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ABSTRACT

Real polarimetric radar observations are directly assimilated for the first time using the ensemble

Kalman filter (EnKF) for a supercell case from 20May 2013 in Oklahoma. A double-moment microphysics

scheme and advanced polarimetric radar observation operators are used together to estimate the model

states. Lookup tables for the observation operators are developed based on T-matrix scattering amplitudes

for all hydrometeor categories, which improve upon previous curved-fitted approximations of T-matrix

scattering amplitudes or the Rayleigh approximation. Two experiments are conducted: one assimilates

reflectivity (Z) and radial velocity (Vr) (EXPZ), and one assimilates in addition differential reflectivity

(ZDR) below the observed melting level at;2-km height (EXPZZDR). In the EnKF analyses, EXPZZDR

exhibits a ZDR arc that better matches observations than EXPZ. EXPZZDR also has higher ZDR above

2 km, consistent with the observed ZDR column. Additionally, EXPZZDR has an improved estimate of the

model microphysical states. Specifically, the rain mean mass diameter (Dnr) in EXPZZDR is higher in the

ZDR arc region and the total rain number concentration (Ntr) is lower downshear in the forward flank than

EXPZ when compared to values retrieved from the polarimetric observations. Finally, a negative gradient

of hail mean mass diameter (Dnh) is found in the right-forward flank of the EXPZZDR analysis, which

supports previous findings indicating that size sorting of hail, as opposed to rain, has a more significant

impact on low-level polarimetric signatures. This paper represents a proof-of-concept study demonstrating

the value of assimilating polarimetric radar data in improving the analysis of features and states related to

microphysics in supercell storms.

1. Introduction

Convective storms feature complex cloudmicrophysical

and dynamical processes that interact to produce diverse

microphysical states and structures [in terms of hydrome-

teors of different types and their particle size distributions

(PSDs)] that vary widely within the storms. The highly

nonlinear microphysical processes associated with diverse

microphysical states can lead to rapid error growth in

convective-scale numerical weather prediction (NWP)

model forecasts even when only slight error exists in the

model initial condition (Lorenz 1969; Larson et al. 2005;

Wang et al. 2012). Data assimilation (DA) estimates

the state of convective storms by optimally combining a

background model state with available observations

(Kalnay 2002). However, most studies assimilatingCorresponding author: Ming Xue, mxue@ou.edu

JULY 2019 PUTNAM ET AL . 2511

DOI: 10.1175/MWR-D-18-0251.1

� 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

mailto:mxue@ou.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


radar observations of the observed microphysical states

have thus far been limited to a single observed quantity:

radar reflectivity (Z). The national WSR-88D network

has recently been upgraded to provide CONUS-wide

coverage of polarimetric observations (ROC 2013),

which had previously been available only from experi-

mental radars. These polarimetric observations contain

additional valuable information onmicrophysical states

and can be used to improve the estimate of the model

microphysical states for convective-scale models. In

this study, we assimilate these polarimetric observa-

tions directly into a convective-scale model using the

ensemble Kalman filter (EnKF) method (Evensen 1994,

2003) to improve the estimation of microphysical state

variables associated with a double-moment (DM) mi-

crophysics parameterization scheme.

The polarimetric observations include differential

reflectivity (ZDR), which provides information on the

horizontal-to-vertical axis ratio of hydrometeors (Seliga

and Bringi 1976; Bringi and Chandrasekar 2001). Spe-

cific patterns of ZDR values, often referred to as polar-

imetric signatures, can be used to identify hydrometeor

types and sizes as well as important microphysical and dy-

namical processes in convective storms (Balakrishnan and

Zrnić 1990; Zrnić et al. 1993; Brandes et al. 1995; Zrnić and

Ryzhkov 1999; Loney et al. 2002; Scharfenberg et al. 2005;

Kumjian and Ryzhkov 2008; Van Den Broeke et al. 2008).

For example, one such polarimetric signature is an arc of

highZDR values (ZDR arc) often seen in the forward flank of

supercells, which is indicative of hydrometeor size sorting

due to storm-relative wind shear (Kumjian and Ryzhkov

2008, 2012; Dawson et al. 2014).

The EnKF DA method is particularly well suited for

direct assimilation of polarimetric observations due to

its ability to deal with highly nonlinear observation op-

erators andmodel physics, and its ability, through spatial

covariances and cross covariances, to spread observed

information beyond the regions where observations are

taken and to correct errors in state variables that are not

directly observed (Snyder and Zhang 2003; Tong and

Xue 2005). Direct assimilation assimilates observations

without prior retrieval and is a preferred approach for

remotely sensed data such as satellite radiance and

radar data.

An essential component for direct assimilation of

any observation type is the observation forward oper-

ator, which links model state variables to the observed

quantity. A polarimetric radar data (PRD) simulator, or

its simplified version (for computational efficiency),

developed by this research group serves as the obser-

vation operator. It is important that the formulations and

assumptions of the PRD operators accurately replicate

the interaction of the radar wavewith hydrometeors of all

reasonable types, sizes, and physical states because po-

larimetric variables are greatly impacted by how much

energy is scattered from the horizontally and vertically

polarized radar beams. Jung et al. (2008a) developed a set

of PRD operators for a single-moment (SM) micro-

physics (MP) scheme that links the polarimetric variables

with microphysical state variables, and includes an axis–

ratio relation for raindrops, a melting model, and radar

wave scattering amplitude functions fitted to T-matrix

calculations for rain and the Rayleigh approximation for

ice hydrometeors (Zhang et al. 2001). Xue et al. (2010)

and Jung et al. (2010a) expanded on these operators

by adding the ability to use multimoment (MM) MP

schemes and numerical integrations of the scattering

amplitudes calculated using the T-matrix method for

all hydrometeors. The numerical integration methods,

however, require lookup tables of precalculated scatter-

ing amplitudes and result in too high of a computational

cost for DA purposes, and have thus far been limited to

simulation of (Jung et al. 2010a; Johnson et al. 2016) and

verification against PRD (Dawson et al. 2014, Putnam

et al. 2017a,b).

For the assimilation of PRD, the EnKF should be

paired with MM MP schemes, which predict both the

mixing ratios (mass content) and number concentrations

of hydrometeors. This allows for the independent pre-

diction of the intercept parameter and slope parameter

of the assumed gamma size distributions of hydrometeor

particles (PSDs) (e.g., Milbrandt and Yau 2005a). This

is particularly important because polarimetric variables

are highly sensitive to the size distributions in MP

schemes (Jung et al. 2010a, 2012; Dawson et al. 2014;

Putnam et al. 2014; Johnson et al. 2016; Putnam et al.

2017a,b). For example, this includes the direct sensitivity

between ZDR and the oblate shape of raindrops and the

indirect sensitivity between ZDR and the size of a rain-

drop, which affects how oblate the drop is. Without

the ability to properly simulate PSDs in the model, the

linkage between PRD and the model states is likely

broken, making the PRD assimilation ineffective.

The EnKF has been used successfully in assimilating

real radar data across a variety of cases (e.g., Snook et al.

2011, Jung et al. 2012; Yussouf et al. 2013; Chang et al.

2014; Putnam et al. 2014; Wheatley et al. 2014; Snook

et al. 2015, Yussouf et al. 2015; Snook et al. 2016). The

EnKF statistically estimates error covariances among

state variables within a background forecast from an

ensemble and updates the state variables using obser-

vations in an optimal estimation framework. An adjoint

model that involves linearization of the observation

operators as in 3DVAR and 4DVAR, and of the non-

linear prediction model as in 4DVAR, is not needed.

Development of an adjoint model is particularly difficult
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with nonlinear observation operators (such as those of

PRD) and prediction models with complex MP schemes

(e.g., multiphase MM MP). One initial concern when

using the EnKF with a MM MP scheme is that the es-

timation of a larger number of state variables is under-

constrained by using very few observed parameters [e.g.,

Z and radial velocity (Vr) from traditional Doppler

radars]. However, Xue et al. (2010) encouragingly

demonstrated the ability of the EnKF to update 10

microphysical state variables associated with a DM

Milbrandt and Yau (2005a) MP scheme in the presence

of model error. The assimilation of polarimetric obser-

vations can provide additional independent information

to update the numerous microphysical state variables,

helping to mitigate this concern.

Previous research on data assimilation using polari-

metric observations is still very limited—both for ob-

serving system simulation experiments (OSSEs) and real

observation experiments—and has not included the ad-

vanced operators andMP schemes needed to take optimal

advantage of the polarimetric observations. Jung et al.

(2008b) showed promise for polarimetric observation as-

similation in an EnKF OSSE study that assimilated ZDR,

radar reflectivity difference (ZDP), and specific differential

phase (KDP) in addition to Z and Vr using the operators

developed in Jung et al. (2008a). In their study, analyses

assimilating additional polarimetric observations ex-

hibited improved root-mean-square errors (RMSEs)

for bothmicrophysical state variables and all other model

state variables. This study is the first to directly assimilate

PRD into a model with multiphase ice microphysics.

Wu et al. (2000) represents the first attempt to as-

similate real PRD. In their study, rainwater and graupel/

hail mixing ratios diagnosed from Z and ZDR observa-

tions were assimilated using 4DVAR (Sun and Crook

1997), and a cloud model with a simple ice MP scheme

that included cloud water/cloud ice, rain, and graupel/

hail categories only. Reasonable analyses of the struc-

ture of a single cell storm were obtained, but forecasts

quickly deteriorated. Li and Mecikalski (2010, 2012)

assimilated rainwater mixing ratio (qr) preretrieved

from real ZDR and KDP data using WRF 3DVAR, in

addition to Z and Vr, for a mesoscale convective system

(MCS) and a mesobeta-scale thunderstorm; they found

that the additional polarimetric data led to better short-

term predictions of storm structure and location. How-

ever, their studies used a simple SM warm-rain Kessler

(1969) MP scheme. Yokota et al. (2016) also assimi-

lated retrieved qr from Z and KDP using the local en-

semble transform Kalman filter to predict a low-level

mesocylone associated with a tornadic supercell in

Japan, specifically finding that assimilating the radar

variables led to increased low-level moisture and thus a

better predicted low-level mesocyclone. However, in

addition to the simplified retrieval methods, only a SM

Lin MP scheme (Lin et al. 1983) was used. A more re-

cent study by Li et al. (2017) directly assimilated Z and

KDP data for an MCS case using WRF 3DVAR and a

simple ice MP scheme (Dudhia 1989; Rutledge and

Hobbs 1983) that contained only cloud ice and snow

above the freezing level and cloud water and rainwater

below. Therefore, there was no coexistence of mixed-

phase hydrometeors except in a predefined melting

layer. The observation operators for Z and KDP were

functions of snow and rainwater mixing ratios only

above the 258C and below 58C temperature levels, re-

spectively, and functions of the linear combinations of

the two mixing ratios while in the transition layer.

The purpose of this paper is to examine, for the first

time, the impact of directly assimilating polarimetric

observations on the estimate of themodel microphysical

states associated with a true multimoment ice micro-

physics scheme for a real convective storm. A fully DM

iceMP scheme is used with the EnKF utilizing advanced

polarimetric radar observation operators based on

scattering amplitudes calculated using the T-matrix

method. A new lookup-table method to precalculate a

portion of the forward operator is developed that ac-

counts for Mie scattering for all hydrometeors during

assimilation without increasing computational expense.

In this study we focus on the analysis (estimation) of

model states at the convective storm scale as it is im-

portant to first evaluate and understand the impact of

assimilating polarimetric observations on this scale; the

forecasts from the analyses can be more affected by

forecast model and storm environment errors, which

makes the evaluation of the impact of data assimilation

more difficult. The remainder of this paper is organized

as follows. Section 2 gives a brief overview of the 20May

2013 Newcastle–Moore, Oklahoma, supercell case used

in this study. In section 3, the prediction model and

microphysics scheme used within the EnKF DA cycles,

together with the radar data processing and DA experi-

ments and their settings, are described. The new lookup

table approach for polarimetric radar observation opera-

tors is detailed. The analyzed polarimetric variables and

the estimated model microphysical states are evaluated in

section 4. Section 5 provides concluding remarks, and a

discussion of current challenges and future work.

2. 20 May 2013 Newcastle–Moore, Oklahoma,
tornadic supercell case overview

On 20 May 2013, an outbreak of tornadoes occurred

across the southern Plains. Most notably, one supercell

storm over central Oklahoma produced a tornado rated
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EF5 on the enhanced Fujita (EF) scale (WSEC 2006;

Doswell et al. 2009) that traversed the southernOklahoma

City metropolitan area during the midafternoon hours

(SPC 2016). At 1800 UTC 20 May, an upper-level low

pressure system was in place over the north-central

United States with a large region of strong, south-

westerly flow at 500 hPa extending southward to the

southern plains, providing significant deep shear to

support rotating updrafts. At the surface, a cold front

stretched from an associated surface low in the north-

ern Plains southward through Oklahoma, with a dryline

intersecting the front just to the west of Oklahoma City.

A broad and extremely moist warm sector existed ahead

of this cold front/dryline intersection with mixed-layer

CAPE values exceeding 3000Jkg21 in many areas.

Storms began to develop after 1800 UTC, including the

parent storm of the Newcastle–Moore tornado, which

developed just to the southwest of Oklahoma City, near

the intersection of the cold front and dryline. The

Newcastle–Moore tornado began shortly before 2000UTC

and lasted for over 40min, tracking through Newcastle,

south Oklahoma City, and Moore, Oklahoma. Cata-

strophic EF5-rated damage was observed in Moore,

and total damages were over 1 billion U.S. dollars

(Burgess et al. 2014). For a more detailed discussion of

the 20 May 2013 Newcastle–Moore tornado, the reader

is referred to Burgess et al. (2014), Zhang et al. (2015),

and Kurdzo et al. (2015). As the storm of interest oc-

curred very near the operational WSR-88D radar

KTLX at Twin Lakes near Oklahoma City, low-level

polarimetric observations are available for this storm.

3. Experiment configuration and settings

a. Prediction model and microphysics scheme

For this study, we use the Advanced Regional Pre-

diction System NWP model (ARPS, Xue et al. 2000,

2001, 2003). Briefly, ARPS is a three-dimensional, fully

compressible, nonhydrostatic, multiscale NWP model.

The state variables predicted include the three-dimensional

wind components (u, y, and w), pressure (p), potential

temperature (u), water vapor mixing ratio (qy), and tur-

bulent kinetic energy (TKE), as well as microphysical state

variables as determined by the MP scheme used. Ra-

diation is parameterized using the NASA Goddard

Space Flight Center long- and shortwave radiation

schemes while subgrid-scale turbulence is parame-

terized with a 1.5-order TKE-based scheme. The soil

model includes two layers with parameterized surface

fluxes for sensible and latent heat as well as moisture.

Additional details on the model physics parameteri-

zations are given in Xue et al. (2001, 2003).

TheMP scheme used in this study is theDMversion of

the Milbrandt and Yau (2005a) MP scheme. Previous

studies have shown that convective-scale models require

advanced MM microphysics schemes (i.e., at least DM)

to replicate important microphysical processes like size

sorting (Wacker and Seifert 2001; Milbrandt and Yau

2005b) and the associated polarimetric signatures (Jung

et al. 2010a; Kumjian and Ryzhkov 2012). In fact, Jung

et al. (2010a) demonstrated in simulations of polari-

metric variables using SM and DMMP schemes that the

SM MP scheme could not replicate several polarimetric

signatures, including the ZDR arc. The MY DM scheme

predicts mixing ratios for cloud water (qc), ice (qi), rain

(qr), snow (qs), graupel (qg), and hail (qh) as well as

number concentrations for these hydrometeor types

(Ntc, Nti, Ntr, Nts, Ntg, and Nth). The MY DM scheme

assumes a gamma size distribution for these species and

the shape parameter is assumed to be zero, which re-

duces to an inverse exponential distribution. The choice

of a single fixed shape parameter value is difficult be-

cause studies have shown a wide range of potential

shape parameter values exist in precipitation (Brandes

et al. 2002). Additionally, previous studies have shown

that the inverse exponential distribution in the DMMY

scheme can replicate polarimetric signatures in super-

cells to a reasonable extent (Jung et al. 2010a, 2012).

b. Experiment configuration and EnKF settings

Many of the EnKF DA experiment settings in this

study are inherited from Snook et al. (2016), which as-

similated only reflectivity and radial velocity data for the

same 20 May 2013 case. Some details of the configura-

tion are summarized here. The model comprises 603 3
653 grid points in the horizontal and a stretched vertical

grid with 63 levels. Theminimum vertical spacing is 50m

at the surface and the average vertical spacing is 425m.

The horizontal grid spacing of 500m is used to represent

highly localized polarimetric value gradients, patterns,

and signatures. Model terrain is interpolated from U.S.

Geological Survey (USGS) data of 30-arc-s spacings.

For reference, the experiment domain and observations

of the storms of interest near Moore, Oklahoma, are

plotted in Fig. 1.

The DA experiment timeline consists of a 30-min

spinup ensemble forecast initialized at 1800 UTC fol-

lowed by cycled EnKF DA over a 1.5-h period (Fig. 2).

The initial ensemble of 40 members as well as external

boundary conditions are obtained via interpolation from

the 4 km storm-scale ensemble forecasts (SSEF) pro-

duced by the Center for Analysis and Prediction of

Storms (CAPS) Spring Experiment (Kong 2013) ini-

tialized at 1200 UTC 20 May 2013. Storm-scale pertur-

bations (Tong and Xue 2008) are created by applying a
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2D recursive filter with a horizontal decorrelation length

scale of 6 km to random, Gaussian noise; the smoothed

perturbations are added to u, y, and the potential

temperature (u) fields. The mean standard deviation

of u and y perturbations is 0.5m s21 and that of u is 0.5K.

As described in Xue et al. (2006) and Snook et al.

(2015), the ensemble square root filter (EnSRF,

Whitaker and Hamill 2002) algorithm is used to assim-

ilate both radar and surface observations at 5-min in-

tervals from 1830 to 2000 UTC. Two experiments are

conducted, one in which Z and Vr (as well as surface

observations) are assimilated (EXPZ) and one in which

ZDR is also assimilated (EXPZZDR). The results of a

test experiment assimilating KDP are not included for

this paper because of large uncertainties that exist in the

KDP observations due to contamination from wet hail,

dust and debris near the inflow region of the supercell,

and potential nonuniform beam filling. Data are assim-

ilated from fiveWSR-88Ds located in or near the model

domain: KDYX, KFDR, KFWS, KTLX, and KVNX

(see Fig. 1). Radar volume scans are assimilated based

on proximity to each assimilation time. At each assimi-

lation time, the volume scan that begins closest to the

assimilation time within the previous 5-min forecast

window is used, which guarantees that the volume scan

will overlap the assimilation time. A few early cycles

assimilate data from KDYX or KFWS every other cy-

cle because these radars were initially in clear air mode

and volume scans were 10min apart. Additionally, ob-

servations slightly earlier than 5min (7–8min) prior to

assimilation for KDYX and KFWS are used in the first

analysis at 1830 UTC.

We use assumed radar observation error standard

deviations of 6 dBZ for Z and 4m s21 for Vr during

EnKF DA, which are higher than those typically seen

with these measurements (Doviak and Zrnić 1993;

Ryzhkov et al. 2005). For our purposes, ‘‘observation

error’’ includes measurement, sampling, and represen-

tativeness errors as well as error in the observation op-

erator. These values were also determined to be optimal

based on the work of Snook et al. (2013). The authors

found that these higher error values led to increased

ensemble spread and higher forecast skill based on sta-

tistical evaluation metrics including the area under the

relative operating characteristic (ROC) curve (Mason

1982; Mason and Graham 1999) and forecast reliability

diagrams (Brown 2001). Also, preliminary experiments

using lower observation errors for Z resulted in nu-

merical instability in the ensemble forecasts. Estimated

state and ensemble covariances can be relatively poor in

early EnKF cycles and it is not desirable to fit observa-

tions too closely, which can result in unrealistically large

innovation increments and cause model integration

instability. Higher observation errors give less weight

to the observations as well as account for the fact that

observations are assumed to be unbiased and uncor-

related within the EnKF, which is not true for

many cases.

Radar observations are assimilated at every other

grid point (or at 1-km intervals; the radar data are first

mapped to themodel columns in the horizontal and kept

on the elevation levels in the vertical—see section 3d) in

precipitation regions as preliminary experiments found

this configuration results in better model stability. Er-

rors that originate from large uncertainties in the fore-

cast model, forward operator, and grid spacing, among

other potential sources, can result in large innovation

increments and over adjustments in the model state that

accumulate with denser observations. This is particularly

FIG. 1. 20 May 2013 experiment domain and location of radars

assimilated. Observed reflectivity (Z, dBZ) at the 0.58 tilt from

KTLX at 1938 UTC 20 May 2013 is included. The thin black line

indicates the Oklahoma–Texas state boundary while the thin gray

lines indicate county boundaries. The supercell associated with the

Newcastle–Moore tornado is noted as the ‘‘Moore storm’’ and the

supercell to the north discussed in the results is noted as the ‘‘OKC

storm.’’ The evaluation domain used in section 4 is noted by the

thick gray box.

FIG. 2. Diagram of experiment timeline including the spinup

forecast, assimilation window, 30-minute assessment period, and

start time of the Newcastle–Moore tornado.
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important when multiple states are estimated for a DM

MP scheme independently (q and Nt), where unrealistic

combinations may occur (similar to estimating micro-

physical states and parameters simultaneously, see Jung

et al. 2010b). Vr observations are assimilated where

observed Z . 10dBZ. Assimilation of clear-air Z ob-

servations has been shown to help suppress spurious

convection (Tong and Xue 2005); in this study, clear-air

Z observations are assimilated every 4 grid points (every

2 km). The specifics of ZDR assimilation are discussed in

section 3c. Surface observations are assimilated from all

available Automatic Surface Observing System (ASOS),

Automatic Weather Observing System (AWOS), and

Oklahoma Mesonet observation sites within the domain.

These observations include u, y, p, air temperature (T),

and dewpoint temperature (Td). Assumed observation

errors are 1.5ms21 for u and y, 2K for T and Td, and

2hPa for p.

The covariance localization radii for radar observa-

tions are set to 3 km in both the horizontal and vertical

directions using the correlation function of Gaspari and

Cohn (1999). For the surface observations, the hori-

zontal covariance localization radius is 300 km and the

vertical radius is 6 km. Tomaintain ensemble spread, the

‘‘relaxation to prior spread’’ covariance inflation method

of Whitaker and Hamill (2012) is applied using an in-

flation coefficient of 0.95 (i.e., 95% of the prior spread is

restored); this setting follows that of Snook et al. (2016).

c. ZDR observation assimilation settings

In EXPZZDR, ZDR observations are assimilated af-

ter the assimilation of Z and Vr observations is com-

pleted. Z and ZDR are highly correlated with the same

microphysical state variables and thus most corrections

are made to the same variables (Xue et al. 2010). The

number of ZDR observations assimilated is significantly

less than Z and Vr and their values differ by an order

of magnitude. The impact of ZDR assimilation may be

completely overwhelmed if ZDR is assimilated immedi-

ately following each Z and Vr observation. In a perfect

ensemble DA system, the order of assimilation should

not matter, but in reality, the order in a serial EnKF

system often matters due to needed covariance inflation

and covariance localization, among other reasons. Pre-

liminary experiments also found that assimilating ZDR

after Z led to an improvement in both the root-mean-

square innovation (RMSI) of the analysis in terms of Z,

ZDR, and Vr as well as the qualitative patterns of ZDR

values when compared to observations.

Additionally, we only assimilate ZDR observations

below 2km above ground level (AGL) to avoid obser-

vations in the melting layer. Mixed-phase hydrometeors

containing both liquid water and ice are not explicitly

predicted in the numerical model; the model micro-

physics scheme instantly adds meltwater to rainwater.

For this reason, water-coated ice in the melting layer

is modeled in the observation operators based on the

relative amounts of coexisting rainwater and dry ice; a

fraction of rainwater and dry ice is taken out of pure

rainwater and dry ice to form melting ice (Jung et al.

2008a). The modeling of melting ice in the operators

adds additional uncertainties to the intensity of the

melting signature, particularly because of melting snow

which can vary significantly in terms of size, shape, and

density (Brandes et al. 2007; Zhang et al. 2011). Future

studies, including a follow-up study to Johnson et al.

(2016), will investigate simulated polarimetric variables

above the melting layer before they are used in our

assimilation studies.

The assumed observation error standard deviation for

ZDR is set to 0.6 dB, which is approximately twice the

typical ZDR observation error (Doviak and Zrnić 1993;

Ryzhkov et al. 2005), to be consistent with the specified

observation errors forZ andVr and account for errors in

the observation operator. A preliminary experiment

using the typical measurement error of 0.3 dB had sim-

ilar RMSI values for the ensemble mean analyses for

ZDR but increased RMSI values for Z. Only values of

ZDR . 0.3 dB are assimilated, following thresholds de-

termined in Jung et al. (2008b). Their comparison of

simulated errors in Z and ZDR indicated that there is

no discernable independent information fromZDR values

below this threshold due to noise.

d. Radar data processing

The presence of ground clutter and other biological

scatterers can cause contamination of Z and polari-

metric observations (Zrnić and Ryzhkov 1998; Friedrich

et al. 2009). Fortunately, the impacts of such contami-

nants on Z are low enough compared to Z values due

to precipitation in this case to have very little impact

on the analysis. For ZDR, however, returns from

nonmeteorological targets are well within the range of

typical values seen in precipitation and must be re-

moved. We apply the Park et al. (2009) hydrometeor

classification algorithm (HCA) to identify and remove

observations determined by the HCA to be contami-

nated by ground clutter or biological scatters. Their Z,

ZDR, cross-correlation coefficient (rhv), standard deviation

of Z [SD(Z), 1-km running average], and standard devia-

tion of differential phase [SD(FDP), 2-km running aver-

age] membership functions are used for this purpose. Low

rhv values havebeenpreviouslyused to identify observations

potentially containing large errors or nonmeteorological

echoes in many studies (e.g., Ryzhkov and Zrnić

1998; Zrnić and Ryzhkov 1999; Gourley et al. 2007;
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Lakshmanan et al. 2014). For this case, many rhv values

are also particularly low in the convective regions, with

values less than 0.8. These low values are potentially

due, at least partially, to nonuniform beam filling

(Ryzhkov 2006; Kumjian 2013). These questionable

observations are effectively removed by the HCA al-

gorithm in our case.

Other preprocessing of the radar data includes auto-

matic velocity de-aliasing (Brewster et al. 2005). Ob-

servations are interpolated to the model grid columns in

the horizontal, but are left at the height of the radar tilt

elevation in the vertical (Xue et al. 2006). Spatial fil-

tering on the observations helps reduce random mea-

surement error in the ZDR field and lower the RMSIs of

Z and ZDR. Therefore, a five-point median filter is ap-

plied to Z and ZDR along each radial of radar data

(at gate spacings of 250m) before interpolation to the

model grid columns and a nine-point square median

filter is applied to the interpolated values. An example

of Z, ZDR, and Vr observations at 1940 UTC before and

after the filtering methods are applied is given in Fig. 3.

In particular, the filtering removes a lot of noise from

the ZDR observations while preserving overall patterns

and signatures including the ZDR arc.

e. Observation operators

Our previous studies (e.g., Jung et al. 2012; Putnam

et al. 2014) have used the polarimetric observation op-

erators originally developed in Jung et al. (2008a), which

include an axis–ratio relation to model oblate raindrops

and a melting model to approximate the fraction of

water coating frozen hydrometeors when predicted rain

and frozen hydrometeors coexist. These operators

also use a fitted approximation to T-matrix scattering

amplitudes (Vivekanandan et al. 1991; Bringi and

Chandrasekar 2001) for rain and the Rayleigh approxi-

mation for ice hydrometeors. A more advanced set of

operators was developed in Jung et al. (2010a), including

an updated axis ratio for rain (Brandes et al. 2002, 2003)

that improves upon the prior relation by approximating

more spherical shapes. Additionally, full T-matrix scat-

tering amplitudes calculated for a range of diameters for

all hydrometeor categories were used. The new opera-

tors lead to more realistic simulated polarimetric values.

For example, ZDR values with these operators are lower

compared to those from the prior operators due to the

revised axis–ratio relation for rain. TheZ values are also

better approximated for large, melting hail where Mie

scattering is a factor for S-band radars. However, due to

the new axis ratio relation and table of scattering am-

plitudes, these operators require computationally ex-

pensive numerical integration over the PSD.

Amodified set of the observation operators from Jung

et al. (2010a) has been developed to increase computa-

tional efficiency with minimal sacrifice to accuracy. A

portion of the operator is computed based on ranges of

possible PSD parameter values prior to assimilation and

stored in lookup tables to speed up the calculation

FIG. 3. Example of (a),(b) Z, (c),(d) ZDR, and (e),(f) Vr observations from the 0.58 tilt of KTLX (location noted by

the black circle) at 1940 UTC (top) before and (bottom) after spatial filtering.
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during assimilation. Lookup tables have been used

previously to increase computational efficiency for

model parameterization schemes (Pielke et al. 2006).

For example, tables have been used in microphysics

schemes for precomputing ice particle size distribution

moments for melting (Morrison and Milbrandt 2015),

converting rain and snow into graupel based on particle

size (Thompson et al. 2008), and ice nucleation rates

(Morrison et al. 2005), Lookup tables have also been

used to retrieve observed snow content and snowfall

rate based on reflectivity (Liao et al. 2016). For this

application, the tables are based on the slope (Lx) and

shape (ax) parameters of the PSD. In this experiment,

only Lx is considered since ax 5 0 for all hydrometeors

during assimilation. As an example, the horizontally

polarized radar reflectivity Zhh (generally discussed

as Z) observation operator for rain is given as:

Z
hh
5

4l4

p4jK
w
j2
ð
jf
a
(p)j2N

0
e2LDdD , (1)

where l is the wavelength of the radar, Kw is the di-

electric factor for water, fa(p) is the backscattering

amplitude along the major axis, N0 is the intercept pa-

rameter, L is the slope parameter, and D is diameter

[adapted from Eq. (3) from Jung et al. (2010a)]. For

reference, in Jung et al. (2008a), when a fitted approxi-

mation to the T-matrix scattering amplitudes is used, a

power law function is used in place of jfa(p)j. Next, a

summation over raindrop diameters from 0.0 to 8.0mm

in increments of D 5 0.8mm is computed:

Z
hh
5

4l4

p4jK
w
j2N0 �

8:0

i50:0

jf
a
(p)j2e2LDDD . (2)

N0 can be calculated outside the summation because it is

not dependent on D. The summation portion of the

expression is precalculated based on Lr values at 1m
21

increments from 0.0 to 30 000.0m21, which for simplicity

will be referred to as S(Lr). During assimilation, Lr is

calculated based on the model predicted qr and Ntr. The

corresponding S(Lr) value can be quickly looked up

from the precalculated table since the increment range

of Lr is known. If the model calculated Lr value is be-

tween two Lr values in the table, the associated S(Lr)

values are interpolated. Precalculated lookup tables for

this part of the expression are computed for all hydro-

meteor categories and all possible water fractions as

detailed in Jung et al. (2010a) for their Eqs. (3) (for Zh)

and (4) (for Zy). The individual linear Z values are

added together to calculate the logarithmic ZH and ZV

using Eqs. (14) and (15) from Jung et al. (2008a) and

ZDR is calculated from the ratio ofZH andZV using their

Eq. (16). Although there are some small differences

in the calculated variables using the modified operator

compared to the Jung et al. (2010a) operators, which are

on the order of 1022 for bothZ (dBZ) andZDR (dB), the

improvement in the calculated variables using these

operators compared to using the Jung et al. (2008a)

operators is quite important.

4. Results of EnKF analyses

The experiment includes a 30-min evaluation window

in the later part of the assimilation period, from 1930 to

2000 UTC, where results are compared to observations.

During this window, the main storm of interest, the

Newcastle–Moore tornadic supercell, and another

supercell immediately to its north over Oklahoma City

(see Fig. 1), were maturing and moving within close vi-

cinity to KTLX, allowing for an assessment using

observations as close to the surface as possible (where

polarimetric signatures due to size sorting are most

prominent). For convenience, we will refer to these

storms as the ‘‘Moore’’ and ‘‘OKC’’ storms, re-

spectively. The OKC storm is included in the eval-

uation due to its close proximity to the Moore storm,

leading to continuous precipitation between their for-

ward flanks. The gray box in Fig. 1 highlights a subdomain

focused on the Moore and OKC storms that will be used

for evaluation.

A detailed evaluation will be performed for analyses

at 1940 UTC. This evaluation time is chosen because it

is a time when the Moore storm is closest to KTLX

before the forward flank of the supercell begins to pass

over the KTLX cone of silence at the 0.58 tilt. The cone

of silence is the region above the highest radar tilt where

observations are missing and is illustrated with a cross

section of KTLX observations through theMoore storm

at 1938 UTC in Fig. 4. The cross section shows that a

large portion of the storm above the surface is already

within the cone of silence, noted by the shaded gray

region with ‘‘no data,’’ and this is the final volume scan

before the lowest observations available for assessment

are also interrupted. An RMSI plot for both Z and ZDR

over the entire evaluation period from 1930 to

2000 UTC is given in Fig. 5; it includes calculations for

both the 0.58 tilt of KTLX as well as for all observations

below 2000mwhereZDR is assimilated. The analyses for

1940 UTC have RMSIs within the range of the previous

two assimilation times and lower than future assimila-

tion times, when the storm begins to pass over KTLX.

Figures 6–8 contain the ensemble mean analyses of

Z and ZDR from EXPZ and EXPZZDR at 1930, 1935,

and 1940 UTC, as well as the respective closest-in-time

KTLX observations on the 0.58 tilt, which represent the
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three analysis times before the storm passes over KTLX.

Both the observations and model results are interpo-

lated to the same model grid columns horizontally and

elevation levels of KTLX vertically. The ZDR plots for

EXPZ and EXPZZDR show similar notable differences

in the magnitude and patterns of ZDR values at all three

times. Specifically, the ZDR values for the Moore storm

in EXPZZDR are higher thanEXPZ along the southern

portion of the forward flank and lower to the north

downshear in the forward flank when compared to the

observations. Thus, the results at 1940 UTC are repre-

sentative of the other earlier times within the evaluation

period before the cone of silence interferes with the low-

level observations of ZDR that are assimilated.

a. Evaluation of analyzed polarimetric variables

In this section we perform a detailed analysis of the

results from 1940 UTC (Fig. 8). Analyzed Z is generally

similar between EXPZ and EXPZZDR. In the OKC

storm, the greatest difference between the experiments

is that Z is overestimated in the forward flank to a

greater extent in EXPZ compared to EXPZZDR. An-

alyzedZ in the southeastern portion of the forward flank

of the Moore storm is underestimated in both experi-

ments. Ensemble underdispersion is higher in this area,

but earlier sensitivity experiments conducted for this

study using different observation errors and model error

treatmentmethods [e.g., multiplicative inflation (Anderson

2001) and additive perturbations (Dowell and Wicker

2009)] did not improve the analysis of these regions in

any meaningful manner (not shown).The low Z bias in

the model results has been noted in past studies using

the MY2 scheme (Dawson et al. 2010; Morrison and

Milbrandt 2011; Dawson et al. 2015). Dawson et al.

(2010) attributed this to excessive size sorting known

to occur with the MY2 scheme (Milbrandt and Yau

2005a). Larger drops fall in close proximity to the up-

draft while smaller drops are then advected north-

westward by the low-level storm-relative winds, which

are approximately southeasterly at this time, leading to

underestimated precipitation in the southern portion

of the forward flank [cf. Figs. 4c and 4d of Dawson et al.

(2015) and Figs. 6d and 6f of Dawson et al. (2010)].

The impact of assimilated ZDR is most noticeable

in the Moore storm. The analyzed ZDR values in

EXPZZDR for the Moore storm are higher than EXPZ

near the location of the observed ZDR arc and lower

immediately to the north (Figs. 8b,d,f). Together, these

patterns are indicative of the size sorting processes as-

sociated with the deep-layer storm-relative wind shear

that lead to the larger drops adjacent to the updraft

while smaller drops are advected farther downshear

(Dawson et al. 2014). It should be noted, however, that

the orientation of the higher ZDR values in EXPZZDR

is displaced to the north compared to the observed ZDR

arc and that the values are underestimated overall,

perhaps again indicative of excessive size sorting in the

MY DM scheme. The ZDR arc has also been noted in a

previous supercell simulation study to be located farther

within the forward flank and have a smaller gradient

along the edge of the precipitation than typically

observed (Johnson et al. 2016).

The difference, or innovation, between the obser-

vations and the analyzed Z and ZDR for EXPZ and

EXPZZDR on the same 0.58 KTLX elevation as in

Fig. 8 is plotted in Fig. 9. The observations from the

KTLX 0.58 scan at 1938 UTC are included for reference.

Areas of warm, orange colors indicate where the ob-

served values are higher than the analyzed value and

cool, blue colors indicate where the observed values are

lower than the analysis. Overall, Z innovation is similar

in the two experiments. The underestimated Z in the

FIG. 4. (a) Horizontal plot of reflectivity at the 0.58 tilt of KTLXat

1938UTC and (b) vertical cross section of reflectivity fromKTLXat

1938 UTC along the black dashed line indicated in (a). The brown

circle in (a) denotes the location of KTLX. The gray region in

(b) notes where no data are present in the cone of silence.
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southeastern portion of the forward flank for both

storms noted in Fig. 8 is easily identified by the dark

orange colors in Figs. 9c,e. The ZDR plots highlight

greater differences between the two experiments. For

the Moore storm, the difference between analyzed and

observed ZDR for EXPZZDR is smaller compared to

that in EXPZ (Figs. 9b,d,f). Analyzed ZDR values are

overestimated by a greater amount in the central and

eastern portions of the forward flank of theMoore storm

in EXPZ compared to EXPZZDR. Analyzed ZDR

values in EXPZ are underestimated by a greater amount

in the southern portion of the forward flank, where the

FIG. 5. Root-mean-square innovations (RMSIs) for posterior (a) Z and (b)ZDR for the evaluation period (1930–

2000 UTC). Calculations are done over the evaluation domain given in Fig. 1. The light gray line is for the 0.58 tilt
of KTLX and the dark gray line is for all observations below 2000m.

FIG. 6. (a) Reflectivity (dBZ) and (b) differential reflectivity (dB) from KTLX at 1929 UTC as well as from the

corresponding ensemble mean analyses at 1930 UTC from (c),(d) EXPZ and (e),(f) EXPZZDR interpolated

horizontally to themodel grid columns and vertically to the 0.58 elevation of KTLX for the evaluation domain given

in Fig. 1. The locations of the ‘‘OKC’’ and ‘‘Moore’’ storms are noted in (a).
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observed ZDR arc exists, compared to EXPZZDR.

Therefore, analysis errors of ZDR are larger in EXPZ

than in EXPZZDR, although significant differences

still exist (as large as 6 dB) between EXPZZDR and

the observations.

It is notable that the patterns of analyzed Z are more

similar between the experiments as compared to those

ofZDR. Ultimately, the goal of assimilating polarimetric

observations is to provide an improved estimate of

the model microphysical states. The ZDR analysis in

EXPZZDR is improved over EXPZ compared to ob-

servations, whileZ in EXPZZDR is more similar to that

of EXPZ compared to the observations, suggesting that

EXPZZDR better represents the observed microphys-

ical states. In other words, when Z alone is assimilated,

there are multiple possible combinations of microphys-

ical states (mixing ratios and total number concentra-

tions in our case) that can fit the values of Z, many of

which have substantial errors compared to the true mi-

crophysical states. The assimilation of ZDR provides

additional information and constraint on the micro-

physical states by narrowing the range of possible mi-

crophysical states that can fit the assimilated observations

and leading to better state estimation. Analyzing Z alone

may provide a good fit to observations in terms of

reflectivity coverage and intensity, but the estimate

of individual microphysical states may still contain

significant error.

ZDR values are only assimilated at heights of 2 km

AGL or below, but observed information can be spread

to other regions of model domain via covariance struc-

tures in the EnKF. Vertical cross sections of ZDR from

observations and analysis results are plotted in Fig. 10 to

illustrate the impact of assimilating ZDR values below

2kmAGL on regions above. The diagonal black dashed

lines in the top panels of Fig. 10 indicate the location of

the vertical cross sections plotted in the bottom panels

while the black contours in Figs. 10d,f indicate the

freezing level and the purple contours indicate the

strength of the vertical updraft (w, in 15ms21 contours).

The cross section is oriented to intersect both the rear

flank downdraft and forward flank region so that both

the main updraft and the ZDR column are included,

similar to Fig. 6 of Kumjian and Ryzhkov (2008). The

ZDR column is a region of increased ZDR near and

within the updraft caused by vertical advection of ob-

late raindrops by the updraft. These raindrops, which

remain liquid due to a positive temperature perturba-

tion and insufficient time to freeze in the updraft, ex-

hibit much higherZDR than the frozen hydrometeors at

the same level in the surrounding portions of the storm.

The increase in ZDR can also be due to melting hail-

stones. The observed ZDR column can be noted in

Fig. 10b (at x ; 15 km) by the presence of ZDR values

exceeding 2 dB well above 2000m while the significant

decrease in ZDR above this height elsewhere in the

FIG. 7. As in Fig. 6, but for the analysis at 1935 UTC and KTLX observations from 1934 UTC.
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cross section suggests the presence of the environmental

freezing level.

ZDR values near the surface in EXPZZDR are higher

where the vertical cross section bisects the ZDR arc and

lower farther downshear in the forward flank downdraft

compared to EXPZ and more similar to the observa-

tions (Figs. 10 b,d,f). There is a column of higher ZDR

values (of above 3 dB) in EXPZZDR from the surface to

4 km (Fig. 10f, at x ; 20 km) above the ZDR arc region

compared to EXPZ (Fig. 10d). In fact, the vertical dis-

tribution of ZDR values of approximately 3 dB in this

region in EXPZZDR are similar to the observations,

although the values are underestimated and their loca-

tions are displaced by about 4 km to the northeast.

Additionally, in EXPZZDR, there is a small vertical

column of ZDR values of around 1dB that extends up

to the height of the ZDR column in the observations

(Fig. 10f, at x ; 13km), collocated with the local maxi-

mum w in the model updraft, which is also stronger

compared to EXPZ. Although the vertical distribution

of ZDR values in EXPZZDR better reflects the obser-

vations than that of EXPZ (Figs. 10b,d,f), these values

are underestimated and not as widely distributed as the

observedZDR column above the freezing level (Fig. 10b,

at x ; 15km) nor as narrow as the observed values be-

low the freezing level. This may be partially due to the

low amount of hail in this region; melting hailstones can

increase the ZDR values in the column. Also, the low

ZDR column depth is mainly due to fast liquid to ice

conversion seen with the MY scheme, which underesti-

mates liquidwater content in the updraft region (Johnson

et al. 2016). Assimilation of ZDR values above the

freezing level, specifically in regions associated with the

ZDR column, may improve analyses of ZDR; currently,

large uncertainties with the observation operator and

associated microphysics at the freezing/melting level

prevents us from doing so, as discussed earlier, but it

will be explored in future research.

AnalyzedVr also shows a better fit to the observations

in EXPZZDR compared to EXPZ. Specifically, the

strength of the midlevel mesocyclone of the Moore

storm is significantly improved in EXPZZDR. Ob-

served Vr at 1938 UTC and analyzed Vr for EXPZ and

EXPZZDRat 1940UTC at the 8.068 tilt fromKTLX are

plotted in Fig. 11. The observed midlevel mesocyclone

is noted by the black circle and is at approximately 5km

AGL. There are notable outbound velocities of similar

magnitude to indicate the location of the midlevel me-

socyclone in the observations and EXPZZDR, while

this feature is missing in EXPZ. Several observational

studies have shown a positive correlation between in-

creased values ofZDR in theZDR column and the strength

of the updraft (e.g., Hubbert et al. 1998; Kumjian et al.

2014; Snyder et al. 2015). Additionally, Carlin et al. (2017)

showed assimilating ZDR column information, in terms

of positive temperature and moisture perturbations, led

FIG. 8. As in Fig. 6, but for the analysis at 1940 UTC and KTLX observations from 1938 UTC.
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to improved updraft helicity tracks (Carlin et al. 2017).

In our case, the higher ZDR values in the vicinity of the

updraft of EXPZZDR noted above and the increased

Vr values in the midlevel mesocyclone show a positive

correlation between assimilating ZDR and the strength

of the midlevel mesocyclone.

b. Evaluation of estimated microphysical states

1) ESTIMATE OF MODEL MICROPHYSICAL

STATES AT THE SURFACE

In this section, the impact of assimilating ZDR on the

estimate of model microphysical states is further inves-

tigated by examining variables related to the hydrome-

teor PSDs. The rainwater mean mass diameter (Dnr, in

mm) and total raindrop number concentration (Ntr, in

number per meter cubed) at the first model level above

the surface (approximately 50m AGL) in the analyses

are compared to retrieved values from the KTLX radar

observations (Fig. 12) (note that given Dnr and Ntr, the

exponential rain DSD and the rainwater mixing ratio

can be uniquely determined). Both storms are located

very close to the KTLX radar, and thus 0.58 KTLX ob-

servations are quite close to the surface, with a mean

height of 200m, making them suitable for comparison

with the analyzed fields near the surface. The retrieved

values are obtained using a direct retrieval method

(Zhang 2016, his section 6.4.3) based on the constrained-

gamma (C-G) rain drop size distribution (DSD) model

(Zhang 2015). The Dnr and rainwater content (W, in

gm23) are expressed in terms of observedZh andZDR as:

D
nr
5 0:06573Z3

DR 2 0:3323Z2
DR

1 1:0903Z
DR

1 0:689 (3)

and

W5 1:0233 1023 3Z
h

3 1020:07423Z3
DR

10:5113Z2
DR

21:5113ZDR , (4)

where Zh is in linear units (mm6m23) and ZDR is in dB;

W can then be used to calculate Ntr:

N
tr
5

W

p
3 103 3

�
4

D
nr

�3

. (5)

The ZDR observations used in the retrieval are capped

at 4.5 dB because simulated ZDR values calculated using

the C-G model rarely exceed this value. Additionally,

Dnr and Ntr values are only retrieved in areas that are

identified as one of the rain-only categories (rain, large

raindrops, or heavy rain) by the Park et al. (2009) HCA

(Fig. 12). Both of these steps will mainly avoid retrieval

of Dnr and Ntr in areas with melting hail.

The retrieved Dnr and Ntr values (Figs. 12a,b) are

higher compared to those predicted in the model

(Figs. 12c,d,e,f), suggesting that the microphysics

scheme and/or the DA procedure underestimates

FIG. 9. (a) Reflectivity (dBZ) and (b) differential reflectivity (dB) from KTLX at 1938 UTC, (c) reflectivity ob-

servation minus ensemble mean analysis and (d) differential reflectivity observation minus analysis for EXPZ, and

(e),(f) corresponding difference fields for EXPZZDR at 1940 UTC at the 0.58 elevation of KTLX as in Fig. 8.
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mean mass raindrop size and the total number of drops

compared to the observations. However, caution must

be taken in interpreting the numerical values of re-

trieved Dnr and Ntr compared to the model results. For

example, the retrieval method assumes a nonzero DSD

shape parameter a, while the rain DSD used in the

Mibrandt and Yau DM scheme assumes a zero value of

a and an exponential DSD. Differences in this case,

however, can be attributed to model error and qualita-

tive agreement can be viewed as improvement; more

general TMMP schemes may be explored in the future.

Additionally, the retrieval equations were derived based

on relations between rain DSD parameters and radar

measurements, which may contain errors. However,

previous studies have shown retrieval results to be rea-

sonable when compared to independent disdrometer

data (Brandes et al. 2003; Cao et al. 2008; Fig. 6.17

of Zhang 2016). Thus, a qualitative comparison with

observation-based retrievals is sought here while the

quantitative differences should be viewedwith the noted

caveats in mind.

The pattern of Dnr in EXPZZDR (Fig. 12e) better

reflects the distribution of the observed ZDR pattern

from Fig. 8b compared to that of EXPZ (Fig. 12c). It is

expected that the rain DSDs that produce high ZDR

values will also have high mean mass diameter values

(and vice versa for low ZDR values), and this is seen in

theDnr field of EXPZZDR, particularly where highDnr

values (Fig. 12e) are collocated with the ZDR arc of the

Moore storm in the observations (Fig. 8b). Additionally,

Dnr values are lower farther downshear in the forward

flank of EXPZZDR away from the local maximum in

the ZDR arc. Differences between Dnr in EXPZ and

EXPZZDR indicate that the improvement in the ana-

lyzed ZDR patterns in EXPZZDR discussed in section

4a is reflected in a corresponding improved estimate of

the model microphysical states related to the rain DSD.

The retrieved and analyzed Ntr values are plotted

in the bottom panels of Fig. 12. High ZDR values are

found to be associated with DSDs with lowerNtr values,

representing distributions with long tail ends (i.e., a few,

larger drops), while low ZDR values are found to be

associated with DSDs with higherNtr values (i.e., a very

high number of smaller drops) (Cao et al. 2008). In the

evaluation ofZDR in section 4a, a local minimum inZDR

was noted in the observations and in EXPZZDR be-

tween the higher values associated with the ZDR arcs in

the Moore and OKC storms (Figs. 8b,f). In this region,

FIG. 10. (a) Differential reflectivity (dB) at the 0.58 tilt fromKTLX at 1938UTC and (b) a vertical cross section of

differential reflectivity from KTLX for the same volume scan as (a), and corresponding fields from the ensemble

mean analysis at 1940 UTC for (c),(d) EXPZ and (e),(f) EXPZZDR. The location of the vertical cross sections is

noted by the black dashed line in (a),(c),(e). The model freezing level is indicated by the black line in (d),(f).

Positive values of vertical velocity (m s21) are indicated by the purple contours in (d),(f).
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the Ntr values in EXPZZDR (Fig. 12f) are higher than

those in EXPZ (Fig. 12d), indicating a higher number of

raindrops (specifically of small drops) present in the

model, which is expected given the low observed ZDR

values in the region (Fig. 8b). These higher values ofNtr

also extend farther downshear in the forward flank in

EXPZZDR than in EXPZ for both theMoore andOKC

storms. The retrieved Ntr values are higher than the

analyzed values, but the spatial pattern in EXPZZDR

better matches that of the observation retrieval. More

detailed investigations of retrievedDnr andNtr, perhaps

with more suitable assumptions on the DSDs, are

needed and are a topic for future study, but these initial

results indicate an encouraging improvement in the

overall patterns of analyzed microphysical fields in

EXPZZDR compared to those in EXPZ. It should be

noted that we also investigated other model state vari-

ables, including the surface temperature to gauge the

strength of the surface cold pool; no significant differ-

ence was found in the strength of the cold pool.

2) ESTIMATE OF MODEL MICROPHYSICAL STATES

ABOVE THE SURFACE

As discussed in section 1, the covariance structures in

the EnKF can spread observed information above 2 km

AGL where ZDR observations are not assimilated. The

rainwater mixing ratio (qr, in gm23) andDnr are plotted

in Fig. 13 at 2 km AGL. The hail mixing ratio (qh) is

plotted along with the mean mass diameter of hail (Dnh)

at 4 km AGL in Fig. 14 and at 6 km AGL in Fig. 15. The

difference between the two experiments (EXPZZDR–

EXPZ) for the relevant fields is also plotted in Figs. 13–

15. The green dot marks the location of the updraft

based on a local maximum in vertical velocity. The im-

pact of assimilating ZDR on hail-related fields is impor-

tant considering that ZDR values are assimilated only

below the melting layer and that ZDR values are typi-

cally near 0.0 dB for frozen hydrometeors (see Fig. 10b).

In other words, any impact of the ZDR assimilation on

hail will have to come directly through ensemble co-

variances and model state interactions in the modeling

integration during the DA cycles.

Substantial differences in qr (Fig. 13e) between EXPZ

and EXPZZDR are mainly confined to regions close to

the updraft in the forward flank of the Moore and OKC

storms. In particular, there is a notable reduction in the

water content in the forward flank of the OKC storm in

EXPZZDR compared to EXPZ, which corresponds to

the improvement seen in the Z fields of EXPZZDR

(Fig. 8e) compared to the observations near the surface

relative to EXPZ (which overestimates Z). There is

only a small increase inDnr along the right-forward flank

of the Moore storm in EXPZZDR, which is not sur-

prising considering that ZDR within the ZDR arc is

highest at the surface (where the most size sorting has

occurred). Assimilation of ZDR appears to have a small but

expected impact on the rain DSDs at 2km in EXPZZDR,

despite this being the upper limit of the vertical extent

where ZDR is assimilated.

Amore substantial difference is seen between the two

experiments in the hail fields at 4 km (Fig. 14) and 6km

AGL (Fig. 15). There is an increase in qh adjacent to the

updraft in the Moore storm in EXPZZDR. Addition-

ally, there is an increase in Dnh at this same location at

both 4 and 6km in EXPZZDR, while there is a decrease

in Dnh farther away from the updraft along the right-

forward flank. This can be seen more clearly in the dif-

ference fields (Figs. 14f and 15f). The negative gradient

ofDnh downshear, relative to the stormmotion, from the

updraft in the right-forward flank of the Moore storm in

EXPZZDR matches the distribution of Dnh presented

in the schematic in Fig. 17 of Dawson et al. (2014).

FIG. 11. (a) Observed radial velocity (Vr) at the 8.068 tilt of KTLX (location noted by the black circle) at

1938 UTC as well as analyzed Vr for (b) EXPZ and (c) EXPZZDR at 1940 UTC at the same tilt. The golden circle

indicates the location of the midlevel mesocyclone for the Moore storm.
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They found that the size sorting of hail aloft contributed

more to the ZDR arc near the surface than the size

sorting of rain, as well as to a broader area of increased

ZDR in the right-forward flank referred to as the ZDR

shield. Overall, the estimate of the model microphysical

states above themelting layer is believed to be improved

in EXPZZDR compared to EXPZ, even though ZDR

values are not assimilated in this region.

It should be noted that the hail aloft, which helps

regulate the ZDR arc at the surface, may fall in distinct

episodes. This can lead to breaks in the ZDR arc, spe-

cifically if the hail is large and dry and the associated

ZDR values are near zero (Picca et al. 2010; Van Den

Broeke et al. 2008; Tanamachi and Heinselman 2016).

These episodes were not seen during the evaluation

period, especially compared to the substantial decrease

in ZDR seen in Tanamachi and Heinselman (2016). The

observations for our case suggest the hail in the storms

was wet. However, if this did occur, the observation

operators would be able to account for the difference in

small, wet hail and large, dry hail, including for sizes in

the Mie scattering regime (Jung et al. 2010a).

5. Conclusions and discussion

In this study, polarimetric radar observations are as-

similated directly for a real supercell case using the

ensemble Kalman filter (EnKF) for the first time, with a

double-moment (DM) microphysics (MP) scheme and

forward observation operators that employ full T-matrix

scattering amplitude calculations. The Oklahoma tornado

outbreak of 20 May 2013, specifically the Newcastle–

Moore, Oklahoma, tornadic supercell, is used as a test

case. Two experiments are performed: ‘‘EXPZ,’’ which

assimilates Z and Vr, and ‘‘EXPZZDR,’’ which as-

similates ZDR in addition to Z and Vr. ZDR observa-

tions are only assimilated below 2km above ground

level (AGL) to avoid assimilating observations near

or above the melting layer for which observation op-

erators have large uncertainties.

The analyzed ZDR in EXPZZDR shows a better fit to

observed ZDR compared to that in EXPZ. The analyzed

ZDR in EXPZZDR is higher compared to EXPZ near

the region known as theZDR arc (Kumjian andRyzhkov

2008) in the observations, while there are regions of

lowerZDR farther downshear in the forward flank of the

supercell. However, the ZDR values near the observed

ZDR arc are underestimated in both analyses and their

orientation is displaced to the north, potentially due to

excessive size sorting noted with the Milbrandt and Yau

DMMP scheme (Milbrandt andYau 2005b). Additionally,

the analyzed Z in EXPZZDR is not substantially different

compared to EXPZ and the observations, indicating that

the assimilation of ZDR improves the model particle size

FIG. 12. (a) Rain mean mass diameter (Dnr, in mm) and (b) total number concentration (Ntr, in number per meter

cubed) retrieved fromKTLX radar observations at 1938UTC at the 0.58 tilt, and those analyzed at the first model level

above surface (;50m) at 1940 UTC from (c),(d) EXPZ and (e),(f) EXPZZDR. Areas not identified as rain in the

observations are noted by gray pixels in (a),(b). Reflectivity increments of 20 dBZ are contoured in black on all panels.

2526 MONTHLY WEATHER REV IEW VOLUME 147



distributions (PSDs) (and hence the microphysical

states) relative to the observed microphysical states

while still fitting similar Z values as in EXPZ. More

specifically, assimilated ZDR observations improve

the estimate of the storm microphysical states in ways

not noticeable in the Z field alone. Vertical cross

sections of ZDR reveal that assimilating ZDR has an

impact well above 2 km AGL where ZDR is not

assimilated— this is possible through the spread of

observation information via ensemble covariances

and through model state interactions within the EnKF

data assimilation (DA) cycles. The vertical distribu-

tion of ZDR near the updraft better matches the ob-

servations in EXPZZDR than in EXPZ. There is

also a small but noticeable increase in ZDR values

in EXPZZDR above the melting layer collocated

with the ZDR column (Kumjian and Ryzhkov 2008) in

the observations.

Rainwater mean mass diameter (Dnr) and total rain

number concentration (Ntr) are evaluated at the surface,

which demonstrates the positive impact of assimilating

ZDR observations on the estimate of the model mi-

crophysical states. High Dnr values are present in

EXPZZDR in regions where observed ZDR is high (and

vice versa), more so than in EXPZ. The patterns in Dnr

approaching the ZDR arc in the forward flank of the

Moore storm in EXPZZDR also agree well with

Dnr retrieved from ZDR observations, although the

observation-derived Dnr values are higher overall. Ad-

ditionally, Ntr is higher in regions of low observed ZDR

in EXPZZDR compared to EXPZ, and better matches

patterns of Ntr retrieved from observations.

There are notable differences in the hail size distri-

bution above 2-km between EXPZZDR and EXPZ

despite the fact ZDR is not assimilated above 2km. The

hail mean mass diameter (Dnh) in EXPZZDR has a

negative gradient along the right-forward flank of the

supercell, with values decreasing farther from the

updraft, more so than in EXPZ. The gradient in

EXPZZDRmatches the schematic of Fig. 17 in Dawson

et al. (2014), where size sorting of hail aloft was found to

have a more significant impact than the size sorting of

rain on the size distribution of oblate raindrops at the

surface that compose the ZDR arc. Again, the improve-

ment in the estimate of the microphysical states by the

assimilation of ZDR near the surface in EXPZZDR ap-

pears to be spread well aloft within the storm by the

covariance structures in the EnKF, and through state

interactions during model integration within the EnKF

DA cycles. Also, the noted improvement in the midlevel

mesocyclone in EXPZZDR follows previous studies

that demonstrated a positive correlation between higher

values of ZDR in the ZDR column and mesocyclone

strength, which increases hail growth aloft.

EnKF assimilation of ZDR improves the fit of ana-

lyzed ZDR to observations and favorably adjusts the

FIG. 13. (a) Rainwater mixing ratio (g kg21) and (b) mean mass diameter (mm) at 2 kmAGL from the ensemble

mean analyses at 1940 UTC for EXPZ and (c),(d) EXPZZDR as well as the (e),(f) difference between EXPZZDR

and EXPZ for both fields. Reflectivity increments of 20 dBZ for EXPZ and EXPZZDR are contoured in black in

the first two columns and for EXPZZDR in the rightmost column. The green dot marks the location of the updraft

based on a local maximum in vertical velocity.
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microphysical model state variables. However, there is

still significant error in the magnitude of analyzed Z and

ZDR values and in the patterns of values representing

the structure of known polarimetric signatures. Based

upon this study, we identify several areas for future re-

search. First, additional study on topics related to cloud

microphysics schemes is needed. Despite thorough

testing of several different sets of assumed observation

errors and model error treatment methods, there are

still notable errors in the analyzed Z and ZDR fields.

Z and ZDR are underestimated in the southern portion

of the supercell forward flank and the orientation of the

analyzed ZDR arc is more easterly than that observed.

Such differences are at least partially due to errors

within the model MP scheme, including excessive size

sorting. Microphysics parameterization errors will cause

fast error growth during the forecast period in the DA

cycles and large background forecast error is difficult to

correct. For radar data assimilation using ensemble-

based methods such as EnKF, the cross covariances

among the microphysical and other state variables are

also very important; large model errors can make such

covariances unreliable. The assimilation of additional

observations such as ZDR provides more observational

constraint to the analyzed state but does not eliminate

impacts of model error. A triple-moment (TM) scheme

and/or improved microphysical parameterizations, such

as one that predicts hydrometeor water fractions, are

expected to improve the results. Use of a TM scheme

may also improve quantitative comparisons between

the EnKF-analyzed microphysical state and the radar

retrieved values where a nonzero shape parameter was

used. However, additional improvements are needed

beyond simply using schemes with more predicted

moments or hydrometeor types. The distribution and

magnitude of ZDR values in EXPZZDR around the

observed ZDR column above the freezing level is over

and underestimated, respectively. This feature is con-

nected not only to oblate raindrops but also to melting

hail. A future study, based on Labriola et al. (2017), will

investigate to what extent the use of triple-moment and

variable density rimed-ice (low density graupel to

high density hail) schemes can improve hail predic-

tion; similar research could be beneficial for all

hydrometeor types.

Additionally, further research on the uncertainties

due to assumptions made in the forward operators for

polarimetric variables is needed. The assimilation of

observed ZDR values in this case is limited to 2 km

AGL or less, well below the melting layer, due to the

increased uncertainty when modeling mixed-phase

hydrometeors in the operators that are not predicted

by the model microphysics scheme. The melting height

in the model is also noted to be below the 08 isotherm
because melting is maximized where qr and qh are

comparable in the current melting parameterization;

assimilation of ZDR above 2 km along with enhance-

ments to the melting treatment could help improve

this. A follow-up study to Johnson et al. (2016) will

seek to improve the current forward operators when

simulating polarimetric variables for ice and mixed-

phase hydrometeors. Further research is also needed

FIG. 14. As in Fig. 13, but for hail at 4 km above ground level (AGL).
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on the observation errors used for polarimetric vari-

ables. This study found that a lower observation error

for ZDR improved the fit of analyzed ZDR to the ob-

servations but negatively affected the fit of Z. Addi-

tional experiments are needed to find an optimal

balance between the errors used for each type of ob-

servation. Future studies are also needed to assess the

impact of other polarimetric variables, including KDP,

have on the estimate of the model microphysical states.

Finally, this study does not include forecasts initial-

ized from the improved EnKF analyses. Future work

will investigate how significant the impact is on

forecasts initialized from the improved estimated

microphysical states and how long any benefit per-

sists into the forecasts.
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Ryzhkov, A. V., and D. S. Zrnić, 1998: Polarimetric rainfall esti-

mation in the presence of anomalous propagation. J. Atmos.

Oceanic Technol., 15, 1320–1330, https://doi.org/10.1175/1520-

0426(1998)015,1320:PREITP.2.0.CO;2.

——, S. E. Giangrande, V. M. Melnikov, and T. J. Schuur, 2005:

Calibration issues of dual-polarization radar measurements.

J. Atmos. Oceanic Technol., 22, 1138–1155, https://doi.org/

10.1175/JTECH1772.1.

Scharfenberg, K. A., and Coauthors, 2005: The joint polarization

experiment: Polarimetric radar in forecasting and warning

decision making. Wea. Forecasting, 20, 775–788, https://doi.org/

10.1175/WAF881.1.

JULY 2019 PUTNAM ET AL . 2531

https://doi.org/10.1175/MWR-D-14-00357.1
https://doi.org/10.1175/MWR-D-14-00357.1
https://doi.org/10.1175/MWR-D-17-0039.1
https://doi.org/10.1175/JTECH-D-13-00073.1
https://doi.org/10.1175/JTECH-D-13-00073.1
https://doi.org/10.1175/JAS3624.1
https://doi.org/10.1029/2009JD013666
https://doi.org/10.1175/MWR-D-11-00090.1
https://doi.org/10.1175/MWR-D-11-00090.1
https://doi.org/10.1175/MWR-D-16-0035.1
https://doi.org/10.1175/MWR-D-16-0035.1
https://doi.org/10.1175/JAMC-D-15-0355.1
https://doi.org/10.1175/JAMC-D-15-0355.1
https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
https://doi.org/10.1175/1520-0450(2002)041<1179:EPRSAT>2.0.CO;2
https://doi.org/10.1175/1520-0450(2002)041<1179:EPRSAT>2.0.CO;2
https://doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2
https://doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2
https://doi.org/10.1175/1520-0434(1999)014<0713:CPROCA>2.0.CO;2
https://doi.org/10.1175/1520-0434(1999)014<0713:CPROCA>2.0.CO;2
https://doi.org/10.1175/JAS3535.1
https://doi.org/10.1175/JAS3534.1
https://doi.org/10.1175/JAS3534.1
https://doi.org/10.1175/2010MWR3433.1
https://doi.org/10.1175/2010MWR3433.1
https://doi.org/10.1175/JAS-D-14-0065.1
https://doi.org/10.1175/JAS3446.1
https://doi.org/10.1175/2008WAF2222205.1
https://doi.org/10.1175/2008WAF2222205.1
https://ams.confex.com/ams/25SLS/techprogram/paper_175750.htm
https://ams.confex.com/ams/25SLS/techprogram/paper_175750.htm
https://doi.org/10.1175/MWR-D-13-00042.1
https://doi.org/10.1175/MWR-D-15-0415.1
https://doi.org/10.1175/MWR-D-15-0415.1
https://doi.org/10.1175/MWR-D-16-0162.1
https://doi.org/10.1175/MWR-D-16-0162.1
http://www.roc.noaa.gov/WSR88D/PublicDocs/DualPol/DPstatus.pdf
http://www.roc.noaa.gov/WSR88D/PublicDocs/DualPol/DPstatus.pdf
https://doi.org/10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2
http://www.crahi.upc.edu/ERAD2006/
https://doi.org/10.1175/1520-0426(1998)015<1320:PREITP>2.0.CO;2
https://doi.org/10.1175/1520-0426(1998)015<1320:PREITP>2.0.CO;2
https://doi.org/10.1175/JTECH1772.1
https://doi.org/10.1175/JTECH1772.1
https://doi.org/10.1175/WAF881.1
https://doi.org/10.1175/WAF881.1


Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar dif-

ferential reflectivity measurements at orthogonal polariza-

tions for measuring precipitation. J. Appl. Meteor., 15, 69–76,

https://doi.org/10.1175/1520-0450(1976)015,0069:PUORDR.
2.0.CO;2.

Snook, N., M. Xue, and Y. Jung, 2011: Analysis of a tornadic me-

soscale convective vortex based on ensemble Kalman filter

assimilation of CASAX-band andWSR-88D radar data.Mon.

Wea. Rev., 139, 3446–3468, https://doi.org/10.1175/MWR-D-

10-05053.1.

——, ——, and ——, 2013: Impacts of assumed observation errors

in EnKF analyses and ensemble forecasts of a tornadic me-

soscale convective system. 17th Conf. on Integrated Observing

and Assimilation Systems for the Atmosphere, Oceans, and

Land Surface (IOAS-AOLS), Austin, TX, Amer. Meteor.

Soc., 13.2, https://ams.confex.com/ams/93Annual/webprogram/

Paper219933.html.

——,——, and——, 2015: Multi-scale EnKF assimilation of radar

and conventional observations and ensemble forecasting for a

tornadic mesoscale convective system. Mon. Wea. Rev., 143,

1035–1057, https://doi.org/10.1175/MWR-D-13-00262.1.

——, Y. Jung, J. Brotzge, B. Putnam, andM. Xue, 2016: Prediction

and ensemble forecast verification of hail in the supercell

storms of 20 May 2013.Wea. Forecasting, 31, 811–825, https://

doi.org/10.1175/WAF-D-15-0152.1.

Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler

radar observations with an ensemble Kalman filter.Mon.Wea.

Rev., 131, 1663–1677, https://doi.org/10.1175//2555.1.

Snyder, J. C., A. V. Ryzhkov, M. R. Kumjian, A. P. Khain, and

J. Picca, 2015: A ZDR column detection algorithm to examine

convective storm updrafts. Wea. Forecasting, 30, 1819–1844,

https://doi.org/10.1175/WAF-D-15-0068.1.

SPC, 2016: SPC filtered storm reports for 5/20/2013. Accessed 4

May 2017, a http://www.spc.noaa.gov/climo/reports/130520_

rpts.html.

Sun, J., and N. A. Crook, 1997: Dynamical and microphysical re-

trieval from Doppler radar observations using a cloud model

and its adjoint. Part I: Model development and simulated data

experiments. J. Atmos. Sci., 54, 1642–1661, https://doi.org/

10.1175/1520-0469(1997)054,1642:DAMRFD.2.0.CO;2.

Tanamachi, R. L., and P. L. Heinselman, 2016: Rapid-scan, po-

larimetric observations of central Oklahoma severe storms on

31 May 2013. Wea. Forecasting, 31, 19–42, https://doi.org/

10.1175/WAF-D-15-0111.1.

Thompson,G., P. R. Field, R.M. Rasmussen, andW.D.Hall, 2008:

Explicit forecasts of winter precipitation using an improved

bulk microphysics scheme. Part II: Implementation of a new

snow parameterization. Mon. Wea. Rev., 136, 5095–5115,

https://doi.org/10.1175/2008MWR2387.1.

Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation

of Doppler radar data with a compressible nonhydrostatic

model: OSS experiments. Mon. Wea. Rev., 133, 1789–1807,

https://doi.org/10.1175/MWR2898.1.

——, and ——, 2008: Simultaneous estimation of microphysical

parameters and atmospheric state with radar data and

ensemble square root Kalman filter. Part I: Sensitivity analysis

and parameter identifiability.Mon.Wea. Rev., 136, 1630–1648,

https://doi.org/10.1175/2007MWR2070.1.

Van Den Broeke, M. S., J. M. Straka, and E. N. Rasmussen, 2008:

Polarimetric radar observations at low levels during tornado

life cycles in a small sample of classic southern plains super-

cells. J. Appl. Meteor. Climatol., 47, 1232–1247, https://doi.org/

10.1175/2007JAMC1714.1.

Vivekanandan, J., W. M. Adams, and V. N. Bringi, 1991: Rigorous

approach to polarimetric radar modeling of hydrometeor

orientation distributions. J. Appl. Meteor., 30, 1053–1063,

https://doi.org/10.1175/1520-0450(1991)030,1053:RATPRM.
2.0.CO;2.

Wacker, U., and A. Seifert, 2001: Evolution of rain water profiles

resulting from pure sedimentation: Spectral vs. parameterized

description. Atmos. Res., 58, 19–39, https://doi.org/10.1016/

S0169-8095(01)00081-3.

Wang, H., T. Auligne, and H. Morrison, 2012: Impact of micro-

physics scheme complexity on the propagation of initial per-

turbations. Mon. Wea. Rev., 140, 2287–2296, https://doi.org/

10.1175/MWR-D-12-00005.1.

Wheatley, D. M., N. Yussouf, and D. J. Stensrud, 2014: Ensemble

Kalman filter analyses and forecasts of a severe mesoscale

convective system using different choices of microphysics

schemes. Mon. Wea. Rev., 142, 3243–3263, https://doi.org/

10.1175/MWR-D-13-00260.1.

Whitaker, J. S., and T.M.Hamill, 2002: Ensemble data assimilation

without perturbed observations. Mon. Wea. Rev., 130, 1913–

1924, https://doi.org/10.1175/1520-0493(2002)130,1913:

EDAWPO.2.0.CO;2.

——, and ——, 2012: Evaluating methods to account for system

errors in ensemble data assimilation. Mon. Wea. Rev., 140,

3078–3089, https://doi.org/10.1175/MWR-D-11-00276.1.

WSEC, 2006: A recommendation for an enhanced Fujita scale

(EF-scale), revision 2. Wind Science and Engineering Center

Rep., Texas Tech University, Lubbock, TX, 95 pp., http://

www.depts.ttu.edu/nwi/pubs/fscale/efscale.pdf.

Wu, B., J. Verlinde, and J. Sun, 2000: Dynamical andmicrophysical

retrievals from Doppler radar observations of a deep con-

vective cloud. J. Atmos. Sci., 57, 262–283, https://doi.org/

10.1175/1520-0469(2000)057,0262:DAMRFD.2.0.CO;2.

Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced

Regional Prediction System (ARPS)—A multiscale non-

hydrostatic atmospheric simulation and prediction tool. Part I:

Model dynamics and verification. Meteor. Atmos. Phys., 75,

161–193, https://doi.org/10.1007/s007030070003.

——, and Coauthors, 2001: The Advanced Regional Prediction

System (ARPS)—A multiscale nonhydrostatic atmospheric

simulation and prediction tool. Part II: Model physics and

applications. Meteor. Atmos. Phys., 76, 143–165, https://

doi.org/10.1007/s007030170027.

——,D.-H.Wang, J.-D.Gao,K. Brewster, andK. K.Droegemeier,

2003: The Advanced Regional Prediction System (ARPS),

storm-scale numerical weather prediction and data assimila-

tion.Meteor. Atmos. Phys., 82, 139–170, https://doi.org/10.1007/

s00703-001-0595-6.

——,M. Tong, andK.K.Droegemeier, 2006: AnOSSE framework

based on the ensemble square root Kalman filter for evalu-

ating the impact of data from radar networks on thunderstorm

analysis and forecast. J. Atmos. Oceanic Technol., 23, 46–66,

https://doi.org/10.1175/JTECH1835.1.

——, Y. Jung, and G. Zhang, 2010: State estimation of convective

storms with a two-moment microphysics scheme and an

ensemble Kalman filter: Experiments with simulated radar

data.Quart. J. Roy. Meteor. Soc., 136, 685–700, https://doi.org/

10.1002/qj.593.

Yokota, S., H. Seko, M. Kunii, H. Yamauchi, and H. Niino, 2016:

The tornadic supercell on the Kanto Plain on 6 May 2012:

Polarimetric radar and surface data assimilation with EnKF

and ensemble-based sensitivity analysis.Mon. Wea. Rev., 144,

3133–3157, https://doi.org/10.1175/MWR-D-15-0365.1.

2532 MONTHLY WEATHER REV IEW VOLUME 147

https://doi.org/10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2
https://doi.org/10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2
https://doi.org/10.1175/MWR-D-10-05053.1
https://doi.org/10.1175/MWR-D-10-05053.1
https://ams.confex.com/ams/93Annual/webprogram/Paper219933.html
https://ams.confex.com/ams/93Annual/webprogram/Paper219933.html
https://doi.org/10.1175/MWR-D-13-00262.1
https://doi.org/10.1175/WAF-D-15-0152.1
https://doi.org/10.1175/WAF-D-15-0152.1
https://doi.org/10.1175//2555.1
https://doi.org/10.1175/WAF-D-15-0068.1
http://www.spc.noaa.gov/climo/reports/130520_rpts.html
http://www.spc.noaa.gov/climo/reports/130520_rpts.html
https://doi.org/10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2
https://doi.org/10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2
https://doi.org/10.1175/WAF-D-15-0111.1
https://doi.org/10.1175/WAF-D-15-0111.1
https://doi.org/10.1175/2008MWR2387.1
https://doi.org/10.1175/MWR2898.1
https://doi.org/10.1175/2007MWR2070.1
https://doi.org/10.1175/2007JAMC1714.1
https://doi.org/10.1175/2007JAMC1714.1
https://doi.org/10.1175/1520-0450(1991)030<1053:RATPRM>2.0.CO;2
https://doi.org/10.1175/1520-0450(1991)030<1053:RATPRM>2.0.CO;2
https://doi.org/10.1016/S0169-8095(01)00081-3
https://doi.org/10.1016/S0169-8095(01)00081-3
https://doi.org/10.1175/MWR-D-12-00005.1
https://doi.org/10.1175/MWR-D-12-00005.1
https://doi.org/10.1175/MWR-D-13-00260.1
https://doi.org/10.1175/MWR-D-13-00260.1
https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
https://doi.org/10.1175/MWR-D-11-00276.1
http://www.depts.ttu.edu/nwi/pubs/fscale/efscale.pdf
http://www.depts.ttu.edu/nwi/pubs/fscale/efscale.pdf
https://doi.org/10.1175/1520-0469(2000)057<0262:DAMRFD>2.0.CO;2
https://doi.org/10.1175/1520-0469(2000)057<0262:DAMRFD>2.0.CO;2
https://doi.org/10.1007/s007030070003
https://doi.org/10.1007/s007030170027
https://doi.org/10.1007/s007030170027
https://doi.org/10.1007/s00703-001-0595-6
https://doi.org/10.1007/s00703-001-0595-6
https://doi.org/10.1175/JTECH1835.1
https://doi.org/10.1002/qj.593
https://doi.org/10.1002/qj.593
https://doi.org/10.1175/MWR-D-15-0365.1


Yussouf, N., E. R. Mansell, L. J. Wicker, D.M.Wheatley, andD. J.

Stensrud, 2013: The ensemble Kalman filter analyses and

forecasts of the 8 May 2003 Oklahoma City tornado supercell

storm using single and double moment microphysics schemes.

Mon. Wea. Rev., 141, 3388–3412, https://doi.org/10.1175/

MWR-D-12-00237.1.

——, D. C. Dowell, L. J. Wicker, K. H. Knopfmeier, and D. M.

Wheatley, 2015: Storm-scale data assimilation and ensemble

forecasts for the 27 April 2011 severe weather outbreak in

Alabama. Mon. Wea. Rev., 143, 3044–3066, https://doi.org/

10.1175/MWR-D-14-00268.1.

Zhang, G., 2015: Comments on ‘‘Describing the shape of raindrop

size distributions using uncorrelated raindrop mass spectrum

parameters.’’ J. Appl.Meteor. Climatol., 54, 1970–1976, https://

doi.org/10.1175/JAMC-D-14-0210.1.

——, 2016: Weather Radar Polarimetry. CRC Press, 323 pp.

——, J. Vivekanandan, and E. Brandes, 2001: A method for esti-

mating rain rate and drop size distribution from polarimetric

radar measurements. IEEE Trans. Geosci. Remote Sens., 39,
830–841, https://doi.org/10.1109/36.917906.

——, S. Luchs, A. Ryzhkov, M. Xue, L. Ryzhkova, and Q. Cao,

2011: Winter precipitation microphysics characterized by po-

larimetric radar and video disdrometer observations in central

Oklahoma. J. Appl. Meteor. Climatol., 50, 1558–1570, https://
doi.org/10.1175/2011JAMC2343.1.

Zhang, Y., F. Zhang, D. J. Stensrud, and Z. Meng, 2015: Practical

predictability of the 20May 2013 tornadic thunderstorm event

in Oklahoma: Sensitivity to synoptic timing and topographical

influence. Mon. Wea. Rev., 143, 2973–2997, https://doi.org/

10.1175/MWR-D-14-00394.1.
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