggesting

the predicted UH in EXPZ_2230 is no longer associated with

the El Reno storm but rather with the subsequent new con-

vection. The forecasts become more similar at the latter

two initialization times (Figs. 8b–f), and both experiments

predict UH tracks that are oriented more to the south and

east of the observed azimuthal shear. This deviant UH track

more closely follows the path of the storm that initiates later

to the west of the El Reno storm and eventually supersedes

the El Reno storm. UH probabilities are lower for the

northern, Stillwater storm in all experiments overall, but

EXPZZDR predicts increasingly higher probabilities than

EXPZ with later forecast initialization times (Figs. 8d–f). The

tracks are displaced to the south of the observed azimuth

shear but forecast and observed track lengths are approxi-

mately the same.

FIG. 6. AUC skill score calculated for Z values from 10 to 50 dBZ for EXPZ (blue) and EXPZZDR (red) valid at 0000 UTC 1 Jun 2013

for the forecasts initialized at (a) 2230, (b) 2245, and (c) 2300 UTC 31May 2013, as well as for (d)–(f) 0030 and (g)–(i) 0100 UTC. A 95%

confidence interval is provided within the corresponding blue and red shading. The background green shading indicates a skillful forecast

and the pink shading indicates no forecast skill.
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Swaths of hail probabilities are shown in Fig. 9. The proba-

bility of hail exceeding 5mm in diameter at the surface is cal-

culated every 5min from the model output over the same

forecast window as UH (2300 to 0100 UTC). Maximum hail

diameters are determined following the method first employed

by Snook et al. (2016), which diagnoses the largest observ-

able hailstone from hail PSDs at each grid point, using the

Thompson hail method (Thompson et al. 2018) for the NSSL

microphysics scheme in a similar manner to Labriola et al.

(2019b). Also following Snook et al. (2016), radar indicated

regions of hail identified by the Park et al. (2009) hydro-

meteor classification algorithm (HCA) using KTLX data

(NOAA/NCEI 1991) are overlaid on the plots. Probabilistic

hail size forecasts for the El Reno storm are very similar in

amplitude and coverage for all forecast initialization times.

However, there is an increase in forecast probabilities between

the two sets of experiments for the Stillwater storm. Both

EXPZZDR_2245 (Fig. 9e) and EXPZZDR_2300 (Fig. 9f)

predict swaths of higher hail probabilities than their EXPZ

counterparts (Figs. 9b,c). EXPZZDR_2300 in particular better

predicts the probability of 5mm hail exceeding 90%within the

observed hail path. The Stillwater storm is weaker and smaller

compared to the El Reno storm but still produces severe hail,

and the EXPZZDR forecasts highlight this hail threat better.

c. Evaluation of the analyzed state

The evaluation of the storm evolutions and predicted haz-

ards in sections 4a and 4b indicates that there is an improve-

ment in forecasts of storms when ZDR is assimilated in the

EXPZZDR experiments, and the impact is greater when the

DA window covers more of the storm development. Previous

observational studies of ZDR have indicated that there is a

sharp increase in the values ofZDR associated with the updraft,

the ZDR column, as the storm initiates (Kumjian and Ryzhkov

2008). Carlin et al. (2017) also showed improved forecasts of

UH when ZDR columns are used to identify updrafts during

cloud analysis DA. To investigate how assimilation of ZDR

affects the strength of the updrafts, we compare the analyzed

FIG. 7. Reliability diagrams for EXPZ (blue) and EXPZZDR (red) for the probability of Z. 15 dBZ valid at 0000 UTC 1 Jun 2013 for

the forecasts initialized at (a) 2230, (b) 2245, and (c) 2300 UTC 31 May 2013, as well as for (d)–(f) 0030 and (g)–(i) 0100 UTC. The black

dashed diagonal line indicates perfect reliability, and the black dashed horizontal line indicates a forecast of climatology. The blue shading

indicates a skillful forecast.
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vertical velocity (w) at the height of the average melting layer

of the domain, where supercooled raindrops breach the melt-

ing layer, as well as themaximumw for the earliest (2230UTC)

and latest (2300 UTC) forecast initialization times (Fig. 10).

The w values are larger and more focused for the El Reno

storm in EXPZZDR_2230 than in EXPZ_2230 both at the

melting layer and for the vertical maximum. The vertical

maximum w in particular shows a larger, circular region of w

values exceeding 50m s21. However, the values are very sim-

ilar for the 2300 UTC experiments. Sections 4a and 4b showed

that the EXPZZDR forecasts more closely resembled the

EXPZ forecasts and deviated more from the observations at

the later forecast initialization times when the El Reno storm

was more mature. For the Stillwater storm, the EXPZZDR_

2300 analysis, which includes more DA cycles that cover the

development of the storm, shows larger w values than the

EXPZ_2300 analysis. The later initialized EXPZZDR_2300

forecast showed more improvement in sections 4a and 4b

over EXPZZ_2300 compared to the differences between

EXPZZDR_2230 and EXPZ_2230. The assimilation of the

ZDR observations during DA windows that adequately cover

initial storm organization show an increase in the strength of

the updraft, and the forecasts initialized with this stronger

updraft show improvement compared to the observations over

those experiments that did not assimilate ZDR.

Another difference between the two sets of experiments is

the prediction of the northern, Stillwater storm across all

EXPZZDR forecasts compared to the EXPZ forecasts, where

the storm barely forms or weaken quicker depending on the

forecast initialization time. The evolution of the El Reno storm

and subsequent convection is also improved in EXPZZDR_2230

compared toEXPZ_2230, where new convection to the southwest

begins to overtake the El Reno storm. The analyzed surface

temperature (T) and dewpoint temperature (Td) fields used to

initiate the forecasts at 2230UTC and 2300UTC are compared

in Fig. 11 (2230 UTC) and Fig. 12 (2300 UTC) [Oklahoma

Mesonet observations are overlaid on all plots (Oklahoma

Climatological Survey/Oklahoma Mesonet 1994)]. EXPZ ana-

lyzed T is cooler in the storm cold pools than EXPZZDR. The

differences are most pronounced at 2300 UTC, with the coldest

surface temperatures overall associated with the EXPZ_2300

Stillwater storm cold pool. EXPZ analyzed Td is also lower

than EXPZZDR, and the driest air is again seen in the

EXPZ_2300 Stillwater storm cold pool.

While a cold pool is an important component to an orga-

nized supercell (Dawson et al. 2010), a cooler, drier cold pool

may lead to a decrease in storm intensity as warm, moist air

is cut off from and unable to maintain a mature and intense

storm updraft. In fact, past studies have pointed out that cycled

radar DA tends to overpredict the intensity of the cold pool

(Dowell et al. 2011; Yussouf et al. 2013; Stratman et al. 2020).

Cooler, drier cold pools are largely the result of the evapora-

tion of smaller drops in rain drop size distributions (DSDs) that

cool the air in storm downdrafts. Figure 13 contains a plot of

the rainwater mean mass diameter (Dnr) for the 2230 and

2300 UTC analyses of EXPZ and EXPZZDR at an approxi-

mate height of 2200m. This is roughly the level of free con-

vection of the storm environment as indicated by the 0000UTC

1 June 2013 Norman, Oklahoma, sounding. This height illus-

trates the distribution of rain DSDs in the vicinity of the storm

FIG. 8. Swaths of the probability of midlevel UH (2–5 km) greater than 50m2 s22 from 2300 UTC 31 May to 0100 UTC 1 Jun 2013 for

EXPZ forecasts initialized at (a) 2230, (b) 2245, and (c) 2300 UTC 31 May 2013 as well as for (d)–(f) EXPZZDR. Contours of observed

azimuthal shear of 0.006 and 0.012 s21 are outlined in black.
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cloud base before rain begins to fall below a stout capping in-

version and evaporate. Figure 14 contains percentile-based

histograms of Dnr values for both the El Reno and Stillwater

storms at both analysis times for the model grid points asso-

ciated with these storms (indicated by the black boxes in

Fig. 13). The total number and range of Dnr values are found

for each experiment and then distributed based on even 10%

intervals to normalize the distributions in comparison to one

another and reduce skewness due to outliers.

The Dnr values for the El Reno storm are similar between

EXPZ_2230 and EXPZZDR_2230 for the main core of the

storm. However, larger Dnr values extend farther east in the

forward flank for EXPZZDR_2230. More importantly, there is

an area of larger drops of about 1mm in size associated with

the rear flank on the southwest side of the storm (indicated by

‘‘1’’ in Figs. 13a,b). There are also higher values of Dnr asso-

ciated with the core of the Stillwater storm inEXPZZDR_2230

compared to EXPZ_2230. The histograms in Figs. 14a and 14c

show a shift toward higher values of Dnr for the Stillwater

storm in EXPZZDR_2230 while there is no shift and only a

higher number midrange Dnr values for the El Reno storm,

likely from the widespread coverage of drops around 0.5mm in

FIG. 10. Analyzed vertical velocity (w, m s21) at the average melting-layer height for (a) EXPZ_2230 and (b) EXPZZDR_2230 and the

maximum w in (c) EXPZ_2230 and (d) EXPZZDR_2230 as well as the (e),(f) average melting-layer heightw and (g),(h) maximum w for

the EXPZ_2300 and EXPZZDR_2300 analyses.

FIG. 9. Swaths of the probability of forecast surface hail max diameter greater than 5mm from 2300 UTC 31 May to 0100 UTC 1 Jun

2013 for EXPZ forecasts initialized at (a) 2230, (b) 2245, and (c) 2300 UTC 31 May 2013 as well as for (d)–(f) EXPZZDR. Areas where

radar observations are classified as hail using the Park et al. (2009) HCA are outlined in black.
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the forward flank. The differences in the Dnr values at

2230 UTC are subtle but still show increased Dnr in an orga-

nized rear flank for the El Reno storm and an increase in higher

values in the core of the developing Stillwater storm, similar to

the slightly warmer temperatures and more moist dewpoints in

their cold pools at this time.

For the 2300 UTC analyses, larger Dnr values for the El

Reno storm in EXPZZDR_2300 are more widespread and

follow a more organized pattern with an improved ‘‘hook

echo’’ structure similar to understood Z patterns on the rear

side of the storm (indicted by ‘‘2’’ in Figs. 13c,d) and extend

farther east and southeast within the forward flank (indicated

by ‘‘3’’ in Figs. 13c,d). Larger values ofDnr extendmuch farther

east in the forward flank for the Stillwater storm as well. Both

histograms in Figs. 14b and 14d show a clear shift toward

a higher number of larger Dnr values in the associated distri-

butions based on assimilating the ZDR observations above

the two threshold values used. Overall, the storms in the

EXPZZDR experiments have more widespread, dynamically

organized distributions of larger drops compared to the EXP

experiments around the storm base where high ZDR observa-

tions are assimilated. This distribution of larger drops appears

to result in less evaporation, where the distributions have been

altered, as these drops fall to the surface. These results imply

that the assimilation ofZDRmodifies themicrophysical state of

the analyzed storms in the EXPZZDR experiments by shifting

the rain DSDs from the background forecast toward having

more larger drops when they are expected based on the ZDR

observations (Fig. 14). The DSDs near ZDR observations as-

similated are altered to include a higher number of large drops

and fewer small drops in a combination that provides a similar

simulatedZ value based on the total precipitation as the EXPZ

experiments, similar to Putnam et al. (2019; e.g., Figs. 4f,k).

The EXPZ forecasts initialized from these analyses haveDSDs

with smaller drops that result in stronger, drier cold pools and

lead to storms dissipating more quickly than the observed

storms (section 4a). It should be noted, however, that due to

the thresholds used on the ZDR observations assimilated, any

FIG. 11. Analyzed surface temperature (T, 8F) at 2230 UTC 31 May 2013 for (a) EXPZ_2230 and

(b) EXPZZDR_2230 and (c),(d) surface dewpoint (Td, 8F) for the same analyses. Strengthening analyzed surface

winds are indicated by longer arrows.Observed surface temperature andwind barbs (mi h21; 1mi h21’ 0.45m s21)

from the Oklahoma Mesonet are included in the overlaid circles.
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high bias present in the background forecast compared to the

observations where ZDR values are not assimilated will not be

corrected. While there is a shift toward larger Dnr values seen

in these results, the shift must be considered in the context that

it only applies to areas whereZDR observations are assimilated

and thus is relative to any overall high bias in the background

forecast that exists where the observations are not assimilated.

5. Summary

In this study, sector-scan dual-pol differential reflectivity

(ZDR) observations are assimilated in a storm-scale numerical

model using an EnKF for the 31 May 2013 Oklahoma storm

event. Attention is paid to two storms in central/northern

Oklahoma: the El Reno storm that produced an EF3 tornado

with significant hail and flooding over Oklahoma City and

another storm to the north that produced severe wind and hail

in the vicinity of Stillwater, Oklahoma. The dual-pol radar

variables used in this study are collected by the National

Severe Storm Laboratory’s experimental WSR-88D radar

(KOUN) that was run in an experimental sector-scan mode.

The KOUN observations are used as a proxy for future

dual-pol PAR, which is being developed as the future re-

placement for the aging WSR-88D network, to provide us the

opportunity to experiment with the assimilation of sector-scan

dual-pol observations in a WoF type system (Stensrud et al.

2009, 2013). Two sets of experiments initialize ensemble

forecasts after increasing numbers of 5-minDA cycles to assess

the impact of ZDR assimilation on subsequent forecasts. The

goal is to evaluate any improvements in forecasts from assim-

ilating the additional sector-scan ZDR observations and how

this impact changes using DA windows of differing length,

which future rapid-scan (;2-min) dual-pol PAR observations

can take advantage of.

The two sets of experiments assimilate Z and Vr (EXPZ) or

ZDR in addition to Z and Vr (EXPZZDR). Assimilation starts

at 2200 UTC 31 May 2013 and ensemble forecasts are initial-

ized at 2230 UTC (30min of DA), 2245 UTC (45min of DA),

and 2300 UTC (1 h of DA) to produce six total experiments

identified by EXPZ or EXPZZDR and forecast initialization

time (e.g., EXPZ_2230). The forecast probability-matched

ensemble mean Z and probabilities of Z greater than 15 dBZ

assess the evolution and precipitation coverage of the forecast

storms. The El Reno storm in EXPZZDR_2230 better follows

FIG. 12. As in Fig. 11, but for analyses at 2300 UTC for (a),(c) EXPZ_2300 and (b),(d) EXPZZDR_2300.
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the evolution and track of the observed storm thanEXPZ_2230.

However, the differences in the evolution of the El Reno storm

between the EXPZ and EXPZZDR experiments decreases

with later forecast initialization times because both experi-

ments predict a secondary storm to the west that is too strong

and supersedes the El Reno storm. Probabilistic forecasts of Z

also show that the change in precipitation coverage between

the experiments at different forecast initialization times is

subtle for the El Reno storm, which organizes more rapidly

during the first part of the assimilation period and is more

mature during the latter half when the forecasts are initialized.

On the other hand, the EXPZZDR experiment forecasts show

continued improvement predicting the Stillwater storm for

forecasts that are initialized later after more DA cycles that

capture more of the storm organization. Updraft helicity and

hail size probabilistic forecasts are also evaluated and show

similar results. There is a noted improvement in the eastward

orientation of the EXPZZDR_2230 track for the El Reno storm

compared to the EXPZ_2230 track. EXPZZDR forecasts

also predict increasingly higher UH and hail size probabili-

ties than the EXPZ forecasts for later forecast times for the

Stillwater storm.

An evaluation of the analyses provides insight into why the

EXPZZDR experiments produced improved forecasts over

the EXPZ experiments. The analyzed updraft speed is higher

in EXPZZDR_2230 for the El Reno storm compared to

EXPZ_2230, but both experiments at 2300 UTC produce

similar results. Conversely, the analyzed updraft speed for the

Stillwater storm is higher in EXPZZDR_2300 compared to

EXPZ_2300. DA cycles assimilating larger ZDR values from

the ZDR column covering the initial storm organization period

appears to provide an improved analyzed updraft intensity and

subsequent forecasts. Additionally, there is a shift toward

larger analyzed rainwater mean mass diameter (Dnr) values at

the storm base in the EXPZZDR experiments compared to the

EXPZ experiments. The smaller Dnr values are more likely to

increase evaporation and result in stronger cold pools that lead

to faster storm dissipation in the EXPZ experiment forecasts.

FIG. 13. Rain mean mass diameter (Dnr, mm) at the height of the environmental level of free

convection (LFC) at 2230 UTC 31May 2013 for the (a) EXPZ_2230 and (b) EXPZZDR_2230

analyses and at 2300 UTC 31 May 2013 for the (c) EXPZ_2300 and (d) EXPZZDR_2300

analyses. Black circles and numbers indicate areas of interest discussed in the text. The black

boxes are the domains used for the histograms in Fig. 14.
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Improved forecasts of storms are possible with fewer DA cy-

cles when those forecasts are initialized after several DA cycles

that assimilate ZDR observations during a window that captures

the higherZDR values in the updraft and the microphysical state

of storms that are initially developing and organizing.

There are several notable areas for future study. These ini-

tial tests provide insight on what improvements are seen in

forecasts when assimilating ZDR and that the most impor-

tant times for DA cycles are during initial storm development

and organization for the future assimilation of rapid-scan

(;2min) dual-pol PAR observations in a WoF-like system.

Additionally, assimilatingZDR during the early stages of storm

organization improved analyzed updraft strength. A future

study will look deeper into the correlation between the ZDR

observations and the microphysical and dynamical state vari-

ables to better determine how and where ZDR observations

have the greatest impact. The thresholds used for the ZDR

observation assimilation removed the potential for the ZDR

observations to correct any high bias in the background fore-

cast DSDs. Future work must both further investigate the

quality control of ZDR observations to make assimilating noisy

low ZDR observations practical and assess how lower values

impact the DSDs across the structure of convective storms in

combination with the higher threshold values assimilated in

this study. It is also noteworthy that the predicted storms ex-

hibit little to no speed bias, which improves subsequent pre-

cipitation coverage compared to the observations. These

results differ from other recent studies of similar supercell

storms (Dawson et al. 2012; Yussouf et al. 2015; Snook et al.

2019), including the same case in Stratman et al. (2020). These

studies used a different microphysics scheme and/or a differ-

ent dynamic core. Understanding what modulates the storm

propagation speed is a research topic that has relevance across

multiple studies and is significant because forecasting the lo-

cation of these supercells in the short term is critical to a suc-

cessful WoF system. Future studies should also investigate the

impact of assimilating additional polarimetric variables in-

cluding specific differential phase (KDP).
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hydrometeor classification algorithm for the polarimetric

WSR-88D: Description and application to an MCS. Wea.

Forecasting, 24, 730–748, https://doi.org/10.1175/2008WAF2222205.1.

Picca, J., and A. Ryzhkov, 2012: A dual-wavelength polarimetric

analysis of the 16May 2010OklahomaCity extreme hailstorm.

Mon. Wea. Rev., 140, 1385–1403, https://doi.org/10.1175/MWR-

D-11-00112.1.

Putnam, B. J., M. Xue, Y. Jung, N. A. Snook, and G. Zhang, 2014:

The analysis and prediction of microphysical states and po-

larimetric variables in a mesoscale convective system using

double-moment microphysics, multinetwork radar data, and

the ensemble Kalman filter. Mon. Wea. Rev., 142, 141–162,

https://doi.org/10.1175/MWR-D-13-00042.1.

——, ——, ——, ——, and ——, 2017: Ensemble probabilistic

prediction of a mesoscale convective system and associated

polarimetric radar variables using single-moment and double-

moment microphysics schemes and EnKF radar data assimi-

lation.Mon. Wea. Rev., 145, 2257–2279, https://doi.org/10.1175/

MWR-D-16-0162.1.

Putnam, B., M. Xue, Y. Jung, N. Snook, and G. Zhang, 2019:

Ensemble Kalman filter assimilation of polarimetric radar

observations for the 20 May 2013 Oklahoma tornadic super-

cell case. Mon. Wea. Rev., 147, 2511–2533, https://doi.org/

10.1175/MWR-D-18-0251.1.

Radar Operations Center, 2013: WSR-88D dual polarization de-

ployment progress. NOAA, 6 pp., https://www.roc.noaa.gov/

WSR88D/PublicDocs/DualPol/Dpstatus.pdf.

Romine, G. S., C. S. Schwartz, J. Berner, K. Fossell, C. Snyder,

J. L. Anderson, and M. L. Weisman, 2014: Representing

forecast error in a convection-permitting ensemble system.

Mon. Wea. Rev., 142, 4519–4541, https://doi.org/10.1175/

MWR-D-14-00100.1.

Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman,

S. E. Giangrande, andD. S. Zrnić, 2005: The Joint Polarization
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