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ABSTRACT

The 2016–18 NOAA Hazardous Weather Testbed (HWT) Spring Forecasting Experiments (SFE) fea-

tured the Community Leveraged Unified Ensemble (CLUE), a coordinated convection-allowing model

(CAM) ensemble framework designed to provide empirical guidance for development of operational

CAM systems. The 2017 CLUE included 81 members that all used 3-km horizontal grid spacing over the

CONUS, enabling direct comparison of forecasts generated using different dynamical cores, physics

schemes, and initialization procedures. This study uses forecasts from several of the 2017 CLUE members

and one operational model to evaluate and compare CAM representation and next-day prediction of

thunderstorms. The analysis utilizes existing techniques and novel, object-based techniques that distill

important information about modeled and observed storms from many cases. The National Severe Storms

Laboratory Multi-Radar Multi-Sensor product suite is used to verify model forecasts and climatologies of

observed variables. Unobserved model fields are also examined to further illuminate important intermodel

differences in storms and near-storm environments. No single model performed better than the others in all

respects. However, there were many systematic intermodel and intercore differences in specific forecast

metrics and model fields. Some of these differences can be confidently attributed to particular differences

in model design. Model intercomparison studies similar to the one presented here are important to better

understand the impacts of model and ensemble configurations on storm forecasts and to help optimize

future operational CAM systems.

1. Introduction

Optimal design of convection-allowing models (CAMs)

and CAM ensembles is a challenging and urgent topic

in theU.S. weather research and operational communities.

In a 2015 report on the state of the National Centers for

Environmental Prediction (NCEP) modeling suite, the

Model Advisory Committee of the University Cor-

poration for Atmospheric Research Community Ad-

visory Committee for NCEP (UCACN) stated that a

CAMensemble system is a ‘‘critical capability needed in

operations to support the weather enterprise’’ and em-

phasized the need for ‘‘a rational, evidence-driven ap-

proach towards decision-making and modeling system

environment’’ if the United States is to again be a world
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leader in environmental prediction.1 This ‘‘evidence-

driven approach’’ to improving current convective-scale

and othermodeling capability is essential to the strategic

vision for NOAA’s Next Generation Global Prediction

System (NGGPS).

An important source of empirical guidance for the

design of CAMs and CAM ensembles (hereafter ‘‘CAM

systems’’) in the United States is generated as part of

the NOAA Hazardous Weather Testbed Spring Fore-

casting Experiment (SFE) run annually by the National

Severe Storms Laboratory (NSSL) and Storm Predic-

tionCenter (e.g., Kain et al. 2003; Clark et al. 2012; Gallo

et al. 2017). The primary goal of the SFE is to leverage the

combined expertise of numerous researchers and fore-

casters to evaluate and compare experimental CAM

systems and to ultimately inform the development of

operational systems. Critical to this endeavor is accurate

attribution of differences in forecast performance to

differences in model and ensemble design.

Before 2016, the wide range of configurations among

the CAM systems contributed by the participating

modeling groups had historically made systematic in-

tercomparisons difficult. Thus, in recognition of the

need for more uniformity among the CAM systems

evaluated during the SFE, and further motivated by the

UCACN Model Advisory Committee recommenda-

tions, the Community Leveraged Unified Ensemble

(CLUE) was initiated in 2016 (Clark et al. 2018). The

CLUE is a carefully designed ‘‘superensemble’’ com-

prising CAM systems that, while still contributed by

different groups, use collectively chosen settings that

enable systematic evaluation of the impacts of different

configuration strategies (e.g., multiphysics ensembles;

initialization using radar data assimilation; employing

stochastic physics perturbations). During the 2016–18

SFEs, all CLUE members were initialized daily at

0000 UTC, used similar domains encompassing the

contiguous United States (CONUS), and were interpo-

lated and postprocessed to the same 3-km grid using

similar versions of the NCEP/Developmental Testbed

Center Unified Post-Processor software.2 The present

study evaluates forecasts from several members of the

2017 CLUE, which ran 1 May–2 June 2017 and included

81 members contributed by NOAA laboratories: NSSL,

Geophysical Fluid Dynamics Laboratory (GFDL), and

Earth System Research Laboratory (ESRL); as well as

academic research institutions: the Center for Analysis

and Prediction of Storms (CAPS) at the University of

Oklahoma (OU), National Center for Atmospheric

Research (NCAR), and the OU Multiscale data As-

similation and Predictability Laboratory (OU-MAP).

These models use the three major dynamical cores cur-

rently or very soon to be used in U.S. operational nu-

merical weather prediction: the Advanced Research

version of theWeather Research and Forecasting (ARW)

Model (Skamarock et al. 2008; Powers et al. 2017), the

Nonhydrostatic Multiscale Model on the B-grid (NMMB;

Janjić and Gall 2012), and the Finite-Volume Cubed-

Sphere Dynamical Core (FV3; Putman and Lin 2007;

Harris and Lin 2013) developed at GFDL. The FV3 re-

cently replaced the Global Spectral Model core in

NCEP’s Global Forecast System (GFS). Motivated by

NOAA’s vision of a unified modeling system, a regional

FV3 system has begun to be tested against existing re-

gional forecasting systems to facilitate the development

of a unified forecasting system for all operational NWP

in the United States (e.g., Clark et al. 2018).

This study leverages output from the 2017 CLUE to

achieve three primary objectives:

1) Develop anddemonstrate newobject-based techniques

for examiningCAM representation and prediction of

storms and near-storm environments (NSEs).

2) Use these new techniques along with existing verifi-

cation methods to identify systematic forecast differ-

ences between several contemporary CAMs.

3) Based on identified intermodel differences, infer

model configuration impacts on the representation

and forecast accuracy of CAM storms and NSEs.

We analyze 18–26-h forecasts initialized at 0000 UTC

daily during the 2017 SFE to focus on the period of peak

convective activity. The NSSLMulti-Radar Multi-Sensor

(MRMS; Smith et al. 2016) system is used to evaluate

the realism and forecast accuracy of simulated storms. The

analysis is restricted to the 17 days forwhich sufficient output

are available from all the models and the MRMS system

during the 2017 SFE: 1 May, 3–5 May, 9 May, 12 May,

15–19May, 23May, 25–26May, 29May, 31May, and2 June.

In addition to observed, verifiable model fields, we examine

several unobserved fields (e.g., vertical velocity) to further

illuminate intermodel differences in representation of

storms and NSEs. This enables the identification of many

systematic behaviors of different model configurations.

2. CLUE and MRMS output

a. Model configurations

Six CLUE models and one operational model were

used in our analyses. Highlights of each model follow;

additional details can be found in Table 1 and the 2017

1 The full report is available at www.ncep.noaa.gov/director/

ucar_reports/ucacn_20151207/UMAC_Final_Report_20151207-v14.pdf.
2 Available at https://dtcenter.org/community-code/unified-post-

processor-upp.
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SFEOperations Plan.3We used both FV3-basedmodels

that were included in the 2017 CLUE. One was con-

tributed by GFDL, and the other by CAPS; hereafter,

these are labeled ‘‘fv3-gfdl’’ and ‘‘fv3-caps,’’ respec-

tively. Both versions used a 3-km domain covering

CONUS that was two-way interactively nested within

the simultaneously run global FV3 grid with a mean

spacing of ;13 km (Snook et al. 2019). The fv3-caps

was configured identically to the fv3-gfdl except that

it used Thompson microphysics (Thompson et al. 2004,

2008) rather than the GFDL 6-category microphysics

(Chen and Lin 2013). The remaining physics parame-

terizations were adopted from the GFS, except that

cumulus parameterization was disabled on the 3-km

grid. Both FV3-based models were initialized directly

from GFS analyses. We selected three ARW-based

models from the CLUE: member 1 of the ‘‘core’’ CAPS

ensemble (‘‘caps-core_01’’), member 1 of the ESRL

High-Resolution Rapid Refresh (Benjamin et al. 2016)

Ensemble (HRRRE; Dowell et al. 2016; ‘‘hrrre_01’’),

andmember 1 of theNCAR forecast ensemble (Schwartz

et al. 2019; ‘‘ncar_01’’).4 All three ARW-based models

used Thompson microphysics, but different land surface

models (LSMs) and planetary boundary layer (PBL)

physics schemes: either the Rapid Update Cycle

(RUC; Smirnova et al. 2016) LSM with the Mellor–

Yamada–Nakanishi–Niino (MYNN; Nakanishi and

Niino 2004, 2006) PBL scheme, or the Noah LSM

(Mitchell et al. 2005) with the Mellor–Yamada–Janjić

(MYJ; Janjić 2002) PBL scheme. The initialization pro-

cedures differed greatly among the three ARW models:

ncar_01 was downscaled from the 15-km NCAR ensem-

ble Kalman filter (EnKF; Evensen 2003) analysis assim-

ilating conventional observations only, with no data

assimilation on the 3-km grid; the caps-core_01 initial

condition (IC) was generated using 3D variational

assimilation of conventional observations and radial

velocity data followed by cloud analysis-based assim-

ilation of reflectivity data with the NAM analysis as

the background; and the hrrre_01 IC was generated

using direct EnKF assimilation of both conventional

and radar reflectivity observations on the 3-km grid

using the NCAR Data Assimilation Research Testbed

(DART; Anderson et al. 2009) toolkit.

The only NMMB-based model output included in

the 2017 CLUE was from the ensemble produced by

OU-MAP (Wang and Wang 2017). To have more than

one NMMB-based model in our analysis, we used both

member 1 of the OU-MAP ensemble (‘‘ou-map_01’’)

and the operational North American Model (NAM)

3-km CONUS nest (‘‘nam3km’’). Both models used

similar physics schemes, including the Ferrier–Aligo

microphysics (Aligo et al. 2018), but very different

initialization procedures. The nam3km features an

TABLE 1. Configuration details for eachmodel. The ‘‘No. levels lowest 100mb’’ column lists the number of vertical levels within the lowest

100mb assuming a 1000-mb model surface.

Core IC BC

No. levels

lowest 100mb Microphysics LSM PBL

fv3-gfdl FV3 GFS Nested within

global FV3

11 GFDL 6-category Noah Hong and Pan

fv3-caps FV3 GFS Nested within

global FV3

11 Thompson Noah Hong and Pan

ncar_01 ARW 15-km EnKF DA—only

parent model that is

continuously cycled

Pert GFS 7 Thompson Noah MYJ

hrrre_01 ARW RAPv4 mean; GDAS

perturbations; 3-km

EnKF DA including

radar

RAP 8 Thompson RUC MYNN

caps-core_01 ARW NAM-12km; 3DVAR

and cloud analysis

NAM-12km 8 Thompson Noah MYJ

ou-map_01 NMMB 3DEnVar direct

assimilation of both

radar and operational

in situ observations

GFS 8 Ferrier-Aligo Noah MYJ

nam3km NMMB Hybrid 3DEnVar

using GDAS EnKF

members1 radarDFI

NAM-12km

parent domain

17 Ferrier-Aligo Noah MYJ

3Available at https://hwt.nssl.noaa.gov/Spring_2017/HWT_

SFE2017_operations_plan_FINAL.pdf.
4 It should be borne in mind that individual members of formal

ensembles are not representative of the forecast skill of the entire

ensemble (e.g., Schwartz et al. 2014).
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hourly hybrid three-dimensional ensemble–variational

(hybrid 3DEnVar) analysis that ingests the Global Data

Assimilation System (GDAS) EnKF ensemble per-

turbations and assimilates conventional and satellite

observations, then uses a cloud analysis and latent

heating initialization to assimilate radar reflectivity

(Wu et al. 2017; Gustafsson et al. 2018). There are two

primary differences between ou-map_01 and nam3km.

In ou-map_01, a 3DEnVar system ingests a 3-km

NMMB ensemble initialized by NMMB’s own GSI-

based EnKF, which bypasses the use of coarser global

ensemble members as in the nam3km. In addition, ou-

map_01 directly assimilates both radar reflectivity and

velocity within the EnVar algorithm (Johnson et al.

2015; Wang and Wang 2017).

As the preceding description illustrates, the seven

models examined in this study vary in a number of ways,

including initialization procedure, lateral boundary con-

ditions, dynamical core, and physics schemes. While it

is therefore important to conceive of each associated

set of forecasts as arising from a different model system

comprising distinct methods for generating the initial

condition, propagating this analysis forward in time, and

setting the boundary conditions for this forecast solu-

tion, we refer to each forecast system examined herein

as a ‘‘model’’ for brevity. Despite the multifold dif-

ferences among these models, many of the systematic

differences between their forecasts can be confidently

attributed to particular model design choices (section 4).

b. Model and MRMS products

A variety of model output fields are analyzed;

these are listed in Table 2. Model composite refle-

ctivity (REFLCOMP) and hourly accumulated rain-

fall (RAIN_1H) can be directly verified with MRMS

products. The MRMS REFLCOMP product we use

is computed by calculating the exponential inverse-

distance-weighted average of the reflectivity from each

contributing radar and then taking the column maximum

as described in Smith et al. (2016). MRMS RAIN_1H

is obtained using the local gauge bias-corrected radar

quantitative precipitation estimation method described

in Zhang et al. (2016). While CLUE hourly maximum

updraft helicity (UH; UH_1HMAX; Kain et al. 2010)

cannot be directly verified, we follow previous studies

(e.g., Carlin et al. 2017; Skinner et al. 2018) and com-

pare to the MRMS rotation track product valid for the

2–5 km AGL layer (Miller et al. 2013; ROT_1HMAX).

MRMS rotation track products are generated from

hourly accumulated maximum azimuthal shear calcu-

lated using the linear least squares derivative method

of Mahalik et al. (2019).

ROT_1HMAX uses a 0.5-km grid and the remaining

MRMS products use a 1-km grid. To facilitate compar-

isons with the 3-km CLUE output, we apply a 36-point

and 9-point box linear filter to the 0.5- and 1-kmMRMS

products, respectively.

3. Analysis methods

We combine five analysis methods targeting a wide

range of storm attributes and forecast metrics to produce

a comprehensive framework for evaluating and com-

paring CAMs. While this study focuses on next-day

forecasts (more precisely, the 18–26-h forecast period

valid from 1800 UTC of the current day to 0200 UTC

TABLE 2. Descriptions of variables. Asterisks denote variables with corresponding MRMS products.

Variable Description

REFLCOMP* Composite reflectivity (dBZ)

UH_1HMAX*/ROT_1HMAX Hourly maximum 2–5-km updraft helicity (m2 s2)/hourly maximum azimuthal shear (s21)

RAIN_1H* Hourly accumulated rainfall (in.)

W_1HMAX Hourly maximum vertical velocity below 400mb (m s21)

SBCAPE Surface-based convective available potential energy (J kg21)

SRH 0–3-km storm relative helicity (m2 s22)

T_2M 2-m temperature (K)

TD_2M 2-m dewpoint (K)

DIV_10M 10-m horizontal divergence (s21)

WIND_10M 10-m wind speed (m s21)

TABLE 3. The 99.9th percentiles of REFLCOMP and

UH_1HMAX/ROT_1HMAX valid for the dates/times used

in this study.

REFLCOMP

(dBZ)

UH_1HMAX or

ROT_1HMAX (m2 s22 or s21)

mrms 44 0.003

fv3-gfdl 47 58

fv3-caps 49 58

ncar_01 53 27

hrrre_01 50 27

caps-core_01 53 30

ou-map_01 48 30

nam3km 48 26
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of the following day), the evaluation framework is ap-

plicable to forecast lead times fromO(1) h toO(1) week.

Most thunderstorm forecast evaluation techniques are

designed to measure the spatial correspondence be-

tween observed and model-predicted storms for a par-

ticular forecast lead time or period. The surrogate

severe (Sobash et al. 2011, 2016; section 3a) and

object-based verification (Davis et al. 2006a,b; sec-

tion 3b) methods are leading examples of this ap-

proach. It can be fruitful, however, to examine and

compare model climatologies of storm characteristics

(e.g., Clark et al. 2014; Skinner et al. 2018), including

characteristics that cannot be quantitatively verified

(e.g., UH). This type of analysis provides an objective

way to assess how realistically a particular model simu-

lates observed storm fields and to identify systematic

intermodel differences in many aspects of storm struc-

ture and behavior, including storm–environment inter-

actions. Using an object-based framework (section 3c),

we apply two traditional statistical techniques in novel

ways to verify and compare the representation of storms

and NSEs in our seven CAMs (sections 3d–3e).

a. Surrogate severe verification

The surrogate severe verification method (Sobash

et al. 2011, 2016) measures the spatial correspondence

between extreme model forecast values (typically of

UH, which indicates rotating thunderstorms) and severe

weather reports. We perform surrogate severe verifica-

tion of our seven models in a manner consistent with

previous studies. First, the UH_1HMAX from each

model is regridded to an 80-km grid by assigning each

80-km grid cell the maximum 3-km UH_1HMAX

within it over the forecast period (1800–0200 UTC).

Then, surrogate severe fields are created by assigning

a value of one (zero) to 80-km grid cells exceeding (not

exceeding) the prescribed UH_1HMAX threshold. A

corresponding 80-km local storm reports (LSRs) grid

is assigned values of one (zero) at cells containing (not

containing) at least one tornado, hail, or wind report.

Next, the binary surrogate severe and LSR fields are

smoothed using a Gaussian kernel with prescribed

standard deviation s to create probability fields (Theis

et al. 2005). The s used to generate the surrogate se-

vere forecast probabilities is varied; s5 120 km is used

to generate the ‘‘practically perfect probabilities’’ from

the LSR grid (Brooks et al. 2003; Hitchens et al. 2013).

Finally, the surrogate severe forecast probabilities are

verified against the practically perfect probabilities

using spatial and contingency table verification met-

rics. In this study, the area under the relative operat-

ing characteristic curve (AUC) and fractions skill

score (FSS; Roberts and Lean 2008) are computed for

100 UH_1HMAX percentile thresholds and 53 values

of s (section 4a). Each UH_1HMAX percentile is the

value below which falls a prescribed percentage of the

80-km-grid UH_1HMAX distribution.

b. Object-based verification of reflectivity forecasts

Object-based methods allow verification to focus upon

discrete features (e.g., storms) of greatest interest to

the user, and avoid traditional methods’ unduly large

penalty for phase errors. Skinner et al. (2018) tailored

the object identification and matching technique in

the Method for Object-based Diagnostic Evaluation

(MODE; Davis et al. 2006a,b) to verification of

model-predicted reflectivity objects. We adopt the

Skinner et al. (2018) method herein to measure each

model’s skill in forecasting the general spatial distribu-

tion of storms. Storm objects5 are objectively identified

by thresholding the MRMS and model REFLCOMP

on their respective 99.9th percentiles (Table 3) from

the full 17-day sample used in this study. Objects with

area , 100 km2 (12 grid cells) are discarded, and re-

maining objects whose boundaries lie within 10 km

of each other are merged (i.e., combined into a

single object).

Storm objects from each model are matched to the

MRMS storm objects using a total interest function

as in the MODE. Unlike in MODE, however, only

one forecast object is allowed to be matched to each

observed object so as not to unduly reward over-

prediction of storms. Total interest is calculated by

averaging the boundary and centroid displacements

then dividing the result by a prescribed maximum al-

lowable displacement between forecast and observed

object boundaries/centroids. This maximum allowable

displacement is set to 250 km; intermodel differences in

TABLE 4. Means and (in parentheses) standard deviations of NSE-maximum RAIN_1H (in.) in the ALL_STORMS and

ISOLATED_STORMS datasets.

mrms fv3-gfdl fv3-caps Ncar _01 hrrre_01 caps-core_01 ou-map_01 nam-3km

ALL STORMS 1.12 (0.46) 0.87 (0.54) 1.45 (0.82) 1.29 (0.76) 1.32 (0.68) 1.38 (0.73) 1.62 (0.81) 1.65 (0.78)

ISOLATED STORMS 0.95 (0.47) 0.52 (0.40) 0.95 (0.63) 0.83 (0.56) 0.89 (0.68) 0.86 (0.59) 1.13 (0.68) 1.35 (0.80)

5 Object identification, extraction, and characterization in this

study were performed using the Python Scikit-image library (Van

der Walt et al. 2014).
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FIG. 1. Spatial distributions of storm objects (a) before and (b) after criteria 4 and 5 were imposed to reduce

sampling bias. Storm object counts were computedwithin 500 kmof each point on a 50-km grid, then filtered using

a Gaussian kernel with s 5 50 km. Here and in subsequent figures, N indicates the number of storm objects for

each dataset.
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verification metrics were qualitatively insensitive to this

threshold. Reflectivity objects are considered matched if

the total interest score exceeds 0.2; for example, an object

pair with a 200-km centroid displacement and 0-km

boundary displacement (or vice versa) would be consid-

ered a match. If multiple forecast objects are matched to

a single observed object, the pair with the highest total

interest score is retained and other forecast objects clas-

sified as unmatched. Each reflectivity object is classified

as a matched pair (hit), unmatched forecast object (false

alarm), or unmatchedobservedobject (miss). This permits

computation of contingency table verification metrics,

FIG. 2. AUCs of surrogate severe probability forecasts for different Gaussian kernel widths s and UH percentile thresholds. The

maximumAUC for each model is indicated in white. The location of the maximumAUC for every model is plotted as an asterisk in each

panel. Note that the OU-MAP UH values were output in 10m2 s22 increments.
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including probability of detection (POD), false alarm rate

(FAR), critical success index (CSI), and frequency bias,

all of which can be represented simultaneously on a

performance diagram (Roebber 2009; section 4b).

The set of storm objects used in this verification is

hereafter labeled ALL_STORMS to distinguish it from

the set of storm objects described in section 3c, which is

used in the remaining verification methods.

c. Storm object creation

The remaining three analysis methods are designed

to illuminate intermodel differences in storm structure

FIG. 3. FSSs of surrogate severe probability forecasts for different Gaussian kernel widths s and UH percentile thresholds. The

maximum FSS for each model is indicated in white. The location of the maximum FSS for every model is plotted as an asterisk in each

panel. Note that the OU-MAP UH values were output in 10m2 s22 increments.
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and intensity and in the NSE.We restrict these analyses

to discrete, quasi-isolated storms to avoid conflating

intermodel differences associated with different con-

vective modes and to facilitate identification of con-

vective feedbacks to the NSE. Storm objects are

identified as follows. First, preliminary objects are cre-

ated by thresholding REFLCOMP on the 99.9th per-

centile and imposing a minimum area threshold of

100 km2 (criterion 1; Table 3). Then, objects are dis-

carded if they are larger than 2500 km2 or longer than

100 km (criterion 2). Next, objects are discarded if

REFLCOMP . 10 dBZ within more than half the

NSE, defined herein as the 120-km-wide domain cen-

tered on the storm-maximum REFLCOMP (criterion

3). Criterion 2 filters the few MCSs that are not dis-

carded by criterion 3. Criterion 3 filters most MCSs

and cases where the NSE is heavily contaminated by

surrounding convection. The use of percentile rather

than fixed-value thresholds was largely motivated by

the occasionally substantial differences between model

climatologies, which can be readily identified by the

large intermodel differences in percentiles (e.g.,

Table 3).

Given the brevity of our analysis period, substantial

intermodel differences in analyses could arise from

uneven sampling of storm environments. For example,

on a given date, two models could produce numerous

storms in very different regions or at very different

times. If the environments sampled by the two models

in this scenario were very different, any intermodel

analysis differences could be due much more to the

environmental differences (and resulting differences

in storm characteristics) than to differences between

the models themselves. To avoid conflating these two

differences, we imposed an additional condition: storm

objects must exist within 1000 km and 2 h of at least

one storm object centroid from at least four of the six

other (model and MRMS) datasets (criterion 4). Now,

consider the scenario where all or most of the models

produce storms in the same general region during a

convective event, but one model produces many more

storms than the others. This event would then be more

strongly represented in analyses from the active model

than from the other models, again impeding interpre-

tation of intermodel differences. To avoid this sce-

nario, we adopted a final condition: at each time, storm

objects satisfying criterion 4 are filtered such that no

two objects from the same dataset on the same date

lie within 500 km of each other (criterion 5). Criterion

5 has the added advantage of leveling the influence of

each convective event on the analyses. For conve-

nience, we summarize the set of all storm object cri-

teria below:

1) REFLCOMP exceeds the 99.9th percentile over a

contiguous region with area . 100 km2;

2) This REFLCOMP (storm) object has length ,
100 km and area , 2500 km2;

3) REFLCOMP . 10 dBZ within less than half the

NSE;

4) The storm object lies within 1000 km and 2 h of at

least one storm object centroid from at least four

of the six other datasets;

5) The storm object does not lie within 500kmof another

object from the same dataset on the same date.

We label this set of storms ISOLATED_STORMS

to distinguish it from ALL_STORMS (section 3b).

To provide a general idea of the intensity of the storms

in both analysis datasets, we present the mean and

standard deviation of NSE-maximumRAIN_1H, valid

over all forecast periods used in this study, for the

MRMS data and each model (Table 4).

Figure 1 illustrates the impact of criteria 4 and 5

on the spatial distributions of analyzed storms. The

geographical distributions of storms are substan-

tially more similar across the datasets upon imposing

these criteria (cf. Figs. 1a,b) . Imposing these crite-

ria produced some substantial changes in intermodel

differences (not shown). This underscores the impor-

tance of minimizing sampling errors when performing

intermodel comparisons of potentially disparate sets

of storms. This is especially crucial when the num-

ber of convective episodes in the analysis is rela-

tively small since undesirable differences arising

FIG. 4. Performance diagram for reflectivity object forecasts. CSI

and frequency bias are contoured in blue and gray, respectively.
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from sampling different storm populations could

dominate differences arising from systematic inter-

model differences.

d. Probability-matched means

Fully understanding differences in CAM represen-

tation of storms and NSEs requires detailed analysis

of the spatial structure of both observed and un-

observed model fields. While subjective inspection of

individual cases is indispensable to this process, the

identification and communication of intermodel dif-

ferences can be greatly facilitated by objective com-

positing methods. The most obvious compositing option is

to average prescribed model fields over many cases, and

then compare these averages between models and, when

possible, observation-derived products like MRMS.

Simple averaging, however, excessively smooths im-

portant structural characteristics of storms and NSEs

due to the considerable case-to-case variability among

storms.

We therefore calculate probability-matched means

(PMMs; Ebert 2001), which preserve the average

probability density function (PDF) of the individual cases

and thereby exhibit much more realistic storm amplitudes

and gradients than simple means do. The PMM of a

given variable for a given dataset is generated as follows:

1) Average over all cases to obtain the 2D mean field.

2) For each case, create an ordered 1D array of all field

values, then average over all cases.

3) Assign the highest value of the mean ordered array

(from step 2) to the location of the highest value in

the 2Dmean (from step 1), and so on for all elements

of the mean ordered array.

Of course, given the large variability of storms, any de-

terministic spatial representation (PMM or otherwise)

will poorly represent many of the storms and will be

overly spatially smooth. Despite this and other potential

limitations (Surcel et al. 2014; Clark 2017), the PMMs

prove effective in encapsulating important intermodel

FIG. 5. PMMs ofREFLCOMP (dBZ; multicolor shading), SBCAPE (J kg21; red shading; only shownwhereREFLCOMP, 10 dBZ), and

ROT_1HMAX (contoured every 0.001 s21 starting at 0.001 s21) or UH_1HMAX (contoured every 25m2 s2 starting at 25m2 s2).
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differences in storms and NSEs (section 4c) that are

plainly seen in individual cases.

e. Kernel density estimation

The PMMs alone provide a limited view of the dis-

tributions of observed and model-predicted storms,

particularly for nonnormal variables. To gain a more

complete view of how storms and NSEs vary among

the models, we compare PDFs of case-maximum field

(e.g., UH, CAPE) values (recall that for each case, the

analysis domain is 120 km wide and centered on the

storm-maximum REFLCOMP; section 3c). The PDFs

are computed using kernel density estimation (KDE),

a simple, nonparametric method that more accurately

estimates underlying distributions than do histograms,

which are sensitive to the prescribed bin intervals and

endpoints and exhibit higher variance for small samples.

Univariate and bivariate KDE are performed using a

Gaussian kernel with bandwidth computed by Scott’s

Rule. The univariate KDE plots reveal important

intermodel differences that cannot be discerned from

the PMMs in cases of highly nonnormal distributions,

and the bivariate KDE plots reveal important inter-

model differences in relationships between storm

and/or NSE fields (section 4d).

4. Results

We now present results of each analysis method in

the order in which they were described in section 3.

a. Surrogate severe probability forecast verification

Major intermodel differences did not occur in sur-

rogate severe forecast performance. The maximum

AUCs were comparable, as were the AUCs at UH–

s points near the maximumAUC (Fig. 2). The fv3-caps

(caps-core_01) AUCs were lower (higher) than for the

other models, but the absolute differences were small

(;0.01–0.02). Larger intermodel differences occurred

in FSS (Fig. 3), with both FV3 models lagging the other

FIG. 6. PMMsofWMAX_1H (m s21; blue-green shading), REFLCOMP (contoured at 10, 30, 50 dBZ), and SBCAPE (J kg21; red shading;

only shown where REFLCOMP , 10 dBZ).
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models by ;0.05–0.1. In summary, the FV3 model UH

forecasts corresponded slightly less well with severe

storm reports than did the other CLUE models, and

the caps-core_01 performed the best. The NMMB and

ARW models performed similarly to one another, un-

derscoring their years of development at CAM scales.

Given that these verification statistics are valid for only

17 days spanning a period of just a month, however,

quantitative intermodel differences in scores should

not be interpreted too generally.

b. Object-based verification of reflectivity forecasts

Applyingobjectmatching verification toALL_STORMS

(section 3b) produced similar CSIs for all seven

models (;0.19–0.22; Fig. 4). The ARW models, how-

ever, had substantially larger PODs and FARs. We

attribute these differences to the larger frequency

bias in these models (;1.5 versus ;1.0). These fre-

quency biases cannot be attributed solely to the ARW

models’ use of Thompsonmicrophysics since the fv3-caps

(which also used the Thompson scheme) had almost no

frequency bias.

Interestingly, this ARW model frequency bias does

not manifest in counts of the discrete, quasi-isolated

storm objects (ISOLATED_STORMS) identified us-

ing criteria 1–3 in section 3c (Fig. 1a). Relaxing crite-

ria 2 and 3 to better match the ALL_STORMS

criteria results in frequency biases of ;1.3–1.5 for the

three ARW models and biases very close to unity

for the remaining models (not shown). These fre-

quency biases are much more consistent with those for

ALL_STORMS (Fig. 4), confirming that applying

criteria 2 and 3 substantially reduces the ARW fre-

quency bias in ISOLATED_STORMS.We remind the

reader that the ISOLATED_STORMS database is

used in the remaining analyses (sections 4c–4d).

To determine how much of the ARW frequency bias

in ALL_STORMS is associated with MCSs versus cases

where the NSE is contaminated by other storms, we

recomputed the biases for all models upon discarding

FIG. 7. PMMs of RAIN_1H (in.; blue shading), REFLCOMP (contoured at 10, 30, 50 dBZ), and TD_2M (K; green shading; only shown

where REFLCOMP , 10 dBZ).
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objects lying within regions where REFLCOMP ex-

ceeds the 95th percentile—around 25 dBZ—over a

contiguous area of $ 2500km2. Case-by-case inspection

confirmed this new condition achieved the intended effect

of discardingMCS cases while retaining multistorm cases.

Removing the MCS cases caused the frequency biases to

increase by ;0.3 (relative to satisfying criterion 1 alone)

for all models. It follows that all of the models, but espe-

cially the ARWmodels, tended to produce storm clusters

with unrealistically large numbers of storms.

c. Probability-matched means

The PMMs (Figs. 5–10) revealed many important

intermodel differences in storm and NSE characteris-

tics for ISOLATED_STORMS that were confirmed

through inspection of individual cases (plots of several

model fields for each of the hrrre_01 and fv3-gfdl cases

are available in the online supplemental material). Storm

precipitation regions were more zonally oriented in the

fv3-gfdl than in the other models, in better agreement

with observations (Fig. 5). Storms in the fv3-caps

were substantially more meridionally oriented than

in the fv3-gfdl, which likely arose from its use of

Thompsonmicrophysics (rather than theGFDL6-category

scheme) since that was the only difference between the two

models. The similarity of PMMs of 500-mb (1mb5 1hPa)

wind vectors for the two models (not shown) confirms that

uneven sampling of storm environments is not the primary

source of this difference. Two fv3-gfdl REFLCOMP biases

that were subjectively discerned by participants of the

2017 SFE—a low bias in high-percentile values, and a high

bias in medium-percentile values—are also apparent in the

PMMs. Positive REFLCOMP biases at higher values

are apparent in the fv3-caps, ncar_01, and caps-core_01

PMMs. Model-dependent biases like these are a major

motivation for the use of percentile (rather than fixed-

value) storm object thresholds in this study.

UH_1HMAX was substantially lower in the ARW

models than in the NMMB and FV3 models (Fig. 5).

To compute wz (the integrand of the UH formula) at

FIG. 8. PMMs of T_2M (K; shading) and REFLCOMP (contoured at 10, 30, 50 dBZ).
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the center of each grid box, both the Arakawa-C grid

(ARWmodels) and Arakawa-B grid (NMMBmodels)

require a four-point (horizontal) average for z and a two-

point (vertical) average for w. The Arakawa-D grid used

by the FV3 models requires no averaging in the calcula-

tion of UH. The ARW models, but not the NMMB and

FV3 models, additionally apply a nine-point smoother

before outputting the final UH field. It is therefore not

surprising that PMMUH_1HMAX is so much lower for

theARWmodels. The fact that theARWUH_1HMAX

is so much lower than the NMMBUH_1HMAX despite

both dynamical cores requiring similar degrees of w and

z averaging likely owes to the nine-point smoother in

the ARW models that damps UH maxima. The large

intermodel differences in UH_1HMAX underscore the

importance of accounting for different models’ climatol-

ogies when comparing forecast output.

The ncar_01 produces storms with larger W_1HMAX

than the other two ARW models (Fig. 6). This pre-

sumably is partly a consequence of the aggressive

vertical velocity damping used in the HRRRE and

CAPS core ensembles in 2017. In both ensembles, the

maximum latent heating tendency limit was set to

0.07K s21 and Rayleigh damping was used to reduce

the local w whenever the vertical Courant number

exceeded 1.2. These features are included in the RAP,

HRRR, and HRRRE (Benjamin et al. 2016) so that

the forecasts are stable with relatively large time steps,

aiding forecasts to finish on time within their com-

puting allocations. Larger numerical diffusion also

likely contributed to the weaker W_1HMAX in

hrrre_01 and caps-core_01; the sixth-order numerical

diffusion rate was set to 0.25 in those models and to

0.12 in ncar_01.

Storms in the fv3-gfdl were generally weaker than

in the fv3-caps. This is evident in the PMMs of

UH_1HMAX (Fig. 5), hourly maximum vertical veloc-

ity below 400mb (W_1HMAX; Fig. 6), RAIN_1H

(Fig. 7), and other variables not presented herein. It is

difficult to judge which of the two FV3 models better

represents storm intensity given the lack of verifying

observations. It is noteworthy, however, that the fv3-caps

FIG. 9. PMMs of DIV_10M (s21; shading), REFLCOMP (contoured at 10, 30, 50 dBZ), and 10-m wind vectors (m s21; arrows).
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PMM RAIN_1H much better matches the mrms PMM

RAIN_1H (Fig. 7).

Storm inflow generally had lower surface-based con-

vective available potential energy (SBCAPE) in the

FV3models than in the other models (Fig. 5). This is due

in part to lower storm-inflow 2-m dewpoints (TD_2M) in

the FV3 models (Fig. 7). With regard to 2-m tempera-

ture (T_2M), all the models that use the Thompson

microphysics, including the fv3-caps, produced warmer

cold pools relative toNSE surface temperatures than the

other models (Fig. 8).

Low-level convergence was substantially larger in the

ARW models than in the other models (Fig. 9), despite

theARWmodels having the warmest cold pools (Fig. 8).

The larger low-level convergence in the ARW models

is associated with stronger flow perpendicular to the gust

front, which is much more distinct than in the FV3 and

NMMB models (Fig. 9). The PMM SRH in all of the

models is locally maximized very near the mean loca-

tion of the storm low-level updraft (Figs. 6 and 10). The

models that use the Thompson microphysics exhibit

the largest PMM SRH maxima.

d. Kernel density estimates

The univariate KDEs (Fig. 11) are sufficiently normal

that intermodel displacements between the modes of

KDEs correspond well with intermodel differences be-

tween peak (i.e., case-maximum; this modifier is implicit

in the remainder of this section) PMM values. For ex-

ample, the UH_1HMAX KDE modes are smallest for

the ARW models and largest for the FV3 models, con-

sistent with the UH_1HMAX PMMs (cf. Figs. 5 and

11a). Likewise, the larger W_1HMAX KDE mode in

the ncar_01 than in the other two ARW models is con-

sistent with theW_1HMAX PMMs (cf. Figs. 6 and 11b),

and the smaller SBCAPE KDE modes in the FV3

models than in the ARW and NMMB models is con-

sistent with the SBCAPE PMMs (cf. Figs. 5 and 11c). In

the cases of more nonnormally distributed variables,

however, the KDEs provide information beyond what

FIG. 10. PMMs of SRH (m2 s22; shading) and REFLCOMP (contoured at 10, 30, 50 dBZ).
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the PMMs can. For example, while the PMMRAIN_1H

values for the fv3-caps are much larger than for the fv3-

gfdl (Fig. 7), the modes of the RAIN_1H distributions

for each model are very similar since the fv3-caps

RAIN_1H PDF is much more positively skewed than

the fv3-gfdl PDF (Fig. 11d). In other words, rather than

the fv3-caps tending to produce storms with moderately

more rainfall than the fv3-gfdl, the heavier-rainfall

storms in the fv3-caps produced much more rain-

fall than the heavier-rainfall storms in the fv3-gfdl.

FIG. 11. KDEs of maximum (a) UH_1HMAX (m2 s22), (b) W_1HMAX (m s21), (c) SBCAPE (J kg21),

(d) RAIN_1H (in.), (e) WIND_10M (m s21), and (f) SRH (m2 s22).
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The fv3-caps rainfall is very similar to that in the ARW

models, which we attribute to their use of the same

(Thompson) microphysics scheme. Wind speeds at 10m

AGL (WIND_10M) were substantially lower in the

hrrre_01 than in the other ARWmodels (Fig. 11e). This

could be due in part to the use of a different LSM and

PBL scheme in the hrrre_01 than in the ncar_01 and

caps-core_01 (Table 1).

Itwas observed in section 4c that, formost of themodels,

the PMM SRH maximum occurs within the storm inflow

very near the updraft rather than in the far field (Fig. 10).

Thus, the intermodel differences in the SRH KDEs

(Fig. 11f) largely reflect differences in convective feed-

backs to the environment and not necessarily differ-

ences in the storm environments themselves (though

such differences could have led to the differences in

convective feedbacks). This comparison of the SRH

PMMs and KDEs illustrates the importance of spatial

field analysis for informed interpretation of low-order

model climatologies of storms.

The bivariate KDEs reveal intermodel differences

in intervariable relationships that the PMMs and uni-

variate KDEs cannot provide. For example, relative to

the other models, the ARW models exhibit less sen-

sitivity of W_1HMAX to SBCAPE (Fig. 12). This result

might be expected for the hrrre_01 and caps-core_01 due

to their use of more aggressive vertical velocity damping

and numerical diffusion, but this would not explain

the ncar_01’s insensitivity of W_1HMAX to SBCAPE.

Comparing the two FV3 models, W_1HMAX is much

less sensitive to SBCAPE in the fv3-gfdl than in the fv3-

caps at SBCAPE , 2000 J kg21 (Fig. 12); similar be-

havior is seen in SBCAPE-UH_1HMAX KDEs (not

shown). The greater W_1HMAX-SBCAPE sensitivity

in the fv3-caps than in the fv3-gfdl is presumably due

to the fv3-caps’ use of Thompson microphysics rather

than the GFDL 6-category microphysics, since this is

the only difference between these two models. Given

that the ARW models also used Thompson microphys-

ics but exhibited much less W_1HMAX-SBCAPE sen-

sitivity than the fv3-caps and the remaining models,

some other factor appears to strongly contribute

to the relative insensitivity ofW_1HMAX to SBCAPE

in the ARW models. While identifying this factor

is outside the scope of this paper, the preceding anal-

ysis and discussion illustrates how bivariate KDEs

FIG. 12. KDEs of maximum W_1HMAX (m s21) and SBCAPE (J kg21). The Pearson correlation coefficient r for the two variables is

shown on each panel.
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can be used to identify possible systematic intermodel

differences and to inspire and guide investigation into

their sources.

The ARW model KDEs are noticeably compressed in

the UH_1HMAX dimension (Figs. 13 and 14), but this is

expected given the post hoc UH smoothing in those

models (section 4c). Such differences in processingmust be

considered when attempting to attribute differences in bi-

variate relationships to modeled storm dynamics. The fv3-

gfdl exhibits much less interdependence of UH_1MAX

and SRH than does the fv3-caps (Fig. 14), which may be

related to the generally weaker storms in the fv3-gfdl.

Additional analysis with different members of the

NCAR, HRRR, and OU-MAP ensembles suggests that

all of the intermodel differences highlighted in this

section are qualitatively robust and not unduly con-

taminated by sampling error (see the appendix).

5. Conclusions

Optimization of future operational CAMs and CAM

ensembles is a challenging and urgent endeavor that

requires systematic comparisons of existing CAM

systems. The Community LeveragedUnified Ensemble

(CLUE) that has been run since 2016 as part of the

annual HWT Spring Forecasting Experiment (SFE)

provides an excellent opportunity to perform such

intermodel comparisons and so illuminate the impacts

of different dynamical cores, physics parameterization

schemes, initialization procedures, and so forth on the

realism of simulated storms and the accuracy of storm

forecasts. The primary goals of this study are to le-

verage 2017 CLUE output to 1) develop and demon-

strate new object-based techniques for verifying and

characterizing CAM forecasts of storms and near-

storm environments (NSEs), 2) use these new techniques

along with existing verification methods to identify sys-

tematic forecast differences between several contemporary

CAMs, and 3) infer impacts of model configuration choices

on the representation and prediction of storms in CAMs.

We conclude the following about the novel methods

developed herein:

1) Spatial probability-matched means (PMMs) of model

storms and NSEs facilitate identification of systematic

intermodel differences in storm structure, intensity,

FIG. 13. KDEs of maximumW_1HMAX (m s21) and UH_1HMAX (m2 s22). The Pearson correlation coefficient r for the two variables

is shown on each panel.
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and environmental interactions that could be missed

by manual inspection of individual cases.

2) Kernel density estimation (KDE) distills much of

the important information in the PMMs, provides

additional information in cases of nonnormally dis-

tributed variables, and when applied to bivariate

distributions, illuminates intervariable relationships.

We conclude the following about the performance and

behavior of the CAMs examined herein:

1) No single model or group of models sharing the

same dynamical core (FV3, ARW, or NMMB) ap-

peared to substantially outperform the others.

2) Both the GFDL and CAPS FV3 models slightly

lagged the other models in surrogate severe forecast

skill. This perhaps is not surprising given that the

FV3 was still early in its development as a CAM.

3) All models were similarly skillful (in terms of object-

based CSI) in forecasting storm locations. The ARW

models, however, exhibited a positive frequency bias

and therefore higher POD and FAR than the other

models. This frequency bias was not exhibited by the

CAPS FV3 model and therefore cannot be attributed

solely to the Thompson microphysics. All the models,

especially the ARW models, tended to produce too

many storms in cases of storm clusters.

The remaining conclusions concern quasi-isolated, dis-

crete storms only, which were the subject of the novel,

object-based methods demonstrated in this study.

4) The updraft helicity fields output by current ARW

models are strongly damped by the nine-point spatial

smoother that is applied. This factor alone may

account for much of the difference in updraft helicity

climatology between the ARW models and the

NMMB and FV3 models.

5) In terms of composite reflectivity structure, the GFDL

FV3 model best matched the observed (MRMS-

derived) stormorientation,while the remainingmodels

produced storms that were too meridionally tilted.

6) The use of Thompson microphysics in place of the

GFDL 6-category scheme in the CAPS FV3 model

produced a variety of important changes in storm and

NSE characteristics, including stronger updrafts,

heavier rainfall (in much better agreement with ob-

servations), and a meridional bias in storm orientation.

FIG. 14. KDEs of maximum SRH (m2 s22) andUH_1HMAX (m2 s22). The Pearson correlation coefficient r for the two variables is shown

on each panel.

OCTOBER 2019 POTV IN ET AL . 1413



7) Low-level convergence associated with storm up-

drafts was substantially stronger in the ARWmodels

than in the NMMB and FV3 models.

8) The NCAR ensemble member produced the stron-

gest storms of the ARW models. The temperature-

tendency limiter in the HRRR ensemble member

and the CAPS core member presumably weakened

the storms somewhat in these ARW models.

9) Storm cold pools were warmer in models using the

Thompson microphysics.

This study and the novel analysis techniques devel-

oped herein could be extended in many ways. Re-

peating this investigation for consecutive SFEs would

facilitate tracking of CAM system performance over

time and evaluation of the impacts of model configura-

tion changes. Strategic changes in CLUE membership

will occasionally enable particularly timely intermodel

comparisons; for example, the 2018 CLUE included

14 FV3 models to help accelerate the development of

the FV3 as a CAM dynamical core. Fully leveraging

these opportunities to inform the design of future opera-

tional CAM systems requires sophisticated analysis tech-

niques like those presented here. These techniques could

also be applied to multiphysics CAM ensembles to iden-

tify systematic impacts of different parameterization

schemes, or to any CAM or CAM ensemble to illuminate

systematic differences in storms, NSEs, and storm–

environment interactions within different mesoscale

regimes (e.g., low CAPE, high shear versus high

CAPE, high shear) or between different storm modes

(e.g., tornadic versus nontornadic). Finally, applying

these analyses to longer datasets would enable more re-

strictive criteria for mitigating uneven spatiotemporal

sampling, thereby further ensuring intermodel differ-

ences primarily reflect differences in model behavior.
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APPENDIX

Sampling Error Impacts

The small samples used in this study call into question

the generality of the results. To address this concern, we

repeated all of our analyses with either ncar_01, hrrre_01,

FIG. A1. KDEs of maximum (top) RAIN_1H and (bottom)

WIND_10M with members 2 and 3 of the NCAR, HRRR, and

OU-MAP ensembles included.
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or ou-map_01 swapped with member 2 or member 3

of their respective ensemble (a total of 3 3 2 5 6 new

analyses). Figure A1 presents univariate KDEs for the

two variables in Fig. 11 that variedmost with the choice of

ensemble member. Major intermodel differences in all of

the original KDEs are qualitatively preserved in these

new analyses, including differences between groups of

models with the same dynamic core. The intermodel dif-

ferences in the bivariate KDEs are similarly insensitive to

the choice of ensemble member (not shown). Consistent

with the small changes in the univariate KDE modes

(Fig. A1), the maximum value within each PMM varies

little with ensemble member, though smaller-scale

details of the spatial patterns are more sensitive (not

shown). As with the KDEs, all of the intermodel PMM

differences highlighted in section 4 are retained in the

new PMMs. The results of these sensitivity tests (along

with the application of criteria 4 and 5 in generating the

ISOLATED_STORMS database; section 3c) strongly

imply that the intermodel forecast differences noted

throughout this study are not merely artifacts of sam-

pling errors.
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