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Abstract

It is known that “one-way” lateral boundary conditions (LBCs) constrain the

growth of initial perturbations in limited-area model (LAM) ensemble forecasts,

therefore reducing ensemble dispersion. LBCs provided by independent external

models typically lack fine-scale features, and in the case of ensemble forecasts, also

lack consistent perturbations. Perturbations growing on the nested domain become

displaced by the coarsely resolved LBCs while the domain size itself limits the max-

imum wavelength attainable by the perturbations. Another aspect of the boundary

condition problem that has previously received little direct attention is the impact of

boundary condition update frequency. Commonly used linear interpolation between

relatively infrequent boundary condition updates acts as a filter that exacerbates

the scale deficiency problem.

To examine the above problem in a controlled and efficient manner, a modi-

fied barotropic channel model with periodic east-west boundaries is constructed and

shown to produce flows bearing resemblance to the real atmospheric circulation.

Ten-member ensemble simulations are produced over many cases on the periodic

channel domain and each of four smaller nested domains. Lateral boundary effects

are specifically isolated since the simulations are perfect except for initial condi-

tion perturbations and the use of coarsely resolved and/or temporally interpolated

“one-way” LBCs on the nested domains. Statistical results accumulated over 100

independent cases demonstrate clearly the lack of growth in error variance spectra,

particularly at wavelengths shorter than 500 km. A new expression is developed

that links total error variance to ensemble dispersion while accounting for spatial

and ensemble biases. The balances required by this expression are used to show

that LBC constraints on small scale error variance growth are directly responsible

for underdispersive LAM ensemble simulations.

xiv



To help restore error variance and LAM ensemble dispersion, a new method

is developed to apply statistically consistent LBC perturbations at each time step

that remain spatially and temporally coherent while passing through the bound-

aries. The amplitude of such perturbations are designed to increase with time while

mimicking the error variance lost through the effects of coasely resolved and tem-

porally interpolated LBCs. With a few noted exceptions, the LBC perturbations

are shown to capably restore error variance growth and LAM ensemble dispersion

without compromising the integrity of the individual solutions.
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Chapter 1

Overview and Background

1.1 Introduction

It is well known that skill in predicting future atmospheric motions is limited due

to the natural growth of errors resulting from imperfect observations and analyses

(Thompson 1957; Lorenz 1963). More precisely, accepted predictability theories for

kinematic fields ascribe an inverse relationship between wave number and time limits

of predictive skill (e.g. Lorenz 1969a). In apparent contradiction to these theories,

several predictability experiments using limited-area models (LAMs) report little or

no error growth resulting from perturbed initial conditions (Paegle et al. 1997, refer-

ences therein). Attempts to explain these seemingly optimistic results have focused

either on enhanced local forcing (e.g., topography or surface inhomogeneities) or on

the errors introduced by the use of “one-way” lateral boundary conditions (LBCs).

The latter effect is favored in the literature and is the subject of the current research.

We begin in the present chapter by providing a limited overview of atmospheric

predictability theories that have been tested using global analyses and forecasts.

The review specifically highlights the scale dependence of error growth rates and the

importance of both analysis uncertainty and model deficiencies as sources of error

growth. Lessons learned from predictability studies have direct application to the

development and verification of ensemble forecast systems. Hence, we also provide

a brief overview of global ensemble forecast systems and summarize how ensemble

dispersion may be used as a measure of an ensemble system’s efficacy.

The review continues by summarizing previous efforts to refine predictability the-

ories at smaller scales using mesoscale models operating on limited-area domains.

1



Emphasis in the review is placed on noting differences between error growth be-

havior in global and mesoscale (limited-domain) models. Results from the LAM

studies were somewhat enigmatic and spawned related works to identify mecha-

nisms through which LBCs constrain error growth rates. These known LBC effects

are summarized and their subsequent impact on dispersion in short-range ensemble

forecasts also is reviewed.

The relationship between LBC constraints on error growth and LAM ensemble

dispersion is a crucial theme in this work. As such, a statistical framework is con-

structed in chapter two that defines ensemble mean square error, total error variance

and ensemble dispersion. The individual statistics are then combined in a manner

that provides a link between LBC constraints on error variance growth and ensem-

ble dispersion. Chapter two concludes by outlining a hypothetical budget for error

variance growth in LAMs that is tested in later chapters.

Many of the previous studies involving LAMs applied fields from discordant

models or analyses as LBC forcing for the dependent LAM simulations. Under

these configurations, LBCs were identified as the most likely candidate acting to

constrain error variance growth. However, the LAM simulations run with these

configurations could not completely control or avoid extraneous sources of model

error. To examine the impact of LBCs on short-range ensemble dispersion in a

more complete and controlled manner, a simplified modeling approach is adopted

in chapter three. The simplified configuration employs a single level parameterized

potential vorticity (PPV) channel model designed to specifically isolate LBCs as the

only source of model error. Global and limited-area domains used for this work and

the model’s climatological characteristics are also described in chapter three.

In chapter four, “classic” predictability experiments are conducted to show that

error growth characteristics in the simplified PPV model demonstrate appropriate

behaviors. Specifically, statistics defined in chapter two are applied to the output

from one-hundred independent ensemble simulations to show that error growth is

most rapid at small scales, and reaches a maximum value that is twice the variance

of analyses. The results in chapter four also establish benchmark statistics against

which the magnitude of the LBC constraint may be measured in later experiments.

Error variance growth and ensemble dispersion characteristics for LAM simula-

tions are considered in chapter five. The first part of the chapter examines the impact

2



of linear interpolation in time between LBC updates. Impacts seen in selected exam-

ple simulations are supported by error variance statistics obtained over one-hundred

independent cases. Results from LAM ensembles are reported in the second part

of chapter five showing that temporal interpolation of LBCs and coarsely resolved

LBCs both reduce the saturation value of error variance at small scales. This, in

turn, is shown to lead directly to a loss of dispersion in the LAM ensembles.

In chapter six, a new method is proposed to apply small-scale LBC perturba-

tions at every time step of the LAM simulations. With a few noted exceptions, the

LBC perturbations are shown to help restore much of the error variance and ensem-

ble dispersion lost due to LBC constraints. The most important and interrelated

conclusions obtained from this research are summarized in chapter seven.

1.2 Previous Research

1.2.1 Predictability Estimates on Global Domains

Before examining the impact of LBC constraints on error growth in LAM simu-

lations, we must first understand error growth on global, or laterally unbounded

domains. Predictability studies provide this knowledge by considering the question

of how rapidly initially similar atmospheric states diverge with time. The limit of

predictability is reached when the difference between atmospheric states grows as

large as the difference between random samples from climatology. Differences are

usually evaluated using mean square errors, error variances, or anomaly correlations.

The most common approach for obtaining estimates of atmospheric predictability

limits has been called the “dynamical” approach (Lorenz 1969c). In dynamical, or

“classic” predictability experiments, two or more solutions of the equations of motion

are obtained using numerical models, each starting from slightly different initial

conditions (e.g. Charney et al. 1966; Smagorinsky 1969; Lorenz 1982; Baumhefner

1984; Dalcher and Kalnay 1987; Reynolds et al. 1994, many others). The rate of error

growth is then easily evaluated by comparing the different model solutions as they

diverge with time. Such experiments suffer from the fact that error growth rates are

model dependent, so that different models yield different estimates of atmospheric

predictability limits. Baumhefner (1984) pointed out that the dynamical approach is
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adequate provided the numerical model used to generate the predictability estimate

capably reproduces observed atmospheric variance structures across the spectrum.

Indeed, current general circulation models do reproduce variance structures quite

well across observable scales outside the tropics. However, the impact of errors grow-

ing up scale from unresolved wavelengths is supported only theoretically using an

“empirical-dynamical” approach (Lorenz 1969c). The empirical-dynamical method

for estimating predictability describes the spectral distribution of errors following a

manipulation of simplified equations of atmospheric motion (Lorenz 1969b; Lorenz

1969c; Leith 1971; Leith and Kraichnan 1972; Boer 1984; Lilly 1984; Thompson 1984,

and others). The main conclusion from studies of this type is that any initially small

error imposed to any part of the spectrum will grow and spread to other wave num-

bers via up-scale and down-scale transport of energy. Furthermore, small-scale errors

are expected to grow most rapidly so that short wavelengths have short predictability

limits.

The theoretically anticipated scale dependence of error growth rates has been

verified in computational experiments employing the dynamical approach. For ex-

ample, Baumhefner (1984) decomposed the total error growth in a global model into

a two-dimensional spherical harmonic wavenumber spectrum. His analysis yielded

estimated predictability limits ranging from 8.5 days for the zonal vortex (wavenum-

ber 0) to 3.5 days for the smallest scales resolved in that model. Dalcher and Kalnay

(1987) obtained similar results, additionally noting that atmospheric motions are

more predictable in winter than in summer. Anthes (1986) provides a review of sev-

eral other related studies, indicating that estimates for overall predictability limits

range from about 8 to 16 days. In aggregate, these and many other reports show that

predictability decreases at smaller scales and varies with space and time depending

on the synoptic setting.

Even if we could provide errorless initial conditions (ICs), atmospheric motions

cannot be represented perfectly by numerical models because of incompletely spec-

ified or unknown dynamical processes and the use of numerical approximations.

Lorenz (1984) showed that these “artificial” model errors reduce predictability lim-

its by about 4 days in a global model. By fitting model data to parametric error

growth curves, Dalcher and Kalnay (1987) estimated that model error increases at

a rate of about 3% per day at long waves and about 20% per day at short waves

4



when scaled relative to the maximum error variance. These results show that pre-

dictability limits are shortest at small scales regardless of whether errors originated

from initial condition uncertainty or from model deficiencies. Boer (1993) derived

equations for the evolution of systematic (biased) and random (unbiased) error com-

ponents and showed that they are not independent. Reynolds et al. (1994) found

similar results, but also highlighted the spatial dependence of both natural and arti-

ficial error growth. Conclusions from these and other studies indicate that artificial

model error accelerates error growth rates variably across different locations, time

scales, and spatial scales.

It is regularly asserted that global forecast models have matured enough that IC

uncertainty is the dominant source of predictability error growth (e.g. Toth et al.

1997; Harrison et al. 1999). However, a few authors have warned about the need to

investigate the importance of model error more carefully using alternative analysis

procedures (Tribbia and Baumhefner 1988; Orrell et al. 2002).

1.2.2 Global Model Ensemble Forecasting

The recognition that weather prediction is inherently uncertain led to the viewpoint

that forecasts are not complete unless accompanied by a probabilistic prediction of

forecast skill (Palmer and Tibaldi 1988; Ehrendorfer 1994; Murphy 1998). The Liou-

ville equation forms a basis for such predictions. It governs the temporal evolution

of the probability density function (PDF) of the multivariate atmospheric state vec-

tor through phase space (Epstein 1969; Gleeson 1970; Thompson 1985; Ehrendorfer

1994). Direct prediction of the PDF contains the statistical moments needed to

quantify forecast uncertainty. Epstein (1969) introduced the particular method of

stochastic-dynamic prediction wherein the Liouville equation was reduced to equa-

tions approximating the time evolution of the PDF mean and covariance. Unfortu-

nately, atmospheric models have so many degrees of freedom that stochastic-dynamic

prediction is not feasible.

As an alternative, Leith (1974) proposed a Monte Carlo approach wherein a small

ensemble of forecasts is generated from randomly perturbed initial states. The initial

perturbations are consistent with analysis uncertainties, and subsequently grow with

time as outlined in the predictability studies reviewed above. In the absence of model
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error, each individual forecast produced in this manner is designed to represent an

equally likely sample from the atmospheric PDF. Leith showed that an adequate

estimate of the forecast error covariance, and hence, uncertainty in the forecast,

could be obtained from an ensemble of about 8 members. Of course, larger ensembles

are needed for more robust statistics. Leith’s proposal forms the basis for modern

ensemble forecasting techniques.

Hoffman and Kalnay (1983) introduced lagged average forecasting (LAF) as an

alternative to the Monte Carlo method. In this approach, the current analysis is

grouped with earlier forecasts valid at the current time to form an ensemble. An

ensemble mean and covariance could then be estimated using the group of forecasts.

Unlike the Monte Carlo method, LAF does not require the expensive production of

extra forecasts. Results from LAF experiments indicated an improvement in skill

over Monte Carlo methods, especially when scaling was applied to older forecasts

(Hoffman and Kalnay 1983; Ebisuzsaki and Kalnay 1991). The improvement was

attributed to the idea that the group of forecasts were largely identical except where

errors were growing most rapidly.

Operational ensemble forecast systems were started in late 1992 at both the Na-

tional Meteorological Center and the European Center for Medium-Range Weather

Predictions (Tracton and Kalnay 1993; Molteni et al. 1996). Other agencies around

the world have since developed global ensemble forecast systems (Sivillo et al. 1997).

A variety of different methods are now used for generating IC perturbations. For ex-

ample, “bred vector” and “singular vector” methods are designed to generate pertur-

bations directed along the most rapidly growing modes to help maximize the rate at

which individual ensemble members become different from one another (Houtekamer

and Derome 1995; Anderson 1996; Molteni et al. 1996; Buizza 1997; Szunyogh

et al. 1997; Toth and Kalnay 1997; Barkmeijer et al. 1998; Errico and Langland

1999a; Errico and Langland 1999b; Toth et al. 1999; Hamill et al. 2000) Other per-

turbation methods emphasize uncertainty in the observations or analysis system in

a manner that is more consistent with Leith’s original proposal (Houtekamer and

Derome 1995; Houtekamer et al. 1996; Houtekamer and Mitchell 1998; Hamill and

Snyder 2000).

An efficacious ensemble system has the property that the verifying analysis is

encompassed within the range of equally likely solutions given by the individual
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ensemble members (Leith 1974). Ensemble spread, or dispersion, is often used to

determine if the ensemble supports this desired characteristic. It is a square norm

statistic measuring the variability of the ensemble about its mean (see Ch. 2).

An overdispersive ensemble will consistently predict scenarios that fall outside the

range of weather events observed over many cases. Conversely, an underdispersive

ensemble often fails to predict the possibility that a given event will occur (Sivillo

et al. 1997; Hamill 2001). Analyses of global ensemble forecast systems have shown

that they tend to be somewhat underdispersive (Zhu et al. 1996; Buizza 1997).

However this shortcoming is not enough to preclude operational effectiveness of the

ensembles (Tracton and Kalnay 1993; Toth et al. 1997) while ongoing research helps

to improve the ensemble statistics (Molteni et al. 1996; Toth and Kalnay 1997; Errico

and Langland 1999b).

1.2.3 Predictability Estimates on Limited-Area Domains

The empirical-dynamical predictability theories outlined above lead to a rather pes-

simistic viewpoint of mesoscale predictability due to the expectation that error

growth is more rapid at smaller scales (Tennekes 1978; Anthes et al. 1985). However,

Lilly (1984) and Anthes et al. (1985) proffer the alternative hypothesis that enhanced

localized forcing and highly organized circulations may help slow error growth rates.

From this perspective, Anthes et al. (1985, pg. 164) state that “. . . there is hope

for skillful predictions [of mesoscale motions] using deterministic methods, provided

that the synoptic-scale motions are predicted correctly”.

An obvious approach for testing these different hypotheses is to use mesoscale,

or limited-area models. However, the use of LAMs to conduct predictability stud-

ies introduces additional complications over the methods used for classical studies

involving global models (Anthes et al. 1985). For example, regional domains may

encompass only one energetically active weather system so that error growth rates

vary widely from case to case. Furthermore, LAMs often employ more complex

physical parameterization schemes that introduce additional sources of model error.

Finally, errors introduced by using LBCs can propagate inward at speeds of 20-30◦

longitude per day (Baumhefner and Perkey 1982).
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Anthes et al. (1985) and Anthes (1986) were among the first to conduct pre-

dictability experiments using LAMs. In contrast to the global predictability studies

reviewed above, they reported little or no error growth resulting from small varia-

tions in the initial conditions. Furthermore, they showed that their simulations were

more sensitive to variations in the LBCs than to the ICs. Errico and Baumhefner

(1987), followed on this work, reporting that IC error growth is restricted in a

mesoscale model due to dissipation of errors through gravity waves, the “sweeping

out” of errors by the LBCs, and numerical dissipation of subgrid-scale errors. An-

thes et al. (1989) reported similar results, stating that “. . . the quality of the LBC

is more important than any other factor tested in the temporal evolution of model

errors”.

Vukicevic and Paegle (1989) used a non-divergent barotropic model to demon-

strate that “one-way” LBCs artificially enhanced predictability by limiting the range

of scales that could interact with errors. The effect became more pronounced as the

size of the regional domain decreased because lateral boundary information crossed

the domain more quickly and had less time to interact with initial condition errors

growing up scale. Vukicevic and Errico (1990) extended this research to a complex

LAM and obtained the similar result that domain size limits predictability error

growth by imposing an upper wavelength limit on the horizontal scales to which

perturbations may evolve in accordance with model dynamics. In particular, they

found that initial perturbations grow only in domains larger than about 4500 km2

and damp in smaller domains. Furthermore, a spectral analysis of the error fields

showed that only synoptic scale perturbations having wavelengths longer than about

2000 km contributed to error growth, while those with wavelengths shorter than

about 1000 km damped in all experiments. However, while the small-scale errors

are themselves damped with time, they still influence synoptic scale error growth

through an up-scale transfer of energy (Vukicevic and Errico 1990).

While LBCs are now recognized as an artificial constraint on mesoscale error

growth, other studies have emphasized the possibility for enhanced predictability

due to stronger dynamical forcing from the lower boundary. For example, sensitivity

to small-scale initial condition errors could be small in cases where topographic

forcing is dominant (Van Tuyl and Errico 1989; Vukicevic and Errico 1990). Warner

et al. (1989) also found that error growth over the interior of the mesoscale domain
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decreased most rapidly during the first eight forecast hours, before lateral boundary

errors could have propagated into the area tested. They suggested that this decrease

in error was due to geostrophic adjustment, surface forcing, and redevelopment of

smoothed features. These results indicate that simple turbulence models of error

growth which anticipate the most rapid error growth at small scales may not fully

explain actual error growth behaviors.

The nature of the initial perturbation also remains an important aspect of consid-

eration. Vukicevic (1991) showed that the initial error evolution is well represented

using a mesoscale tangent linear model for periods of about 24 to 36 hours. Ehren-

dorfer and Errico (1995) applied this result to investigate mesoscale predictability

using singular vectors. They found that significant error growth did not occur in

earlier mesoscale predictability studies because the random initial perturbations did

not project onto the unstable subspace of growing singular vectors. Other con-

straints on error growth such as boundary “sweeping”, numerical dissipation, or

geostrophic adjustment were shown to be insignificant compared to the large pro-

jection of perturbations onto the stable subspace of diminishing singular vectors.

However, Ehrendorfer and Errico (1995) pointed out that their results could not

prove that mesoscale processes are inherently more predictable than synoptic scale

motions because their linear model did not consider moist or strongly nonlinear

physical processes, or error growth in synoptic scale waves. Also, they did not con-

sider time periods beyond 24 hours, a time scale that may be too short to allow a

larger subspace of perturbations to grow. However, the fact that the fastest-growing

singular vectors yielded growth rates comparable those reported for global models

suggests that the mesoscale is not more stable than the scales investigated in global

predictability studies.

Results from the studies reviewed above do not indicate with certainty the rela-

tive importance of the different effects contributing to artificial constraints on error

growth rates in LAMs. The evidence tends to favor LBC effects, but the other

mechanisms such as enhanced local forcing, physical parameterizations, or poorly

specified initial perturbations have not been eliminated from consideration. To help

specifically isolate LBC effects on error growth, Laprise et al. (2000) and De Eĺıa

and Laprise (2002) generated “perfect” reference simulations by running a LAM on

a large domain with LBCs given by global analyses. These reference fields were
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then filtered to emulate the loss of shortwave components in external model fields

having lower spatial resolution. The filtered reference fields were then used as LBCs

for a second LAM simulation run with the same configuration except on a smaller

domain. In this configuration, the only source of error was the use of the spa-

tially filtered one-way LBC. Spectral analysis of the error fields showed that error

growth is fastest at small scales, a result that is consistent with global predictabil-

ity experiments reviewed above. The authors concluded that predictability may be

maintained for longer periods in scales that are present in both initial and lateral

boundary conditions.

1.2.4 Limited-Area Model Ensemble Forecasting

The successful implementation of global ensemble systems led naturally to the devel-

opment of short-range ensemble forecasting (SREF) systems using mesoscale models

on limited-area domains (Mullen and Baumhefner 1989; Brooks et al. 1995; Du et al.

1997; Hamill and Colucci 1997; Leslie and Speer 1998; Stensrud et al. 1999; Sten-

srud et al. 2000; Hou et al. 2001; Wandishin et al. 2001). Much of the research on

global model ensembles has focused on the question of generating appropriate IC

perturbations. While this question remains important in SREF (Ehrendorfer and

Errico 1995; Hamill and Colucci 1997; Mullen et al. 1999), there are several addi-

tional artificial and physical factors that limit mesoscale predictability error growth.

Many such factors were reviewed above, including domain size, LBC-induced error

growth, scale interaction, enhanced localized forcing, and effects of numerical dif-

fusion and physical parameterizations (Errico and Baumhefner 1987; Vukicevic and

Errico 1990; Stensrud et al. 1999).

Recent (SREF) experiments have shown that the ensembles are underdisper-

sive (Hamill and Colucci 1997; Du and Tracton 1999; Hou et al. 2001; Wandishin

et al. 2001). That is, the verifying analysis often does not fall within the range of

possibilities forecast by the ensemble. Du and Tracton (1999) found that a regional

ensemble with a larger domain produces greater spread than does an ensemble with

a smaller domain, especially for those variables that were perturbed in the ICs.

Furthermore, they found that the contribution to ensemble spread increases with

time from LBC perturbations and decreases with time from the IC perturbations.
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The effect is rapid for dynamically active variables such as 500-hPa height but is

relatively slower for passive (derived) variables such as precipitation. Hou et al.

(2001) showed that ensemble spread for mass variables grows quickly for a SREF

system configured so that each member forecast has a unique LBC; a SREF system

configured so that each member has the same LBC had a slower rate of ensemble dis-

persion. Other variables such as precipitation were more sensitive to model physics

(consistent with Du and Tracton 1999). These and other similar results (Hamill

and Colucci 1997; Hou et al. 2001) demonstrate that, with time, the spread of the

LAM forecast ensemble becomes increasingly determined by the spread in the global

ensemble as high frequency components are “swept” from the LAM domain.

1.3 Perspectives for Present Research

In sum, results from the global model predictability experiments reviewed above

support the theory that error growth is most rapid at small scales. The studies also

showed that natural error growth due to analysis errors dominates model-induced

error growth, especially at large scales. In contrast to these results, predictability

studies using LAMs consistently reported lack of error growth at small scales while

large scale errors amplified as expected. The advection of coarsely resolved or un-

perturbed LBCs into the regional domain is highlighted as the most probable reason

for the constraint on error growth in LAMs. However, other sources of model error

such as physical parameterizations, enhanced local forcing, or incorrectly specified

initial perturbations may also cause artificial constraints on error growth. There has

not yet been enough evidence presented to argue either against or in favor of the

hypothesis that mesoscale motions should be more predictable than anticipated by

spectral theories.

From these conclusions, the present study begins with the following two assump-

tions. First, it is assumed that natural error growth at large scales is (or can be)

stated accurately using global model forecasts. Second, the assumption is made that

error growth rates at small scales in LAMs should behave the same as calculated for

global models operating at equivalent resolution.

These assumptions allow a more complete and controlled investigation of the

impact of coarsely resolved LBCs on error growth rates in LAMs using a simplified
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and idealized “perfect” model configuration. Following an approach similar to that

used by Vukicevic and Paegle (1989), Laprise et al. (2000), and De Eĺıa and Laprise

(2002), an appropriate high-resolution model is used to construct a known truth

on a global, or laterally unbounded domain (see Ch. 3). Then, using the same

model, simulations are run on a regional domain with LBCs given by a subset of

the control fields. With this approach, the only unavoidable source of model errors

are those introduced by the use of the “one-way” LBCs. Additional errors may be

introduced by perturbing the ICs, or by filtering the control fields to remove small

scale information from the LBCs. If the evolution of the large-scale fields is specified

using perfect LBCs, then differences between small scale error growth on the regional

and global domains may be attributed directly to LBC effects. In this study, we seek

to identify changes in error growth rates in LAMs caused specifically by different

domain sizes, inadequate spatial resolution of the LBC, and inadequate temporal

resolution of the LBC caused by linear interpolation in time between LBC updates.

The latter effect has previously received little direct attention in the literature.

Results from studies reviewed above also show that global ensembles are slightly

underdispersive, but not so much as to preclude useful operational implementation.

On the other hand, LAM ensembles are more strongly underdispersive, most likely

due to the LBC constraints on error growth. From these results, another assumption

is made that LAM ensembles should produce the same spread as global ensembles

when operated with the same model and initial perturbations. Although other effects

may be important, we choose to specifically isolate the influence of LBCs and show

that the lack of error growth at small scales is responsible for underdispersive LAM

ensembles. Hence, we show in the present study that, in the absence of other effects,

SREFs remain underdispersive unless LBCs are given with the same spatial and

temporal resolution as the nested model simulation. Because such a configuration

is not possible in a realistic operational setting, a new method is proposed to help

restore in a statistically consistent manner the variance lost by unresolved scales in

LBCs.
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Chapter 2

Ensemble Statistics

Statistical methods for interpreting results from ensemble predictions on both global

and limited-area domains are discussed in this chapter. The chapter begins by

introducing basic vector notations, then reviews established statistical measures of

performance within the context of this notation. The measures defined are ensemble

mean square error, dispersion, and total error variance. The total error variance

has equivalent vector and spectral representations, allowing decompositions of error

variance into contributions by different scales of motion. A new expression is derived

that provides a direct link between ensemble dispersion and the scale decomposition

of error variance. This expression allows one to measure how ensemble dispersion is

affected by error growth at individual scales of motion.

Expected values of the statistics are then derived to provide a basis for normaliz-

ing results and assessing predictive skill relative to the climatological variance. The

chapter concludes by proposing a variance budget for limited-area models (LAMs)

configured with “one-way” lateral boundary conditions. The proposed variance bud-

get is important because it provides a mathematical statement of the hypothesis

driving this research.

2.1 Definitions

2.1.1 Notation

Spatial and ensemble means are described here using notation inspired largely by

Stephenson and Doblas-Reyes (2000). Suppose xi is a vector field defined on a
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p-element grid, representing forecasts or analyses obtained from an N -member en-

semble, where i = 1, . . . , N . The ensemble mean (a p-element column vector) is

defined

x =
1

N

N∑
i=1

xi. (2.1)

The scalar spatial mean for the ith ensemble member is given by

〈xi〉 =
1

p

p∑
k=1

xi,k =
1

p
1 · xi, (2.2)

where 1 is a p-element vector of ones. A useful norm representing the average sum

of squares (dot product) over the grid is

‖xi‖2 =
1

p
xi · xi =

1

p

p∑
k=1

x2
i,k. (2.3)

Note for later derivations that ‖1‖2 = (1/p)1 · 1 = 1.

Henceforth, let fi(t) denote individual forecast vectors from the ensemble and

a(t) represent the analysis vector corresponding to each forecast. These notations

and the derivations that follow are applicable for gridded fields on both global and

limited-area domains unless specified otherwise.

2.1.2 Ensemble MSE and Dispersion

One of the most basic measures of ensemble forecast accuracy is the ensemble mean

square error (MSE),

S2 =
1

N

N∑
i=1

‖fi − a‖2 . (2.4)

It is useful to manipulate S2 by adding and subtracting the ensemble mean forecast

f and analysis a = a such that

S2 =
1

N

N∑
i=1

∥∥(f − a) + (fi − a)− (f − a)
∥∥2

=
1

N

N∑
i=1

∥∥fi − f
∥∥2

+
∥∥f − a

∥∥2
. (2.5)
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Note that cross product terms vanish after taking the ensemble average during ex-

pansion of the norm. If D2 = 1
N

∑N
i=1

∥∥fi − f
∥∥2

defines the ensemble dispersion, or

spread, then it follows directly from (2.5) that

S2 = D2 +
∥∥f − a

∥∥2
. (2.6)

This result shows that the squared error of the ensemble mean
∥∥f − a

∥∥2
is less

than the ensemble mean square error S2 because ensemble dispersion D2 allows

unpredictable components of the flow to be averaged out in the ensemble mean

(Leith 1974; Stephenson and Doblas-Reyes 2000).

2.1.3 Total Biased Error Variance

Ensemble MSE and dispersion are commonly used measures of ensemble accuracy,

but do not provide for a direct scale decomposition of error growth. The desired

scale decomposition is provided by the total biased error variance, σ2, because it

has equivalent vector and spectral definitions. In vector form, σ2 is defined as an

ensemble average error variance relative to a spatial mean so that

σ2 =
1

N

N∑
i=1

‖(fi − ai)− 〈fi − ai〉1‖2 . (2.7)

The unity vector multiplies the scalar spatial mean to enable vector subtraction and

to allow proper application of the norm notation.

Using Eq. (A.10–Appendix A), σ2 may be obtained spectrally as (Errico 1985)

σ2 =
1

N

N∑
i=1

K−1∑
κ=1

2 |Fi(κ)|2 , (2.8)

where Fi(κ) is the discrete Fourier transform of fi − a (see Appendix B) and κ =

1, . . . , K − 1 are the set of Nyquist resolved wavenumbers on the grid. In this

form, error variances may be computed individually for specific wavenumbers, or

accumulated over a range of scales.
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The total error variance σ2 can be related to S2 as follows. First, multiply the

grid average for each forecast 〈fi〉 and analysis 〈a〉 by the unity vector 1. Next, add

and subtract the resulting vectors within (2.4) and manipulate to obtain

S2 =
1

N

N∑
i=1

‖(fi − a)− 〈fi − a〉1‖2 +
1

N

N∑
i=1

(〈fi〉 − 〈a〉)2. (2.9)

The combination of (2.7) and (2.9) reveals that

σ2 = S2 − 1

N

N∑
i=1

(〈fi〉 − 〈a〉)2. (2.10)

Hence, the total biased error variance is the ensemble MSE reduced by the ensemble

mean square spatial bias. The spatial bias term becomes negligible on large or

laterally unbounded domains (see Chapter 3) so that the ensemble mean square

error can be used as an approximation for the total biased error variance.

2.1.4 Scale Decomposition of Dispersion

A key aspect of this work is to study the impact of scale deficient lateral bound-

ary conditions on LAM ensemble dispersion. To study this effect as a function of

wavelength, an expression is needed that links ensemble dispersion to the spectral

decomposition of total error variance. Such an expression is obtained directly from

(2.6) and (2.10) so that

D2 = σ2 +
1

N

N∑
i=1

(〈fi〉 − 〈a〉)2 −
∥∥f − a

∥∥2
. (2.11)

Using the spectral variance (2.8), Eq. 2.11 shows that ensemble dispersion is deter-

mined by the accumulated contributions to error variance at all resolved wavelengths,

the ensemble mean square spatial bias, and a reduction from the squared error of the

ensemble mean. This expression will be applied in later chapters to evaluate the im-

pact of poorly resolved LBCs on ensemble dispersion by comparing the magnitudes

of each term obtained for both global and LAM simulations.
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The latter two terms in (2.11) cannot be decomposed in a simple way to reveal

their contributions to D2 at different scales. However, if these terms are nearly

the same for both global and LAM simulations, then their contributions to D2 are

negated under comparison. Under this condition, the direct spectral relation be-

tween error variance and ensemble dispersion is maintained. In the perfect model

simulations conducted for this work, the ensembles are unbiased and the spatial

error term is negligible on large domains. However, the spectral calculation of en-

semble dispersion could become distorted on small domains where the spatial bias

might not be negligible due to phase errors caused by upscale perturbation growth.

The ensemble bias term could become large in practical application due to model

deficiencies. However, ensembles can be calibrated to remove such biases (Hamill

and Colucci 1997; Hamill 2001).

2.2 Statistical Expectation

Initial condition errors introduced into an ensemble prediction system grow with

time through nonlinear wave interactions. The errors eventually grow so large that

forecasts become uncorrelated with analyses. This condition is often referred to as

“saturation” with respect to climatology and usually defines the limit of predictive

skill. The theoretical upper limit of error growth for each of the statistics defined

in the previous section is determined here by deriving their expected values at satu-

ration. The expected values are applied to help define measures of skill normalized

relative to climatology that may be compared among different studies. Statistical

results obtained as averages over many model simulations reveal model errors if they

are different from the expected values at saturation (Anthes and Baumhefner 1984).

2.2.1 Expected Value of Ensemble MSE

The behavior of S2 when averaged over many cases can be understood by treat-

ing it as a discrete random variable and taking its expected value (Leith 1974,

D. B. Stephenson 2001, personal communication). To begin, add and subtract the
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forecast expected value, E[f ], and the analysis expected value, E[a], in (2.4) and

expand so that

S2 =
1

N

N∑
i=1

‖fi − E[f ]‖2 + ‖a− E[a]‖2 + ‖E[f ]− E[a]‖2

+
2

N

N∑
i=1

1

p
(fi − E[f ]) · (E[f ]− E[a])

− 2

N

N∑
i=1

1

p
(fi − E[f ]) · (a− E[a]). (2.12)

Next, take the expected value E[S2] on a term-by-term basis, noting that the ex-

pected value of the ensemble average is the same as that for any individual vector

drawn from a common distribution. Specifically, using properties of expectation

with x = a and x = fi for any i = 1, . . . , N , E[x] = E[ 1
N

∑N
i=1 xi] = 1

N

∑N
i=1 E[xi] =

N
N
E[x] = E[x].

The expected value for each of the first two terms on the right-hand side of (2.12)

is, again using x = fi and x = a,

E ‖x− E[x]‖2 = E

[
1

p
(x− E[x]) · (x− E[x])

]
=

1

p

p∑
k=1

E[x2
k]−

1

p

p∑
k=1

E[xk]
2

= E[x2]− E[x]2. (2.13)

Note that individual elements of vectors xk in the summations above are random

variables drawn from the same distribution, so E[x2
k] = E[x2] and E[xk] = E[x]

for all elements k = 1, . . . , p. Since the right-hand side of (2.13) is the statistical

definition of variance, E ‖fi − E[f ]‖2 ≡ Var[f ] is the climate variance of forecasts

and E ‖a− E[a]‖2 ≡ Var[a] is the climate variance of analyses.

Following a similar approach for the third term in (2.12), it is simple to show

that E ‖E[f ]− E[a]‖2 = (E[f ] − E[a])2. The fourth term vanishes after expanding
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the dot product and taking its expected value. Finally, the expectation of the last

term in (2.12) yields the covariance between f and a, Cov[f , a]. Thus,

E[S2] = Var[f ] + Var[a] + (E[f ]− E[a])2 − 2Cov[f , a]. (2.14)

Forecasts usually are highly correlated with analyses and have small biases early

in the forecast period. Consequently, the covariance term is large, resulting in a small

value for S2. As initial forecast errors grow with time, forecasts become uncorrelated

with analyses and their covariance tends to zero. If forecasts are unbiased and

have the same variance as analyses, then (2.14) shows that the expected value of S2

converges towards twice the climate variance of analyses; that is, E[S2] = 2Var[a]

at saturation. This is the classic result obtained by Leith (1974) and motivates the

common practice of measuring ensemble forecast skill relative to the climate variance

of analyses, Var[a].

2.2.2 Expected Value of Ensemble Dispersion

To obtain the expected value over many cases for ensemble dispersion, add and

subtract the forecast expected value in the definition following (2.5) and use (2.13)

so that

E[D2] =
1

N

N∑
i=1

E
∥∥(fi − E[f ])− (f − E[f ])

∥∥2

=
1

N

N∑
i=1

E ‖fi − E[f ]‖2 − E
∥∥f − E[f ]

∥∥2

= Var[f ]− Var[f ] = (1− 1/N)Var[f ]. (2.15)

The additional dependence on N results from the fact that Var[f ] = NVar[f ]. This

result shows that for large N , the expected value of ensemble dispersion is almost

the same as the biased forecast variance averaged over many cases.

Following a similar approach as above, the expected value of the squared error

of the ensemble mean (bias) is

E
∥∥f − a

∥∥2
= (1/N)Var[f ] + Var[a] + (E[f ]− E[a])2 − 2Cov[f , a]. (2.16)
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When equations (2.14) to (2.16) are used to expand each term after taking the

expected value of (2.6), it becomes clear that E[S2] = 2E[D2]. Thus, the expected

value for ensemble mean square error is twice that of ensemble dispersion. This

result holds at any time during the forecast, when averaged over many cases, and

does not depend on the forecast error being unbiased or saturated with respect to

climatology.

2.2.3 Expected Value of Total Error Variance

When averaged over many cases, the expected value for σ2 is obtained from (2.10)

on a term-by-term basis. Applying the same arguments needed to obtain (2.13),

E[σ2] = E[S2]− 1

N

N∑
i=1

E[〈fi〉2] +
2

N

N∑
i=1

E[〈fi〉 〈a〉]−
1

N

N∑
i=1

E[〈a〉2]

= E[S2]− E[〈f〉2] + 2E[〈f〉 〈a〉]− E[〈a〉2]

= E[S2]− E[E[f ]2] + 2E[E[f ]E[a]]− E[E[a]2]

= E[S2]− E[f ]2 + 2E[f ]E[a]− E[a]2

= E[S2]− (E[f ]− E[a])2. (2.17)

Note that in a perfect (unbiased) model simulation, E[f ] = E[a] so that E[σ2] =

E[S2]. Proceeding with the general case, substitute for E[S2] using (2.14) so that

E[σ2] = Var[f ] + Var[a]− 2Cov[f , a]. (2.18)

As with the expectation for ensemble MSE, a large covariance term early in

the forecast period reduces the magnitude of total error variance. However, forecast

errors grow until the covariance becomes zero so that at saturation, E[σ2] = E[S2] =

2Var[a] for unbiased forecasts having the same variance as analyses.

2.3 Normalized Error Variances

The basic statistics defined above are simple measures of accuracy that do not ac-

count for skill relative to a standard benchmark. Since the theoretical upper bound
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for S2 and σ2 at error saturation is twice the climate variance of analyses, the cli-

matological variance provides a natural standard of forecast skill.

The total biased error variance σ2 was defined previously (Eq. 2.8) as the ensem-

ble average of the grid mean squared difference between the error and the spatial

mean error. Similarly, an estimate for the climate variance of analyses is introduced

here as

σ2
a =

1

M

M∑
j=1

‖aj − 〈aj〉1‖2 , (2.19)

where M is the number of independent analyses used to obtain the variance estimate.

As with σ2, the climate variance of analyses σ2
a has an equivalent spectral form

σ2
a =

1

M

M∑
j=1

K−1∑
κ=1

2
∣∣F a

j (κ)
∣∣2 , (2.20)

where F a
j (κ) is the discrete Fourier transform of aj and κ = 1, . . . , K − 1 are the set

of Nyquist resolved wavenumbers on the grid.

Using (2.8) and (2.20), the fraction of total variance contributed by wavenum-

ber(s) 1 ≤ k1 ≤ k2 ≤ K − 1 is determined using

ηa(κ) =
1
N

∑N
i=1

∑k2

κ=k1
2 |Fi(κ)|2

1
M

∑M
j=1

∑k2

κ=k1
2
∣∣F a

j (κ)
∣∣2 . (2.21)

The normalization applies equally to all wavenumbers, and has a theoretical upper

bound of 2. The notation η̃a(κ) is used when statistics are averaged over all M cases

such that

η̃a(κ) =
1
M

∑M
j=1

1
N

∑N
i=1

∑k2

κ=k1
2 |Fi(κ)|2

1
M

∑M
j=1

∑k2

κ=k1
2
∣∣F a

j (κ)
∣∣2 . (2.22)

Both (2.21) and (2.22) may be applied to N -member ensembles or to output from a

single simulation wherein N = 1.

The model used here is a non-forced, dissipative vorticity model (Chapter 3).

Therefore, σ2
a is calculated as a function of time to account for the steady reduction

of climatological variance. Dissipative effects also influence error variances obtained
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from ensemble simulations. Normalization by time-dependent climatological vari-

ances help mitigate the time-dependency. Similar effects could be noted in the

atmosphere as variances are both time and space dependent.

2.4 Variance Budget for Limited-Area Domains

The statistics presented in previous sections may be used to validate results obtained

from both global and limited-area forecasts. In this section, the spectral form of

total error variance is examined in greater detail with specific application to results

from limited-area models (LAMs) configured with “one-way” LBCs. Under this

configuration, it is argued that LAM forecasts suffer an artificial reduction of total

error variance due to inadequate spatial and temporal resolution in the LBCs.

Consider again Eq. (2.8), but explicitly write out the summation over resolved

wavenumbers so that

σ2 =
1

N

N∑
i=1

2

[
|Fi(1)|2 + |Fi(2)|2 + . . .+ | �

ε
Fi(K − 2)|2 + | �

ε
Fi(K − 1)|2

]
. (2.23)

External (LBC) scales LAM scales

In this form, several remarks can be made about the source of error variances with

regard to wavelength:

• The variance contribution from longer wavelengths is entirely determined by

an external model through the LBCs.

• Nonlinear wave interactions generate variance at all scales resolved on the

limited-area domain.

• Variance contributed by short waves declines as coarsely resolved LBCs

“sweep” through the domain (indicated by the cross to ε).

• Linear interpolation of LBCs between available updates acts as a temporal

filter that exacerbates the scale-deficiency problem.
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Although nonlinear products generate variance at small scales, experimental results

in Ch. 5 show that reduction of total error variance by advection of coarsely resolved

or infrequently updated LBCs is the dominant effect.

Equation (2.10) shows that a loss of error variance at small scales will cause an ar-

tificial reduction of the ensemble MSE (S2) unless offset by an increase in the square

of the grid mean error. The effect also is related to ensemble dispersion through

(2.11). Specifically, a loss of error variance at small scales will artificially constrain

ensemble dispersion unless offset by changes in the bias terms. The magnitude of

these effects will be explored in later chapters.

Equation (2.23) provides a mathematical statement of the hypothesis driving this

research. The use of external LBCs having lower spatial or temporal resolution than

that produced by the limited area model results in an artificial reduction of ensemble

MSE and dispersion. This hypothesis is explored using numerical simulations in a

perfect model framework. Finally, a new method is proposed to help restore the

error variance lost at these smaller scales.
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Chapter 3

Parameterized P.V. Channel Model

A simplified model is used to help isolate the impact of lateral boundary condition

forcing on the dispersion of limited-area ensemble forecasts. Previous predictability

studies using limited-area models often present results based on a small number

of cases. The models used in such studies usually contain uncontrollable errors

such as those associated with numerics, physical parameterizations, and analysis

uncertainties. To avoid these problems, experiments in this work are conducted

using a two-dimensional parameterized potential vorticity (PPV) channel model.

Although simplified, the model remains nonlinear, dispersive, and sensitive to initial

conditions.

The analytic form of the PPV model is introduced in section 3.1. Numerical

solution and configuration of the model is discussed in section 3.2. A single example

case is shown to help demonstrate the model’s behavior. Statistical results obtained

from 100 independent simulations representing the model’s climatology are shown

in section 3.4.

3.1 Model Dynamics

3.1.1 Quasi-geostrophic Potential Vorticity

The PPV model developed for this work is based on the quasi-geostrophic potential

vorticity equation. The quasi-geostrophic potential vorticity equation is developed

by conducting scale analyses appropriate for mid-latitude, synoptic-scale motions
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and combining the resulting quasi-geostrophic thermodynamic and vorticity equa-

tions so that (Holton 1992; Bluestein 1992, Sec. 5.8)

∂q

∂t
+ ~Vg · ∇q = 0, (3.1)

where

q = ζ + f + f 2
0

∂

∂p

(
1

σ

∂ψ

∂p

)
(3.2)

and

σ = −1

ρ

∂ ln θ

∂p
. (3.3)

These equations state that quasi-geostrophic potential vorticity q is conserved fol-

lowing the nondivergent wind on an isobaric surface for frictionless, adiabatic flow.

Horizontal variations in the static stability parameter σ have been neglected in the

derivation and the Coriolis acceleration f0 is evaluated at a constant reference lati-

tude.

The geostrophic wind ~Vg ≡ f−1
0 k̂ × ∇Φ is nondivergent when using the ap-

proximation of constant f0. Therefore, the geopotential height Φ has been repre-

sented in terms of the streamfunction ψ under the approximation that ψ = Φ/f0.

Since the streamfunction is nondivergent, the relative vorticity ζ is defined by

ζ ≡ k̂ · ∇ × ~Vg = ∇2ψ. Applying this result in (3.1) and (3.2), it is evident that

the tendency of q is proportional to minus the tendency of ψ (Holton 1992, Sec.

6.3). Thus, troughs (ridges) form in the streamfunction surface wherever q is locally

increasing (decreasing).

Vertical motions are allowed in the quasi-geostrophic system through mass con-

tinuity and the horizontal divergence induced by the ageostrophic wind. Explicit

representation of vertical velocity has been removed from q using the thermody-

namic equation. However, the adiabatic warming or cooling associated with such

motions cause changes in the vertical temperature gradient that induce a poten-

tial vorticity response determined by the last term in (3.2). To see this response

(Holton 1992, Sec. 6.3.2), substitute the hydrostatic equation f0∂ψ/∂p = −RT/p
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and assume σ changes slowly with height in the mid-troposphere (Bluestein 1992,

Fig. 5.3) so that

f 2
0

∂

∂p

(
1

σ

∂ψ

∂p

)
= −f0R

σ

∂T

∂p
. (3.4)

An increase in the vertical temperature gradient causes this term to have a larger

negative value. Since q is conserved, the relative vorticity must become increasingly

positive as the vertical temperature gradient increases provided that changes in

planetary vorticity f are small. From this viewpoint, it becomes clear that this term

represents the potential vorticity response to temperature changes in a baroclinic

atmosphere. It is also called the vortex stretching term because it induces changes

in vorticity following the adiabatic effects of vertical motions.

The vortex stretching term (3.4) has an important effect on the horizontal scale

at which wave motions develop. To see this effect, first note that static stability

is related to the Brunt-Väisälä frequency N = [(g/θ)∂θ/∂z]1/2 in a hydrostatic

atmosphere since (Bluestein 1992, pg. 363)

σ = − 1

ρθ

∂θ

∂z

∂z

∂p
=

1

ρ2g

1

θ

∂θ

∂z
=

(
N

ρg

)2

. (3.5)

The magnitude of the mid-tropospheric static stability parameter typically is

|σ| ∼ −1

|ρ||θ|
|∆θ|
|∆p|

∼ −(30 K)

(0.7 kg m−3)(300 K)(−700 hPa)
∼ 2× 10−6 m2Pa−2s−2. (3.6)

Given this scale for σ, let λ2 define a scale parameter for the vortex stretching (3.4)

so that

λ2 ≡ f 2
0

σ(∆p)2
=

f 2
0

N2

(ρg)2

(∆p)2
=

f 2
0

N2

(−∆p/∆z)2

(∆p)2
=

(
f0

N∆z

)2

. (3.7)

This parameter has magnitude

|λ2| ∼ |f 2
0 |

|σ||∆p|2
∼ (10−4 s−1)2

(2× 10−6 m2Pa−2s−2)(105 Pa)2
∼ 5× 10−13 m−2. (3.8)

The importance of the vortex stretching term becomes clear when noting from

(3.7) that the parameter λ is inversely related to the Rossby radius of deformation

N∆z/f0 (Holton 1992; Bluestein 1992). The Rossby radius defines the length scale

at which vorticity produced through the vortex stretching associated with vertical
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motions becomes comparable in magnitude to the vorticity associated with Earth

rotation. Therefore, the relative vorticity response to the baroclinic term in (3.2) is

most equally partitioned between changes in vortex stretching and Earth rotation

at horizontal length scales approaching λ−1 = 1400 km.

3.1.2 Parameterized Potential Vorticity Equation

Numerical solution of (3.1) is reasonably simple since it only requires knowledge of

the three-dimensional distribution of streamfunction and the stratification of poten-

tial temperature. However, the potential vorticity model could be reduced further

by eliminating the dependence on vertical temperature profiles. This simplification

leads to a parameterized potential vorticity (PPV) model that still represents many

desirable characteristics of mid-tropospheric flow at midlatitudes.

3.1.2.1 Pure Barotropic Model

First consider the most stringent simplification. If we assume there is a level of non-

divergence where vertical motions reach their maximum (typically around 500 mb),

mass continuity requires that ∇ · ~Vg = −∂ω/∂p = 0 at that level. Therefore, the

vertical velocity (ω) above and below this level are identical so that contributions

to vorticity by stretching vanish locally. If we apply this approximation through the

depth of the atmosphere, the baroclinic (vortex stretching) term in (3.2) vanishes to

yield the barotropic vorticity equation (Holton 1992; Bluestein 1992)

∂ζ

∂t
+ ~Vg · ∇(ζ + f) = 0, (3.9)

or
∂ζ

∂t
+ J(ψ, ζ) + β

∂ψ

∂x
= 0, (3.10)

where β = df/dy evaluated at the same reference latitude as f0 and J(ψ, ζ) is the

Jacobian operator

J(ψ, ζ) =
∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x
. (3.11)
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The barotropic vorticity equation states that absolute vorticity is conserved fol-

lowing the horizontal nondivergent (geostrophic) wind. Analytic solutions to (3.10)

yield the well-known Rossby wave frequency dispersion relation

ω = kU0 −
βk

k2 + l2
(3.12)

where k and l are zonal and meridional wavenumbers and U0 is the constant mean

zonal wind speed. Rossby waves are dispersive since the phase speed is a function

of wavenumber. The zonal phase velocity is cx = ω/k = U0 − β/(k2 + l2). Thus,

Rossby waves propagate westward relative to the mean flow at a phase speed that

increases with wavelength. The group velocity in the zonal and meridional directions

are, respectively

cgx =
∂ω

∂k
= U0 + β

k2 − l2

(k2 + l2)2
(3.13)

and

cgy =
∂ω

∂l
=

2βkl

(k2 + l2)2
. (3.14)

These results indicate that the Rossby wave energy propagates toward the east (west)

if k > l (k < l), with a northerly (southerly) component if l is positive (negative).

The barotropic model (3.10) is the simplest model capable of producing fully de-

veloped wave structures consistent with the character of observed atmospheric mo-

tions. Indeed, it was the model of choice for the first successful efforts in numerical

weather prediction (Charney 1949; Charney et al. 1950; Charney 1951). Unfortu-

nately, the barotropic model has some rather serious limitations because it merely

redistributes relative vorticity through advection by the nondivergent wind. Since

motions are purely horizontal, it cannot generate or dissipate vorticity through baro-

clinic effects or other forcing mechanisms. Barotropic model solutions are dominated

by retrograding Rossby wave motions, wherein planetary vorticity advection is bal-

anced locally by changes in relative vorticity. In contrast, the longwave components

of real atmospheric motions remain quasi-stationary since the planetary vorticity ad-

vection is balanced largely by the vortex stretching associated with vertical motions

(Holton 1979).

28



3.1.2.2 Parameterized Potential Vorticity Model

Minimal treatment of baroclinic effects requires a multi-level modeling system. How-

ever, Holton (1979, Sec. 8.4.2) suggests that the effect of vorticity stretching may

be included in a single-level barotropic model by parameterizing the baroclinic term

of q as

f 2
0

∂

∂p

(
1

σ

∂ψ

∂p

)
= −λ2ψ (3.15)

where the constant λ−1 was introduced previously as the the Rossby radius of de-

formation.

The parameterization (3.15) is a differential equation in Sturm-Liouville form

that governs the vertical structure of normal modes (Kundu 1990, pg. 500). The

zeroth mode is called the barotropic mode in which velocity and density are indepen-

dent of height and the eigenvalue is the Rossby wave phase speed. For the barotropic

mode, λ2 = 0 and again we are left with the pure barotropic vorticity model (3.10).

The first baroclinic mode is represented by the approximation (3.15). Solutions to

this equation imply vertical variations in velocity and density while the eigenvalue

depends on stratification through the buoyancy frequency. Therefore, the parame-

terization (3.15) represents the first-order effects of vertical motions in a baroclinic

atmosphere.

Given a simplified, yet realistic approximation of baroclinic effects, the param-

eterized potential vorticity (PPV) model used in this work is defined by letting

ξ ≡ ζ−λ2ψ. Then, with the addition of a numerical diffusion term D (Sec. 3.2.3.3),

the quasi-geostrophic potential vorticity equation (3.1) becomes

∂ξ

∂t
= −J(ψ, ξ)− β∂ψ

∂x
−D. (3.16)

The PPV model is implemented here in a channel model configuration as discussed

in Sec. 3.2. Impermeable, free-slip north and south boundaries enforce zero vor-

ticity and constant streamfunction through specifed Dirichlet boundary conditions.

Periodic boundary conditions allow uninterrupted flow along the zonal (east/west)

direction so that ψ(x+Lx, y) = ψ(x, y) and ξ(x+Lx, y) = ξ(x, y). The PPV model

is also implemented on limited-area subdomains using “one-way” Dirchlet boundary

conditions for ψ and ξ (see Sec. 3.2.4).
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An example case shown later in Sec. 3.3 demonstrates how the baroclinic pa-

rameterization is important to help maintain the intensity of the zonal jet along the

center of the channel flow. Simulations using (3.16) are more realistic than the pure

barotropic model (3.10) because the vorticity balance includes the first order effects

of vortex stretching due to vertical motions.

3.1.3 Barotropic and Baroclinic Instability

It is of interest to understand how perturbations imposed onto barotropic flow will

grow (or damp) with time. Kuo (1949) states that barotropic instability is possible

only when the absolute vorticity changes sign at least once in the region of interest

(Haltiner and Williams 1980; Kundu 1990; Holton 1992). A velocity profile satisfying

this requirement is the Bickley jet (Bickley 1937):

U(y) = u0 sech2

(
ay

Ly

)
(3.17)

where u0 is the maximum intensity of the jet and a governs the width of the jet

relative to Ly. The vorticity of the Bickley jet is

ζ(y) = −dU/dy = (2u0a/Ly) sech2

(
ay

Ly

)
tanh

(
ay

Ly

)
. (3.18)

The Bickley jet profile shown in Fig. 3.1 is used to initialize the mid-latitude

westerly jet stream in later numerical simulations (Sec. 3.2.2). The intensity of the

initial velocity profile (u0 = 60 ms−1) is somewhat stronger than observed for typical

middle tropospheric flow. However, after the simulations are integrated forward for

20 days, local velocity maxima become smaller as barotropic instability extracts

kinetic energy from the mean flow field. The example case shown later in section 3.3

illustrates this effect.

Kuo (1973) solved the eigenvalue problem for stability of the Bickley jet (Haltiner

and Williams 1980, Sec. 4-4). He showed that barotropically unstable waves in a

westerly jet have a positive (eastward) phase velocity with a magnitude that is about

half the maximum jet speed. Furthermore, the most unstable wavelength decreases
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Figure 3.1: Bickley jet profiles for velocity (Eq. 3.17) and vorticity (Eq. 3.18) with
u0 = 50 ms−1, Ly = 6000 km and a = 11.

as the jet narrows or becomes more intense. The presence of β tends to stabilize

mid-latitude westerly jets, but instability must occur for short periods when jets

become too sharp (Haltiner and Williams 1980).

Although a simplified single layer model, the baroclinic parameterization in (3.16)

acts to modify the barotropic instability mechanism. Holton (1992, pg. 235) de-

scribes a special case of the two-layer model for baroclinic instability in which the

mean flow is barotropic and there is no vertical shear of the base-state geostrophic

wind. For this case, phase speeds of perturbations superimposed on the mean flow

are given by

c1 = U0 − βk−2 (3.19)

and

c2 = U0 − β(k2 + 2λ2)−1. (3.20)

The phase speed c1 represents the dispersion relation for a purely zonal Rossby

wave associated with a barotropic perturbation. In contrast, the phase speed c2

represents the dispersion relation for an internal baroclinic Rossby wave. In this

case static stability slows the retrogression of the baroclinic mode relative to that
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of the barotropic mode as indicated by the presence of λ in (3.20). Furthermore,

static stability contained in the parameterization (3.15) helps stabilize the shorter

wavelength perturbations. Thus, when compared to the purely barotropic model,

the PPV model (3.16) produces wave motions that retrograde less vigorously while

maintaining the sharpness of the zonal jet profile. The most unstable wavelength

for baroclinic instability is typically about 4000 km (Holton 1992), consistent with

the observed scale of mid-latitude cyclones. An example shown later in section 3.3

demonstrates that the modified barotropic model (3.16) generates flows exhibiting

most of these desirable characteristics.

3.2 Numerical Solution

Methods for obtaining numerical solutions to the PPV model (3.16) are described in

this section. First, grid configurations are described while establishing notation for

writing discretized equations. Numerical methods are discussed next, including the

addition of fourth-order numerical diffusion. Then the lateral boundary condition

procedures are described, followed by an example simulation.

3.2.1 Grid Configurations

The PPV model (3.16) is solved using a two-dimensional β-channel configuration.

Solutions are obtained on an un-staggered Cartesian grid with 0 ≤ x ≤ Lx and

−Ly/2 ≤ y ≤ Ly/2. Impermeable, free-slip north and south boundaries along

y = ±Ly/2 enforce zero vorticity and constant streamfunction. Periodic boundary

conditions allow uninterrupted flow along the zonal (east/west) direction. Simula-

tions conducted on the full periodic channel domain are called global or outer domain

model solutions. Solutions are also obtained on four different limited-area grids us-

ing “one-way” lateral boundary conditions (Fig. 3.2). Details on the implementation

of lateral boundary conditions are presented later in section 3.2.4.

After assigning the grid spacing ∆x and ∆y, the number of grid points along

each coordinate direction is determined as Nx = `x/∆x + 1 and Ny = `y/∆y + 1

where 0 < `x ≤ Lx and 0 < `y ≤ Ly are generalized lengths for any of the domains

shown in Fig. 3.2. On the full channel domain, Nx = Lx/∆x + 4 to accommodate
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Figure 3.2: Configuration of grids nested within channel domain labeled L (Large),
M (Medium), Sc (Small, center), and Ss (Small, south). Each grid is nested only
once within the full channel grid; there are no “multiple nests”.

Grid Dimension Gridpoints

Large (L) (6000 km)2 241× 241
Medium (M) (3000 km)2 121× 121

Small, center (Sc) (1500 km)2 61× 61
Small, south (Ss) (1500 km)2 61× 61

Table 3.1: Nested grid dimensions for ∆x = ∆y = 25 km.

periodic east-west boundaries and fourth-order diffusion using two extra “ghost”

columns at each end of the channel. Gridpoint locations are determined by x = i∆x

and y = j∆y−Ly/2 where i = 0, . . . , Nx− 1 and j = 0, . . . , Ny − 1. Dimensions for

the nested domains are listed in Table 3.1.

3.2.2 Initialization

All experiments are validated against a high-resolution model “truth” generated on

the full periodic channel domain. The model’s “climatology” emerges after generat-

ing many independent truth simulations. Truth runs begin by specifying a barotrop-

ically unstable shear flow as follows:
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1. Specify uniformly in x the streamfunction obtained from the Bickley jet profile

U(y) shown in Fig. 3.1. Include the base-state zonal wind U0 so that u =

U0 + U(y) = −∂ψ/∂y. Then, integrate over y and calculate for all x

ψj = ψj−1 − U0∆y − u0Ly
a

[
tanh

(
ayj
Ly

)
− tanh

(
ayj−1

Ly

)]
where u0 is the maximum velocity of the jet and a governs the width of the

jet relative to Ly. At the north and south boundaries, let ψ(y = ±Ly/2) =

ψ0 − U0y, where ψ0 is a specified constant for ψ(y = 0).

2. Compute ξ = ∇2ψ − λ2ψ.

3. Given a set of uniform random numbers Π ∈ [−1, 1], apply perturbations as

ψ = ψ + 0.05Πψ0. The perturbations help ensure each case develops uniquely

with the onset of barotropic instability.

Restarting and continuing simulations from a saved ψ field simply requires reading

ψ from disk and calculating ξ as in step two above.

3.2.3 Numerical Methods

After initializing ξ, numerical solutions for (3.16) are obtained by computing the

tendency of ξ, stepping forward in time, and solving the Helmholtz equation ∇2ψ−
λ2ψ = ξ for ψ. Details for each of these steps are provided in the following sections.

3.2.3.1 Spatial Discretization

The potential vorticity tendency is calculated using second order centered finite

differences on an un-staggered Cartesian grid. Specifically, the spatial discretization

for (3.16) is
∂ξ

∂t
= −J(ψ, ξ)− β

2∆x
(ψi+1,j − ψi−1,j)−D. (3.21)

Discretization of the numerical diffusion term D is discussed in section 3.2.3.3. The

Jacobian operator is discretized using Arakawa’s energy and enstrophy conserving

scheme (Arakawa 1966; Haltiner and Williams 1980; Durran 1999).
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Equation (3.21) shows that ψ must be obtained at each time step to determine

the tendency of ξ. This is accomplished by solving the Helmholtz equation

∂2ψ

∂x2
+
∂2ψ

∂y2
− λ2ψ = ξ(x, y) (3.22)

using the Fortran subroutine hwscrt (Swarztrauber and Sweet 1975) from the pack-

age FISHPACK1 which directly solves a block tridiagonal system of equations using

a cyclic reduction algorithm. Dirichlet boundary conditions for ψ are provided for

nested-grid simulations. On the full channel domain, Dirichlet conditions are speci-

fied on the north and south boundaries as stated in step 1 of Sec. 3.2.2 above, while

the east and west boundaries are periodic so that ψ(x+ Lx, y) = ψ(x, y).

3.2.3.2 Time Integration

Let H(ξ) = ∂ξ/∂t represent the tendency of ξ, as determined by the right-hand side

of (3.21). Time integration begins with a simple Euler forward step

ξ1 = ξ0 + ∆tH(ξ0). (3.23)

Subsequent steps are conducted using the second order two step leapfrog-trapezoidal

method (Durran 1999)

ξ∗ = ξn−1 + 2∆tH(ξn)

ξn+1 = ξn +
∆t

2
[H(ξ∗) +H(ξn)] . (3.24)

The leapfrog-trapezoidal method is slightly dissipative and is computationally

stable on a one-dimensional grid if c∆t/∆x ≤
√

2, where c is the maximum allowable

wave speed (Durran 1999). On a two-dimensional grid with ∆x = ∆y, the stability

requirement must be reduced by a factor of
√

2. Thus, for the current configuration,

the time step satisfies c∆t/∆x ≤ 1. After calculating the maximum allowable ∆t,

the step length may be reduced slightly to allow output at even multiples of ∆t.

1FISHPACK is a shareware source that may be obtained online from http://www.netlib.org.
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3.2.3.3 Numerical Diffusion

In the real atmosphere, enstrophy accumulates at high wave numbers where it even-

tually dissipates through viscous effects. During numerical integration of the inviscid

potential vorticity equation, enstrophy accumulates at the smallest resolved wave-

length without dissipation and produces excessive noise. Furthermore, the noise is

enhanced by computational errors introduced by finite-difference methods. There-

fore, a fourth-order numerical diffusion term D has been added to the simulation

model (3.16) where

D = −ν∇4ξ. (3.25)

The diffusion term removes shortwave components from the model at a rate deter-

mined by the eddy diffusion coefficient ν.

To determine an appropriate value for ν, consider the diffusion equation

∂ξ

∂t
= −ν∇4ξ. (3.26)

Assume solutions of the form ξ = A(t) exp [i(kx+ ly)], where k and l are zonal

and meridional wavenumbers. After making the substitution and canceling common

exponential terms,
dA

dt
= −νA(k4 + l4). (3.27)

Time integration yields the analytic solution A = A0 exp [−ν(k4 + l4)t]. For dis-

crete wavenumbers resolved on a grid, k = 2π/p∆x and l = 2π/p∆y where p =

2, . . . , (Nx, Ny). Then, using discrete time intervals t = Nt∆t and ∆x = ∆y,

A = A0 exp [−2ν(2π/p∆x)4Nt∆t]. (3.28)

For the shortest resolved wavelength, p = 2 and the diffusion coefficient

ν =
1

2Nt∆t

(
∆x

π

)4

(3.29)

produces an e-fold reduction in the amplitude of the 2∆x wave over Nt time intervals

of the analytic solution. For example, with ∆x = 25 km, ∆t = ∆x/c, where

c = 50 ms−1 and Nt = 4 time steps, (3.29) yields ν = 1.00× 1012 m4s−1. Note that
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the actual e-folding time realized during model integration depends on the specific

methods of spatial and temporal discretization (Durran 1999; Xue 2000) and is

generally shorter than that obtained analytically using (3.28) and (3.29).

3.2.4 Lateral Boundary Conditions

Limited-area models employ completely artificial lateral boundaries having no phys-

ical counterpart in the real atmosphere. To minimize errors introduced by the use

of such boundaries, schemes designed to impose time-dependent lateral boundary

conditions must allow information from outside the domain to enter without dissi-

pation. Furthermore, disturbances traveling outward from the domain interior must

be allowed to pass through the boundary without reflection. Boundary conditions de-

signed to minimize these spurious wave reflections are called open, wave-permeable,

or radiation boundary conditions (Sommerfeld 1949; Orlanski 1976; Givoli 1991; Dur-

ran et al. 1993; Staniforth 1997).

Among this class of boundary formulations for limited-area grid point models are

the “one-way” and “two-way” approaches. In the two-way approach, solutions are

obtained simultaneously and interactively updated on both the external and limited-

area grids. In the one-way approach, a previously and independently run external

model solution provides the boundary information required to obtain the nested

model solution. Since the one-way approach is more commonly used in operational

forecast configurations, it is the method used for the PPV model and whose impact

is examined in this work.

Most one-way LBC formulations are not well posed mathematically because

more conditions are provided by the external model than are actually necessary

on the limited-area grid (Williamson and Browning 1974; Perkey and Kreitzberg

1976; Oliger and Sundström 1978; Davies 1983; Staniforth 1997). When the prob-

lem is not well posed, variables obtained just inside the domain boundary will

generally contradict those values specified a priori along the boundary by the ex-

ternal model. Consequently, the solution exhibits a discontinuity at the bound-

ary and admits spurious wave energy. Schemes which over-specify the bound-

ary conditions often apply a “sponge zone” around the edge of the limited do-

main to damp the spurious waves. (Williamson and Browning 1974; Perkey and
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Kreitzberg 1976; Davies 1976; Staniforth 1997). The sponge zone can be effec-

tive if applied over a sufficiently wide region, but always introduces error (Warner

et al. 1997; Durran 1999)

The one-way scheme proposed by Davies (1976; 1983) incorporates a wave ab-

sorbing zone and is selected for this work because of its simplicity and common use

in many current operational and research model configurations. Davies’ scheme re-

laxes the variables in the damping region toward the values of the external model.

Specifically, given a sponge zone width of k = 1, . . . , 7 gridpoints,

ξk = [1− r(k)]ξk + r(k)ξ′k (3.30)

ξN−k+1 = [1− r(k)]ξN−k+1 + r(k)ξ′N−k+1

where N = (Nx or Ny), ξ is the given on the limited domain, and ξ′ is imposed across

the boundary zone by the independent external model. The relaxation function r(k)

is determined by

r(k) =
1

2

[
1 + cos

(
(k − 1)π

6

)]
. (3.31)

When using ∆x = 25 km as in most nested model simulations considered here, the

width of this wave absorbing zone is 150 km.

The relaxation of ξ toward the boundary value is conducted at every time step

made by the nested model. However, boundary conditions provided by the external

model are not usually available at every time step. Therefore, linear interpolation

is made between available boundary condition updates. The impact of nesting fre-

quency is explicitly tested in chapter five.

Davies’ relaxation method is the only approach considered in this work for up-

dating lateral boundary conditions. Baumhefner and Perkey (1982) explored the

significance of boundary errors in limited-area models and found that the error com-

ponent due to choice of two different boundary formulations was small compared to

the error generated by inaccurate boundary forcing.

38



Parameter Symbol Value
Reference latitude φ0 45 deg N
Earth’s mean radius ae 6367650 m
Earth’s angular velocity Ω 7.292× 10−5 ms−1

Coriolis constant f0 2Ω sinφ0

Meridional gradient of f β 2Ω cosφ0/ae
Streamfunction constant ψ0 5.40× 108 m2s−1

Inverse of Rossby Radius λ 7.071× 10−7 m−1

Base state zonal wind speed U0 12 ms−1

Maximum allowable wave speed c 50 ms−1

Numerical diffusion period Nt 4 time steps
Domain length along x Lx 18,000 km
Domain length along y Ly 6,000 km
Grid resolution for truth ∆x,∆y 25 km

Table 3.2: Constant parameters for the PPV model (3.16). Dimensions and related
constants for nested grids were specified previously in Table 3.1.

3.3 Example Case

An example simulation highlights characteristics of the fully nonlinear flow produced

by the PPV model (3.16). The case is initialized using a perturbed, barotropically

unstable shear flow as described in section 3.2.2. The PPV model is then run for 20

days to “spin up” large-scale vortices and ensure the development of a continuous

energy spectrum. Following this pre-integration period, time is reset to zero before

running the example case for an additional 20 days. Parallel simulations are run

from the same initial state using barotropic (λ = 0) or non-diffusive (ν = 0) models

to compare the effects of the vorticity parameterization and numerical diffusion.

Model dimensions and constants are fixed according to Table 3.2. Note that U0

and ψ0 are arbitrary constants selected to emulate observed characteristics of the

atmosphere along the 500 hPa pressure surface. In particular, ψ0 is selected to

provide appropriate values of geopoential height Φ under the approximation Φ =

ψf0.
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Figure 3.3: Barotropic model simulation (λ = 0) 20 days after initialization with
the Bickley jet profile (Fig. 3.1). Contours show ψ × 106 m2s−1. Shading in (a)
indicates relative vorticity greater than ±2 × 10−5 s−1 and shading in (b) shows
velocity greater than 20 ms−1. Nested grid boxes are outlined with dashed gray
lines for later reference to limited-area model simulations.

3.3.1 Impact of Parameterization

Two cases were initialized with the same perturbed shear flow and integrated for the

20-day spin up period to examine the impact of the vortex stretching parameteriza-

tion. One case was run using the purely barotropic model (λ = 0) while the other

retains the parameterization term with λ = 7.071× 10−7 m−1. Results are shown in

Figs. 3.3 and 3.4, respectively.

The relative vorticity fields from each simulation reveal distinctly different pat-

terns. Vorticity in the barotropic case (Fig. 3.3a) generally is more concentrated

near the centers of troughs and ridges when compared to the PPV case (Fig. 3.4a).

For example, vorticity associated with the ridge located near x = 7000 km is much

stronger in the barotropic case than its counterpart in the PPV model. As discussed
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Figure 3.4: PPV model simulation (λ = 7.071 × 10−7 m−1) after 20 days using the
same initial state as the barotropic case. Contours and shading are as in Fig. 3.3.

previously, the vorticity balance in the pure barotropic model is somewhat incom-

plete since changes in f following meridional motions are balanced entirely by an

opposite tendency in relative vorticity ζ. In contrast, vortices in the PPV model

are less intense because changes in f are balanced by changes in both the relative

vorticity and vortex stretching terms.

Velocity fields also reveal differences between the two simulations. The jet stream

in the PPV model (Fig. 3.4b) is narrower and locally more intense than in the pure

barotropic model (Fig. 3.3b). In a multi-level baroclinic model, the jet stream is

maintained largely by enforcing the meridional temperature gradient through dif-

ferential temperature advection. Although merely a two-dimensional model, the

PPV model shown in Fig. 3.4 appears to produce the desirable effects of baroclin-

icity through parameterization of the vortex stretching term. Specifically, a tighter

gradient in streamfunction is maintained along the length of channel as the model

responds to the simulated effects of adiabatic heating or cooling.
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The time evolution of this case is examined next by continuing in Fig. 3.5 the

PPV model simulation from the state shown in Fig. 3.4. The most prominent wave

pattern for this case is centered near x = 6000 km and has a wavelength of about

4000 km, or slightly longer than the width of the largest sub-domain outlined on the

figure. This longwave pattern moves slowly eastward during the 4-day simulation

while shortwave features of varying intensity propagate rapidly through the flow.

This case reveals that nested-model simulations will require accurate simulation of

large-scale changes through lateral boundary conditions while predicting changes in

smaller scale features evolving within the confines of the nested domain. Indeed,

this is a general requirement for any limited-area model used in weather prediction.

3.3.2 Energetics of Example Case

Domain average energy and enstrophy curves for the entire 15-day integration of the

example case are shown in Fig. 3.6. An average wavelength

L = 2π

√
〈u2 + v2〉
〈ζ2〉

(3.32)

is also shown, where 〈·〉 denotes the domain average (Durran 1999, pg. 165). Com-

parison of energetics from three parallel simulations help illustrate the difference

between the barotropic and PPV models and the effects of numerical diffusion (Fig.

3.6).

Figure 3.6a shows that domain averaged kinetic energy differences are indistinct

for simulations with and without numerical diffusion. This is not surprising since

numerical diffusion is effective at the smallest scales while, as shown next in sec-

tion 3.4, the majority of kinetic energy variance is contained in long wavelengths.

Kinetic energy is more strongly affected by the use of the vortex stretching parame-

terization. Specifically, kinetic energy is nearly conserved throughout the barotropic

model simulations but decreases with time when the parameterization is applied.

A possible explanation for the decline in energy is that the vortex stretching pa-

rameterization helps reduce the amplitude of retrograding Rossby waves, thereby

decreasing the contribution to energy from the meridional velocity component.
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Figure 3.5: Continuation of the case example from Fig. 3.4b for (a) 1 day, (b) 2 days
(c) 3 days, and (d) 4 days. Contours and shading are as in Fig. 3.4.
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Figure 3.6: Grid-mean (a) kinetic energy [m2s−2], (b) enstrophy [s−2] and (c) wave-
length [km] for 15-day simulations starting from the state shown in Fig. 3.4. Sim-
ulations labeled “ctrl” have λ = 7.071× 10−7 m−1 while those labeled “nprm” have
λ = 0. Numerical diffusion is excluded (ν = 0) for simulations labeled “nd”.
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Numerical diffusion has a stronger impact on domain averaged enstrophy (Fig.

3.6b). This result is not surprising since enstrophy cascades downscale through

geostrophic turbulence where it is removed by dissipation. The monotonic increase

in mean wavelength (Fig. 3.6c) for each simulation is consistent with the changes in

kinetic energy and enstrophy. As enstrophy is removed at small scales by numerical

diffusion the remaining components are of increasingly larger scale.

The Arakawa Jacobian is designed to conserve energy and enstrophy. Therefore,

the kinetic energy fluctuations and the slow decline in enstrophy are unexpected

for simulations without numerical diffusion. The leapfrog-trapezoidal time stepping

scheme introduces computational errors (Durran 1999) that likely contribute to the

lack of conservation for these quantities. Whatever the cause, the variations are

reasonably small and will not affect the current research since all experiments are

validated against a model-generated truth.

It is interesting to note that the average wavelengths are about 3900-5000 km.

On the smaller end, this length scale is comparable to the observed wavelength of

synoptic-scale motions in the atmosphere. Furthermore, the length scale is slightly

larger than the extent of the medium (M) nested domain outlined in Fig. 3.2.

Many operational limited-area models are configured for these scales, and forecast

uncertainty on this scale or larger must be imposed through the LBCs (Paegle et al.

1997). This argument suggests that the scales of motion in the simplified PPV model

are adequate to obtain generalizable results for more complex models operating at

comparable dimensions.

3.3.3 Frequency Spectrum Analysis

The time series of ξ shown in Fig. 3.7a reveals a dominant wave period of around 3-6

days, upon which are superimposed fluctuations of generally less than 12 hours. A

frequency spectrum analysis for this time series (Fig. 3.7b) shows negligible power

in wave periods less than 1 hour. Power increases rapidly for wave periods between

about 1 and 3 hours, then slowly trends higher for longer periods. Output from

the spectrum analysis reveals that 90% of the variance is explained by wave periods

longer than 12 hours. Waves having periods longer than 6 hours account for 95.8%

of the variance and those having periods longer than 3 hours account for 99.6% of
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Figure 3.7: a) Time series of ξ obtained at the center point of the example case.
b) Frequency spectrum of the ξ time series, normalized by the sum over all wave
frequencies.

the total variance. These results suggest that LBC nesting intervals of 3-6 hours

are needed to sample wave structures in this part of the flow. If the spectrum

were analyzed away from the center of the channel where the flow is less variable,

dominant wave periods would be longer. Example cases in Ch. 5 help illustrate the

nature of error growth associated with various nested domain sizes and LBC nesting

intervals.

3.4 Model Climatology

Climatology is the standard benchmark used to measure limits of skill in numerical

weather prediction. Since most simulations conducted here are compared to a model
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generated truth, it is important to establish the climatological characteristics of

the PPV model. For this work, “climatology” refers collectively to the statistical

moments obtained from one hundred independent cases produced in the same way

as the example case discussed above. Specifically, model-generated “truth” states

are initialized with uniquely perturbed shear flows (Sec. 3.2.2) and run for 20 days

on the full channel domain. After this spin-up period, time is reset to zero and the

truth runs are continued up to 15 days further.

The variance spectrum for the PPV model is shown in Fig. 3.8, normalized by

the total climate variance for each variable. Specifically, the fraction of total variance

contributed by each wavenumber κ is determined using

χa(κ) =
1
M

∑M
j=1 2

∣∣F a
j (κ)

∣∣2
σ2
a

, (3.33)

where M = 100 independent cases and σ2
a is given by (2.20). Kinetic energy spectra

are easily obtained from the variance spectra of velocity components by calculating
1
2
[χu(κ) + χv(κ)].

The spectrum is continuous across all wavelengths, a feature indicative of any

nonlinear chaotic system. The kinetic energy spectrum has an `3 slope2 at wave-

lengths ` between 500 and 3000 km. The `3 (κ−3) slope for this part of the spectrum

is consistent with the downscale enstrophy cascade expected for geostrophic turbu-

lence. The spectrum shows no evidence of a `5/3 (κ−5/3) slope accompanying an

upscale energy cascade. However, the energy cascade is not expected since there are

no sources for injecting energy into this model.

The spectra shown in Fig. 3.8 for the PPV model reveal that more than 99%

(59%) of the climate variance of ψ (ζ) is contained in waves longer than about

1500 km. About 90% of the climate variance for ζ is represented by waves longer

than 300 km. The smallest nested domain used in this work is 1500 km2, thereby

emphasizing the importance of providing accurate contributions to variance at large

scales through the LBCs. Vukicevic and Errico (1990) made a similar statement.

2Since wavenumber κ = 2π/`, a κ−3 slope in (logχ, log κ) coordinates has an `3 slope in
(logχ, log `) coordinates because logχ = log κ−3 = −3 log 2π + log `3. Note that the abscissa
in Fig. 3.8 is inverted to enable direct comparison with traditional (logχ, log κ) coordinates.
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Figure 3.8: Dimensionless fraction of total variance contributed by different wave-
lengths (Eq. 3.33) for streamfunction ψ, vorticity ζ, u and v wind components, and
kinetic energy averaged over 100 independent samples.

Note that specific values for the portion of accumlated variance above specified

wavelengths are model dependent.

When considering error growth on limited-area domains, it must be noted that

variance calculations depend on the domain size and location within the flow. To

illustrate this point, climate variances are computed on four subgrids (Fig. 3.2)

extracted from the whole domain climatology simulations. These variances are listed

in Table 3.3. Values in parentheses show the amount of variance contributed by waves

resolved within the nested domains relative to the total variance on the full channel

domain. Variances for velocity components are not shown in the table since they

are represented by kinetic energy. Results shown in Fig. 3.8 and Table 3.3 reveal

that vorticity is more evenly distributed across the spectrum than streamfunction
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Domain σ2
a(ψ) [m4s−2] σ2

a(ζ) [s−2] σ2
a(k.e.) [m2s−2]

Global 6.455×1013 6.847×10−10 59.88
Large 5.491×1013 (.851) 7.148×10−10 (1.04) 59.94 (1.00)

Medium 1.660×1013 (.257) 6.528×10−10 (.953) 34.27 (.572)
Small, center 1.844×1012 (.029) 3.828×10−10 (.559) 7.50 (.125)
Small, south 1.445×1012 (.022) 3.466×10−10 (.506) 5.16 (.086)

Table 3.3: Total variance on each nested domain for streamfunction ψ, vorticity ζ,
and kinetic energy averaged over 100 cases from climatology. Values in parentheses
are the ratio of variances on each nested domain to the variance on the full channel
(global) domain.

or kinetic energy. In fact, even the medium size domain (3000 km2) accounts for a

greater proportion of total variance in ζ than does the largest subgrid (6000 km2).

The variance in streamfunction is almost negligible at scales resolved within the

smallest domains (1500 km2). Variances for the zonal wind component u are inflated

at small scales because of the rapid increase in flow speed near the frictionless north

and south boundaries of the channel. Vorticity carries the greatest power at small

scales, so it will be used as the variable of choice for examining spectral error variance

growth rates in later chapters.

The PPV model has the advantage of simplicity but transfers energy more slowly

across the spectrum compared to true atmospheric flows. The PPV model lacks forc-

ing due to factors such as moist physics, radiation, thermal gradients, or interaction

with the lower boundary. Therefore, the climate variance for the PPV model is

not stationary, but tends lower with time. For these reasons, climate variances are

computed as a function of time and used to normalize all error variances presented

in later chapters. In spite of these limitations, normalized error growth behaviors

presented in the following chapters are at least qualitatively consistent with results

obtained from more realistic models.
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Chapter 4

Global Ensemble Simulations

Ensemble simulations using the “global” periodic channel configuration are needed

to establish benchmark error growth characteristics for the PPV model. An example

case is presented to help illustrate the method used for generating initial condition

perturbations and the subsequent behavior of perturbation error growth. The statis-

tics defined in Ch. 2 are then used to analyze results from one-hundred independent

10-member ensemble simulations.

4.1 Ensemble Example Case

4.1.1 Initial Condition Perturbations

Recall from the previous chapter that a model-generated climatology has been pro-

duced consisting of 100 independent cases. This climatology is used to obtain initial

conditions and perturbations following the method used by Schubert and Suarez

(1989). Specifically, two unique states are randomly selected from the model’s cli-

matology. Perturbations are then formed by scaling the difference between the two

samples by a factor of 0.10. Finally, the perturbation field is added to an initial con-

dition field represented by any one of the climatological states. This perturbation

procedure is repeated ten times for a given initial field to create the starting con-

dition for 10-member ensemble simulations. One-hundred independent 10-member

ensemble simulations are constructed by assigning perturbations to initial conditions

given by each of the available climatological cases.
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An example initial perturbation for one ensemble member, and its subsequent

evolution, is shown in Fig. 4.1. The unperturbed control simulation for this case

is the same as that shown previously in Fig. 3.5. As designed, the streamfunction

perturbation field generally features smooth, small amplitude, synoptic-scale struc-

tures with wavelengths of about 3000 to 6000 km (Fig. 4.1a). The streamfunction

perturbations evolve slowly in accordance with barotropic dynamics. However, the

vorticity field does evolve more rapidly, especially at small scales.

The perturbation method used here is rather simplistic, but it effectively creates

error growth and dispersion among the ensemble members. The error growth rates

are slow because the model does not contain a fast mode of instability and also

because the initial perturbations have rather small amplitudes. Test simulations

run using perturbations imposed after scaling difference fields by 0.20 yielded little

change in the qualitative behavior of the ensemble. Indeed, for a given scale of

motion, error growth rates should be the same regardless of the amplitude of the

initial perturbation applied to that scale. Hence, it is not expected that the choice

of perturbation method will prevent conclusions from being applied more generally,

even if only in a qualitative sense.

4.1.2 Example Ensemble Dispersion

Time series of ψ and ξ for individual ensemble members are shown in Fig. 4.2 to help

visualize the ensemble dispersion for this example case. Wiggles in the time series

for ψ around 18 and 36 hours reveal successive short waves passing by this location

that are highly correlated among the individual ensemble members. As the large-

scale ridge moves into position over this grid location around 72 hours, the smaller

scale details have begun to decorrelate. The change in the large-scale pattern from

ridge to trough is handled well by all the ensemble members. This indicates a slow

evolution of ψ perturbations at large scales.

The time series for ξ shown in Fig. 4.2b reveals more rapid evolution of pertur-

bation error growth. The ξ time series begin to decorrelate after about 12 hours,

and appear completely uncorrelated by around 36 hours. Notice the time-scale for

Fig. 4.2b has been truncated to 72 hours because of the rapid dispersion of ξ. Be-

yond this time, the ξ series all continue to follow the long-period pattern associated
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Figure 4.1: Example case showing initial perturbations and subsequent error growth
for (a) day 0, (b) day 2, (c) day 4, and (d) day 6. Smooth, labeled curves are
streamlines from the control simulation drawn at 12×106 m2s−1 intervals. Vorticity
perturbations (ζ × 10−5 s−1) are shaded while (positive/negative) streamfunction
perturbations are shown with (solid/dashed) contours at ±5× 105 m2s−1 intervals,
or ∼0.1% (zero line omitted).
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Figure 4.2: Time series of (a) ψ and (b) ξ drawn from individual ensemble members
at a single grid point at the center of the channel domain. The unperturbed control
simulation is indicated with the heavy dashed line.

with the movement of the large-scale ψ field. Thus, although ξ perturbations grow

rapidly at small scales, they also evolve more slowly at large-scales.

Ensemble dispersion was defined previously as a scalar statistic following Eq. 2.5.

A slight alteration to this definition yields a vector form of dispersion, denoted d2,

that may be viewed as a two-dimensional contour plot. Specifically, at each grid

point p in the domain, field dispersion for an N -member ensemble is given by

d2
p =

1

N

N∑
i=1

(fp,i − fp)
2. (4.1)

Figure 4.3 shows the results of this calculation for the example ensemble case. Dis-

persion for the streamfunction is again notably slow. However, vorticity dispersion

grows very quickly in the first two days, and gradually organizes with time toward

larger scales. Dispersion varies widely in space and time for both variables, a char-

acteristic that is common to all ensemble systems.
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Figure 4.3: Example case showing ensemble dispersion (Eq. 4.1) for (a) day 0, (b) day
2, (c) day 4, and (d) day 6. A “spaghetti” plot drawn with solid black lines shows
the (516,540,564)×106 m2s−1 streamlines from each of the 10 ensemble members.
Vorticity dispersion is shaded (×10−10 s−2) while streamfunction dispersion is shown
with solid blue contours at 2× 1012 m4s−2 intervals.
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4.2 Normalized Error Variance Spectra

Results from one-hundred independent 10-member global ensembles are examined

as a function of wavelength using the spectral form of normalized error variance

(2.21). The statistics are calculated hourly for each ensemble, then averaged over all

100 cases. Although simulations are conducted on the full periodic channel domain,

variance spectra are calculated separately for each of the four subdomains outlined

previously in Fig. 3.2. These calculations enable direct comparisons to results from

LAM simulations conducted in chapters 5 and 6. Statistics from the full channel

domain are not shown since they appear almost identical to those obtained on the

large (6000 km2) domain. All statistics are presented in terms of vorticity since error

growth for ζ is more rapid than for ψ. Furthermore, the vorticity spectrum contains

more power at small scales than other variables (Fig. 3.8), which enables greater

resolution of small-scale LBC effects as discussed in Sec. 2.4.

Results shown in Fig. 4.4 reveal, as expected, that error growth due to initial

perturbations is most rapid at short wavelengths. Error variance contributions at

wavelengths 50 ≤ λ ≤ 250 km approach the expected maximum value of 2 within

about 48 hours on all subdomains. In general, error growth rates become progres-

sively slower at longer wavelengths. However, an interesting behavior is seen in the

1500 km wavelength band when compared on the different subdomains. On the

large and medium grids (Fig. 4.4a,b), the normalized error variance for this band

reaches 1.5 by the end of the simulations. Corresponding values are about 1.2 on the

small, centered grid and 1.8 on the small, southern grid (Fig. 4.4c,d). This result

suggests that synoptic-scale waves are less predictable when displaced outside the

central shear zone. To see this, note the enhanced spread among the 516×106 m2s−1

and 564×106 m2s−1 “spaghetti” streamlines near troughs and ridges in Fig. 4.3 com-

pared to the central 540×106 m2s−1 streamlines. The large and medium domains

encompass broader regions that include areas outside the central shear zone, and

therefore have error variance values at 1500 km wavelengths that are between the

two extremes.

Sample size becomes important as the number of available gridpoints decreases

on smaller domains. With fewer gridpoints, less coefficients are obtained in the

spectral variance calculations. Consequently, error growth curves are quite erratic
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Figure 4.4: Normalized vorticity error variance (Eq. 2.22), averaged over 100 in-
dependent 10-member global ensemble simulations. Error variances are shown for
specific wavelengths, or accumulated over 250 km wavelength bands as indicated by
labels on each curve.

for individual ensembles and necessitates the use of averages over many cases to help

smooth the curves for useful interpretation.

Several of the curves in Fig. 4.4 slightly exceed at times the expected maximum

value of 2. This result is explained by noting that initial condition perturbations

introduced additional vorticity into the system. Consequently, the vorticity variance

of forecasts averaged over all cases is up to 10% greater than the climate vorticity

variance of analyses. If error variances are normalized by the variance of forecasts

rather than the variance of analyses, all the curves remain less than or equal to the

maximum expected value of two (not shown). Since the difference is less than 10%,
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error variances continue to be normalized by analysis variances to remain consistent

with the statistics as defined in chapter 2.

4.3 Ensemble Bias, Dispersion, and MSE

Equation 2.11 was derived to help link error variance spectra to ensemble dispersion

and is repeated here for convenience:

D2 = σ2 +
1

N

N∑
i=1

(〈fi〉 − 〈a〉)2 −
∥∥f − a

∥∥2
.

To compare the relative magnitudes of each term in this expression, the following

ensemble summary statistics are shown in Fig. 4.5:

• Ensemble dispersion, D2 = 1
N

∑N
i=1

∥∥fi − f
∥∥2

(precedes Eq. 2.6)

• Total biased error variance, σ2 = 1
N

∑N
i=1

∑K−1
κ=1 2 |Fi(κ)|2 (Eq. 2.8)

• Ensemble mean squared spatial error, (sme)2 = 1
N

∑N
i=1(〈fi〉 − 〈a〉)2

• Grid mean square of the ensemble mean error, (eme)2 =
∥∥f − a

∥∥2

• Ensemble mean square error, S2 = 1
N

∑N
i=1 ‖fi − a‖2 . (Eq. 2.4)

The ensemble mean-square error is included to highlight the balance of terms in

equations 2.6 and 2.10, respectively:

S2 = D2 +
1

N

N∑
i=1

∥∥fi − f
∥∥2

and σ2 = S2 − 1

N

N∑
i=1

(〈fi〉 − 〈a〉)2.

The latter equation (2.10) suggests that σ2 is a good approximation for the

ensemble MSE, provided that the ensemble average spatial-mean error is small.

Since the spatial mean error term is positive, σ2 must be less than or equal to S2.

Figure 4.5a,b reveals the contradictory result that σ2 is up to 15% greater than S2

on the large and medium domains. This contradiction is explained by the fact that

removal of linear trends from the data fields prior to calculating Fourier transforms

introduces additional variance in higher wavenumbers (Errico 1985). Indeed, the
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Figure 4.5: Ensemble summary statistics for vorticity, averaged over 100 independent
10-member global ensembles. See text (page 57) for a description of variables shown.

error variance curve obtained from the periodic global domain —where detrending

is not required— is almost identical to the S2 curve in Fig. 4.5a (not shown).

On both the small domains (Figs. 4.5c,d), the spatial bias term becomes nontrivial

about 5 days into the simulations. At this point, the relationship between σ2 and S2

predicted by Eq. 2.10 is confirmed. Thus, as errors grow toward longer wavelengths

exceeding the size of the smaller subdomains (1500 km2), the spatial mean error

grows larger and contributes to a reduction of σ2 relative to S2.

The relationship between ensemble dispersion and ensemble MSE was defined by

Eq. 2.6, which shows the importance of ensemble mean error. For about the first

12 hours of the simulations, the ensemble mean error (bias) remains small, so the

dispersion and MSE have similar magnitudes. However, the mean error grows quickly
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as individual ensemble members become increasingly uncorrelated and unpredictable

features are averaged out. These results are seen on all four subdomains by the end

of the forecast period.

Although we cannot decompose the contributions made by various wavelengths

to ensemble dispersion, it has been possible to decompose the error variance, which

is then related back to dispersion and ensemble MSE. The only limitation to this

argument is the effect of spatial biases. The spatial biases in Fig. 4.5 are small, thus

enabling the link between ensemble dispersion and error variance contributions at

different wavelengths.
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Chapter 5

Limited-Area Ensemble Simulations

When LBCs are provided from an external model simulation, they typically are given

at, for example, 3-, 6-, or even 12-hour intervals. Since LAM solutions require LBCs

at every time step, the LBCs are usually interpolated linearly in time between the

available updates. This interpolation causes aliasing that acts as a temporal filter,

removing the high frequency wave components whose wave period is shorter than

twice the LBC update interval. Consequently, we expect to see a constraint on error

variance growth and ensemble dispersion as discussed in section 2.4.

In addition to the temporal deficiency, LBCs are almost always provided on a grid

having lower spatial resolution than the interior LAM domain. Consequently, small-

scale features are progressively swept from the domain as the coarsely resolved fields

propagate through the upstream boundary (Errico and Baumhefner 1987; Vukicevic

and Errico 1990; Warner et al. 1997). This effect was also highlighted in section 2.4 as

an additional constraint that limits error variance growth and ensemble dispersion.

The impact of these two effects on error variance growth and ensemble dispersion

are considered in the following sections. The effects are first considered indepen-

dently, then combined to evaluate the collective impact.

5.1 Impact of LBC Update Interval

5.1.1 Example Simulations

The following example simulations help visualize the impact of infrequent LBC up-

dates in the context of model configurations used for this work. The first effect
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considered below has received little direct and/or systematic attention in the pub-

lished literature. The effect is dubbed LBC “pulsing”, and is a direct consequence of

using infrequently updated, but otherwise perfect LBCs. As the LBC errors intro-

duced by pulsing begin propagating through the LAM domain, error growth within

the LAM domain becomes controlled by the more widely recognized “sweeping”

effect.

5.1.1.1 LBC Error “Pulsing”

The example case shown in Fig. 5.1 is perfect except for errors created using 3-

hourly interpolated LBCs. The initial and lateral boundary conditions are subsets

of output from a full-channel simulation running at the same resolution as the LAM

model. The initial condition is not shown because it does not contain error.

During the first 1.5 hours of the simulation (Fig. 5.1-a,b,c), errors develop within

the peripheral 7-point wave absorbing zone (Sec. 3.2.4). Then, from 2 to 3 hours

(panels d,e,f), errors within the buffer zone decline and vanish. This error growth

“pulse” repeats between subsequent 3-hourly LBC updates, with the peripheral er-

rors vanishing at 3, 6, and 9 hours (Fig. 5.1-f,l,r). Errors in the buffer zone are

greatest near the midpoint of the LBC update cycle when the respective linearly and

nonlinearly evolving external and internal solutions are most inconsistent. Once in-

troduced, the LBC pulse errors continue to propagate inward and modify the LAM

solution. As the LAM solution becomes more infected with each successive error

“pulse”, the LBC inconsistency becomes stronger and generates larger errors, which

then propagate farther inward.

The LBC update interval determines the minimum spatial scale of errors that can

be introduced by aliasing of fields passing through the lateral boundary, provided

that advection or wave propagation is the main cause of local changes in the solution.

Suppose a wave passes through the boundary with speed |cx|. If the LBC is updated

with frequency fLBC , then the minimum wavelength that can be fully sampled is

λLBC = 2|cx|/fLBC . Thus, the minimum spatial scale of aliasing errors introduced

while waves pass through the boundary increases with less frequent LBC updates.

If this minimum scale is longer than the smallest resolved wavelength on the LAM

domain, then LBC pulsing errors will contribute to constraints on error variance
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Figure 5.1: Example LAM simulation run on the small, center domain (1500 km2,
Fig. 3.2) showing effects of LBC update interval in an otherwise perfect simulation.
LBCs are given every three hours, and linearly interpolated at each step between
the updates. Gentle curves are streamlines from the control simulation that provides
the LBCs (12× 106 m2s−1 intervals). Vorticity errors (×10−5 s−1) are shaded while
(positive/negative) streamfunction errors are shown with (solid/dashed) contours at
±5× 104 m2s−1 intervals, or ∼0.01% (zero line omitted).
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Figure 5.1 (continued).
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growth (recall Sec. 2.4) while “sweeping” through the domain. LBC pulsing errors

are maximized at small scales due to the filtering effect, but may also form at larger

scales by slightly reducing the amplitude of all non-stationary waves passing through

the lateral boundary.

The Rossby wave phase relation (Eq. 3.12) can help quantify the temporal filter-

ing effect for the PPV model used in this study. Zonal phase speeds for waves passing

through the boundary are given by cx = U0−β/(k2+l2). Assuming zonal flow (l = 0),

k = 2π/Lx, and |cx| defined above, we find that λLBC = 2|U0−βL2
x/4π

2|/fLBC . Re-

sults obtained from this expression for selected nesting frequencies are shown in

Fig. 5.2. Constants U0 and β are specified in Table 3.2. There is a cusp in the

curves for external wavelengths of 5400 km where the Rossby waves are stationary

and do not suffer any filtering due to temporal interpolation of LBCs. All values of

λLBC are positive because the absolute value of cx was used.

The results in Fig. 5.2 show that for 1/2-hourly updated LBCs, all waves are sam-

pled well enough to have adequate spatial resolution on the LAM domain. When us-

ing hourly-updated LBCs, external wavelengths less than 2500 km move fast enough

to produce aliasing errors at scales up to about 100 km. Since less than 1% of the

total vorticity variance is represented by these scales (Fig. 3.8), LBC pulsing errors

remain negligible for this model if LBCs are updated at least once per hour. When

using 3-hourly LBC updates, external wavelengths that are shorter than 3000 km

generate aliasing errors at scales no smaller than 200 km while passing through the

lateral boundary. By applying the argument of section 2.4, we see that this loss of

spatial resolution in error growth caused by temporal filtering of LBCs contributes

to constraints on error variance growth and ensemble dispersion.

The vorticity errors in the example case (Fig. 5.1) produce approximately 5 to 10

anomaly couplets along each side of the domain. Since each side has a length of 1500

km, this result suggests that the vorticity errors in this example form at wavelengths

of about 150 to 300 km. This estimate is consistent with those indicated in Fig. 5.2

for 3-hourly LBC updates.

The LBC pulse error is seen on each of the four domains tested (not shown in

examples), but takes longer to propagate across the medium (3000 km2) and large

(6000 km2) domains. As expected, the pulse effect is less pronounced when using

hourly LBC updates, and more pronounced when using 6-hourly LBC updates. Note
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Figure 5.2: Minimum resolved spatial scale of aliasing error after temporal filtering
due to linear interpolation of LBCs between available updates. The abscissa marks
wavelengths on the external domain passing through the LBC with Rossby phase
speed |cx|. The ordinate shows minimum resolved wavelength λLBC = 2|cx|/fLBC
for different LBC nesting frequencies fLBC . The dotted horizontal line marks the
smallest 2∆x = 50 km wavelength resolved on the LAM domain.

that in practical applications the LBC pulse effect could be swamped by other errors

when the LBCs are given by discordant external analyses or forecasts. Furthermore,

note that the distribution of phase speeds varies with the complexity of the synoptic

setting. Therefore, the intensity at which LBC pulse errors are produced also varies

with time and location.

5.1.1.2 LBC “Sweeping”

In a widely recognized paper, Baumhefner and Perkey (1982) showed that propa-

gation of LBC errors toward the interior of the LAM domain can account for up

to 50% of the total forecast error. As features originating along the inflow bound-

ary pass through the LAM domain, they limit error variance growth and ensemble

dispersion by “sweeping-out” other features evolving within the LAM (Errico and

Baumhefner 1987; Vukicevic and Errico 1990). Whereas these previous studies em-

phasized error removal by “sweeping” of unperturbed LBCs, the emphasis here is
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on the propagation of LBC error into an otherwise perfect LAM simulation. Specif-

ically, the example case in this section focuses only on the sweeping, or throughput,

of errors generated by LBC “pulsing” from infrequent LBC updates. Boundary

sweeping by coarsely resolved LBCs is considered later in section 5.2.

The LBC sweeping effect is illustrated here by continuing the example LAM

simulation from the previous section to 96 hours on the large, medium, and small-

centered domains (Figs. 5.3 to 5.8). As before, the only source of error results

from temporal interpolation between LBC updates given every 3 or 6 hours. The

LBC error pulsing effect is not directly evident in these figures because results are

shown at 12-hour intervals, a time when the LBCs are perfect and errors vanish

within the boundary zone. The following discussion emphasizes the manner in which

LBC sweeping constrains error growth for each of the different domains and update

intervals.

The first example (Fig. 5.3) is run on the large (6000 km2) domain with 3-

hourly LBC updates. From 0 to 12 hours, LBC errors resulting from temporal

interpolation begin to appear along the upstream boundary. After 60 hours (panel

f), the LBC errors have propagated almost completely through the domain and have

also appeared to the north and south outside the main gradient flow. Streamfunction

errors develop as a trough passes through the upstream boundary between 36 and

48 hours. This error subsequently broadens to larger scales and moves further into

the domain.

The example simulation was also run on the large domain, but with 6-hourly

LBC updates (Fig. 5.4). As anticipated from the previous section, more intense

errors are generated for this case along the upstream boundary. The propagation

speed of the vorticity error has not changed, as it still takes about 60 hours for the

errors to sweep through the domain. However, streamfunction errors appear after

just 12 hours and evolve upscale while propagating through the domain.

LBC interpolation errors sweep through the medium domain (Fig. 5.5) in about

half the time needed to cross the large domain. The propagation speed of the errors

remains unchanged since the medium domain is half the size of the large domain.

However, once inside the LAM domain, the errors have little time to evolve and/or

amplify before exiting the downstream boundary. Hence, errors do not grow as

large as they could have on an unbounded domain. The same effect is noted for
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Figure 5.3: Example LAM simulation run on the large domain (6000 km2, see
Fig. 3.2) showing effects of LBC update interval in an otherwise perfect simulation.
LBCs are given every three hours, and linearly interpolated at each step between
the updates. Gentle curves are streamlines from the control simulation that provides
the LBCs (12× 106 m2s−1 intervals). Vorticity errors (×10−5 s−1) are shaded while
(positive/negative) streamfunction errors are shown with (solid/dashed) contours at
±2× 105 m2s−1 intervals, or ∼0.04% (zero line omitted).
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Figure 5.4: As in Fig. 5.3, except lateral boundary conditions are updated every six
hours.
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Figure 5.5: As in Fig. 5.3, except LAM simulation is run on the medium domain
(3000 km2).
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Figure 5.6: As in Fig. 5.3, except LAM simulation is run on the medium domain
(3000 km2) and LBCs are updated every six hours.
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Figure 5.7: As in Fig. 5.3, except LAM simulation is run on the small, centered
domain (1500 km2).
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Figure 5.8: As in Fig. 5.3, except LAM simulation is run on the small, center domain
(1500 km2) and LBCs are updated every six hours.
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streamfunction errors, which are small compared to those on the large domain. The

position of the large-scale wave pattern also appears to modulate the amplitude of

the errors through variations in the LBC error pulse as discussed above. The most

intense errors seem to form between the passage of ridges and troughs (compare

panels f and h).

Error growth is more vigorous on the medium domain when LBCs are given at

6-hourly intervals (Fig. 5.6). Vorticity errors completely sweep through the domain

by 36 hours, but a streamfunction error couplet has also formed whose spatial scale

nearly fills the extent of the domain. As the errors continue to propagate upscale,

they eventually reach a spatial scale limit determined physically by the extent of the

LAM domain itself. This is a secondary type of error growth constraint discussed

previously by Vukicevic and Errico (1990).

Similar effects are noted on the small, center domain for both 3-hourly (Fig. 5.7)

and 6-hourly (Fig. 5.8) LBC update intervals. LBC errors pass through the domain

within about 12 hours after they first appear, hence placing strong limits on error

growth. Furthermore, the lack of continuity between images emphasizes both the

rapid LBC error sweeping and the dependence of errors on the larger scale pattern.

5.1.2 Error Variance Spectra

Results from the previous example simulations showed that temporal interpolation

of LBCs initiates error growth by filtering small scale waves from fields passing

through the lateral boundaries (Sec. 5.1.1.1). Once LBC errors propagate into the

LAM domain, sweeping of new errors from the upstream boundary constrains the

amplitude of error growth. From this perspective, we expect that error variance

growth on LAM domains is less than it would be in the absence of LBC effects,

especially at small scales.

To document the loss of error variance at smaller scales due only to LBC in-

terpolation, 100 independent LAM simulations are conducted using configurations

shown in the previous examples. Initial and lateral boundary conditions are pro-

vided by direct subsets of the global simulations running with the same numerical

configuration as the LAM. The simulations are perfect except for the use of one-way

LBCs interpolated linearly in time between updates. Error variances are computed
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spectrally using Eq. (2.22). LBCs are the only source of model error for this config-

uration. The only available benchmark for this LAM configuration is the expected

value at saturation of 2.0 which applies equivalently to all wavelengths.

Results from LAM simulations with hourly updated LBCs are shown in Fig. 5.9.

Note that the error variances are all much smaller than the saturation value of

2.0. Error growth at large scales greater than about 750 km remains negligible

throughout the simulations. Results at smaller scales vary by domain size. On

the large domain (Fig. 5.9a), shortwave error variances continue to increase with

time without reaching a limiting value. However, on the medium and small-center

domains (Fig. 5.9b-c), error growth in the 50-250 km wavelength interval ceases

after about 48 and 24 hours, respectively. This effect is a manifestation of LBC

sweeping; errors propagate completely through the domain before they have time to

grow larger. In general, error variance growth behaves as expected for this case. The

hourly LBC update interval is sufficient to completely sample most waves passing

through the lateral boundary (see Figs. 3.8 and 5.2). Hence, nearly negligible errors

are introduced through LBC “pulsing”. Errors that do form are constrained well

below maximal growth by LBC “sweeping” on all but the large domain.

When LBCs are updated every 3 hours (Fig. 5.10), shortwave error variances on

the medium and small domains are approximately 10 to 30 times larger than the

previous hourly updated case. Error variances on the large grid have increased only

slightly. The same basic error growth characteristics are observed as in Fig. 5.9.

Specifically, small scale errors grow freely on the large domain but reach a limiting

value on the smaller domains due to LBC sweeping.

A new attribute appearing with 3-hourly updated LBCs is the dominant impact

of LBC error pulsing (Sec. 5.1.1.1). The oscillations in Fig. 5.10 are clearly attributed

to LBC error pulsing because they have a period of three hours. On the small

domains (panels c,d) oscillations from LBC pulsing account for about half of the

error variance magnitudes. Most verification studies exclude the boundary zone

from calculations to avoid these oscillations. We retain these points to enhance the

number of data points in our sample, but also realize the effect is real and should be

included in the statistics. For readers wishing to ignore the statistical oscillation, an

error growth curve may be traced through the local minima as a good approximation

of scores that would be obtained on a grid exclusive of the boundary zone.
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Figure 5.9: Normalized vorticity error variance (Eq. 2.22) for specific wavelengths, or
accumulated over 250 km wavelength bands. Results are averaged over results from
100 independent LAM simulations that are perfect except for the use of one-way,
hourly updated LBCs.
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Figure 5.10: As in Fig. 5.9, including line legends, except LBCs are updated once
every three hours.
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Figure 5.11: As in Fig. 5.9, including line legends, except LBCs are updated once
every six hours.
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When the LBC updates are provided every 6 hours (Fig. 5.11), error variances

increase even more in response to stronger LBC pulsing. In particular, note that

error variances have grown in all wavelengths up to about 1000 km. As larger

LBC errors propagate into the domain interior, they modify the LAM solution, and

subsequently lead to even greater LBC error pulses. All other attributes of error

growth for this case are qualitatively the same as described above for case having

3-hourly LBC updates.

Statistical results presented in this section have demonstrated that linear inter-

polation of one-way LBCs between available updates generates error growth in an

otherwise perfect simulation. The amplitude and spatial scale of the error growth

increases with longer update intervals. Errors grow freely on the large domain, but

are restricted by LBC sweeping on the medium and small domains.

5.1.3 Ensemble Error Variance Spectra

Results from the previous section considered error growth caused solely by interpola-

tion in time between LBC updates. Now we consider the impact of LBC interpolation

on error growth in LAM ensemble simulations having perturbed initial conditions.

Statistics are averaged over 100 independent 10-member ensemble simulations. Ini-

tial conditions and LBCs for individual LAM ensemble members are obtained as

direct subsets of the corresponding global ensemble members (Sec. 4.1.1). In the

current configuration, both global and LAM ensemble simulations are run with the

identical numerical configurations. The only sources of error growth are initial con-

dition perturbations and the use of temporally interpolated one-way LBCs. The

impact of LBCs on the LAM ensemble simulations is determined by comparing er-

ror variance spectra directly to those obtained from the laterally unbounded global

simulations.

When LBCs are updated hourly (Fig. 5.12), error variance spectra for the LAM

ensembles are nearly the same as those from global ensembles at wavelengths greater

than about 500km. At smaller scales, error variances saturate at values less than

those from the global ensembles. On the medium and small-centered domains in

particular (panels b,c), error variances in the 50-250 km wavelength band reach a

saturation level of just over 1.75 after 24 hours, or about 10% smaller than those
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in the global ensembles. We saw previously in Fig. 5.9 that error sweeping limits

the error growth at these scales; the effect is also seen here in the LAM ensembles.

Specifically, the spatial filtering effect caused by temporal interpolation has removed

small scale perturbations from the LBCs that would otherwise have continued to

amplify in the global simulations. Aside from these relatively minor impacts at

small scales, the use of hourly updated LBCs does not induce major changes in the

error variance characteristics of the LAM ensemble simulations.

Given 3-hourly LBC updates (Fig. 5.13), further losses of error variance occur

at small scales due to ongoing LBC sweeping of spatially filtered inflow. Saturation

values in the shortest wavelength band range from about 1.5 on the small-centered

grid to about 1.75 on the large domain. Thus, spatial filtering from 3-hourly LBC

interpolation reduces maximum shortwave error variance growth by about 10 to

25%. Smaller reductions are seen in spatial scales up to around 750 km. The

LBC error pulse is also evident, although the magnitude of oscillations accounts for

at most about 5% of the error variance values in the 50-250 km wavelength band

at saturation. Hence, initial condition perturbations are the dominant source of

error growth for these ensemble simulations. A new attribute also appears in this

configuration wherein the LAM ensemble error variances exceed those of the global

ensembles during the first 12 hours of the simulations. A probable explanation for

this effect is the stronger impact of the LBC error pulse.

When LBCs are updated every 6 hours (Fig. 5.14), the error variance charac-

teristics appear almost the same as for the 3-hourly case. The saturation values

in the 50-250 km wavelength band are slightly lower than in the previous 3-hourly

updated case due to LBC sweeping. The initial LBC error pulse generates strong

error variances during the first 12-18 hours, more than doubling values from the

global ensembles.
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Figure 5.13: As in Fig. 5.12, except LBCs are updated once every three hours.
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Figure 5.14: As in Fig. 5.12, except LBCs are updated once every six hours.
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5.1.4 Ensemble Summary Statistics

Equation (2.11) provides a relation between ensemble dispersion and the error vari-

ance spectra presented above. Repeating again for convenience,

D2 = σ2 +
1

N

N∑
i=1

(〈fi〉 − 〈a〉)2 −
∥∥f − a

∥∥2
.

The last two terms in this expression are spatial and ensemble bias terms that are not

easily decomposed to show their contributions to D2 at different scales. To attribute

changes in error variance spectra (σ2) to ensemble dispersion at specific wavelengths,

we must account for differences in the bias terms obtained from global and LAM

ensemble simulations. If these terms remain nearly unchanged under different model

configurations, then we can attribute losses in dispersion directly to constraints on

error variance growth at particular scales.

As discussed previously (page 57), removal of linear trends on the LAM domain

introduces additional variance at small scales. Thus, as suggested by Eq. 2.10, σ2 is

not a fair approximation for S2 even when the spatial bias is small on limited-area

domains. However, the variance added through detrending does not affect the spatial

bias or ensemble mean error terms. Therefore, the relationship between changes in

ensemble dispersion and in total error variance that are attributable to LBC impacts

is not altered by the detrending procedures.

For the LAM ensemble case having hourly updated LBCs (Fig. 5.15), the loss of

error variance at small scales yields only minimal reductions in the ensemble sum-

mary statistics when compared to those from the global simulations. Indeed, the

reductions are trivial except for ensemble mean-square error (S2), total error vari-

ance (σ2), and ensemble dispersion (D2) on the medium and small-centered domains

(panels b,c). The spatial bias and ensemble mean error terms are nearly identical in

both LAM and global ensemble simulations. These results show that LAM ensem-

ble dispersion is minimally impacted by hourly updated LBCs since waves passing

through the lateral boundary are sampled reasonably well. This conclusion is con-

sistent with results shown above in Fig. 5.12 where the small-scale error variances

decreased only by about 10% for LAM ensemble simulations.
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Figure 5.16: As in Fig. 5.15, except LBCs are updated once every three hours.
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Figure 5.17: As in Fig. 5.15, except LBCs are updated once every six hours.
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Figure 5.16 shows that LAM ensemble dispersion is more strongly affected when

LBCs are updated every 3 hours. The spatial bias again remains nearly identical

for both LAM and global ensembles. The ensemble mean error increases slightly

for the first 36 hours of simulations on the medium and small-centered domains

(panels b,c), probably in response to the LBC error pulse between the first few LBC

updates. This increase in ensemble mean error also yields an increase in σ2 and S2.

However, LAM ensemble dispersion remains less than global ensemble dispersion

because the increase in σ2 is negated by the increase in ensemble mean error (see

Eq. 2.11). LBC error sweeping of filtered scales begins to reduce ensemble dispersion

almost immediately by constraining error variance growth at small scales. The LBC

error pulse seen in σ2 also affects ensemble dispersion, although the magnitude of

the oscillation is small compared to the overall loss of dispersion.

Given 6-hourly LBC updates (Fig. 5.17), the effect is about the same as above.

One conclusion that might be drawn from this statement is that ensemble dispersion

at saturation will be about the same if LAM ensembles are given LBCs every 3 hours

or every 6 hours. However, the use of less frequent LBC updates does increase the

ensemble mean errors. But again, these errors do not affect dispersion until LBC

sweeping acts to constrain error variance growth at small scales.

Results presented in this section show that loss of error variance at small scales

due to LBC interpolation is responsible for a loss of LAM ensemble dispersion when

using LBC update intervals of 3-hours or longer. One might have expected that the

loss of error variance at small scales identified above is not important because most

of the variance in atmospheric flows is contained at large scales. Contrary to this

expectation, the summary statistics presented here show that the loss of of error

variance at small scales is enough to produce a decline in the total error variance

(σ2), and hence, the ensemble mean square error (S2) and ensemble dispersion (D2).

5.2 Impact of Spatial Resolution in LBC

The previous section highlighted the loss of error variance and LAM ensemble disper-

sion caused exclusively by linear interpolation between LBC updates. The analysis

is repeated presently, but this time with LAM configurations designed to isolate the

impact of coarsely resolved LBCs.
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Coarsely resolved LBC fields are generated by applying a low-pass spatial filter

(see Appendix B) to fields from global model simulations running at the same res-

olution as the LAM. The low-pass filter removes completely all wavelengths shorter

than 150 km while perfectly retaining the amplitudes of wavelengths longer than

450 km. The filtering process preserves the accuracy of large scale motions while

removing those which would not be present on a grid having three times less spatial

resolution as the LAM grid. All simulations in this section are run with hourly LBC

updates to minimize the interpolation error documented above. Test runs using

more frequently updated LBCs did not change the results presented below. This

analysis procedure is similar to that used previously by Laprise et al. (2000) and

De Eĺıa and Laprise (2002).

5.2.1 Example of LBC “Sweeping”

The example in section 5.1.1.1 (Fig. 5.1) showed how interpolation of LBCs between

3-hourly updates introduced LBC error through a pulsing effect. That same case

is run again, but this time using the configuration described above with low-pass

filtered, hourly-updated LBCs.

Error growth during the first 1.5 hours of the new example simulation (Fig. 5.18)

is much like that of the previous example (Fig. 5.1). Errors are introduced within the

peripheral boundary zone because of the lack of shortwave features in the LBC. The

errors continue propagating inward without interruption, rather than impulsively as

before. Indeed, the LBC error pulse seen previously is not defined for the present

configuration because the low-pass filtered LBC always contains error relative to the

fully resolved control simulation.

The rate at which errors propagate into the LAM domain is about the same as the

previous case (compare panels f, j, and r in both figures). However, vorticity errors

are less intense for this example and streamfunction errors are barely discernible.

Whereas temporal interpolation of LBCs affects the amplitudes of all nonstationary

wavelengths, the low-pass filtered LBCs are perfect at wavelengths greater than 450

km. This explains the difference in intensity of the errors since fewer wavelengths

are affected by spatial filtering than by temporal interpolation.
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Figure 5.18: Example LAM simulation run on the small, center domain (1500 km2,
Fig. 3.2) configured with hourly updated LBCs that are low-pass filtered to remove
spatial scales smaller than 150 km. Gentle curves are streamlines from the control
simulation run on the full global domain (12× 106 m2s−1 intervals). Vorticity errors
(×10−5 s−1) are shaded while (positive/negative) streamfunction errors are shown
with (solid/dashed) contours at ±5 × 104 m2s−1 intervals, or ∼0.01% (zero line
omitted).
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Figure 5.18 (continued).
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Although less intense, the vorticity errors have about the same spatial scale as

those introduced in the previous example configured with 3-hourly updated LBCs.

This result is consistent with the argument that temporal interpolation between

LBC updates acts to filter small scale features from the inflow, thus yielding error

growth at scales greater than the minimum resolved wavelength (e.g., Fig. 5.2).

5.2.2 Error Variance Spectra

The impact of coarsely resolved LBCs at specific wavelengths is documented using

error variance spectra as was done previously in section 5.1.2. Specifically, 100

independent simulations are run with hourly-updated LBCs obtained from subsets

of global model simulations having the same numerical configuration as the LAM.

In configurations described below, the initial and lateral boundary conditions are

optionally low-pass filtered to remove wavelengths less than 150 km. The only

source of error growth in these simulations is the lack of small scale features in the

initial or lateral boundary conditions and the use of “one-way” LBCs.

The first LAM configuration (Fig. 5.19) has perfect LBCs and low-pass filtered

initial conditions. This configuration corresponds to the unrealistic situation where

small scale details in the initial conditions are unknown but those in the LBCs

are known perfectly at future times. Error variances obtained on the large domain

decline for the first 24 hours in the 50-250 km wavelength band before growing

steadily along with those at larger scales. In spite of perfect LBCs, the initial error

has sufficient time to propagate toward the interior of the large domain and grow

upscale before it is swept through the downstream boundary. In contrast, initial

errors caused by inadequate spatial resolution are swept through the small and

medium domains by perfect LBCs within about 24- and 48-hours, respectively. The

variance spectra do not decline to zero because of the slight error introduced by

hourly updated LBCs (e.g., Fig. 5.9).

The second LAM configuration (Fig. 5.20) has perfect initial conditions but low-

pass filtered LBCs. This configuration is somewhat more realistic since LBCs are

usually provided on grids having less spatial resolution than the dependent LAM

grid. Error variances on the large domain (panel a) increase monotonically at all

scales as errors induced by the filtered LBCs propagate inward and amplify with
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Figure 5.19: Normalized vorticity error variance (Eq. 2.22) obtained as an average
over 100 independent LAM simulations. Hourly-updated LBCs are provided by a
direct subset of the global fields. Initial conditions are also given by the global
simulation, but low-pass filtered to remove wavelengths smaller than 150 km.
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Figure 5.20: As in Fig. 5.19, including line labels, except the initial condition is per-
fect and the LBCs are low-pass filtered to remove wavelengths smaller than 150 km.
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Figure 5.21: As in Fig. 5.19, including line labels, except both initial and lat-
eral boundary conditions are low-pass filtered to remove wavelengths smaller than
150 km.
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time. Although the low-pass filter does not affect wavelengths longer than 450 km,

variance spectra amplify at larger scales because the LBC errors have adequate time

to grow upscale while passing through the large domain. On the medium and small

domains, errors appear immediately and grow toward saturation at wavelengths

less than 500 km. Error variances in the 50-250 km wavelength band saturate at

values from about 0.65 to 0.8. These values are more than 60% smaller than the

expected value of 2. This behavior is similar with that seen previously in Figs. 5.10

and 5.11 — although without the pulsing effect — for error growth due to 3- or

6-hour temporal interpolation of LBCs. In drawing this comparison, note that the

saturation values on the small and medium domains are less than those for the cases

having temporally interpolated LBCs. The smaller errors were seen in the example

case above (Fig. 5.18) and may be attributed to the sweeping through of LBCs that

are perfect at scales greater than 450 km.

The third LAM configuration (Fig. 5.21) combines the previous two, wherein

both the initial and lateral boundary conditions are low-pass filtered to remove

small-scale features. This configuration is analogous to situations where initial and

lateral boundary conditions for a LAM forecast are obtained by interpolating fields

from a lower resolution global model forecast. The results exhibit characteristics

featured in both the previous configurations. Specifically, error variances first jump

sharply, then grow toward saturation at values less than 1 on the smaller domains.

On the large grid, error variance spectra in the 50-250 km wavelength band decline

slightly in the first 24 hours as the flow organizes to smaller scales, but then grows

without limitation along with other scales.

Error growth behaviors presented for the experiments in this section are con-

sistent with those from previous studies considering the impact of LBCs on error

growth in LAMs (e.g. Vukicevic and Errico 1990; Laprise et al. 2000; De Eĺıa and

Laprise 2002). Specifically, coarsely resolved LBCs emulated through low-pass fil-

tering constrain the saturation value of error growth by removing variance at small

scales while sweeping through the LAM domain. The error growth constraints im-

posed by coarsely resolved LBCs are strongest on smaller domains and overwhelm

those due to coarsely resolved initial conditions within about 24- to 48-hours.
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5.2.3 Ensemble Error Variance Spectra

One-hundred independent 10-member ensemble simulations were run using two of

the configurations above. One configuration has low-pass filtered initial conditions

while the other does not. Both have hourly updated, low-pass filtered LBCs. Initial

conditions and LBCs for individual LAM ensemble members are obtained as direct

subsets of the corresponding global ensemble members (Sec. 4.1.1), with filtering

applied where specified. Error growth in the ensemble occurs due to initial condition

perturbations, use of “one-way” LBCs, and lack of small scales in filtered initial or

lateral boundary conditions. Comparison of error variance spectra to those from the

global ensemble simulations helps to measure the impact of the coarsely resolved

LBCs as shown in section 5.1.3.

When simulations are configured with unfiltered initial conditions and low-pass

filtered LBCs (Fig. 5.22), error variances in the 50-250 km wavelength band grow

rapidly and reach saturation after about 24 to 36 hours. The shortwave error vari-

ances saturate at values that are about 20% smaller than those from the global

ensembles on the large grid and about 40-50% smaller on the medium and small

grids. Furthermore, the error variances are constrained at larger scales up to about

750 km. It is clear from these results that the absence of small scales in the LBCs

places severe constraints on the maximum values of variance spectra at small scales.

Indeed, the constraint is stronger than that caused by the filtering effect of interpo-

lating between LBC updates (Fig. 5.13).

It is interesting that the spatial filtering of LBCs imposes stronger constraints

on error growth even though fewer wavelengths are removed compared to those lost

by LBC interpolation. Both LBC effects limit error growth in the ensembles by

sweeping the initial perturbations from the LAM domain at small scales. However,

the LBC errors caused by temporal interpolation appear strong enough to partially

restore error variance growth due to the artificial effects of aliasing errors in place

of the natural growth of initial condition uncertainties. From this perspective, tem-

poral interpolation between LBC updates has the greater impact on ensemble error

variance, if only because natural perturbation error growth is supplanted by artificial

96



0

0.5

1

1.5

2

η∼ a(k
,N

=
10

)

(a) Large Domain

0

0.5

1

1.5

2

(b) Medium Domain

0 24 48 72 96 120 144 168
Time (hours)

0

0.5

1

1.5

2

η∼ a(k
,N

=
10

)

(c) Small Domain, Centered

0 24 48 72 96 120 144 168
Time (hours)

0

0.5

1

1.5

2

(d) Small Domain, South

[50,250]

(250,500]
(500,750]

(750,1000] 1200
1500
2000

3000
6000

1500 1500

1500

3000

[50,250]

[50,250][50,250]

(250,500]

(250,500]
(500,750]

1000

750

750
(250,500]

Figure 5.22: Normalized vorticity error variance (Eq. 2.22), averaged over 100 in-
dependent 10-member LAM ensemble simulations having hourly-updated, low-pass
filtered LBCs. Line labels (km) indicate wavelengths(s) contributing to error vari-
ances. Dashed reference lines are reproduced from Fig. 4.4, showing error variances
from subsets of the global ensemble simulations.
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Figure 5.23: As in Fig. 5.22, except both initial and lateral boundary conditions are
low-pass filtered.
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LBC error growth. Hence, any attempt to construct dynamically conditioned ini-

tial perturbations for LAM ensembles could be mooted by the sweeping of artificial

errors associated with temporal interpolation of LBCs.

Similar results are obtained when both initial conditions and LBCs are low-

pass filtered (Fig. 5.23). The primary difference for this configuration is that the

shortwave error variance spectra are already near saturation at the start of the

simulations. There is some reduction of variance in the 50-250 km wavelength band

during the first 12 hours as wave structures redevelop downscale. However, the

perturbation error growth and LBC sweeping effects take over quickly and bring

the error variances to the same saturation limits seen above with unfiltered initial

conditions.

5.2.4 Ensemble Summary Statistics

The same set of ensemble summary statistics are presented as in section 5.1.4 to

quantify the impact of error variance constraints on LAM ensemble dispersion. Re-

call that if the spatial bias and ensemble mean error terms remain unchanged between

the global and LAM ensemble simulations, then changes in dispersion are directly

linked to the changes in the variance spectra.

Consider summary statistics from the configuration having fully resolved initial

conditions and low-pass filtered LBCs from the global ensemble (Fig. 5.24). The

LAM ensemble dispersion is less than that of the global ensembles on all domains.

The loss of dispersion is most notable on the medium and small domains, where it

is reduced by about 10 to 40%. Since the bias terms remain nearly unchanged, the

loss of dispersion is attributed directly to the loss of error variance at small scales.

Hence, the use of coarsely resolved LBCs imposes a similar, but slightly stronger

constraint on LAM ensemble dispersion as compared to constraints imposed by the

use of 3- or 6-hourly updated LBCs (compare to Fig. 5.16).

Similar results are obtained for the configuration having low-pass filtered initial

conditions and LBCs from the global ensemble (Fig. 5.25). In this configuration, the

coarsely resolved initial fields on all LAM domains produce an increase in S2, σ2,

and the ensemble mean error for the first 24 hours of the simulations. As discussed

previously (Sec. 5.1.4), LAM ensemble dispersion remains less than global ensemble
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Figure 5.25: As in Fig. 5.24, except initial conditions are also low-pass filtered to
remove wavelengths less than 150 km.
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dispersion over this period because the increase in σ2 is negated by the increase in

ensemble mean error (see Eq. 2.11). Note that after about 24-36 hours, the ensemble

statistics are exactly the same as in the previous case (Fig. 5.24). This result has

an interesting implication; initializing LAM ensembles with high resolution initial

conditions is not enough to reduce the constraints imposed by LBCs on error variance

growth or ensemble dispersion.

5.3 Combined LBC effects

LAM configurations run in the previous two sections were designed specifically to

isolate the impacts of temporal interpolation between LBC updates and coarsely

resolved LBCs. The combined impact of these two individual effects is now evalu-

ated using model configurations having low-pass filtered initial and lateral boundary

conditions updated at 3-hour intervals. Simulations were also run using low-pass

filtered, 6-hourly updated LBCs. Statistics from these simulations are not shown

because they are nearly the same as those from simulations having 3-hourly updated

LBCs.

5.3.1 Ensemble Error Variance Spectra

Results shown in Figs. 5.26 and 5.27 having low-pass filtered, 3-hourly updated LBCs

are nearly the same as in Figs. 5.22 and 5.23. Specifically, error variance spectra

on the medium and small domains are reduced by up to 50% at small scales due

to constraints imposed by sweeping of coarsely resolved exterior fields through the

domain. This similarity of results supports the argument that inadequate spatial

resolution in LBCs is the dominant effect contributing to restraints on error growth

in LAMs.

There are two unique attributes in the error variance spectra resulting from the

combined spatial and temporal filtering of LBCs. First, the LBC error pulse errors

associated with temporal interpolation are absent from the 50-250 km wavelength

band. This is not surprising since wavelengths less than 150 km have been removed

from the external fields by the low-pass spatial filter. The second attribute is that

the LBC filtering has constrained error variance growth into longer wavelengths up
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Figure 5.27: As in Fig. 5.26, except both initial and lateral boundary conditions are
low-pass filtered.
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to around 1000 km. This effect is most likely associated with temporal interpolation

of LBCs because it affects all non-stationary wavelengths passing through the lateral

boundary.

5.3.2 Ensemble Summary Statistics

The ensemble summary statistics for LAM configurations having combined LBC ef-

fects are not shown because they appear almost identical to those shown in Figs. 5.24

and 5.25. As before, the effects of LBC filtering remove small scale perturbations

from the LBCs. The scale-deficient fields sweep through the LAM domain and cause

a reduction of ensemble dispersion relative to that measured in global ensembles.

5.3.3 Example of LAM ensemble dispersion

An example of global ensemble dispersion was shown for one example case in Fig. 4.3.

That same case is run again, but now as a LAM ensemble configured with 3-hourly

updated, low-pass filtered LBCs run on the medium domain (see Fig. 3.2). As in all

previous LAM ensembles, the initial conditions and LBCs for individual members

are obtained as direct subsets of the corresponding global ensemble members.

To visualize the documented loss of ensemble dispersion due to LBC filtering

effects, the following loss ratio is defined at each grid point p in the domain:

1−
d2
p (global)

d2
p (LAM)

(5.1)

where d2
p is the local dispersion defined by Eq. 4.1. If this loss ratio is negative, then

the LAM ensemble has less dispersion than the global ensemble.

The example LAM ensemble and its dispersion loss ratio is shown in Fig. 5.28.

The “spaghetti” contours and streamfunction dispersion appear much the same as

in the appropriate portion of the global ensemble (Fig. 4.3). At the initial time,

(panel a) regions of increased and decreased vorticity dispersion relative to the global

ensemble appear evenly distributed and similar in magnitude since the loss ratio is

near zero everywhere. After 12 hours have elapsed (panel b), regions showing strong

reductions of dispersion appear along the upstream side of the domain. At the same
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time, the dispersion loss ratio remains evenly distributed and near zero within the

downstream portion of the domain. The reductions near the upstream boundary

is obviously attributed to the spatial and temporal filtering effects associated with

the LBCs. The area impacted by loss of dispersion grow with time as LBC errors

sweep through the domain from west to east. Locally, the LAM ensemble dispersion

loss ratio shows reductions of a factor of eight or larger. When averaged across

the domain, the reduction of LAM ensemble dispersion shown by this example is

consistent with the ensemble summary statistics shown above (e.g., Fig. 5.24).

5.4 Chapter Summary

The LAM simulations presented in this chapter were designed specifically to isolate

the effects of infrequently updated or coarsely resolved LBCs. A simplified model

configuration was used so that the accuracy of LAM simulations could be measured

relative to a model-generated truth in the absence of dynamical or numerical errors.

Errors were evaluated using a variety of statistics averaged over 100 independent

cases. Specifically, the scale dependence of LBC effects was measured in terms of

error variance spectra. A new expression was developed and applied to show for the

first time that constraints on LAM ensemble dispersion are controlled by constraints

on error variance growth at small scales.

Example simulations presented in Sec. 5.1.1 showed that linear interpolation in

time between available LBC updates generates error growth through a mechanism

dubbed LBC error “pulsing”. Once LBC errors form within the peripheral boundary

zone, they propagate, or “sweep” completely through the LAM domain over a time

period determined by domain size and advection speed. Temporal interpolation

acts as a spatial filter, removing completely all wavelengths passing through the

boundary between LBC updates. Rapidly moving waves that are not adequately

sampled between LBC updates are aliased to larger scales, therein placing a lower

bound on the minimum scale at which LBC errors are introduced. Interpolation may

also reduce the amplitude of any nonstationary wave moving through the lateral

boundary.

Statistical results showed that hourly-updated LBCs produced minimal error

growth on the medium and small domains. In contrast, short wavelength (50-250 km)
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Figure 5.28: Example case run on the medium (3000 km2) domain showing reduction
of LAM ensemble dispersion (Eq. 5.1). A “spaghetti” plot drawn with solid black
lines shows the (516,540,564)×106 m2s−1 streamlines from each of the 10 LAM en-
semble members. Reduction of vorticity dispersion is shaded, while streamfunction
dispersion is shown with solid blue contours at 2× 1012 m4s−2 intervals.
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errors were 10 to 30 times larger when using 3-hourly updated LBCs. This result

is consistent with the fact that most of the vorticity variance in the PPV model is

represented by waves having periods of 3 hours or longer. The saturation values

of error variances increased with longer LBC update intervals. This result shows

that an increasing portion of the total error in these simulations is purely an artifact

of using “one-way” LBCs interpolated in time. LBC error growth on the large

(6000 km2) domain was unrestrained, suggesting that errors were free to grow upscale

before being swept through the domain as on the smaller domains.

Experiments in Sec. 5.2 showing the effects of coarsely resolved LBCs are not

new. As summarized in section 1.2.3, Baumhefner and Perkey (1982) and Anthes

et al. (1985) were among the first to recognize the error growth constraints imposed

by LBCs. Errico and Baumhefner (1987) identified the LBC “sweeping” effect,

while Vukicevic and Paegle (1989) and Vukicevic and Errico (1990) used a spectral

analysis of the error fields to show that the LBC constraint is most severe at small

scales. Most recently, Laprise et al. (2000) and De Eĺıa and Laprise (2002) conducted

simplified LAM experiments similar to those used here and showed that error growth

constraints are dominated by LBC errors in an otherwise perfect model configuration.

The results shown here in Figs 5.12, 5.22, and 5.23 are consistent with those obtained

by Laprise et al. (2000) and De Eĺıa and Laprise (2002) using a full primitive equation

LAM. Therefore, error growth behaviors established for other aspects of this work

should generalize at least qualitatively to more complex model systems.

The example having low-pass filtered LBCs (Fig. 5.18) had smaller errors than

the example run using 3-hourly updated LBCs (Fig. 5.1). Statistical results showed

that coarsely resolved LBCs have a stronger impact on error variance growth due

to the loss of initial perturbations growing naturally at small scales. Spatial biases

were shown to be negligible, so the total error variance is a good approximation

for mean square error. Thus, smaller errors yield less error variance. Although

coarsely resolved LBCs yield stronger constraints on error variance growth, LBC

interpolation introduces a greater component of artificial error that may sweep out

dynamically consistent initial perturbations.

A new expression was developed for this work that provides a relationship be-

tween ensemble dispersion, error variance spectra, ensemble mean error, and spatial

bias. It was shown that the ensemble mean error and spatial biases in the LAM
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ensemble simulations are nearly the same as those from the global ensemble simula-

tions. Therefore, the loss of error variance at small scales is directly responsible for

the constraints on LAM ensemble dispersion.

The impact of coarsely resolved LBCs or temporal interpolation of LBCs on

error growth in LAM simulations is quite similar. Both act to remove small scale

features from the external fields passing through the lateral boundary. In the case of

ensembles, the LBC effects filter out perturbations growing at small scales and thus

acting to constrain ensemble dispersion. These results confirm the hypothesis based

on the error variance budget outlined in Sec. 2.4. Of the two effects considered here,

the impact of coarsely resolved LBCs was shown to have a stronger impact than

temporal interpolation. The simplified model approach used here removes other

factors from consideration that could contribute toward total error. Nonetheless, the

error growth behaviors shown here are certainly present to some extent in current

atmospheric models. The unresolved question is how large is the impact relative to

other modeling and LBC data deficiencies.
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Chapter 6

Lateral Boundary Perturbations

Statistical results from the previous chapter showed that spatial and temporal fil-

tering effects of “one-way” LBCs imposed constraints on error variance growth and

LAM ensemble dispersion. In this chapter, a method is proposed to apply small-

scale LBC perturbations at every time step of the LAM simulation. As designed, the

perturbations are shown to help restore the small-scale error variance and ensemble

dispersion lost due to the LBC constraints.

6.1 LBC Perturbations

6.1.1 Overview of Method

The basic motivation for developing LBC perturbations is the loss of small scale error

growth due to the LBC filtering and sweeping effects documented in the previous

chapter. It is impossible to construct an efficacious LAM ensemble system unless

these constraints are relaxed. To this end, LBC perturbations are designed to counter

these effects by creating a statistically consistent source of error growth along the

lateral boundaries. The LBC perturbations continually propagate into the domain

and replace small-scale errors that are otherwise swept away through the downstream

boundary.

Application of LBC perturbations has not previously been attempted, and is dif-

ferent from using an ensemble of unique LBCs provided by individual members of an

external model ensemble. Indeed, all the LAM ensemble configurations used in the

previous chapter used LBCs given by the corresponding global ensemble members.
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Results showed that providing an ensemble of LBCs is not enough to overcome the

LBC constraint on error growth at small scales because the LBCs were still coarsely

resolved or temporally interpolated between update intervals.

While details are given below, the general procedure for implementing LBC per-

turbations at each time step is as follows. A two-dimensional perturbation field is

generated on the LAM grid using inverse Fourier transforms. The perturbation field

has zero mean and is periodic in both x- and y-directions. The LBC perturbation

field is initialized by assigning random phase angles to each wavenumber. Ampli-

tudes of the perturbations are determined by the loss of error variance at specific

wavelengths due to LBC effects. Once initialized, the field is translated at the Rossby

phase speed for each wavenumber so that perturbations passing through the lateral

boundary remain coherent in both space and time. Perturbation amplitudes increase

with time based on the amount of error variance needed to restore the portion lost

due to LBC sweeping. After the perturbation field is constructed, it is added to

the spatially and temporally interpolated LBC field given by subsets of an external

model simulation. The perturbed LBC field is then blended with the LAM solution

across a wave absorbing zone at each time step, as described in Sec. 3.2.4.

6.1.2 Implementation

6.1.2.1 Phase Angle Form of Fourier Series

The total biased error variance is computed using one-dimensional spectra as dis-

cussed in Sec. 2.1.3 and Appendix B. These error variance calculations retain only

wave amplitudes for isotropic wavenumbers and are averaged over many indepen-

dent cases. The phase angle form of the Fourier series (e.g. Walker 1988) is most

compatible with this statistical framework and and is used to synthesize random

fields having pre-determined error variance spectra.

Consider the Fourier series expansion of a one-dimensional periodic function

f(x) = f(x+ L):

f(x) = a0 +
∞∑
k=1

[ak cos(2πkx/L) + bk sin(2πkx/L)] , (6.1)
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where ak and bk are real amplitude coefficients. The phase-angle form of the Fourier

series is obtained by letting ak = ck cos(−θk) and bk = ck sin(−θk), where ck =√
a2
k + b2

k and θk is the phase angle for wavenumber k. Apply these definitions for

ak and bk in (6.1) and manipulate so that

f(x) = a0 +
∞∑
k=1

[ck cos(θk) cos(2πkx/L)− ck sin(θk) sin(2πkx/L)]

= a0 +
∞∑
k=1

[ck cos(2πkx/L+ θk)]

= a0 +
1

2

∞∑
k=1

[
cke

i(2πkx/L+θk) + cke
−i(2πkx/L+θk)

]
= a0 +

1

2

∞∑
k=1

[
cke

iθkei(2πkx/L) + cke
−iθke−i(2πkx/L)

]
. (6.2)

Equation (6.2) shows that a periodic function can be synthesized simply by spec-

ifying a real amplitude coefficient (ck) and phase angle (θk) for each wavenumber k.

This form is useful because the one-dimensional variance spectra computed previ-

ously have retained only the magnitudes of complex Fourier coefficients. The phase

angles remain unknown but may be specified randomly.

Fast Fourier transform (FFT) algorithms use the complex form of the Fourier

series. To convert (6.2) to the more useful complex form, introduce complex Fourier

coefficients

F (0) = a0, F (k) =
1

2
cke

iθk =
1

2
(ak − ibk), F (−k) =

1

2
cke
−iθk =

1

2
(ak + ibk).

(6.3)

Apply these coefficients in (6.2) so that

f(x) = F (0) +
∞∑
k=1

[
F (k)e2πikx/L + F (−k)e−2πikx/L

]
=

∞∑
k=0

F (k)e2πikx/L +
−∞∑
k=−1

F (k)e2πikx/L

=
∞∑

k=−∞

F (k)e2πikx/L. (6.4)
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The extension of Eqs. (6.1) to (6.4) into their two-dimensional forms is not diffi-

cult but involves many additional terms. While details of the derivation are omitted

(see Walker 1988), the complex form of the Fourier series for a two-dimensional

periodic field f(x, y) = f(x+ Lx, y + Ly) is

f(x, y) =
∞∑

k=−∞

∞∑
l=−∞

F (k, l) exp[2πi(kx/Lx + ly/Ly)]. (6.5)

The discrete Fourier series used for the calculations is

f(x, y) '
Nx/2∑
k=

−Nx/2+1

Ny/2∑
l=

−Ny/2+1

F (k, l) exp[2πi(kx/Lx + ly/Ly)], (6.6)

where x = (k +Nx/2 + 1)∆x and y = (l +Ny/2 + 1)∆y. Even integers Nx and Ny

denote the number of grid points along each dimension of the domain. In practice,

Fourier series approximation of real fields makes use of complex conjugate symme-

tries so that the negative l wavenumbers are omitted (Press et al. 1996).

Equation (6.6) can be used to synthesize a field having pre-determined variance

spectra |F ′(k, l)|2 and random phase angles θk,l by specifying

F (k, l) =

√
|F ′(k, l)|2

2
(cos θk,l + i sin θk,l), (6.7)

except the factor of one-half is omitted for k = 0 and k = Nx/2. This factor

is required since error variance spectra obtained previously using FFT algorithms

were multiplied by two because of the complex conjugate symmetry in transforms

of real data.

6.1.2.2 Amplitude of Perturbations

Amplitudes of the LBC perturbations are determined by the loss of error variance

at specific wavelengths due to LBC effects. Thus, if σ2
κ denotes the one-dimensional
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error variance spectra obtained from previous global and LAM simulations (see Ap-

pendix B and Sec. 2.1.3), amplitudes of the perturbation spectra are determined

using (6.7) with

|F ′(k, l)|2 = σ2
κ(global)− σ2

κ(LAM), (6.8)

where κ =
√
k2 + l2. The perturbation spectra are distributed equally among

all the wavenumber pairs (k, l) contained within each annular wavenumber ring

ℵ(κ) ± (1/2)δκ, where ℵ denotes nearest integer. Variances are set to zero for

wavenumber pairs where κ exceeds that of the smallest resolved wavelength since

these were not accumulated in the one-dimensional spectra. Negative values of

|F ′(k, l)|2 are set to zero because the error variance in the LAM simulations already

exceeds that of the global simulations.

Results in Fig. 6.1 show |F ′(k, l)|2 obtained for the LAM ensemble configura-

tion having 3-hourly updated, low-pass filtered LBCs. These data reflect differences

between the solid and dashed curves shown in Fig. 5.26, although now presented

as a function of wavelength at specific times. Given these difference spectra, am-

plitudes of the LBC perturbation field are set to zero for about the first 12 hours,

depending on wavelength. The amplitude of the perturbation is greatest at wave-

lengths between about 100 and 1000 km. Indeed, these are the scales that were most

strongly effected by the filtering effects associated with spatial and temporal filtering

of LBCs. Difference spectra are not shown beyond 72 hours because there is minimal

additional growth beyond this time. The LBC perturbation field constructed using

the difference spectra in Fig. 6.1 begin with zero amplitude, then begin to grow after

about 12 hours until reaching a nearly constant value around 72 hours.

The difference spectra for these simulations were computed each hour. These

spectra were interpolated linearly in time before generating LBC perturbation fields

at every 7.5-minute time step. Temporal interpolation of the spectra before generat-

ing the perturbation field does not reduce small-scale variance as does interpolation

between external LBC fields. Furthermore, temporal changes in the difference spec-

tra are small since statistics were obtained as averages over 100 cases. In practical

applications, data will not be available hourly, perhaps only every 3, or 6 hours. A

possible approach for these scenarios is to fit analytic curves to the set of difference

spectra (e.g. Lorenz 1982; Dalcher and Kalnay 1987; Schubert and Suarez 1989; Stroe
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Figure 6.1: Difference in error variance spectra between global ensemble simulations
and LAM ensemble simulations having 3-hourly updated, low-pass filtered LBCs.
Compare to Fig. 5.26.

and Royer 1993; Reynolds et al. 1994; De Eĺıa and Laprise 2002). Attempts were

made to fit such curves here, but it was difficult to obtain parameters that produced

accurate fits across all scales of motion. This is an issue that should be addressed

further with application to more complex atmospheric LAMs.

6.1.2.3 Translating the Perturbation Field

The perturbation field is initialized by specifying uniform random phase angles

0 ≤ θk,l ≤ 2π in (6.7). Once initialized, the phase angles are stored and in-

cremented at each time step to cause a translation of the perturbation field when

it is synthesized using (6.6). This translation is important for providing temporally

and spatially coherent wave structures as they pass through the lateral boundary.
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The field is translated at some characteristic speed cκ by incrementing the phase

angles such that

θk,l(t+ ∆t) = θk,l(t) + κcκ∆t, (6.9)

where again, κ =
√
k2 + l2.

An appropriate choice of translation speed for this work is the Rossby phase

speed. Since the available error variance spectra are one-dimensional, we use the

isotropic, or uni-directional phase speed

cκ = (U0k − βk/κ2)/κ (6.10)

Rossby phase speeds calculated using the parameters in Table 3.2 are less than

12 ms−1. The x-component of group velocity remains near 12 ms−1 while the y-

component of group velocity is generally less than 0.001 ms−1. Thus, the entire

perturbation field translates from west to east at about 12 ms−1. Other choices for

the translation speed could be more appropriate in applications using full primitive

equation models. This question remains beyond the scope of the present study.

6.1.3 Example Simulation with Perturbed LBCs

An example perturbation vorticity field (ζ
′
) was constructed at multiple times using

Eq. 6.6 with the difference spectra in Fig. 6.1. Results are shown in Fig. 6.2. Stream-

function perturbations are obtained by solving the Poisson equation ∇2ψ
′
= ζ

′
. The

solution to the Poisson equation is unique to within a constant value when using

periodic boundary conditions. Therefore, the spatial mean
〈
ψ
′〉

was subtracted from

each solution to ensure that the perturbation streamfunction remains unbiased.

As explained in Sec. 6.1.2.2, error variances from the LAM simulation are greater

than those of the global simulations for about the first 12 hours. Therefore, the

amplitude of vorticity perturbations are set to zero since the LAM simulation already

has excessive error variance during this time. The impact of this choice is seen in

Fig. 6.2a,b as the perturbation field does not begin to amplify until about 15 hours

have passed. Careful examination of the vorticity perturbation field reveals about

10 to 20 wave couplets across the breadth of the 3000 km2 domain. This result is
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Figure 6.2: Example of LBC perturbation fields constructed for the medium do-
main using the difference in error variance spectra between global ensembles and
LAM ensembles having 3-hourly updated, low-pass filtered LBCs (Fig. 6.1). Vortic-
ity perturbations are shaded ζ

′ × 10−5 s−1 while streamfunction perturbations are
contoured at 0.1× 106 m2s−1 intervals (zero streamline omitted).
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consistent with the difference spectra shown in Fig. 6.1 since wavelengths are on the

order of 150 to 300 km.

The vorticity field is translated at the Rossby phase velocity using Eqs. 6.9

and 6.10. Motion from west to east is clearly evident in time animation of these

fields, and is also seen in Fig. 6.2 by locating and tracking local minima and max-

ima. The translation and simultaneous amplification of the perturbation field is more

easily seen in the streamfunction perturbations. Using the approximation Φ
′
= ψ

′
f ,

note that the contours of ψ
′

correspond to 10 m2s−2 increments of geopotential

height.

The vorticity and streamfunction perturbations fields are constructed at each

time step of a LAM simulation. The perturbations are then added to the spatially

and temporally interpolated LBC field provided by an external model simulation.

This perturbed external LBC field is then blended with the LAM solution across the

peripheral 7-point wave absorbing zone as discussed in Sec. 3.2.4. The perturbations

are produced as a field covering the entire LAM domain to ensure that the spatial

variance is restored using coherent wave patterns. However, the perturbations are

applied only within the boundary zone and modify the LAM solution only after

propagating into the domain.

An example LAM ensemble obtained from simulations having perturbed LBCs

is shown with its dispersion loss ratio (Eq. 5.1) in Fig. 6.3. As in Fig. 5.28, the

“spaghetti” contours and streamfunction dispersion appear much the same as in

the appropriate portion of the global ensemble (Fig. 4.3). Hence, the LBC pertur-

bations have not introduced excessive noise into the individual ensemble member

simulations.

The effects of the LBC perturbations for this example are seen in the dispersion

loss ratio. During the first 12 to 24 hours, the dispersion loss ratio is similar in both

perturbed and unperturbed simulations. This is expected since the amplitude of

the perturbations is zero through the first 12 hours as discussed previously. Once

the LBC perturbations begin to enter the LAM domain, they help enhance error

variance locally and the dispersion loss ratio becomes less negative compared to the

unperturbed simulation (Fig. 5.28). Comparison of the simulations after about 60

hours shows that LBC perturbations have swept through the domain. Regions of

increased and decreased vorticity dispersion relative to the global simulation now
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Figure 6.3: Example case run on the medium domain with 3-hourly updated,
low-pass filtered, and perturbed LBCs showing reduction of LAM ensemble dis-
persion (Eq. 5.1). A “spaghetti” plot drawn with solid black lines shows the
(516,540,564)×106 m2s−1 streamlines from each of the 10 LAM ensemble members.
Reduction of vorticity dispersion is shaded, while streamfunction dispersion is shown
with solid blue contours at 2× 1012 m4s−2 intervals. Compare to Fig. 5.28.
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appear evenly distributed throughout the domain. The LBC perturbations do not

apply instantaneously across the breadth of the domain, but instead propagate in-

ward to restore those scales that have been filtered out by LBC filtering and sweeping

effects.

6.2 Statistical Results

The LAM ensemble simulations run in chapter 5 are repeated here, except LBC per-

turbations are created and applied at each time step during the simulations as dis-

cussed above. The initial condition perturbations and the global ensemble members

providing LBCs are exactly the same as in the previous simulations. As in chapter

5, statistical results are obtained as averages over 100 independent 10-member LAM

ensemble simulations.

6.2.1 Ensemble Error Variance Spectra

Normalized error variances obtained from simulations having perturbed, hourly up-

dated LBCs are shown in Fig. 6.4. Remarkably, error variances from the perturbed

LAM simulations are nearly superimposed with those from the laterally unbounded

global ensemble simulations. The LBC perturbations propagate into the LAM do-

main and restore almost all the error variance lost due to the filtering effects of

temporal interpolation between LBC updates.

When LBCs are updated every three hours (Fig. 6.5), application of LBC per-

turbations completely restores error variances at wavelengths longer than about 500

km. The LBC perturbations are less effective for smaller scales, where the propor-

tion of error variance restored depends on domain size. For example, on the large

domain (panel a), the LBC perturbations restore about 1/3 of the error variance lost

at saturation in the smallest scales due to temporal interpolation of LBCs. Compare

this to the small, centered domain (panel c), where the LBC perturbations restore

more than 3/4 of the error variance lost due to LBC effects in the unperturbed LAM

simulations.

To explain these results, note that difference spectra used to determine the ampli-

tude of LBC perturbations (Eq. 6.8) are based on error variance calculations obtained
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Figure 6.4: Normalized vorticity error variance (Eq. 2.22), averaged over 100 inde-
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Figure 6.5: Normalized vorticity error variance (Eq. 2.22), averaged over 100 inde-
pendent 10-member LAM ensemble simulations having perturbed, 3-hourly updated
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from data over the full extent of the LAM domain. However, LBC perturbations are

applied only within the peripheral 7-point wave-absorbing zone. The perturbations

subsequently disperse and/or dissipate while propagating through the LAM domain.

Therefore, the difference spectra likely underestimate the amplitude of LBC pertur-

bations needed to fully restore LAM error variances to those obtained from global

simulations. The LBC perturbations are more effective on smaller domains because

there is less time for dispersion and dissipation to reduce their impact while passing

through the LAM domain. The perturbations also restore variance more effectively

for larger scale waves since these have slower dispersion and less dissipation. Fur-

thermore, the small-scale perturbations help maintain error variance at larger scales

through nonlinear wave interactions and the upscale and downscale transfers of en-

ergy.

There are other interesting features seen in Fig. 6.5. First, note that variance

spectra in the perturbed simulations are identical to those for unperturbed sim-

ulations over the first 12 to 24 hours. As discussed above, the amplitude of the

perturbation field is set to zero during this time because the LAM variance spec-

tra exceed those of the global simulations. Note also that the error variance curves

continue to oscillate because of the LBC error “pulse” caused by temporal interpola-

tion between otherwise perfect LBCs (see Sec. 5.1.1.1). Results are not shown from

the LAM configuration having 6-hourly updated LBCs because they reveal similar

features as those in Fig. 6.5.

Normalized error variances are shown in Fig. 6.6 for the LAM configuration hav-

ing perturbed, 3-hourly updated, low-pass filtered LBCs. The effects of the LBC

perturbations are similar to those noted previously in Fig. 6.5. Error variances

are fully restored at wavelengths longer than 500 km, but the perturbations are

less effective at smaller scales, especially on the large domain. As before, the LBC

perturbation amplitudes needed to restore the lost error variance are likely under-

estimated by the difference spectra since the perturbations are applied only at the

boundary and disperse and dissipate while passing through the LAM domain.

Comparison of error variances in the 50-250 km wavelength band in Figs. 6.5

and 6.6 shows that the LBC perturbations are least effective in combination with

low-pass filtered external LBC fields. Similar results were seen in Sec. 5.2.3, wherein

error variance constraints at small scales caused by coarsely resolved LBCs were
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stronger than those due to temporal interpolation of LBCs. To explain these results,

recall that fully resolved (unfiltered) external LBC fields are perfect each time new

updates are given. The small-scale features present in the LBCs at these update

times have greater amplitudes that those of the LBC perturbations constructed

based on error variance difference spectra. Since they have greater amplitudes,

shortwaves passing through the boundary at the LBC update times are less affected

by dispersion and dissipation. Hence, error variances are almost completely restored

as shown by the peaks in the 50-250 km error variance curve in Fig. 6.5c,d. In

contrast, small-scale features are never retained in the low-pass filtered external

LBC fields. Small scale error variance growth under this configuration is produced

entirely by small amplitude LBC perturbations that are damped and/or dispersed

quickly while passing through the LAM domain. Thus, error variances are restored

less effectively compared to the LAM simulations configured with fully resolved

external LBC fields (see Fig. 6.6c,d).

6.2.2 Ensemble Summary Statistics

The use of LBC perturbations effectively restored much of the error variance lost

by coarsely resolved and temporally interpolated external LBC fields, especially

on smaller domains and at wavelengths greater than 250 km. A primary goal in

applying the perturbations is to restore LAM ensemble dispersion without adversely

impacting the individual ensemble members. To see if this goal is achieved, ensemble

summary statistics are presented for direct comparison to those seen previously in

Sec. 4.3.

Results in Fig. 6.7 show that the total error variance is fully restored when LBC

perturbations are applied in LAM configurations having hourly updated LBCs. This

result is expected since error variance spectra were restored at all wavelengths for

this configuration (Fig. 6.4). The use of LBC perturbations does not introduce ad-

ditional spatial bias or ensemble mean error. Most importantly, ensemble dispersion

is fully restored to values obtained from corresponding subsets of global ensemble

simulations. These results fulfill the balances required by Eq. 2.11 and the error

variance budget for LAMs outlined in Sec. 2.4.
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10-member LAM simulations having perturbed, hourly updated LBCs. See text
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When LBCs are updated every three hours (Fig. 6.8), the total error variance

from LAM ensembles having perturbed LBCs closely matches that obtained from

corresponding subsets of global ensemble simulations. The statistics continue to

oscillate with time due to the LBC error pulse caused by temporal interpolation.

Indeed, σ2 most closely matches that of the global ensembles when it peaks at

3-hourly LBC update times for reasons discussed above (page 124). Additional

spatial biases or ensemble mean errors introduced by the LBC perturbations are not

discernible when comparing Figs. 6.8 and 5.16. Hence, after about 48 hours, the

recovery of total error variance using LBC perturbations directly restores much of

the LAM ensemble dispersion on all domains.

One of the more interesting features of Fig. 6.8 is the fact that D2 remains less

than that obtained from global ensembles between about 12-48 hours of the simula-

tion. To explain this result, note that the LAM ensemble mean error exceeds that

of the global simulations during this same period. This increase is caused by tempo-

ral interpolation of external fields between LBC updates, which removes small scale

features from the forecasts compared to the fully-resolved analysis fields. The large

domain (panel a) is less affected by interpolation errors because it takes longer than

48 hours for LBC sweeping to remove small scale features throughout the domain.

The LBC perturbations contribute very little to changes in the ensemble mean error

because they have such small magnitude compared to interpolation errors. Recall

from Eq. 2.6 that

D2 = S2 −
∥∥f − a

∥∥2
. (6.11)

Hence, an increase in ensemble mean error causes a decrease in ensemble dispersion

which cannot be recovered by the use of LBC perturbations as applied herein.

The same arguments apply to results from the LAM ensemble configuration

having perturbed, 3-hourly updated, low-pass filtered LBCs (Fig. 6.9). Most of the

total error variance has been restored through LBC perturbations. In turn, ensemble

dispersion is largely recovered, except when reduced by the ensemble mean error

created by coarsely resolved and temporally interpolated external LBC fields.
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6.3 Scaled LBC Perturbations

Results shown above in section 6.2.1 reveal that the amplitude of LBC perturba-

tions needed to fully restore error variance growth is underestimated under certain

LAM configurations. Specifically, the perturbation amplitudes are underestimated

at wavelengths shorter than 500 km, especially when applied to large domain sim-

ulations having coarsely resolved external LBCs updated at intervals of 3 hours or

longer. In an attempt to remedy this deficiency, the perturbation amplitudes are

increased by applying a scale factor to the difference spectra |F ′(k, l)|2 (Eq. 6.8).

The scale factor is defined as ratio of error variances obtained from perturbed LAM

ensembles to those obtained from global ensemble simulations. Thus, the difference

spectra are redefined by introducing the scaling factor Λ so that

Λ = σ2
κ(global)/σ2

κ(perturbed LAM) (6.12)

and

|F ′(k, l)|2 = Λ[σ2
κ(global)− σ2

κ(unperturbed LAM)]. (6.13)

Examples of the scale factor (Λ) that are applied to the error variance differ-

ence spectra seen previously in Fig. 6.1 are shown in Fig. 6.10. The scale factor is

less than unity for about the first 12 hours because error variances from the LAM

ensemble simulations are greater than those from the global simulations. Although

less than unity, the scaling factor does not change the sign of |F ′(k, l)|2. Hence, the

perturbation fields still are assigned zero amplitude while |F ′(k, l)|2 remains nega-

tive. The scale factors also are less than one for wavelengths shorter than about

60 km. This is of no significance since the difference spectra at these scales are so

small (see Fig. 6.1). The scale factor exceeds unity after about 12 hours and grows

toward values near 1.4 for wavelengths between about 70 and 500 km. These are the

scales at which the amplitude of LBC perturbations was underestimated and error

variances in LAM ensembles with LBC perturbations was not fully restored. After

about 72 hours, error growth rates stabilize, so the scaling factor remains generally

constant.
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Figure 6.10: Scale factor Λ (Eq. 6.12) applied to difference spectra for LAM ensemble
simulations having 3-hourly updated, low-pass filtered LBCs.

The same set of LAM ensemble simulations were run as above in Sec. 6.2, except

scaled LBC perturbation fields were constructed using Eq. 6.6 with amplitudes deter-

mined by Eq. 6.13. Results from the case having hourly updated external LBC fields

are not shown because error variances lost due to LBC constraints were effectively

restored simply using unscaled LBC perturbations (see Figs. 6.4 and 6.7). Indeed,

scale factors for this configuration are near unity when scaled LBC perturbations

are applied and the statistical results are nearly unchanged.

Results from the case having 3-hourly updated external LBC fields with scaled

perturbations also are not shown because they appear nearly identical to those in

Figs. 6.5 and 6.8. In Sec. 6.2.1, these simulations were shown to underestimate the

amplitude of perturbations needed to fully restore error variances, especially on the

large domain. However, the use of scaled LBC perturbations did not yield significant
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improvements. As before, the perturbation amplitudes remain so small that when

applied along the lateral boundaries, the perturbations dissipate and/or disperse

while subsequently passing through the LAM domains.

The use of scaled LBC perturbations did yield a small improvement for the

LAM configuration having low-pass filtered LBCs that are updated every 3-hours

(Fig. 6.11). Given an increase in perturbation amplitudes of up to 40% (Fig. 6.10),

the increase in error variance at scales less than 500 km is about 0 to 6% (com-

pare Figs. 6.6 and 6.11). Although tiny improvements are seen in the error variance

spectra, the ensemble summary statistics in Fig. 6.12 show that ensemble dispersion

is almost unchanged compared to the configuration having unscaled LBC perturba-

tions. Hence, the significance of these improvements using scaled LBC perturbations

is questionable.

Scaled LBC perturbations did not yield significant improvements in the amount

of error variance restored at small scales and are not recommended for use in practical

applications. The only way to completely restore the error variance in the smallest

scales — especially those that have been removed by LBC filtering effects — is to

provide LBC perturbations having the same amplitudes as the true fields. However,

this would contribute more to the ensemble mean error which, in turn, would cause

a loss of ensemble dispersion. If the LBC perturbations are too large, they begin

to act in opposition to the original intent of restoring ensemble dispersion through

increases in error variance.

6.4 Chapter Summary

A new method was developed in this chapter to apply LBC perturbations at ev-

ery time step of LAM simulations. The perturbations are intended to restore the

small-scale error variances and ensemble dispersion lost due to coarsely resolved and

temporally interpolated external LBC fields. The LBC perturbations introduced

herein are different from using an ensemble of unique LBCs given by corresponding

global ensemble members. Indeed, results from Ch. 5 show that even when us-

ing an ensemble of LBCs, error growth rates are constrained because the external

LBC fields are still coarsely resolved and temporally interpolated in time between

updates.
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Figure 6.11: Normalized vorticity error variance (Eq. 2.22), averaged over 100 inde-
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Two-dimensional LBC perturbation fields are generated on the LAM grid using

inverse Fourier transforms. Amplitudes of the perturbations are determined by the

loss of error variance at specific wavelengths due to LBC effects. The fields are

initialized with random phase angles, then translated in time using the Rossby phase

relation. This method ensures that the perturbation fields remain coherent in both

space and time while passing through the lateral boundaries. At each time step, the

perturbation field is added to the interpolated LBC fields obtained from subsets of

global model simulations. The freshly perturbed LBC field is then blended with the

LAM solution across the peripheral 7-point wave absorbing zone.

Results showed that the application of LBC perturbations in LAM ensemble

simulations is highly effective at restoring error variances and ensemble dispersion

to the values obtained from subsets of global ensemble simulations. Two exceptions

were noted. First, error variances were not fully restored at wavelengths shorter than

500 km, especially for large domain simulations having coarsely resolved external

LBC fields updated at intervals of 3 hours or longer. This deficiency was attributed

to the fact that short-wavelength LBC perturbations have small amplitudes and

subsequently disperse and/or dissipate while propagating through the LAM domain.

The second notable exception is that, in spite of the gain in error variance, ensemble

dispersion for the small domains could not be fully recovered between about 12

and 48 hours of the simulations. This deficiency was explained by the increase

in ensemble mean error caused by coarsely resolved and temporally interpolated

external LBC fields. The increase in ensemble mean error causes a decrease in

ensemble dispersion that cannot be recovered by the use of LBC perturbations as

applied herein.

In an attempt to increase the fraction of error variance restored at small scales, a

scaling factor was applied to increase the amplitudes of the LBC perturbations. The

scaled LBC perturbations produced incremental improvements without degrading

the individual LAM simulations. However, the improvements were insignificant,

and not enough to justify using scaled perturbations for practical applications.

The LBC perturbations are based solely on differences in error variance spectra.

Their only relationship to the dynamical evolution of flow inside the LAM domain

is through the nonlinear advection term that transfers energy and enstrophy upscale

and downscale throughout the spectrum. To ensure that the LBC perturbations do
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not overwhelm the quality of the LAM solution, it is necessary that their ampli-

tudes remain small. Furthermore, the ensemble mean error can become inflated if

the perturbations are too strong. An increase in ensemble mean error contributes to

a loss of ensemble dispersion, which opposes the effort to restore dispersion through

increases in error variance. Although not perfect in every aspect, the LBC per-

turbations developed in this chapter appear small enough to satisfy these concerns

while restoring most of the ensemble dispersion and error variance lost through LBC

constraints.
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Chapter 7

Summary

This study examined the constraints on limited-area model (LAM) error growth

and ensemble dispersion caused by the use of “one-way” lateral boundary condi-

tions (LBCs) obtained from coarsely resolved, periodically updated external model

fields. Analytic calculations and statistical results from simplified model simulations

showed that temporal interpolation of coarsely resolved external fields acts to filter

short wavelength features from the LBCs. The spectral definition of error variance

was used to show that the loss of shortwave features is directly responsible for the

constraints on error growth in LAMs. A new expression was developed that links er-

ror variance to ensemble dispersion while accounting for spatial and ensemble biases.

The balances required by this expression were used to show that LBC constraints on

small scale error variance growth are directly responsible for underdispersive LAM

ensemble simulations. To help restore the error variance and ensemble dispersion

lost through LBC constraints, a new method was developed to apply statistically

consistent LBC perturbations that remain spatially and temporally coherent while

passing through the boundaries. With a few noted exceptions, the LBC perturba-

tions were shown to be highly effective at restoring error variance growth and LAM

ensemble dispersion without compromising the integrity of the individual solutions.

The study began in Ch. 1 with a review of existing work in the subject. The

review highlighted an apparent contradiction between “classic” models of upscale

error growth (Lorenz 1982) and the lack of error growth and ensemble dispersion

in LAMs despite initial condition perturbations (Anthes et al. 1985; Hamill and

Colucci 1997). Attempts to explain these results generally favor the artificial errors

introduced by the use of “one-way” LBCs (Vukicevic and Errico 1990). Recent
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studies conducted spectral analyses of the error growth in idealized LAM simulations

and showed that error growth is most rapid at small scales as originally suggested

by the classical theories (De Eĺıa and Laprise 2002).

This research reproduces conclusions obtained in several of the previous efforts,

but also contributes additional details about the relationship between LAM error

growth and ensemble dispersion. Such details are enabled by constructing a statis-

tical framework in Ch. 2 in which ensemble mean square error, total error variance

and ensemble dispersion are defined. The individual statistics are then combined in

a manner that provides a direct link between error variance and ensemble dispersion.

A spectral definition of error variance is used to outline a hypothetical budget for

error growth in LAMs that includes the effects of LBC constraints.

Many of the previous studies involving LAMs applied fields from discordant

models or analyses as LBC forcing for the dependent LAM simulations. Under

these configurations, LBCs were identified as the most likely candidate acting to

constrain error variance growth. However, the LAM simulations run with these

configurations could not completely control or avoid extraneous sources of model

error. Therefore, a simplified modeling approach is adopted in Ch. 3 to examine

the impact of LBCs on LAM ensemble dispersion in a more controlled and efficient

manner. The simplified configuration employs a single level parameterized potential

vorticity (PPV) channel model with periodic east-west boundaries. The model is

shown to produce flows bearing resemblance to the real atmospheric circulation and

is configured to specifically isolate LBCs as the only source of model error.

Classic predictability experiments were conducted in Ch. 4 using the full periodic

channel, or “global” configuration to show that error growth characteristics in the

simplified PPV model demonstrate appropriate behaviors. Specifically, statistical

results from 100 independent 10-member ensemble simulations showed that error

growth is most rapid at small scales, and reaches a maximum value that is twice

the variance of analyses. These results and a set of ensemble summary statistics

provided benchmark values to help measure the magnitude of LBC constraints in

later simulation experiments.

Error variance growth and ensemble dispersion characteristics for LAM simula-

tions were considered in Ch. 5. The first part of the chapter examined the impact
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of linear interpolation in time between LBC updates. This is an issue that has pre-

viously received little direct and/or systematic attention in the published literature.

Results showed that temporal interpolation between available LBC updates causes

an error “pulsing” effect due to inconsistencies between the exterior LBC field and

the interior LAM solution. Once the LBC pulsing errors form within the periph-

eral wave-absorbing zone, they propagate or “sweep” completely through the LAM

domain over a time period determined by the domain size and propagation speed.

Temporal interpolation of external LBC fields was shown to act as a spatial filter by

aliasing waves passing completely through the boundary between updates to larger

scales. It also reduces the amplitude of any nonstationary wave moving through the

lateral boundary. As smaller scales are progressively removed from the LAM domain

through LBC interpolation, the error variances at these scales reach a limiting value

that is less than that attained in global simulations.

The second part of Ch. 5 examined the impact of having coarsely resolved exter-

nal LBC fields by applying a low-pass spatial filter that removed all wavelengths less

than 150 km. The approach was not new, and follows that used by Laprise et al.

(2000) and De Eĺıa and Laprise (2002). As in the case with temporally interpolated

LBCs, the loss of variance at small scales imposes a constraint on the maximum

error growth. These results are consistent with those reported using more complex

models by (Vukicevic and Errico 1990; Laprise et al. 2000; De Eĺıa and Laprise 2002).

Therefore, error growth behaviors established for other aspects of this work should

generalize at least qualitatively to more complex model systems.

Statistical results in Ch. 5 also showed that error growth constraints caused

by coarsely resolved LBCs are stronger than those caused by the filtering effect

of temporal interpolation. However, the temporal interpolation introduces a greater

component of artificial model error that may sweep out dynamically consistent initial

perturbations. For the first time, the deficiency in error variance caused by both

of these LBC filtering effects is identified as a direct cause for limiting dispersion

in limited-area ensemble forecasts. The error growth behaviors identified herein are

certainly present to some extent in current atmospheric models operating with “one-

way” LBCs. The unresolved question is how large is the impact relative to other

modeling and data deficiencies.
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To help restore the error variance lost at small scales, a new method was de-

veloped in Ch. 6 to apply spatially and temporally coherent LBC perturbations

at scales affected by interpolation of external LBC fields. Statistical results showed

that the application of LBC perturbations in LAM ensemble simulations were highly

effective at restoring error variances and ensemble dispersion to the values obtained

from subsets of global ensemble simulations. Two exceptions were noted. First,

LBC perturbations were applied only within the peripheral wave absorbing zone.

Since the short wavelength perturbations have small amplitudes compared to those

contained in the original fields, they disperse and/or dissipate while passing through

the domain. Therefore, the LBC perturbations were unable to fully restore error

variances for scales less than 500 km, especially for large domain simulations. The

second notable exception was that ensemble dispersion could not be fully recovered

between about 12 and 48 hours of the simulations. The deficiency was explained

by the increase in ensemble mean error caused by coarsely resolved and temporally

interpolated of external LBC fields. Although not perfect in every aspect, the LBC

perturbations applied in Ch. 6 appear small enough to maintain the integrity of the

LAM simulations while restoring most of the error variance and ensemble dispersion

lost through LBC constraints discussed above. The LBC perturbations are most

effective on small domains where, indeed, the LBC constraints on error growth are

most severe.

We conclude with comments on how this work may apply to more realistic mod-

eling systems. Two fundamental assumptions were made at the start of this work.

First, it was assumed that natural error growth at large scales is (or can be) stated

accurately using global model forecasts. This assumption is needed to ensure that

error variances and ensemble dispersion are correct at wavelengths exceeding the

breadth of the LAM domain. LBC perturbations are only effective at scales up to

the size of the LAM domain and cannot correct deficiencies caused by improper error

growth rates at larger scales. Second, the assumption was made that error growth

rates at small scales in LAMs should behave the same as those in global models

operating at equivalent resolution. The amplitude of the LBC perturbations was

determined by the difference in error variance spectra between global ensembles and

LAM ensembles having unperturbed LBCs. Hence, the LBC perturbations may be

less effective if there are differences in the variance spectra caused by dynamical or
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artificial discrepancies between external and LAM models. A related assumption is

that the model simulations are unbiased, since ensemble dispersion is linked to the

total error variance, the ensemble mean error and the spatial bias. This secondary

assumption is less important because corrections can be applied for systematic model

errors.

The PPV model used for this work is a single-level model and does not contain

fast modes for error growth. Therefore, the error growth rates obtained in the PPV

model are slower than those in more complex atmospheric models. However, statisti-

cal results in Ch. 5 suggest that errors grow in a manner that is at least qualitatively

consistent with those obtained in several previous studies. Therefore, additional con-

clusions drawn from this work should apply equally well to more complex modeling

systems. To support this statement, note that Vukicevic and Paegle (1989) tested

LBC sensitivities in a barotropic model. The work was later expanded to a full

primitive-equation model (Vukicevic and Errico 1990). Results from the later study

supported conclusions obtained using the former barotropic model. When consider-

ing an extension of the current study to other modeling systems, the magnitude of

the LBC constraint will depend on the speed at which waves pass through the lateral

boundaries and on the amplitudes of initial condition perturbations. Furthermore,

the timescale needed to reach saturation is likely to decrease, but the shape of the

normalized error growth curves should remain unchanged.

The greatest challenge faced in applying the LBC perturbation technique to

other modeling systems is the determination of appropriate amplitude coefficients

needed for constructing the perturbation fields. Global ensemble systems have been

available for more than a decade. It should not be difficult to obtain error variance

spectra over many cases for these ensembles, especially since most are integrated

using spectral methods. The greater challenge is to obtain error variance spectra

from LAM ensemble systems. LAM ensemble systems have existed for several years,

but most do not include the statistical verification packages needed to calculate

one-dimensional error variance spectra. Such packages would need to be developed,

then results accumulated over many cases. Once an appropriate set of verification

data has been accumulated, corrections for systematic errors must be applied before

obtaining difference spectra. Finally, an issue that requires additional research is

how to determine the vertical structure of LBC perturbations.
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Temporal interpolation of coarsely resolved external LBC fields has been shown

to remove small-scale features from LAM solutions and quickly sweep out any set

of initial condition perturbations. LBC perturbations applied at every time step are

essential to the design of an efficacious LAM ensemble system. The effort will be

most rewarding on smaller domains where LBC sweeping effects act most quickly to

constrain error growth rates. The additional expense of applying LBC perturbations

may be offset by the ability to integrate LAM ensembles over smaller domains.
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Appendix A

The Variance Spectrum and Total Variance

A key element of this work is the partitioning of variance into contributions made by

motions of specific wavelength bands. A mathematical basis for the variance spec-

trum is provided here, followed by a link to the more common statistical definition

of total variance.

Given two points in a field f(x) and f(x + x′) separated by a distance x′, the

autocorrelation function is (Kundu 1990, pg. 425)

a(x′) = 〈f(x)f(x + x′)〉 (A.1)

where the angle brackets denote an average over all points in the field. The autocor-

relation is related to variance through the Schwartz inequality (Walker 1988; Kundu

1990)

a(x′) ≤
〈
f 2(x)

〉 1
2
〈
f 2(x + x′)

〉 1
2 . (A.2)

Specifically, if x′ = 0, (A.2) becomes an equality and defines the variance

a(0) =
〈
f 2(x)

〉
. (A.3)

The variance spectrum is obtained by taking the Fourier transform of the autocor-

relation function. To demonstrate this fact, introduce a two-dimensional wavenum-

ber vector κ = (k, l) so that the Fourier transform of a(x′) is

A(κ) =
1

4π2

∫ ∞
−∞

e−iκ·x
′
a(x′)dx, (A.4)
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where dx is a generalized notation for dxdy. For (A.4) to be true, the inverse Fourier

transform must exist so that

a(x′) =

∫ ∞
−∞

eiκ·x
′A(κ)dκ, (A.5)

where dκ is a generalized notation for dldk. When x′ = 0, the variance spectrum is

obtained from (A.3) and (A.5) since

〈
f 2(x)

〉
=

∫ ∞
−∞
A(κ)dκ, (A.6)

Thus, (A.6) shows that the variance spectrum is obtained from the Fourier transform

of the autocorrelation function.

The Wiener-Khinchin theorem (Walker 1988; Press et al. 1996) states that A(κ)

is obtained for real functions by multiplying the Fourier transform of f(x) by its

complex conjugate. That is,

A(κ) = F(κ)F∗(κ) = |F(κ)|2 (A.7)

where F(κ) is the Fourier transform of f(x). Using (A.7) in (A.6), the variance

spectrum for real f(x) becomes

〈
f 2(x)

〉
=

∫ ∞
−∞
|F(κ)|2 dκ. (A.8)

Thus, the variance contained within wavenumbers κ and κ + dκ is the magnitude

of the Fourier coefficient |F(κ)|2.

The notation used above generalizes to multi-dimensional space. Henceforth,

consideration is restricted to one-dimensional spectra obtained from an appropri-

ately detrended two-dimensional field (see Appendix B). Let F (k, l) be the complex

Fourier coefficients obtained from the two-dimensional discrete Fourier transform

of f(x). Then, using κ =
√
k2 + l2, |F (κ)|2 is the sum of all |F (k, l)|2 such that
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ℵ(κ) − (1/2)δκ ≤ κ ≤ ℵ(κ) + (1/2)δκ, where ℵ denotes the nearest integer and δκ

is defined in Appendix B. It follows from (A.8) that

〈
f 2(x)

〉
≈ |F (0)|2 +

K−1∑
κ=1

2 |F (κ)|2 . (A.9)

The factor of two results from the fact that |F (κ)| = |F (−κ)| for real f(x). To

obtain the total biased variance, introduce the variable σ2 such that

σ2 ≡
〈
f 2(x)

〉
− |F (0)|2 =

K−1∑
κ=1

2 |F (κ)|2 . (A.10)

Note that |F (0)|2 represents the square of the grid mean of f(x). Thus, σ2 quantifies

how much the field f(x) fluctuates around the field average.

The total biased variance is more commonly presented and understood within a

statistical framework. Specifically, given a symmetrically distributed random vari-

able ϕ and its expected value E(ϕ), variance is defined

σ2 ≡ E([ϕ− E(ϕ)]2) = E(ϕ2)− E(ϕ)2. (A.11)

Note the similarity to (A.10). Now, following (A.11), the total biased variance for

any two-dimensional field f(i, j) defined on the grid 0 ≤ i ≤ Nx−1, 0 ≤ j ≤ Ny−1

is computed as

σ2 =
1

NxNy

Nx−1∑
i=0

Ny−1∑
j=0

(fi,j − 〈f〉)2 (A.12)

where Nx and Ny are the number of grid points along each dimension and 〈f〉 is

the grid mean. The variance as defined here is a biased estimate of the population

variance because the sample mean is used rather than the expected value. The

unbiased variance may be obtained by simply multiplying (A.12) by NxNy/(NxNy−
1). Diagnostic checks during calculations of vorticity error variance spectra shown in

previous chapters indicate that Eq. A.10 retains more than 99.99% of the vorticity

error variance obtained by Eq. A.12.
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Appendix B

Spectra From a Limited Area Grid

Much of the analysis in this work makes use of one dimensional spectra produced

using data from a two dimensional gridded field. Procedures for constructing these

one dimensional spectra are provided in this appendix.

The first step in conducting any spectral analysis using discrete Fourier trans-

forms is to ensure the data are periodic over the interval of interest. Consider a two

dimensional grid f(i, j), 0 ≤ i ≤ Nx−1, 0 ≤ j ≤ Ny−1 with grid spacing ∆x = ∆y.

Now, the periodic field is obtained by subtracting linear trends along each row and

column (Errico 1987) so that

fp(i, j) = f(i, j)− (fI,j − f0,j)

(
i

I
− 1

2

)
− (fi,J − fj,0)

(
j

J
− 1

2

)
+ (fI,J − f0,J − fI,0 + f0,0)

(
i

I
− 1

2

)(
j

J
− 1

2

)
, (B.1)

where I = Nx and J = Ny. The full channel domain is periodic along the x-direction,

so linear trends are removed only across the y-direction so that

fp(i, j) = f(i, j)− (fi,J − fj,0)

(
j

J
− 1

2

)
. (B.2)

After removing the linear trends across the field, fp(i, j) is periodic with fp(0, j) =

fp(I, j) and fp(i, 0) = fp(i, J). Errico (1985, 1987) shows that detrending eliminates

the aliasing onto smaller scales of power associated with wavelengths that extend

beyond the limited-area domain. However, the detrending does introduce additional
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power at smaller scales due to differences in patterns along each boundary. The ad-

ditional short wavelength power is minimized in the absence of rapid field variations

along the boundaries. Barnes (1986) proposed a detrending scheme that resulted

in less modification of the field, but Errico (1987) showed that it still suffered from

serious aliasing effects. Although there is no perfect approach for detrending data

on a limited area grid, results are presented here in a normalized manner (Eq. 2.21)

so that conclusions are minimally altered when comparing different model configu-

rations.

Having produced a detrended field fp(i, j), the two-dimensional discrete Fourier

transform is computed using available Fast Fourier Transform routines1. The out-

put from such routines is subsequently stored in a complex valued array F (m,n)

representing wavenumber indices 0 ≤ m ≤ I/2 and −J/2 ≤ n ≤ J/2 (Fig.

B.1). Actual wavenumbers k and l are obtained as k = 2πm/(I − 1)∆x and

l = 2πn/(J − 1)∆y. Note that computations are needed for just half the total

Nyquist limited wavenumbers due to the symmetry of Fourier coefficients obtained

from real data (Errico 1985; Press et al. 1996).

Two dimensional power spectra are obtained by computing 2|F (m,n)|2. As an

exception, |F (0, n)|2 and |F (I/2, n)|2 are not multiplied by two. To obtain the total

biased variance (Eq. A.10), add the power obtained at each point in F except the

grid mean |F (0, 0)|.
One-dimensional spectra, like those shown throughout chapters 4, 5, and 6 are

computed by summing power from points on F that lie within annular rings of

width δκ = 2π/(J − 1)∆y. The center of each ring represents wavenumber κ =
√
k2 + l2. Unlike Carr (1977) or Errico (1985) who determine δκ relative to I − 1,

δκ is determined here along the shorter axis, resulting in wider rings (see Fig. B.1).

On the square nested domains where the number of gridpoints is the same along

each direction, this choice is inconsequential. On the rectangular channel grid, the

different way of computing δκ excludes the longest waves in the zonal direction. In

all situations, the mean F (0, 0) is excluded from the summations since it does not

contribute to the total variance.

1Computational details common to most FFT routines are provided by (Press et al. 1996). The
Fortran routine MFFT (Nobile and Roberto 1986) was applied for this work, obtained online from
http://www.fftw.org/benchfft/doc/ffts.html.
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Figure B.1: Schematic diagram showing the arrangement of complex coefficients
obtained from a discrete two dimensional Fast Fourier Transform. Shaded regions
of width δκ show the annular rings used to construct one dimensional spectra (see
text for explanation). Crosses located outside any shaded regions reveal those points
excluded from power spectra summations.

Having completed the Fourier transform, a low-pass filter may be applied to the

field when desired. Specifically, the raised cosine filter is applied to F with weights

determined by

w(m,n) =


1 if κ < κ′ − δκ′/2
0 if κ > κ′ + δκ′/2
1
2

[1− sin(π(κ− κ′)/δκ′)] otherwise

(B.3)

where δκ′ is the width of the filter and κ′ is the cutoff wavenumber at which wave

amplitudes are reduced to half their original value. In practice, the filter width and

cutoff wavenumbers are specified in terms of wavelenghts before being converted to

wavenumbers in computation. After the filter is applied, an inverse discrete Fourier

Transform is computed and the linear trends restored to construct the new filtered

field.
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