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ABSTRACT

A coupled ensemble square root filter–three-dimensional ensemble-variational hybrid (EnSRF–En3DVar)

data assimilation (DA) system is developed for the operational RapidRefresh (RAP) forecasting system. The

En3DVar hybrid system employs the extended control variablemethod, and is built on theNCEP operational

gridpoint statistical interpolation (GSI) three-dimensional variational data assimilation (3DVar) framework.

It is coupled with an EnSRF system for RAP, which provides ensemble perturbations. Recursive filters (RF)

are used to localize ensemble covariance in both horizontal and vertical within the En3DVar. The coupled

En3DVar hybrid system is evaluated with 3-h cycles over a 9-day period with active convection. All con-

ventional observations used by operational RAP are included. The En3DVar hybrid system is run at 1/3 of the
operational RAP horizontal resolution or about 40-km grid spacing, and its performance is compared to

parallel GSI 3DVar and EnSRF runs using the same datasets and resolution. Short-term forecasts initialized

from the 3-hourly analyses are verified against sounding and surface observations. When using equally

weighted static and ensemble background error covariances and 40 ensemble members, the En3DVar hybrid

system outperforms the corresponding GSI 3DVar and EnSRF. When the recursive filter coefficients are

tuned to achieve a similar height-dependent localization as in the EnSRF, the En3DVar results using pure

ensemble covariance are close to EnSRF. Two-way coupling between EnSRF and En3DVar did not produce

noticeable improvement over one-way coupling. Downscaled precipitation forecast skill on the 13-km RAP

grid from the En3DVar hybrid is better than those from GSI 3DVar analyses.

1. Introduction

Three-dimensional variational (3DVar; Lorenc 1986)

and four-dimensional variational (4DVar; LeDimet and

Talagrand 1986; Talagrand and Courtier 1987) data as-

similation (DA) methods have been used successfully at

operational numerical weather prediction (NWP)

centers for more than two decades (e.g., Parrish and

Derber 1992; Courtier et al. 1998; Rabier et al. 2000).

Typically, static, flow-independent background error

covariance (BEC) is used in the background term of the

variational cost function. Neglecting the flow-dependent

nature of the background error is a key deficiency, es-

pecially within a 3DVar framework where the NWP

model is not directly used to incorporate model dy-

namics into the DA system (e.g., Parrish and Derber

1992; Purser et al. 2003a). This deficiency becomes more

severe for mesoscale and convective-scale DA where

even fewer state variables (cf. the full set) are directly
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observed and large-scale balance relationships, which are

often built into 3DVar systems, become invalid (e.g., Gao

et al. 2004; Ge et al. 2012). While some efforts had been

made to build spatially inhomogeneous, anisotropic BEC

into 3DVar frameworks (e.g., Purser et al. 2003b; Wu

et al. 2002), major issues exist on how to determine the

flow-dependent covariances and how to efficiently in-

troduce them into a variational DA framework.

The ensemble Kalman filter (EnKF) algorithm, as

initially developed by Evensen (1994) and Burgers et al.

(1998), offers an alternative to the variational formula-

tion. The EnKF employs the Monto Carlo sampling

approach, where an ensemble of model forecasts is used

to provide and evolve flow-dependent covariances, while

the filter updates the ensemble states using an optimal

weight through a least squares approach. Many sub-

sequent studies have refined the filter algorithm by ad-

dressing a number of issues that are often related to

the sampling error associated with the use of relatively

small ensembles that is necessitated by practical compu-

tational constraints (e.g., Burgers et al. 1998;Houtekamer

and Mitchell 1998; Hamill et al. 2001; Anderson 2001;

Whitaker and Hamill 2002; Evensen 2003). Because of

their ability to estimate flow-dependent BECs and to

evolve them through assimilation cycles, and their rela-

tive ease of implementation, the ensemble DA methods

(Bishop et al. 2001; Anderson 2001; Hunt et al. 2007;

Whitaker and Hamill 2002; Evensen 1994) have gained

much popularity within both the research and operational

communities in recent years. The ensemble filters have

been used in operational global forecast systems to pro-

vide ensemble-based BEC (e.g., Raynaud et al. 2011;

Bonavita et al. 2012;Hamill et al. 2011b;Wang et al. 2013)

as well as initial conditions for ensemble forecasts (e.g.,

Houtekamer et al. 2005; Whitaker et al. 2008; Hamill

et al. 2011a). The application of EnKF to mesoscale

models has also enjoyed encouraging successes (e.g.,

Fujita et al. 2007; Meng and Zhang 2007; Bonavita et al.

2008) while for the convective scale, EnKF has shown

great ability in dealing with complex, nonlinear physical

processes (e.g., Tong and Xue 2005) that may even in-

volve two-moment microphysics parameterization (e.g.,

Xue et al. 2010; Jung et al. 2012; Putnam et al. 2014).

Accurate representation of microphysical processes is

especially important at the convective scale.

While EnKF provides a way of estimating flow-

dependent BEC, the estimated covariance matrix is se-

verely rank deficient as a result of the much smaller

ensemble sizes used compared to the degrees of freedom

of typical NWP model state (Houtekamer and Mitchell

1998; Hamill and Snyder 2000). The use of much larger

ensembles is often computationally impractical while

determining optimal localization that alleviates the rank

deficiency problem in concert with appropriate covariance

inflation makes tuning expensive (Anderson 2007, 2012).

Another approach that can help alleviate this problem is to

combine the full-rank static BEC with the rank-deficient

ensemble BEC, creating a so-called hybrid1 algorithm.

Hamill and Snyder (2000) were the first to propose

a 3DVar-based hybrid scheme in which the static BEC

in a 3DVar system was replaced by a linear combination

of the static and ensemble-derivedBEC. The systemwas

tested with a low-resolution quasigeostrophicmodel and

simulated data in a perfect model setting. By running the

hybrid analysis system multiple times with perturbed

observations, the system is able to provide an ensemble

of analyses. It was found that the analysis performs the

best when BEC is estimated almost fully from the en-

semble, especially when the ensemble size was large

(100 in their case). When the ensemble is smaller, the

system benefits from a lesser weighting given to the

ensemble-based covariances. Wang et al. (2009) also

found that a hybrid system based on an ensemble trans-

formKalman filter (ETKF) ismore robust thanEnKF for

a two-layer primitive equation model when the ensemble

size is small andwhen themodel error is large. The hybrid

formulation in these studies requires explicit evaluation

and storage of the ensemble covariances, which is very

expensive for full NWP models.

Lorenc (2003) proposed an elegant, alternative hybrid

formulation, in which the control variables of the regular

variational cost function are augmented by extended

control variables (ECV), which are preconditioned upon

the square root of ensemble covariance. The ECV for-

mulation involves adding an additional term to the vari-

ational cost function for the ECVs, which has a similar

form as the original background term, and is therefore

relatively easy to implement based on an existing varia-

tional DA framework.Wang et al. (2007) proved that the

ECV formulation is mathematically equivalent to that of

Hamill and Snyder (2000). The potential for the hybrid

system to perform better than a pure EnKF when the

ensemble size is relatively small makes it attractive for

operational implementation where computational con-

straint is often a significant issue. A variational framework

used by the hybrid scheme also makes it easier to include

additional equation constraints in the cost function (e.g.,

Ge et al. 2012; Kleist et al. 2009b). Furthermore, for ob-

servations whose forward operators are nonlocal, such as

those of satellite radiance data, the state-space-based co-

variance localization used in the hybrid formulation is

1 In this study, we use the word ‘‘hybrid’’ to refer to a combination

of the static and ensemble-derived flow-dependent covariances (i.e.,

the hybrid covariance).
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potentially advantageous (Campbell et al. 2010). As sug-

gested by Lorenc (2003) and Buehner et al. (2010a, b),

both (traditional) 3DVar and 4DVar can be formulated

to use the ensemble covariance with the extended control

variable method, and we call such ensemble-variational

formulations En3DVar and En4DVar,2 respectively, or

EnVar in general.

Buehner (2005) implemented the ECV hybrid ap-

proach within the Canadian operational global 3DVar

framework, and found that the hybrid scheme pro-

duced comparable or better forecasts than those ini-

tialized using 3DVar. Buehner et al. (2010a, b) further

compared the performances of the coupled EnKF–

En3DVar and EnKF–En4DVar with the pure 3DVar

and 4DVar for global forecasts. Based on the varia-

tional DA framework of the Advanced Research

Weather Research and Forecasting Model (WRF-

ARW; Skamarock et al. 2005), Wang et al. (2008a, b)

implemented the ECV-based hybrid, coupling it with

an ETKF (Bishop et al. 2001) that is used to update the

ensemble perturbations (which we call ETKF–En3D-

Var hybrid). This WRF hybrid DA system was further

applied for tropical cyclone DA (Wang 2011; Li et al.

2012). Most recently, Zhang and Zhang (2012) coupled

a mesoscale EnKF system with WRF 4DVar through

the WRF hybrid DA framework (hence EnKF–En4D-

Var hybrid but they called it E4DVar), and Zhang et al.

(2013) further compared the performances of EnKF–

En3DVar (they called it E3DVar) and EnKF–En4DVar

hybrid formesoscale applications.Mizzi (2012) reported

results testing the GSI-based En3DVar hybrid, using

ETKF, local ensemble transform Kalman filter

(LETKF), and the regular EnKF for ensemble pertur-

bation updating, respectively, and WRF-ARW as the

prediction model, for a hurricane period. In general, the

introduction of flow-dependent ensemble covariance

into 3DVar or 4DVar improves the forecast results. In

fact, for the National Centers for Environmental Pre-

diction (NCEP) operational Global Forecast System

(GFS), an EnKF–En3DVar hybrid DA system (Whitaker

et al. 2011; Hamill et al. 2011b) based on an EnKF and

the operational gridpoint statistical interpolation (GSI)

3DVar (Kleist et al. 2009a) was developed and opera-

tionally implemented in 2012, replacing GSI 3DVar.

Wang et al. (2013) reported the testing results from the

GSI-based En3DVar hybrid system for GFS at a reduced

resolution.

It has been a general decision at NCEP that the hybrid

DA approach will be applied to its regional models as

well, including the North American Mesoscale Model

(NAM) and the recently implemented (on 1 May 2012)

Rapid Refresh (RAP) system, the replacement to the

Rapid Update Cycle (RUC; Benjamin et al. 2004). To-

ward this end, an EnKF system was recently established

for the RAP and tested at a reduced resolution by Zhu

et al. (2013, hereafter Z13) using the operational ob-

servation data stream of RAP. The same as for the GFS

EnKF system, the ensemble square root filter (EnSRF)

algorithm of Whitaker and Hamill (2002) was used in

Z13. As one of the deterministic ensemble filter algo-

rithms, EnSRF avoids sampling issues associated with

the use of ‘‘perturbedobservations’’ (Whitaker andHamill

2002; Tippett et al. 2003).

In Z13, short-range (up to 18 h) forecasts from

3-hourly EnSRF analyses over a 9-day period were

found to be consistently better than forecasts from cor-

responding GSI 3DVar analyses, in terms of both model

state forecasts and precipitation forecast skill scores.

The primary goal of this current work is to extend the

work Z13 by establishing and testing a coupled EnSRF–

En3DVar hybrid DA system for RAP that can poten-

tially be implemented operationally. As the first step, we

test and evaluate the hybrid DA system running at 1/3 of

the native resolution of operational RAP; running the

EnSRFDA system at this reduced resolution is dictated

by the limited operational computing resources in the

near future. Moreover, running the En3DVar hybrid

analyses at the same resolution facilitates easy and direct

comparisons with the EnSRF results, and also provides us

with a benchmark for a future dual-resolution imple-

mentation. With a dual-resolution implementation, the

En3DVar analyses will be run at a higher resolution, us-

ing the reduced-resolution ensemble perturbations (as is

with the operational GFS hybrid DA system). In this

paper, we focus on documenting and comparing the re-

sults obtained from all three systems (i.e., theGSI 3DVar,

EnSRF, andEn3DVar hybrid) at the reduced, 40-kmgrid

spacing.

The rest of the paper is organized as follows. The

coupled EnSRF–En3DVar hybrid system for RAP is

first described in section 2. Experimental setup and test-

ing results are discussed in sections 3 and 4, respectively.

Downscaled precipitation forecasts on the 13-km RAP

grid, starting from interpolated 40-km En3DVar hybrid,

2Here, En4DVar is an extension of the traditional 4DVar

scheme to include the use of ensemble-derived background error

covariance through the extended control variable method. The

scheme still involves the use of an adjoint model. Liu et al. (2008)

proposed an alternative algorithm that does not involve the use of

a model adjoint, and En4DVar was used to refer to their algorithm.

In Liu and Xiao (2013) their algorithm is renamed 4DEnVar, to

better differentiate the algorithm from traditional 4DVar. Our

current usage is also consistent with the conventions used by papers

at the recent WMO Data Assimilation Symposium of Maryland,

held in October 2013.
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EnSRF, and GSI 3DVar analyses, are compared in sec-

tion 5. Finally, section 6 provides conclusions and an ad-

ditional discussion.

2. GSI-based EnSRF–En3DVar hybrid system for
Rapid Refresh

a. The Rapid Refresh system

The operational hourly-updated RUC system was

designed to improve short-range weather forecasting

through frequent updating of initial conditions with the

latest observations (Benjamin et al. 2004). The RAP is

a replacement of the RUC system and is based on the

nonhydrostatic WRF-ARW dynamic core (Skamarock

et al. 2005). RAP became operational at NCEP on

1May 2012 using theGSI 3DVar as the data assimilation

system. In February 2014, the system was upgraded to

incorporate BEC derived from ensemble perturbations

from the 80-member GFS EnSRF system that feeds the

operational hybrid En3DVar DA system of the GFS

model. The GSI is a unified DA framework for both

global and regional models (Kleist et al. 2009a). The

horizontal grid spacing of RAP is ;13 km and has

50 vertical levels extending up to 10 hPa at the model

top. Compared to the RUC, the RAP system is capable

of assimilating more observations, including satellite

radiance data, and has a larger domain which covers

North America in its entirety. The physics options used

by the operational RAP include the Grell-G3 cumulus

parameterization, Thompson microphysics, the Rapid

Radiative TransferModel (RRTM) longwave radiation,

Goddard shortwave radiation, Mellor–Yamada–Janji�c

(MYJ) turbulent mixing, and the RUC-Smirnova land

surface model. Details on these schemes can be found in

Benjamin et al. (2009).

As with the RUC, the RAP employs a digital filter

initialization (DFI) to reduce high-frequency noise

during the initial period of model integration. In the

operational RAP system, twice DFI (TDFI; Lynch and

Huang 1992), which applies the DFI twice, once on the

adiabatic backward time integration and once on the full-

physics forward time integration, is used. Considering

that for high-resolution applications where diabatic pro-

cesses are more important, adiabatic integration can in-

troduce significant errors, Z13 chose to employ the digital

filter launching (DFL) procedure (Lynch and Huang

1994) instead in their EnSRF system for RAP. DFL ap-

plies the DFI only once, on the forward integration time

series. In this study, the same procedure is followed by the

EnSRF and En3DVar hybrid experiments. In our tests

with 3-hourly cycles reported in this paper, the DFL

employs a 40-min filter window centered at 20min of

forecast time, and used a Dolph filter (Lynch 1997) with

a cutoff half-width of 20min.

b. The coupled EnSRF–En3DVar hybrid system for
RAP

As mentioned earlier, our En3DVar hybrid system is

based on the operational GSI 3DVar system for RAP

and it uses the operational data stream of RAP. To fa-

cilitate direct comparisons with the RAP EnSRF and

GSI 3DVar systems as reported in Z13, we run our hy-

brid tests also at the reduced resolution of ;40-km grid

spacing with 3-hourly assimilation cycles instead of

the ;13-km grid spacing and hourly cycles of the oper-

ational RAP. The use of the reduced-resolution EnSRF

system is due to the expected constraint in available op-

erational computational resources. The choice of 3-hourly

cycles is to enable us to run a larger number of experi-

ments and for more rapid prototyping of the system. The

running of the continuously cycled experiments over

a 9-day period is computationally expensive in terms of

both CPU and storage requirements. Extensive experi-

mentation and tuning were required to arrive at quasi-

optimal configurations of the RAP EnSRF system,

including configurations of covariance inflation and lo-

calization. For future operational implementation, it is

desirable to run the En3DVar at the native RAP reso-

lution, while using lower-resolution EnSRF perturba-

tions in a dual-resolution model to save computational

cost. The implementation and testing of the dual-

resolution coupled hybrid system for RAP will be

done in the future.

A one-way coupled EnSRF–En3DVar hybrid system

is made up of four key steps: 1) GSI-based observation

processing that includes both quality control and calcu-

lation of a full set of observation innovations; 2) EnSRF

analyses using the innovations calculated by the GSI and

the background ensemble forecasts to yield an ensemble

of analyses; 3) an En3DVar analysis using the back-

ground ensemble forecasts from the EnSRF cycle for

flow-dependent covariance estimation; and 4) carrying

out ensemble forecasts from the EnSRF ensemble anal-

yses and a single control forecast from the En3DVar

hybrid analysis to the next analysis time.

Figure 1 shows a flowchart for both one-way and two-

way coupled EnSRF–En3DVar analysis–forecast cycle as

employed in this paper. For one-way-coupled En3DVar,

the EnSRF system provides the background ensemble

forecast perturbations to the ECV-based En3DVar hy-

brid variational analysis, but does not recenter the EnSRF

analyses on the En3DVar analysis. Two-way coupling

includes an additional step that recenters the EnSRF

analysis ensemble on the En3DVar control analysis (the

thick black arrows and bold black box in Fig. 1). The
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two-way coupling implicitly assumes that the En3DVar

control analysis is better than the EnSRF ensemble

mean analysis, and the recentering should help prevent

the divergence between the EnSRF and En3DVar

analyses so that the ensemble perturbations can sam-

ple the control forecast uncertainty well. Divergence

between the two systems tends to become more seri-

ous when continuous cycles are run for a long period

of time.

As pointed out earlier, the GSI-based En3DVar hy-

brid analysis is achieved using the ECV method (Wang

2010). Within this framework, the analysis increment dx

is a sum of two terms, defined as

dx5 dx11 �
K

k51

(ak+x
0
k) , (1)

where dx1 is the analysis increment associated with static

BECB and the second term on the right-hand side is the

increment associated with the ensemble covariance; x0k
is the kth ensemble background perturbation normal-

ized by
ffiffiffiffiffiffiffiffiffiffiffiffi

K2 1
p

, where K is the ensemble size. Vectors

ak(k5 1, . . . , K) in the second term are the extended

control variables. The analysis increment dx is obtained

by minimizing the following cost function:

J(dx1, a)5b1Jb1b2Je1 Jo

5
1

2
b1dx

T
1B

21dx11
1

2
b2a

TA21a

1
1

2
[yo 2H(xb 1 dx)]TR21[yo 2H(xb 1 dx)] ,

(2)

which gives the solutions of partial increment dx1 and

ECV a. Vector a is formed by concatenating K vectors

ak. Compared to a traditional 3DVar cost function,

a weighted sum of Jb and Jo is replaced by the sum of

weighted Jb and Je terms and Jo, where Jb is the tradi-

tional background term associated with static covari-

ance B, Jo is the observation term as in traditional

3DVar, and Je is the additional term associated with

flow-dependent covariance for the ECV. Weighting

factors b1 and b2 are placed in front of Jb and Je terms,

respectively, and they are constrained by

1

b1

1
1

b2

5 1 (3)

to conserve the total variances in current GSI hybrid

implementation.

The ECVs are constrained by a block-diagonal matrix

A, which defines the ensemble covariance localization

(Lorenc 2003; Wang et al. 2007). In the GSI-based

En3DVar hybrid implementation, the horizontal and

vertical covariance localizations, or the effects of matrix

A in Eq. (2), are achieved by applying recursive filter

transforms (Hayden and Purser 1995), analogous to the

treatment of B in Eq. (2). The parameters in the re-

cursive filter will determine the correlation length scale

in A as a precondition and, therefore, prescribe the co-

variance localization length scale for the ensemble co-

variance. The vertical covariance localization scale (CLS)

is measured in either scaled height (the natural log of

pressure) or the number of model levels while the hori-

zontal CLS ismeasured either in kilometers or number of

FIG. 1. Flowchart of a full GSI-based EnSRF–En3DVar hybrid data assimilation cycle, with

one-way or two-way coupling between the EnSRF (top portion) and En3DVar hybrid control

analysis (bottom portion denoted En3DVar). The thick upward-pointing arrow indicates the

feedback of the En3DVar hybrid analysis to the EnSRF in the two-way coupling procedure,

when the En3DVar hybrid control analysis is used to replace the ensemblemean of the EnSRF

analyses.
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grid points in GSI. In this study, the natural log of pres-

sure is used for the vertical, and kilometer is used for the

horizontal localization.

Apart from the variational minimization of the

En3DVar hybrid cost function given by Eq. (2), a major

component of the overall coupled EnSRF–En3DVar

hybrid DA system is an ensemble DA system that pro-

vides the perturbations. In our case, the EnSRF sys-

tem used is the one described in Z13. The configuration

settings follow the control experiment of Z13. To facil-

itate fair comparisons between the En3DVar hybrid and

EnSRF experiments, the CLSs in the En3DVar hybrid

system are specified to match the CLSs used by the

EnSRF as closely as possible in the control experiments,

and the vertical and horizontal scales are measured in

the natural log of pressure and kilometers, respectively.

The e-folding distance from the Gaspari and Cohn

(1999) localization function is
ffiffiffi

2
p ffiffiffiffiffiffiffi

0:3
p

SGC (where SGC

is cutoff radii in the EnSRF), while an e-folding dis-

tance from the recursive filter is 2
ffiffiffi

2
p

SRF (Barker et al.

2004; Wang et al. 2008b) (where SRF is recursive filter

covariance localization length scale). Thus, to keep the

same e-folding distance for both EnSRF and En3DVar,

the cutoff radii in the EnSRF SGC can be converted to

the recursive filter localization length scale SRF in hybrid

according to

SRF5
ffiffiffiffiffiffiffiffiffi

0:15
p

SGC/
ffiffiffi

2
p

. (4)

3. Experiment designs

a. Model, observations, ensemble configuration, and
verification techniques

The test period, model domains, and boundary con-

ditions used in this study are the same as in Z13. TheDA

experiments at ;40-km grid spacing are run in contin-

uous 3-hourly cycles throughout the 9-day retrospective

testing period from 8 to 16 May 2010; the cycles start

at 0000 UTC 8 May 2010 and end at 2100 UTC

16 May 2010. The 40-km model domain (as shown in

Fig. 2) covers North America with 2073 207 grid points.

FIG. 2. Example of the horizontal distributions of observation at 0000 UTC 14 May: (a) sounding (circles) and profile (pluses);

(b) surface stations over land and for ships, buoys, etc.; (c) aircraft observations; (d) satellite retrieval winds; and (e) GPS precipitable

water (PW) data. The small box in (a) is the domain used by 13-km forecasts. (a)–(d) Adopted from Z13.
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A slightly smaller domain at ;13-km grid spacing, as

indicated by the bold rectangle in Fig. 2a, is used for

forecasts at the native RAP resolution and for precip-

itation verification. The domains have 50 vertical levels.

The 18-h deterministic forecasts (after applying DFL)

are launched every 3 h from the En3DVar hybrid con-

trol analyses as well as EnSRF ensemble mean analyses

on the 40-km domain. The 3-hourly ensemble forecasts

are produced within the assimilation cycles of EnSRF,

which are fed into the En3DVar control analysis (Fig. 1).

Two outer loops and 50 iterations, the same as in op-

erational RAP GSI 3DVar, were utilized for all the

En3DVar and GSI 3DVar experiments. The 13-km de-

terministic forecasts start from interpolated 40-km

analyses at 0000 and 1200 UTC for precipitation fore-

cast evaluation. The lateral boundary conditions for

both grids come from operational GFS forecasts. Per-

turbations created using the random-CV method in the

WRF 3DVar (Barker et al. 2004) are added to GFS

forecast boundary conditions for the ensemble forecasts

and to the GFS analysis initial condition at 0000 UTC

8 May 2010 to start the initial ensemble of EnSRF.

The observations used in this study are the same as

those used in the operational RAP except for the ex-

clusion of satellite radiance data. The real-time RAP

system collects data from 1.5 h before and 0.5 h after

the time of analysis. However, for 0000 and 1200 UTC

it waits half an hour longer for more data (such as

sounding data) to arrive. In our tests, the datasets as-

similated at 3-hourly intervals are the datasets collected

and used by the operational hourly RAP system; as

a result, observations that arrived in real time outside

the 2-h (2.5 h for 0000 and 1200 UTC) windows are

not used. They include surface observations (land re-

porting stations, mesonets, ships, buoys, etc.), upper-

air observations [radiosondes, aircrafts, wind profilers,

velocity–azimuth display (VAD) data, and satellite

retrieval winds], and GPS precipitable water (PW), the

same as in Z13 except for the exclusion of PW data

there. The exclusion of the PW data in Z13 was due to

an initial problem with the EnSRF code, which has

since been fixed. The distributions of most major ob-

servation types are shown in Fig. 2. The satellite radi-

ance data are not included in the experiments reported

here because our preliminary tests suggested that the

bias correction remains an important issue within the

system that would require careful treatment for posi-

tive impacts. Our most recent tests with the radiance

data using the EnSRF show small positive impacts, and

the results will be reported separately in the future.

Initial studies of EnKF for NCEP GFS global model

also excluded satellite radiance data (Whitaker et al.

2008).

The short-range deterministic forecasts from the

En3DVar, EnSRF ensemble mean, and GSI 3DVar an-

alyses are verified against surface and sounding observa-

tions. The Model Evaluation Tools (MET) developed by

the Developmental Testbed Center (DTC; Brown et al.

2009) are employed here. MET contains comprehensive

verificationmetrics for both deterministic and probabilistic

forecasts. Root-mean-square error (RMSE) is used as the

primary verification metric for the 40-km deterministic

forecasts here. The RMSEs for temperature T, relative

humidity RH, and wind components U and V are calcu-

lated against upper air soundings, and those for surface

pressure P, 2-m RH, 2-m T, and 10-m U and V are cal-

culated against surface observations.

The statistical significance of RMSEs is determined

by using bootstrap resampling (Candille et al. 2007;

Buehner andMahidjiba 2010; Schwartz and Liu 2014). The

RMSEs from all cycles are randomly selected 3000 times,

and for these samples, the mean is calculated, along with

a two-tailed 90% confidence interval from 5% to 95%.

To determine whether the improvements fromEn3DVar

on GSI 3DVar are statistically significant, the mean

RMSE differences between En3DVar and GSI 3DVar

together with a 90% confidence interval are computed

and plotted in each figure. The RMSE differences from

all cycles are also randomly selected 3000 times, and

for these samples, a two-tailed 90% confidence interval

from 5% to 95% is calculated. The same technique is

also applied to the differences between En3DVar ex-

periments and EnSRF_Ctl to determine whether the

improvement of En3DVar over EnSRF is statistically

significant. That the bounds of a 90% confidence interval

between the forecast pair are all lower than zero means

RMSEs from the first experiment are always lower than

the second one at the 90%confidence level; therefore, the

improvement from the first experiment over the second

one is statistically significant at the 90% confidence level.

Conversely, that zero is included within the bounds of the

90% confidence level denotes statistically insignificant

situations (Schwartz and Liu 2014; Xue et al. 2013).

For the 12-hourly forecasts on the 13-km grid, the

Gilbert skill score (GSS; Gandin andMurphy 1992), also

known as the equitable threat score (ETS), and fre-

quency bias (BIAS) are used to verify precipitation

forecasts against NCEP stage-IV precipitation data (Lin

and Mitchell 2005). The error and skill scores are ag-

gregated over all forecasts within the 9-day test period.

The same evaluation procedure was used in Z13 al-

though they only presented the GSSs.

b. Assimilation experiments

Experiments performed in this study are listed in

Table 1. First, well-tuned En3DVar hybrid one-way
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(Hybrid1W_Ctl) and two-way coupled (Hybrid2W_Ctl),

EnSRF(EnSRF_Ctl) control, andGSI 3DVar (GSI3DVar)

experiments are compared. The EnSRF control exper-

iment, EnSRF_Ctl, uses 40 ensemble members and cor-

responds to experiment EnKF_CtrHDL fromZ13 except

for additionalGPSPWdata in this study, and uses a single

suite of physics parameterizations in the ensemble to

keep the setup simple (so that the EnSRF, GSI 3DVar,

and the En3DVar experiments all use the same set of

physics in the forecast model). The En3DVar hybrid

control experiment assigns equal weights (1/b2 5 0:5) to

the static and ensemble BECs. The EnSRF codes and

configurations are the same as the EnSRF control ex-

periment inZ13, except for the exclusion ofGPSPWdata

there. A combination of static and adaptive covariance

inflation is applied in EnSRF as in Z13.

There aremainly two sets of tunable parameters in the

En3DVar hybrid scheme. One set is the covariance

weighting factors, which define the weights placed on

the BECs. Four sensitivity experiments test the relative

weights given to the static and ensemble BECs, with

1/b2 5 0.1, 0.5, 0.9, and 1.0 (Hybrid01,Hybrid05,Hybrid09,

and Hybrid10) corresponding to 10%, 50%, 90%, and

100% weight given to the ensemble BEC, respectively.

The other set of tunable parameters includes the

horizontal and vertical CLSs applied to the covariances.

For weighting factor 1/b2 5 0.5 with one-way coupling,

we test three horizontal CLSs Sh 5 192, 300, and 356 km

in Hybrid_HS, Hybrid1W_Ctl, and Hybrid_HL, re-

spectively [corresponding to cutoff radii of 700, 1095,

and 1300km according to Eq. (4)]; three vertical CLSs

Sy 5 20.1, 20.3, and 20.5 [corresponding to cutoff radii

of 0.36, 1.1, and 1.8 according to Eq. (4)] are tested in

Hybrid_VS, Hybrid1W_Ctl, and Hybrid_VL, respec-

tively. The minus sign is due to the use of ln(p) as the

length measure. To facilitate the comparison with control

TABLE 1. List of data assimilation experiments. In the horizontal and vertical localization columns, the diagonal arrow (9) means

increasing with height.

Expt group

Expt (including

alternative names)

Ensemble

covariance

weighting

factor (1/b2)

Horizontal cutoff

radius for hybrid/

EnSRF (km)

Vertical cutoff radius

for hybrid/EnSRF

in ln(p)

EnSRF–En3DVar

coupling

Control expt GSI3DVar —

EnSRF_Ctl — 700 9 1050 RH and T: 1.1/49 1.1/2 —

U and V: 1.1/2 9 1.1

PS and PW: 1.6

Hybrid1W_Ctl

/Hybrid05

0.5 ;1095 1.1 One way

Hybrid2W_Ctl 0.5 ;1095 1.1 Two way

Sensitivity expt

on covariance

weighting factors

Hybrid01 0.1 ;1095 1.1 One way

Hybrid09 0.9 ;1095 1.1 One way

Hybrid10 1.0 ;1095 1.1 One way

Sensitivity expt on

localization scales

Hybrid_HS 0.5 ;701 1.1 One way

Hybrid_HL 0.5 ;1300 1.1 One way

Hybrid_VS 0.5 ;1095 0.36 One way

Hybrid_VL 0.5 ;1095 1.8 One way

Sensitivity expt on

height- and

observation-

type-dependent

localization scales

EnSRF_Con — 1095 1.1 —

Hybrid_Con

(Perturbations from

EnSRF_CON)

1.0 ;1095 1.1 One way

Hybrid_HD 1.0 700 9 1050 1.1/2 9 1.1 One way

Hybrid3G 1.0 700 9 1050 RH and T: 1.1/49 1.1/2 One way

U and V: 1.1/2 9 1.1

PS and PW: 1.6

(observations are

assimilated in 3

groups)

EnSRF3G — 700 9 1050 RH and T: 1.1/49 1.1/2 —

U and V: 1.1/2 9 1.1

PS and PW: 1.6

(observations are

assimilated in

3 groups)
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experiment Hybrid1W_Ctl, the mean domain-average

RMSE difference, defined as

D5
1

N
�
N

k51

(RMSEk
Hybrid* 2RMSEk

Benchmark) , (5)

whereN is the total number of cycles and k refers to the

kth cycle, is calculated between experiment Hybrid*;

the benchmark experiment is Hybrid1W_Ctl here and

Hybrid* refers to one of En3DVar sensitivity experi-

ments.

All CLSs used in the En3DVar hybrid experiments

described above are constant with height. However, the

cutoff radii used in the well-tuned EnSRF control ex-

periment of Z13 (EnKF_CtrHDL in their paper) are

height- and observation-type dependent based on the

vertical position of the observations. These localization

settings are shown in Fig. 3. The horizontal cutoff radius

rcut at the model top is 1.5 times the value at the surface

for all state variables; as shown in Fig. 3a, rcut increases

from 700 km at the surface to 1050 km at the model top.

The vertical cutoff radius ln(pcut) is not only height

dependent, but also observation-type dependent. For

RHandT observations (solid line in Fig. 3b), the vertical

cutoff radii at the model top and surface are set to

a quarter of 1.1 and half of 1.1, respectively. For wind

observations (dashed line in Fig. 3b), ln(pcut) is twice as

large as that for RH and T observations. For surface

pressure observations and GPS PW data (which are

most strongly linked to low-level moisture), their verti-

cal localization radii are set to a constant value of 1.6.

These settings were used in the control experiment of

Z13, and their choices were guided by the correlation

scales found in theNMC-method-derived error statistics

used by GSI 3DVar and were further tuned based on

sensitivity experiments.

In the En3DVar system, height-dependent local-

ization is straightforward to implement, but not

FIG. 3. Profiles of (a) horizontal and (b) vertical cutoff radii for the EnSRF control experiment. The horizontal axis

is the cutoff radius of a given observation at a particular vertical position given in pressure. The vertical axis is the

vertical position of observations given by the pressure.
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observation-type-dependent localization, because un-

like the serial EnSRF scheme, En3DVar analyzes all

observations simultaneously and the localization is

performed in the state instead of the observation space

(Campbell et al. 2010). Theoretically, if the localization

treatment was the same for the EnSRF ensemble mean

analysis as for the En3DVar analysis and when the

ensemble-derived covariance is used at 100%, the re-

sults from the two algorithms should be very close.

We observed differences between such EnSRF and

En3DVar analyses in our experiments, and want to see

if localization is the main cause for these differences.

We are interested in finding out if the height- and

observation-dependent covariance localization treatments

would potentially improve the performance of En3DVar

as in EnSRF. These are examined in the next four ex-

periments (EnSRF_Con, Hybrid_Con, Hybrid_HD, and

Hybrid3G), all performed with 100% ensemble co-

variance and all used one-way coupling.

EnSRF_Con and Hybrid_Con use constant hori-

zontal and vertical localization radii that are close to

the corresponding cutoff radii used by EnSRF_Ctl

at the model top. Unlike the other En3DVar experi-

ments, the ensemble perturbations for Hybrid_Con

were provided by EnSRF_Con instead of EnSRF_Ctl

for consistency.

In Hybrid_HD, the height-dependent horizontal CLSs

are chosen to match the height-dependent cutoff radii of

EnSRF_Ctl closely, while the vertical CLSs for all vari-

ables are chosen to be the same as that for wind obser-

vations in EnSRF_Ctl (Table 1).

The only way to apply different localization to dif-

ferent observations in En3DVar is to break the analysis

intomultiple steps, with each step analyzing a subset or a

subgroup of observations. To do this, the corresponding

EnSRF analysis that provides the ensemble perturba-

tions also needs to be broken up into multiple steps and

the EnSRF and En3DVar need to be run in alternating

order. Doing so significantly increases the overall com-

putational costs for operational implementation, since

the disk I/O associated with the reading and writing of

ensembles and with the cost function minimizations are

done multiple times per analysis cycle, but is doable in

a researchmode. Toward this end, experiments EnSRF3G

and Hybrid3G are run, where each analysis is broken into

three steps, with each step analyzing one of the three

groups of observations consisting of 1)RHandT, 2)U and

V, and 3) and PS and GPS PW data, respectively. Within

each step, the EnSRF ensemble analysis is followed by an

En3DVar hybrid analysis step using the latest EnSRF-

updated ensemble perturbations.

Because the EnSRF includes both static and adaptive

covariance inflation (Z13), it is difficult to maintain the

same amount and effects of inflation when each EnSRF

analysis is broken into three steps. Applying the static

inflation every EnSRF substep can overinflate the co-

variance, while applying it only in the last step would

change the overall behavior of the filter. Because our

primary goal here is to determine if the difference between

the EnSRF and En3DVar analyses (with 100% ensemble

covariance) is primarily caused by the observation-based

localization, to avoid the above issue, we run EnSRF3G

without any covariance inflation and examine the RMSE

differences between the EnSRF and En3DVar analyses.

We just need to find out if the En3DVar hybrid analyses

are closer to the EnSRF analyses when observation-type-

dependent localization is similarly used in the En3DVar

through the split-step procedure.

The mean domain average absolute RMSE differ-

ence, defined as

DB5
1

N
�
N

k51

jRMSEk
Hybrid* 2RMSEk

Benchmarkj , (6)

is used to measure how close the En3DVar and EnSRF

analyses are. The differences between Hybrid_Con and

EnSRF_Con, Hybrid_Con and EnSRF_Ctl, Hybrid_HD

and EnSRF_Ctl, and Hybrid3G and EnSRF3G (Table 2)

will be calculated to examine the impacts of constant lo-

calization, height-dependent localization, and observation-

dependent localization, respectively. The statistical

significance of DB is also determined by using bootstrap

resampling. The DBs at cycles are randomly selected

3000 times. For this sample, a mean is calculated, along

with a two-tailed 90% confidence interval from 5% to

95%. If the error bars from the experiments pair do not

overlap, the differences between En3DVar and EnSRF

are significantly reduced at the 90% confidence level.

4. Results of experiments

a. GSI 3DVar, EnSRF, and En3DVar hybrid control
experiments

The RAP system had been run experimentally in real

time for several years at the National Oceanic and Atmo-

spheric Administration (NOAA) Earth System Research

TABLE 2. List of mean domain average absolute RMSE difference

pairs.

Name Hybrid* Benchmark

1GC1 Hybrid_Con EnSRF_Ctl

1GC2 Hybrid_Con EnSRF_Con

1GHD Hybrid_HD EnSRF_Ctl

3GHD Hybrid3G EnSRF3G
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Laboratory (ESRL) before being officially implemented

at NCEP in May 2012. In this study, we borrow from

a recent configuration of the experimental 13-km RAP

for our 40-km grid spacing tests.

In this section, we present and compare the results

from the En3DVar hybrid one-way (Hybrid1W_Ctl) and

two-way coupled (Hybrid2W_Ctl), EnSRF (EnSRF_Ctl)

control experiments, and those of the GSI 3DVar

(GSI3DVar) experiment. Similar to Z13, single obser-

vation tests were first performed to examine the general

behaviors of the En3DVar system and compared to the

EnSRF results. The tests used the analysis of EnSRF_Ctl

after 5 days of 3-hourly cycles as background and the

analysis increments appear reasonable. To save space,

the results are not shown here.

The RMSEs of the 3-h forecasts at different height

levels verified against sounding data are shown in Fig. 4.

These forecasts were launched from the GSI 3DVar,

EnSRF ensemble mean, and En3DVar hybrid analyses.

The RMSE for each pressure level was calculated by

averaging values obtained from all cycles within a layer

50 hPa above and below that pressure, except for the

lowest and topmost levels. The RMSEs of EnSRF_Ctl

are overall lower than those of GSI 3DVar except for

the temperature at the upper levels where the error can

be ;0.1K greater. The performances of one-way and

two-way coupled En3DVar hybrid schemes are very

close. With half static and half flow-dependent co-

variances in these experiments, Hybrid1W_Ctl and

Hybrid2W_Ctl outperform GSI 3DVar, and are also

generally better than EnSRF_Ctl except for RH above

500 hPa, V at 100 hPa, and T below 900 hPa.

The average RMSEs for all levels over the entire

domain are shown in Fig. 5 for forecast hours 3–18.

Generally, both EnSRF and En3DVar hybrid signifi-

cantly outperform GSI 3DVar for all the variables

throughout the forecast period at the 90% confidence

level (the intervals of error differences do not include

zero). For RH, the average RMSEs of En3DVar hybrid

are slightly higher than those of EnSRF_Ctl by 9 h,

which appears to be related to the larger errors at 3 h at

the upper levels (Fig. 4a). The RMSEs become slightly

smaller after 9 h. However, the improvement of En3D-

Var hybrid over EnSRF for RH is not statistically sig-

nificant. For T and U, the domain-averaged RMSEs

of En3DVar hybrid are significantly and consistently

smaller than those of GSI 3DVar and EnSRF through-

out the forecast period (Fig. 5). For V, the errors of

the En3DVar and EnSRF are very similar and are all

clearly lower than those of GSI 3DVar. The reason that

En3DVar performs better than EnSRF forUmay relate

to the dominance of the east–west flows that may in-

crease the validity of the static covariance. Overall, the

En3DVar hybrid outperforms GSI 3DVar and EnSRF

for T and V for the 18 h of the forecast.

Figure 6 shows the average RMSEs for 3–18-h fore-

casts against surface observations. For 2-m T and 10-m

U, the EnSRF and En3DVar outperform the GSI

3DVar at all forecast hours significantly, with the

EnSRF significantly outperforming the En3DVar hy-

brid at most forecast hours. For 2-m RH and 10-m V,

EnSRF occasionally underperformsGSI 3DVar slightly,

but at most forecast hours it is better. The En3DVar

hybrid schemes improve over EnSRF further, enough to

ensure better or equal performance than GSI 3DVar

for all hours, and more clearly so for RH. For surface

pressure, EnSRF underperforms GSI 3DVar initially,

but becomes better after 9 h; throughout the forecast

period, the En3DVar hybrid outperforms both GSI

3DVar andEnSRF significantly. In general, there is little

difference between the one-way and two-way En3DVar

hybrid schemes. If the cycles were run for a much longer

time period, a larger divergence between the EnSRF and

En3DVar hybrid may develop in a one-way coupling

mode. In that case, two-way coupling would then show

a bigger advantage. When the En3DVar hybrid runs at

a higher resolution than the EnSRF in a dual-resolution

mode, there may also be more of a benefit from two-way

coupling.

Overall, the En3DVar hybrid schemes significantly

outperform GSI 3DVar for all the variables at all fore-

cast hours for sounding and surface observations.

Compared to EnSRF, their performances are compara-

ble, or even better for some variables. The results indicate

the benefit of combining the static and flow-dependent

covariances. In the next section, the sensitivity to the co-

variance weighting factors is examined.

Finally, one may have concern that the 9-day cycled

assimilation period is not long enough for the ensemble

DA system to spin up (over the course of evaluating and

testing our EnSRF and En3DVar hybrid systems, we

had run over 100 cycled experiments so extending the

experiment period would be expensive). To answer this

question, we examine how the short-range forecast er-

rors evolve through the 9-day period. Figure 7 shows the

domain-averaged 3-h forecast RMSEs verified against

sounding data at 0000 and 1200 UTC through the test

period. We can see that the relative performances of

GSI3DVar, EnSRF, and En3DVar hybrid do not change

much throughout the 9-day period, even in the earlier

days. These results indicate that the ensemble system had

spun up rather quickly.

b. Sensitivity to covariance weighting factors

We perform a set of four 1-way-coupled En3DVar

hybrid experiments with 1/b2 5 0.1, 0.5, 0.9, and 1.0,
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which are the weights given to the ensemble covariance.

The one with 1/b2 5 0.5, called Hybrid05 here, is the

same as experiment Hybrid1W_Ctl discussed earlier

(Table 1). The 3-h forecast RMSEs at different height

levels verified against sounding data are shown in

Fig. 8 for these four experiments, GSI 3DVar, and

EnSRF_Ctl. It can be seen that the En3DVar hybrid and

EnSRF schemes generally outperform GSI 3DVar,

FIG. 4. Mean 3-h forecast RMSEs at different height levels verified against sounding data for (a) RH, (b) T, (c)U,

and (d) V for the labeled experiments. Error bars represent the two-tailed 90% confidence interval [(left) 5% and

(right) 95%] using the bootstrap distribution method.
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except for RH from 700 to 400 levels for Hybrid09 and

Hybrid10 (i.e., the hybrid scheme with 90% or 100%

ensemble covariances). Introducing 10% static covar-

iance into the En3DVar hybrid framework reduces the

error slightly (comparing Hybrid09 to Hybrid10 for

RH), and further increasing it to 50% brings the RH

errors below those of GSI 3DVar at all levels (Fig. 8a).

The average RMSEs for all levels over the entire

domain are shown in Fig. 9 for forecast hours 3–18. All

En3DVar hybrid experiments significantly outperform

GSI 3DVar for all variables throughout the entire

forecast period at the 90% confidence level, except for

theRHofHybrid10 after 9 h. The errors ofHybrid05 are

about the lowest among all En3DVar hybrid experi-

ments, while errors of Hybrid10 are the greatest and

significantly worse than those of EnSRF_Ctl. RMSE

differences between Hybrid01 and EnSRF_Ctl are

generally smaller than those between Hybrid09 and

EnSRF_Ctl for T, U, and V.

Overall, introducing 10% ensemble covariance into

the variational framework in Hybrid01 has a much

larger impact (cf. Hybrid01 to GSI) than adding 10%

FIG. 5. The 9-day and domain-averaged forecast RMSEs verified against sounding data (top part of each panel) and the 90% confidence

interval of the RMSE differences between En3DVar hybrid experiments and GSI 3DVar/EnSRF_Ctl (bottom part of each panel) for

(a) RH, (b) T, (c) U, and (d) V, for different forecast hours.
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FIG. 6. The 9-day and domain-averaged forecast RMSEs verified against surface observations (top part of each

panel) and the 90% confidence interval of the RMSE differences between En3DVar hybrid experiments and GSI

3DVar/EnSRF_Ctl (bottom part of each panel) for (a) surface pressure, (b) 2-m RH, (c) 2-m temperature, (d) 10-m

U, and (e) 10-mV for different forecast hours. The horizontal axis is forecast hour. The error bars in domain-averaged

forecast RMSEs represent the two-tailed 90% confidence interval.
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static covariance into the En3DVar hybrid framework

(cf. Hybrid09 to Hybrid10), and the errors of Hybrid01

are generally between those of Hybrid05 and GSI and

are closer to those of Hybrid05, especially for wind

fields. Hybrid05 gives the smallest errors on average.

It can also be noticed from Fig. 8 that EnSRF_Ctl

outperforms Hybrid10, except for wind between 500-

and 200-hPa levels. As pointed out earlier, if covariance

localization treatments were the same in EnSRF and

Hybrid10, their results should be very close given that

the ensemble covariance is used at 100% in both cases.

The use of height- and observation-type-dependent

covariance localization in the EnSRF but not in the

En3DVar hybrid is suspected to be the main cause of

the differences. It had been found to help improve the

EnSRF results in Z13, but is not used within the

En3DVar hybrid. In the following section, we examine

whether doing something similar within the En3DVar

hybrid framework can improve the En3DVar hybrid

results too.

c. Sensitivity to ensemble covariance localization

In Z13, several tests with the horizontal and verti-

cal covariance localizations were performed. In this

paper, the EnSRF experiment uses the same configu-

ration as experiment EnKF_CtrlHDL of Z13, with

height- and observation-type-dependent localization

radii. For the En3DVar analysis, covariance localiza-

tion also requires tuning. Because En3DVar realizes

covariance localization in the state or gridpoint space,

it is impossible to use observation-type-dependent lo-

calization unless different observations are analyzed

separately.

In this section, we first look at the experiments that

use smaller or larger horizontal and vertical CLSs than

those used in Hybrid1W_Ctl. For weighting factor

FIG. 7. Domain-averaged 3-h forecast RMSEs (top part of each panel) verified against sounding data at 0000 and 1200UTC through test

period and the 90% confidence interval of RMSE differences (bottom part of each panel) between the En3DVar hybrid and EnSRF

experiments and GSI 3DVar for (a) RH, (b) T, (c) U, and (d) V.
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1/b2 5 0.5, we test three horizontal CLSs, Sh 5 700,

1095, and 1300km (in Hybrid_HS, Hybrid1W_Ctl, and

Hybrid_HL, respectively) and three vertical CLSs Sy 5
0.36, 1.1, and 1.8 (for Hybrid_VS, Hybrid1W_Ctl, and

Hybrid_VL, respectively). The domain-averaged fore-

cast RMSE differences between 3-h forecasts and those

of Hybrid1W_Ctl are shown in Fig. 10. When the CLSs

increase or decrease from those of control experiment,

the En3DVar hybrid performs worse for almost all

variables, except for T when the horizontal CLS is in-

creased (Fig. 10). However, even though reduced CLSs

are not preferred according to Fig. 10, the RH errors are

reduced at levels above 800 hPa when using reduced

CLSs (not shown), suggesting that we may be able to

benefit from the use of observation-type and/or height-

dependent CLSs, as in the case of EnSRF (Z13). Doing

FIG. 8.Mean 3-h forecast RMSEs at different height levels verified against sounding data for (a) RH, (b)T, (c)U, and

(d) V for experiments GSI 3DVar, Hybrid01, Hybrid05, Hybrid07, Hybrid10, and EnSRF_Ctl.
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so may also help further improve the En3DVar hybrid

performance.

For a fair comparison with EnSRF, EnSRF_Con and

Hybrid_Con, which use the same constant horizontal

and vertical cutoff radii/length scales, are compared

when ensemble covariance is used at 100%. As shown in

Fig. 11, the significantly greater RMSEs of EnSRF_Con

than EnSRF_Ctl suggest the height- and observation-

type-dependent localization is a key reason for im-

proving the performance of EnSRF. To see the effect

of height-dependent localization (observation-type-

dependent localization is not possible in a single step

analysis) on En3DVar, we introduce it into Hybrid_HD,

which uses 100% ensemble covariance. As shown in

Fig. 11, Hybrid_HD outperforms Hybrid_Con and is

much closer to EnSRF_Ctl for RH, U, and V. For wind,

Hybrid_HD is even slightly better than EnSRF_Ctl at

the middle levels (Fig. 11), while Hybrid_Con is poorer

than EnSRF_Ctl at all levels. For RH, EnSRF_Ctl still

has smaller RMSEs than hybrid_HD above 700 hPa.

The greater RMSEs from EnSRF_Con suggest that the

smaller localization radii used in EnSRF_Ctl at the

higher levels are beneficial.

The cutoff radii used in the EnSRF_Ctl are also

observation-type dependent. As discussed earlier, since

the En3DVar algorithm analyzes all observations si-

multaneously by variational minimization in the state

space, making it impossible to apply observation-type-

dependent localization within a single analysis step. Ex-

periments EnSRF3G and Hybrid3G break each analysis

cycle into three substeps of coupled EnSRF–En3DVar

analyses, with each step analyzing a subgroup of obser-

vations that share the same height-dependent localization

scales. Here, we use the absolute RMSE differences be-

tweenpairs ofEn3DVar andEnSRFexperiments (Table 2)

together with the 90% confidence interval determined

FIG. 9. As in Fig. 5, but for experiments GSI 3DVar, Hybrid01, Hybrid05, Hybrid07, Hybrid10, and EnSRF_Ctl.
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by the bootstrap resampling procedure to determine

the statistical significance of the differences. When the

error bars from different experiment pairs do not over-

lap, the RMSE differences between En3DVar and

EnSRF are considered statistically significant. As shown

in Fig. 12, the RMSE differences between Hybrid_HD

and EnSRF_Ctl (labeled 1GHD) are reduced, by about
1/4 to 1/3 for RH, U, and V compared to the differences

between Hybrid_Con and EnSRF_Ctl (labeled 1GC1).

The reduction in the difference is smaller but still sta-

tistically significant for T. When constant localization is

used in both EnSRF_Con and Hybrid_Con, the differ-

ences (labeled 1GC2) are also reduced compared to

1GC1 case, although the differences are slightly larger

than the 1GHD case.

When observation-type-dependent localization is

used in Hybrid3G and EnSRF3G, the differences be-

tween them (3DHD) are even smaller for RH,U, andV.

For RH (which has the largest RMSE difference be-

tween En3DVar and EnSRF according to Fig. 11a), the

RMSE difference of RH is about 0.5% versus the 1.25%

for the constant localization case. The reductions for T,

U, and V are smaller but still evident. Clearly, the dif-

ferences between En3DVar and EnSRF are much

smaller when height- and observation-type-dependent

localization is used in both algorithms, especially for

humidity.

Figure 13 shows the RMSE differences together with

the 90% confidence interval at different height levels. In

reference to Fig. 11, those levels where domain average

absolute RMSE differences between Hybrid_HD and

EnSRF_Ctl (1GHD) are greater than those between

Hybrid_Con and EnSRF_Ctl (1GC1) correspond to the

levels where Hybrid_HV outperforms Hybrid_Con,

given that EnSRF_Ctl is generally the best among the

three experiments. The RMSE differences of 1GC2 are

also smaller than 1GC1, but the constant localization

degrades the performance of EnSRF and En3DVar for

almost all the variables and at all levels in reference to

Fig. 11. For 3GHD, the average absolute RMSE dif-

ferences are the smallest for RH at all levels, forT above

800 hPa and for U and V above 600 hPa. For U and V,

the 3GHD differences are slightly larger below 700 hPa

than 1GHD and clearly smaller than 1GC1. These re-

sults show that when similar height- and observation-

type-dependent covariance localization is used in the

En3DVar framework using 100% ensemble covariance,

differences between EnSRF and En3DVar are signifi-

cantly reduced, and such localization treatment gener-

ally brings the En3DVar results closer to the better

EnSRF results. The reduction in the RMSE differ-

ences for RH is greater than those for T, U, and V.

Because the humidity field tends to contain smaller

scale structures than other fields, it appears to benefit

from tighter localization more when using height- and

observation-type-dependent localization. However,

because there are still differences between the EnSRF

and En3DVar algorithms, some differences still exist

between their results, as indicated by the green bars in

Fig. 12. When the ensemble covariance is used at 50%,

height-dependent localization did not improve the

En3DVar hybrid results as much as in the 100% case

(not shown).

In summary, the use of height-dependent localization

in the En3DVar hybrid framework when using full en-

semble covariance improves the resulting model fore-

casts at almost all levels and forecast hours. Height- and

observation-type-dependent localizations used in EnSRF

are responsible for about half of the differences between

the EnSRF and the En3DVar with full ensemble co-

variance. Unfortunately, observation-type-dependent lo-

calization is difficult or expensive to implement with the

En3DVar algorithm.

5. Precipitation forecast skills on 13-km grid

In this section, precipitation forecasts on the 13-km

grid initialized from the 40-km GSI 3DVar, EnSRF_Ctl

ensemble mean, Hybrid1WCtl, and Hybrid2WCtl an-

alyses (Table 3) are compared. Considering extensive

CPU and storage requirements, we launched the fore-

casts only twice a day at 0000 and 1200 UTC. The

precipitation forecasts are verified against the NCEP

stage-IV precipitation data. GSSs calculated for the 0.1,

1.25, and 2.5mmh21 thresholds are calculated as in Z13.

The GSSs and BIASs for the forecasts are shown in

Fig. 14. Both EnSRF and En3DVar hybrid outperform

GSI 3DVar on average for all forecast hours and thresholds

FIG. 10. Mean absolute forecast RMSE differences between

different experiments and Hybrid1W_Ctl, verified against sound-

ing data, for 3-h forecast averaged over the 9-day forecast period

over the entire model domain.
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shown. EnSRF13 has higher GSSs than Hybrid for

0.1mmh21 after 3 h. For greater thresholds of 1.25 and

2.5mmh21, forecasts of Hybrid1W13 are comparable to

EnSRF13 by 7 h, and are better than Hybrid2W13 dur-

ing the first four hours, which is consistent with the

domain-averaged RMSEs of RH shown in Fig. 5a. Fig-

ure 14 show that EnSRF generally has the highest pos-

itive BIASs. The hybrid schemes have the lowest BIASs

in the first 5 h, and values between those of GSI 3DVar

and EnSRF after 5 h. The BIAS differences are rela-

tively small and BIAS is always positive for both

thresholds examined.

From sensitivity experiments, we learned that the

constant localization used in En3DVar hybrid is one of

the reasons for the deterioration of humidity forecasts

compared to EnSRF. To help further understand the

FIG. 11. As in Fig. 4, but for experiments EnSRF_Ctl, EnSRF_Con, Hybrid_HD, and Hybrid_Con.
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impact of localization on precipitation forecast skill, the

forecasts on the 13-km grid initialized from EnSRF_Ctl

and EnSRF_Con ensemble mean, and Hybrid_Con

analyses are also compared. Without height- and

observation-type-dependent localization in EnSRF13-

Con, its GSSs are lower than those of EnSRF13 in the

first 9 h and are close to those ofHybrid1W13Con from 4

to 7 h, for the 0.1mmh21 threshold (Fig. 15), indicating

the role of height- and observation-type-dependent lo-

calization. The differences among the experiments are

smaller for larger thresholds (not shown).

6. Summary and discussion

In this paper, a coupled EnSRF–En3DVar hybrid

data assimilation system based on the NCEP opera-

tional GSI variational framework is established and

tested for the Rapid Refresh (RAP) forecasting system.

It uses a recently developed, well-tuned, 40-member

EnSRF system, as documented in Z13, to update and

provide the ensemble perturbations. A 9-day spring pe-

riod starting from 8 May 2010 that contains active con-

vection is used to examine the performance of the system

through comparisons with parallel experiments using

EnSRF and GSI 3DVar. The En3DVar hybrid, EnSRF,

and GSI 3DVar experiments use the same observati-

onal datasets as the operational RAP system except for

the exclusion of satellite radiance data. The experiments

are performed at a reduced resolution of ;40-km grid

spacing with 3-hourly assimilation cycles rather than at

the native 13-km grid spacing with hourly cycles of the

operational RAP. The systems are evaluated based on

forecast RMSEs verified against surface observations and

upper-air sounding data for 3–18-h forecasts. The effects of

static and ensemble covariance weighting factors and co-

variance localization configurations are examined through

sensitivity experiments.

With equal weighting for the ensemble and static co-

variances, the En3DVar hybrid scheme outperforms

GSI 3DVar for all standard variables at all levels with

statistical significance, and is slightly better thanEnSRF,

especially for later forecast hours, except for mois-

ture during the earlier forecast hours. Apparently, the

En3DVar hybrid scheme benefits from the combined

use of static and ensemble covariances. Introducing 10%

flow-dependent covariance into the standard 3DVar

framework has a much bigger positive impact than in-

cluding 10% static covariance in the En3DVar frame-

work. The forecasts from En3DVar analyses with 100%

ensemble covariance and constant covariance localiza-

tion scales are worse than those from pure EnSRF

analyses using height- and observation-type-dependent

covariance localization, especially for relative humidity.

The height-dependent localization scheme in which the

horizontal localization cutoff radii increase with height,

and the observation-type-dependent localization scheme

in which the cutoff radii for relative humidity and tem-

perature observations are set to be smaller than those for

winds led to smaller forecast RMSEs for the pure EnSRF,

especially at the high and low levels. Using similar height-

dependent localization, En3DVar with 100% ensemble

covariance became much closer to pure EnSRF. When

using similar observation-type-dependent covariance lo-

calization in En3DVar, by running the coupled EnSRF–

En3DVar analyses in three steps with each analyzing

a subset of observation variables (in a similar way as

in EnSRF), the results of En3DVar, with 100% en-

semble covariance, become even closer to those of

EnSRF. The benefit of height- and observation-type-

dependent localization is negligible when the ensem-

ble covariance is used at 50%. The multistep EnSRF–

En3DVar analysis procedure is, unfortunately, not

very practical because of the much increased compu-

tational costs. It is straightforward for pure EnSRF

because the algorithm is serial, where observations are

assimilated sequentially.

Previous studies (e.g., Hamill and Snyder 2000; Wang

et al. 2008b) had found that the En3DVar hybrid system

is more robust than EnSRF when the ensemble size is

small or model error is large. In our study, the EnSRF,

En3DVar hybrid one-way and two-way using 20 instead

of 40 ensemble members for control experiments were

also run and compared. In such a case, EnSRF and

En3DVar are both degraded, but the En3DVar hybrid is

now consistently better thanEnSRF for all variables and

FIG. 12. The 9-day and domain-averaged absolute 3-h forecast

RMSE differences verified against sounding data, where 1GC1

means the difference between Hybrid_Con and EnSRF_Ctl, 1GC2

means the difference between Hybrid_Con and EnSRF_Con,

1GHD means the difference between Hybrid_HD and EnSRF_Ctl,

and 3GHDmeans the difference betweenHybrid3G and EnSRF3G.

The error bars represent the two-tailed 90% confidence interval.
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all forecast hours (not shown). That indicates a larger

benefit of the static covariance when the ensemble is

small, agreeing with earlier findings. While further spe-

cific tuning of the 20-member EnSRF may improve the

results somewhat, we do not expect the general con-

clusion to change.

Deterministic forecasts were launched on a 13-km

grid from interpolated 40-km En3DVar hybrid control,

EnSRF ensemble mean, and GSI 3DVar analyses at

0000 and 1200 UTC of each day. Hourly accumulated

precipitation is better predicted in the En3DVar hybrid

and EnSRF experiments than GSI 3DVar, but for light

precipitation, En3DVar hybrid does not perform as well

as EnSRF, which is consistent with the slightly worse

humidity forecasts of En3DVar. When constant co-

variance localization is used in EnSRF, its precipitation

forecast skills become closer to those of En3DVar using

100% ensemble covariance, indicating the covariance

localization difference between the EnSRF and En3D-

Var as a key cause for the performance differences.

Despite the encouraging results, the En3DVar hybrid

system we have established for RAP still has room for

further improvement. Adding satellite and radar data

and examining their impacts are among the desired

FIG. 13. The 9-day and domain-averaged absolute RMSE differences between Hybrid_Con and EnSRF_Ctl (labeled 1GC1),

Hybrid_Con and EnSRF_Con (labeled 1GC2), Hybrid_HD and EnSRF_Ctl (labeled 1GHD), and Hybrid3G and EnSRF3G (labeled

3GHD) for (a) RH, (b) T, (c) U, and (d) V at different height levels. The error bars represent the two-tailed 90% confidence interval.

TABLE 3. List of precipitation forecast name and corresponding

data assimilation experiments on 40-km grid.

Precipitation forecast name Data assimilation expt

EnSRF13 EnSRF_Ctl

Hybrid1W13 Hybrid1W_Ctl

Hybrid2W13 Hybrid2W_Ctl

EnSRF13Con EnSRF_Con

Hybrid13Con Hybrid_Con
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tasks, as is a dual-resolution implementation where the

En3DVar is run at the native RAP resolution. These

aspects are being pursued and the results will be re-

ported in future papers. A further refined and tested

version, initially in a dual-resolution mode coupling

a 13-km En3DVAR with a 40-km EnSRF, will likely

become operational in the future, replacing the GFS

EnSRF system used in the recently implemented oper-

ational RAP hybrid DA system.
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