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Abstract 41 
 42 

A coupled EnKF-En3DVar hybrid data assimilation system is developed for the 43 

operational Rapid Refresh (RAP) forecasting system. The three-dimensional ensemble-44 

variational (En3DVar) hybrid system employs the extended control variable method, and is built 45 

on the NCEP operational Grid-point Statistical Interpolation (GSI) 3DVar framework. It is 46 

coupled with a GSI-based ensemble Kalman filter (EnKF) system for RAP, which provides 47 

ensemble perturbations. Recursive filters (RFs) are used to localize ensemble covariance in both 48 

horizontal and vertical within the En3DVar. 49 

The coupled En3DVar hybrid system is evaluated with 3-hourly cycles over a 9-day 50 

period with active convection. All conventional observations used by operational RAP are 51 

included. The En3DVar hybrid system is run at 1/3 of the operational RAP horizontal resolution 52 

about 40-km grid spacing, and its performance is compared to parallel GSI and EnKF runs using 53 

the same data sets and resolution. Short-term forecasts initialized from the 3-hourly analyses are 54 

verified against sounding and surface observations. 55 

When using equally weighted static and ensemble background error covariances and 40 56 

ensemble members, the En3DVar hybrid system outperforms corresponding GSI and EnKF. 57 

When the RF coefficients are tuned to achieve a similar height dependency of localization as in 58 

the EnKF, the En3DVar results with pure ensemble covariance are close to EnKF. With 20 59 

ensemble members, EnKF, GSI and En3DVar perform in ascending order, showing the 60 

advantage of the En3DVar hybrid for small ensembles. Two-way coupling between EnKF and 61 

En3DVar did not produce noticeable improvement over one-way coupling. Downscaled 62 

precipitation forecast skill on the 13-km RAP grid from the En3DVar hybrid is better than those 63 

from GSI analyses.  64 
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1. Introduction  1 

Three-dimensional variational (3DVAR, Lorenc 1986) and four-dimensional variational 2 

(4DVAR, Le Dimet and Talagrand 1986; Talagrand and Courtier 1987) data assimilation (DA) 3 

methods have been used successfully at operational numerical weather prediction (NWP) centers 4 

for more than two decades (e.g., Parrish and Derber 1992; Courtier et al. 1998; Rabier et al. 2000). 5 

Typically, static, flow-independent background error covariance (BEC) is used in the background 6 

term of the variational cost function. Neglecting the flow dependent nature of the background error 7 

is a key deficiency, especially within a 3DVar framework where the NWP model is not directly 8 

used to incorporate model dynamics into the DA system (e.g., Parrish and Derber 1992; Purser et al. 9 

2003b). This deficiency becomes more severe for mesoscale and convective-scale DA where even 10 

fewer state variables (compared to the full set) are directly observed and large-scale balance 11 

relationships, which are often built into 3DVar systems, become invalid (e.g., Gao et al. 2004; Ge et 12 

al. 2012). While some efforts had been made to build spatially inhomogeneous, anisotropic BEC 13 

into 3DVar frameworks (e.g., Wu et al. 2002; Purser et al. 2003a), major issues exist on how to 14 

determine the flow-dependent covariances and how to efficiently introduce them into a variational 15 

DA framework. 16 

 The ensemble Kalman filter (EnKF) algorithm, as initially developed by Evensen (1994) 17 

and Burgers et al. (1998), offers an alternative to the variational formulation. The EnKF employs 18 

the Monto Carlo sampling approach, where an ensemble of model forecasts is used to provide and 19 

evolve flow-dependent covariances, while the filter updates the ensemble states using an optimal 20 

estimation algorithm. Many subsequent studies have refined the filter algorithm by addressing a 21 

number of issues that are often related to the sampling error associated with the use of relatively 22 

small ensembles that is necessitated by practical computational constraints (e.g., Burgers et al. 23 
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1998; Houtekamer and Mitchell 1998; Anderson 2001; Hamill et al. 2001; Whitaker and Hamill 24 

2002; Evensen 2003). Because of their ability to estimate flow-dependent BECs and to evolve them 25 

through assimilation cycles, and their relative ease of implementation, the ensemble DA methods 26 

(Evensen 1994; Anderson 2001; Bishop et al. 2001; Whitaker and Hamill 2002; Hunt et al. 2007) 27 

have gained much popularity within both the research and operational communities in recent years. 28 

The ensemble filters have been used in operational global forecast systems to provide ensemble-29 

based BEC (e.g., Hamill et al. 2011b; Raynaud et al. 2011; Bonavita et al. 2012; Wang et al. 2013) 30 

as well as initial conditions for ensemble forecasts (e.g., Houtekamer et al. 2005; Whitaker et al. 31 

2008; Hamill et al. 2011a). The application of EnKF to mesoscale models has also enjoyed 32 

encouraging successes (e.g., Fujita et al. 2007; Meng and Zhang 2007; Bonavita et al. 2008) while 33 

for the convective scale, EnKF has shown great ability in dealing with complex, nonlinear physical 34 

processes (e.g., Tong and Xue 2005) that may even involve two-moment microphysics 35 

parameterization (e.g., Xue et al. 2010; Jung et al. 2012; Putnam et al. 2013). Accurate 36 

representation of microphysical processes is especially important at the convective scale.  37 

While EnKF provides a way of estimating flow-dependent BEC, the estimated covariance 38 

matrix is severely rank deficient due to the much smaller ensemble sizes typically used compared to 39 

the degrees of freedom of typical NWP model state (Houtekamer and Mitchell 1998; Hamill and 40 

Snyder 2000). The use of much larger ensembles is often computationally impractical while 41 

covariance localization that alleviates the rank deficiency problem has its own issues (Anderson 42 

2007, 2012). An alternative for alleviating this problem is to combine the full-rank static BEC with 43 

the rank-deficient ensemble BEC, creating a so-called hybrid
1
 algorithm. 44 

Hamill and Snyder (2000) were the first to propose a 3DVar-based hybrid scheme in which 45 

                                                 
1
 In this study, we use the word ‘hybrid’ to mainly refer to the use of a combination of the static and ensemble-derived 

flow-dependent covariances, i.e., the hybrid covariance. Sometimes in this paper, hybrid is also used to refer to the 

En3DVar algorithm to be discussed later. 
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the static BEC in a 3DVar system was replaced by a linear combination of the static and ensemble-46 

derived BEC. The system was tested with a low-resolution quasi-geostrophic model and simulated 47 

data in a perfect model setting. By running the hybrid analysis system multiple times with perturbed 48 

observations, the system is able to provide an ensemble of analyses. It was found that the analysis 49 

performs the best when BEC is estimated almost fully from the ensemble, especially when the 50 

ensemble size was large (100 in their case). When the ensemble is smaller,  the system benefits 51 

from a lesser weighting given to the ensemble-based covariances. Wang et al. (2009) also found that 52 

a hybrid system based on an ETKF is more robust than EnKF for a two-layer primitive equation 53 

model when the ensemble size is small and when the model error is large. The hybrid formulation in 54 

these studies requires explicit evaluation and storage of the ensemble covarianes which is very 55 

expensive for full NWP models.  56 

Lorenc (2003) proposed an elegant, alternative hybrid formulation, in which the control 57 

variables of the regular variational cost function are augmented by extended control variables 58 

(hereafter, ECV), which are preconditioned upon the square root of ensemble covariance. The ECV 59 

formulation involves adding an additional term to the variational cost function for the ECVs which 60 

has a similar form as the original background term, and is therefore relatively easy to implement 61 

based on an existing variational DA framework. Wang et al. (2007) proved  that the ECV 62 

formulation is mathematically equivalent to that of Hamill and Snyder (2000). The potential for the 63 

hybrid system to perform better than a pure EnKF when the ensemble size is relatively small makes 64 

it attractive for operational implementation where computational constraint is often a significant 65 

issue. A variational framework used by the hybrid scheme also makes it easier to include equation 66 

constraints (Kleist et al. 2009b; Ge et al. 2012). Furthermore, for observations whose forward 67 

operators are non-local, such as those of satellite radiance data, the state-space-based covariance 68 

localization used in the hybrid formulation is potentially advantageous (Campbell et al. 2010). As 69 
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suggested by Lorenc (2003), Buehner et al. (2010b, a) and further discussed by Liu and Xue (2013), 70 

both (traditional) 3DVar and 4DVar can be formulated to use the ensemble covariance with the 71 

extended control variable method, and we call such ensemble-variational formulations En3DVar 72 

and En4DVar
2
, respectively, or EnVar in general.  73 

Buehner (2005) implemented the ECV hybrid approach within the Canadian operational 74 

global 3DVar framework, and found that the hybrid scheme produced comparable or better 75 

forecasts that those initialized using 3DVar. Buehner et al. (2010b, a) further compared the 76 

performances of the coupled EnKF-En3DVar and EnKF-En4DVar with the pure 3DVar and 4DVar 77 

for global forecasts. Based on the variational DA framework of the Advanced Research WRF 78 

(WRF-ARW, Skamarock et al. 2005) model, Wang et al. (2008b, a) implemented the ECV-based 79 

hybrid, coupling it with an ensemble transform Kalman filter (ETKF, Bishop et al. 2001) that is 80 

used to update the ensemble perturbations (which we call ETKF-En3DVar hybrid). This WRF 81 

hybrid DA system was further applied for tropical cyclone DA (Wang 2011; Li et al. 2012) Most 82 

recently, Zhang and Zhang (2011) coupled a mesoscale EnKF system with WRF 4DVar through the 83 

WRF hybrid DA framework (hence EnKF-En4DVar hybrid but they called it E4DVar), and Zhang 84 

et al. (2013) further compared the performances of EnKF-En3DVar (they called it E3DVar) and 85 

EnKF-En4DVar hybrid for mesoscale applications. Mizzi (2012) reported results testing the GSI-86 

based En3DVar hybrid, using ETKF, local ensemble transform Kalman filter (LEKF), and the 87 

regular EnKF for ensemble perturbation updating, respectively, and WRF-ARW as the prediction 88 

                                                 
2
 Here, En4DVar is an extension of the traditional 4DVar scheme to include the use of ensemble-derived background 

error covariance through the extended control variable method. The scheme still involves the use of an adjoint model. 

Liu et al. Liu, C., Q. Xiao, and B. Wang, 2008: An ensemble-based four-dimensional variational data assimilation 

scheme. Part I: Technical formulation and preliminary test. Mon. Wea. Rev., 136, 3363-3373. proposed an alternative 

algorithm that does not involve the use of a model adjoint, and En4DVar was used to refer to their algorithm. In Liu and 

Xiao Liu, C. and Q. Xiao, 2013: An ensemble-based four-dimensional variational data assimilation scheme. Part III: 

Antarctic applications with Advanced Research WRF (ARW) using real dataibid., 141, 2721-2739. and Liu and Xue 

Liu, C. and M. Xue, 2013: A unified framework for four-dimensional ensemble-variational hybrid data assimilation. 

Mon. Wea Rev., To be submitted., their algorithm is renamed 4DEnVar, to better differentiate the algorithm from 

traditional 4DVar. 
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model, for a hurricane case. In general, the introduction of flow-dependent ensemble covariance 89 

into 3DVar or 4DVar improves the forecast results. In fact, for the NCEP operational Global 90 

Forecasting System (GFS), an EnKF-En3DVar hybrid DA system (Hamill et al. 2011b; Whitaker et 91 

al. 2011) based on an EnKF (Hamill et al. 2011b) and the operational Grid-Point Statistical 92 

Interpolation (GSI) 3DVar (Kleist et al. 2009a) was developed and operationally implemented in 93 

2012, replacing GSI 3DVar. Wang et al. (2013) reported the testing results from the GSI-based 94 

En3DVar hybrid system for GFS at a reduced resolution. 95 

It has been a general decision at NCEP that the hybrid DA approach will be applied to its 96 

regional models as well, including the North America Mesoscale (NAM) model and the recently 97 

implemented (on 1 May 2012) Rapid Refresh (RAP) system, the replacement to the Rapid Update 98 

Cycle (RUC, Benjamin et al. 2004). Towards this end, an EnKF system was recently established for 99 

the RAP and tested at a reduced resolution by Zhu et al. (2013) using the operational observation 100 

data stream of RAP. The ensemble square-root filter (EnSRF) algorithm of Whitaker and Hamill 101 

(2002) was used in our study. As one of the ensemble-based Kalman filter algorithms, we will use 102 

EnKF as a general name to refer to this algorithm. Short-range (up to 18 hours) forecasts from 3-103 

hourly EnKF analyses over a 9-day period were found to be consistently better than forecasts from 104 

corresponding GSI analyses, in terms of both model state forecasts and precipitation forecast skill 105 

scores. The primary goal of this current work is to extend the work of Zhu et al. (2013) by 106 

establishing and testing a coupled EnKF-En3DVar hybrid DA system for RAP that can potentially 107 

be implemented operationally. As the first step, we test and evaluate the hybrid DA system running 108 

at 1/3 of the native resolution of operational RAP; running the EnKF DA system at this reduced 109 

resolution is dictated by the expected availability of operational computing resources in the near 110 

future, and while running the En3DVAR hybrid analyses at the same resolution facilitates easy and 111 

direct comparisons with the EnKF results, and provides us with a benchmark against which a future 112 
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dual-resolution implementation can be compared against. With the dual-resolution implementation, 113 

the En3DVar analyses will be run on the higher, native, grid resolution, using the reduced-114 

resolution ensemble perturbations. In this paper, we focus on results obtained from all three 115 

systems, i.e., the GSI 3DVAR, EnKF and En3DVar hybrid, at the reduced, 40-km grid spacing 116 

resolution. Their performances are inter-compared. 117 

The rest of the paper is organized as follows. The coupled EnKF-En3DVar hybrid system 118 

for RAP is first described in section 2. Experimental setup and testing results are discussed in 119 

sections 3 and 4, respectively. Downscaled precipitation forecasts on the 13 km RAP grid, starting 120 

from interpolated 40-km En3DVar hybrid, EnKF and GSI analyses, are compared in section 5. 121 

Finally, section 6 provides conclusions and additional discussions. 122 

2. GSI-based EnKF-En3DVar hybrid system for Rapid Refresh 123 

a) The Rapid Refresh System 124 

The operational hourly-updated RUC system was designed to improve short-range weather 125 

forecasting through frequent updating of initial conditions with the latest observations (Benjamin et 126 

al. 2004). The RAP is a replacement of the RUC system and is based on the non-hydrostatic WRF-127 

ARW dynamic core (Skamarock et al. 2005). RAP has been operational at NCEP since May 1, 2012 128 

and currently uses the GSI 3DVar for hourly data assimilation cycles.  Recently, an upgraded 129 

experimental version of the RAP (planned for operational implementation at NCEP) has employed 130 

an ensemble 3DVar hybrid analysis, using covariance information obtained from the 80-member 131 

GFS EnKF system and shown improved error statistics relative to the NCEP operational RAP.  The 132 

GSI is an unified DA framework for both global and regional models (Kleist et al. 2009a). The 133 

horizontal grid spacing of RAP is ~13 km and has 50 vertical levels extending up to 10 hPa at the 134 

model top. Compared to RUC, the RAP system is capable of assimilating more observations, 135 
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including satellite radiance data, and has a larger domain which covers the entire North America. 136 

The physics options used by the operational RAP include the Grell-G3 cumulus parameterization, 137 

Thompson microphysics, RRTM longwave radiation, Goddard shortwave radiation, MYJ turbulent 138 

mixing, RUC-Smirnova land-surface model. Details on these schemes can be found in Benjamin et 139 

al. (2009).  140 

As with the RUC, the RAP employs a digital filter initialization (DFI) to reduce high-141 

frequency noise during the initial period of model integration. In the operational RAP system, twice 142 

DFI (TDFI) (Lynch and Huang 1992), which applies the DFI twice, once on the  adiabatic 143 

backward time integration and once on the full-physics forward time integration, is used. 144 

Considering that for high-resolution applications where diabatic processes are more important, 145 

adiabatic integration can introduce significant errors,  Zhu et al. (2013) chose to employ the digital 146 

filter launching (DFL) procedure (Lynch and Huang 1994) instead in their EnKF system for RAP; 147 

DFL applies the DFI only once, on the forward integration time series. In this study, the same 148 

procedure is followed by the EnKF and En3DVar hybrid experiments. In our tests with 3-hourly 149 

cycles reported in this paper, the DFL employs a 40-minute filter window centered at 20 minutes of 150 

forecast time, and used Dolph filter (Lynch 1997) with a cutoff half width of 20 minutes.  151 

b) The coupled EnKF-En3DVar hybrid system for RAP 152 

As mentioned earlier, our En3DVar hybrid system is based on the operational GSI 3DVar 153 

system for RAP and it uses the operational data stream of RAP. To facilitate direct comparisons 154 

with the RAP EnKF and GSI 3DVar systems as reported in Zhu et al. (2013), we run our hybrid 155 

tests also at the reduced resolution of ~40 km grid spacing with 3-hourly assimilation cycles instead 156 

of the ~13 km grid spacing and hourly cycles of the operational RAP. The use of the reduced-157 

resolution EnKF system is due to the expected constraint in available operational computational 158 
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resources in the near future while the choice of 3-hourly cycles is to enable us to run a larger 159 

number of experiments and for more rapid prototyping of the system. The running of the 160 

continuously cycled experiments over a 9-day period is computationally expensive in terms of both 161 

CPU and storage requirements. Extensive experimentations and tuning were required to arrive at 162 

quasi-optimal configurations of the RAP EnKF system, including configurations of covariance 163 

inflation and localization. For future operational implementation, it is desirable to run the En3DVar 164 

at the native RAP resolution while using lower-resolution EnKF perturbations in a dual-resolution 165 

model to save computational cost; the implementation and testing of the dual-resolution coupled 166 

hybrid system for RAP will be done in the future. 167 

A one-way coupled EnKF-En3DVar hybrid system is made up of four key steps: 1) GSI-168 

based observation processing that includes both quality control and calculation of a full set of 169 

observation innovations; 2) EnKF analyses using the innovations calculated by the GSI and the 170 

background ensemble forecasts to yield an ensemble of analyses; 3) An En3DVar analysis using the 171 

background ensemble forecasts from the EnKF cycle for flow-dependent covariance estimation; and 172 

4) carrying out ensemble forecasts from the EnKF ensemble analyses and a single control forecast 173 

from the En3DVar hybrid analysis to the next analysis time. 174 

 Fig.  1 shows a flowchart for both one-way and two-way coupled EnKF-En3DVar analysis-175 

forecast cycle as employed in this paper. For 1-way coupling between the EnKF and En3DVar, the 176 

EnKF system provides the background ensemble forecast perturbations to the ECV-based En3DVar 177 

hybrid variational analysis , but does not feed back to the EnKF system. Two-way coupling includes 178 

an additional step that re-centers the EnKF analysis ensemble on the En3DVar control analysis (the 179 

thick black arrows and bold black box in Fig.  1). The two-way coupling implicitly assumes that the 180 

En3DVar control analysis is better than the EnKF ensemble mean analysis, and the re-centering 181 

should help prevent the divergence between the EnKF and En3DVar analyses so that the ensemble 182 
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perturbations can sample the control forecast uncertainty well; divergence between the two systems 183 

may occur when continuous cycles are run for a long period of time. 184 

As pointed out earlier, the GSI-based En3DVar hybrid analysis is achieved using the ECV 185 

method (Wang 2010).  Within this framework, the analysis increment x  is a sum of two terms, 186 

defined as 187 

'

1

1

( )
K

k k

k

 


 x x a x    ,             (1) 188 

where 1 x  is the analysis increment associated with static BEC B and the second term on the right 189 

hand side is the increment associated with the ensemble covariance. 
'

kx  is the k
th

 ensemble 190 

background perturbation normalized by 1K  , where  is ensemble size. Vectors ( 1, , )k k K a  191 

in the second term are the extended control variables. Analysis increment x  is obtained by 192 

minimizing the following cost function: 193 

1 1 2

1 1 1

1 1 1 2

( , )

1 1 1
[ ( )] [ ( )],

2 2 2

b e o

T T T

o b o b

J J J J

H H

  

       

  

      

x a

x B x a A a y x x R y x x
  (2) 194 

which gives the solutions of partial increment 1 x  and ECV a . Vector a  is formed by 195 

concatenating K vectors ka . Compared to a traditional 3DVar cost function, a weighted sum of bJ  196 

and oJ  is replaced by the sum of weighted bJ  and eJ  terms and oJ , where bJ  is the traditional 197 

background term associated with static covariance B , oJ  is the observation term as in traditional 198 

3DVar. eJ  is the additional term associated with flow-dependent covariance for the ECV. 199 

Weighting factors 1   and 2  are placed in front of bJ  and eJ  terms, respectively, and they are 200 

constrained by  201 

1 2

1 1
1

 
  ,        (3) 202 

K
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to conserve the total variances. 203 

The ECVs are constrained by a block-diagonal matrix A , which defines the ensemble 204 

covariance localization (Lorenc 2003; Wang et al. 2007). In the GSI-based En3DVar hybrid 205 

implementation, the horizontal and vertical covariance localizations, or the effects of matrix A in 206 

Eq. (2), are achieved by applying recursive filter transforms (Hayden and Purser 1995), analogous 207 

to the treatment of B in Eq. (2). The parameters in the recursive filter will determine the correlation 208 

length scale in A  as a precondition and therefore prescribe the covariance localization length scale 209 

for the ensemble covariance. The vertical covariance localization scale (CLS) is measured in either 210 

scaled height (the natural log of pressure) or the number of model levels while the horizontal CLS is 211 

measured either in kilometers or number of grid points in GSI. In this study, the natural log of 212 

pressure is used for the vertical, and kilometer is used for the horizontal localization. 213 

Apart from the variational minimization of the En3DVar hybrid cost function given by Eq. 214 

(2), a major component of the overall coupled EnKF-En3DVar hybrid DA system is an ensemble 215 

DA system that provides the perturbations, which in our case the EnKF system described in Zhu et 216 

al. (2013).   This EnKF system uses the serial ensemble square-root filter (EnSRF) algorithm of 217 

Whitaker and Hamill (2002) and its configuration settings follow the control experiment of Zhu et 218 

al. (2013). To facilitate fair comparisons between the En3DVar hybrid and EnKF experiments, the 219 

CLSs in the En3DVar hybrid system are specified to match the CLSs used by the EnKF as closely 220 

as possible in the control experiments, and the vertical and horizontal scales are measured in the 221 

natural log of pressure and kilometers, respectively. The e-folding distance from the Gaspari and 222 

Cohn (1999) localization function is  2 0.3 GCS  (where GCS  is cut-off radii in the EnKF), while an 223 

e-folding distance from the recursive filter is 2 2 RFS  (Barker et al. 2004; Wang et al. 2008c) 224 

(where RFS  is recursive filter localization length scale). Thus, to keep the same e-folding distance 225 
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for both EnKF and En3DVar, the cut-off radii in the EnKF GCS  can be converted to the recursive 226 

filter localization length scale RFS  in hybrid according to  227 

   (4) 228 

3.  Experiment designs 229 

a. Model, observations, ensemble configuration and verification techniques 230 

The test period, model domains and boundary conditions used in this study are the same as 231 

in Zhu et al. (2013). DA experiments at ~40 km grid spacing are run in continuous 3-hourly cycles 232 

throughout the 9-day retrospective testing period from May 8 to 16, 2010; the cycles start at 0000 233 

UTC 8 May 2010 and end at 2100 UTC 16 May 2010. The 40 km model domain (as shown in Fig. 234 

2) covers the entire North America with 207x207 grid points. A slightly smaller domain at ~13 km 235 

grid spacing, as indicated by the bold rectangle in Fig. 2a, is used for forecasts at the native RAP 236 

resolution and for precipitation verification. The domains have 50 vertical levels. Eighteen-hour 237 

deterministic forecasts (after applying DFL) are launched every three hours from the En3DVar 238 

hybrid control analyses as well as EnKF ensemble mean analyses on the 40 km domain. Three-239 

hourly ensemble forecasts are produced within the assimilation cycles of EnKF, which are fed into 240 

the En3DVar control analysis (Fig.  1). Two outer loops and 50 iterations, the same as in 241 

operational RAP GSI 3DVar, were utilized for all the En3DVar and GSI experiments. The 13 km 242 

deterministic forecasts start from interpolated 40 km analyses at 0000 and 1200 UTC for 243 

precipitation forecast evaluation. The lateral boundary conditions for both grids come from 244 

operational GFS forecasts; perturbations created using the random-CV method in the WRF 3DVar 245 

(Barker et al. 2004) are added to GFS forecast boundary conditions for the ensemble forecasts and 246 

to the GFS analysis initial condition at 0000 UTC May 8, 2010 to start the initial ensemble of 247 

EnKF.  248 

SRF = 0.15SGC / 2
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The observations used in this study are the same as those used in the operational RAP except 249 

for the exclusion of satellite radiance data. The realtime RAP system collects data from 1.5 h before 250 

and 0.5 h after the time of analysis. However, for 0000 and 1200 UTC it waits half an hour longer 251 

for more data (such as sounding data) to arrive. In our tests, the data sets assimilated at 3 hourly 252 

intervals are the data sets collected and used by the operational hourly RAP system; as a result, 253 

observations that arrived in realtime outside the 2 hour (2.5 hours for 0000 and 1200 UTC) 254 

windows are not used. They include surface observations (land reporting stations, mesonets, ships, 255 

and buoys, etc.), upper air observations (radiosondes, aircrafts, wind profilers, VAD data and 256 

satellite retrieval winds) and GPS precipitable water (PW), the same as in Zhu et al. (2013) except 257 

for the exclusion of GPS perceptible water (PW) data there. The exclusion of the PW data in Zhu et 258 

al. (2012) was due to an initial problem with the EnKF code, which has since been fixed. The 259 

distributions of most major observation types are shown in Fig. 2. The satellite radiance data are not 260 

included in the experiments reported here because our preliminary tests suggested that bias 261 

correction remains an important issue within the system that would require careful treatment for 262 

positive impact. Our more recently tests with the radiance data using the EnKF show small although 263 

generally positive impacts and the results will be reported separately in the future. Initial studies of 264 

EnKF for NCEP GFS global model also excluded satellite radiance data (Whitaker et al. 2008). 265 

The short-range deterministic forecasts from the En3DVar, EnKF ensemble mean and GSI 266 

analyses are verified against surface and sounding observations.  The Model Evaluation Tools 267 

(MET) developed by the Development Tested Center (DTC) (Brown et al. 2009) are employed 268 

here. MET contains comprehensive verification metrics for both deterministic and probabilistic 269 

forecasts. Root-mean square error (RMSE) is used as the primary verification metric for the 40 km 270 

deterministic forecasts here. The RMSEs for temperature (T), relative humidity (RH), and wind 271 

components U and V are calculated against upper air soundings, and those for surface pressure P, 2-272 
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m RH, 2-m T and 10-m U and V are calculated against surface observations.  273 

The statistical significance of RMSEs is determined by using bootstrap resampling (Candille 274 

et al. 2007; Buehner and Mahidjiba 2010; Schwartz and Liu 2013). The RMSEs from all cycles are 275 

randomly selected 3000 times, and for these samples, the mean is calculated, along with a two-276 

tailed 90% confidence interval from 5% to 95%. To determine whether the improvements from 277 

En3DVar on GSI 3DVAR is statistically significant, the mean RMSE differences between En3DVar 278 

and GSI 3DVar together with a 90% confidence interval is computed and plotted in each figure. The 279 

RMSE differences from all cycles are also randomly selected 3000 times, and for these samples, a 280 

two-tailed 90% confidence interval from 5% to 95% is calculated. The same technique is also 281 

applied to the differences between En3DVar experiments and EnKF_Ctl to determine whether the 282 

improvement of En3DVar over EnKF is statistically significant. That the bounds of a 90% 283 

confidence interval between the forecast pair are all lower than zero means RMSEs from the first 284 

experiment are always lower than the second one at the 90% confidence level, therefore the 285 

improvement from the first experiment over the second one is statistically significant at the 90% 286 

confidence level. Conversely, that zero is included within the bounds of the 90% confidence level 287 

denotes statistically insignificant situations (Schwartz and Liu 2013; Xue et al. 2013). 288 

For the 12-hourly forecasts on the 13 km grid, the Gilbert skill score (GSS) (Gandin and 289 

Murphy 1992), also known as the equitable threat score (ETS), and frequency bias (BIAS) are used 290 

to verify precipitation forecasts against NCEP Stage IV precipitation data (Lin and Mitchell 2005). 291 

The error and skill scores are aggregated over all forecasts within the 9-day test period. The same 292 

evaluation procedure was used in Zhu et al. (2013) although they only presented the GSSs. 293 

b. Assimilation experiments 294 

Experiments performed in this study are listed in Table 1. First, well-tuned En3DVar hybrid 295 
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1-way (Hybrid1W_Ctl) and 2-way coupled (Hybrid2W_Ctl), EnKF (EnKF_Ctl) control and GSI 296 

experiments are compared. The EnKF control experiment, EnKF_Ctl, uses 40 ensemble members 297 

and corresponds to experiment EnKF_CtrHDL from Zhu et al. (2013) except additional GPS PW 298 

data in this study, and uses a single suite of physics parameterizations in the ensemble to keep the 299 

setup simple (so that the EnKF, GSI and the En3DVar experiments all use the same set of physics in 300 

the forecast model). The En3DVar hybrid control experiment assigns equal weights ( 21/ 0.5  ) to 301 

the static and ensemble BECs. The EnKF codes and configurations are the same as the EnKF 302 

control experiment in Zhu et al. (2013), except for the exclusion of GPS PW data there. A 303 

combination of static and adaptive covariance inflation is applied in EnKF as in Zhu et al. (2013). 304 

There are mainly two sets of tunable parameters in the En3DVar hybrid scheme. One set is 305 

the covariance weighting factors, which define the weights placed on the BECs. Four sensitivity 306 

experiments test the relative weights given to the static and ensemble BECs, with 21/  =0.1, 0.5, 307 

0.9, 1.0 (Hybrid01, Hybrid05, Hybrid09, Hybrid10) corresponding to 1/10, 1/2, 9/10, 100% weight 308 

given to the ensemble BEC, respectively.  309 

The other set of tunable parameters includes the horizontal and vertical CLSs applied to the 310 

covariances. For weighting factor 21/  =0.5 with 1-way coupling, we test three horizontal CLSs 311 

=192, 300 and 356 km in Hybrid_HS, Hybrid1W_Ctl, and Hybrid_HL, respectively (corresponding 312 

to cut-off radii of 700, 1095, 1300 km according to Eq. (4)); three vertical CLSs = -0.1, -0.3 and -313 

0.5 (corresponding to cut-off radii of 0.36, 1.1 and 1.8 according to Eq. (4)) are tested in 314 

Hybrid_VS, Hybrid1W_Ctl and Hybrid_VL, respectively. The minus sign is due to the use of ln(p) 315 

as the length measure. To facilitate the comparison with control experiment Hybrid1W_Ctl, the 316 

mean domain-average RMSE difference, defined as  317 

D = *

1

1
( )

N
k k

Hybrid Benchmark

k
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where N  is the total number of cycles and k refers to the k
th

 cycle, is calculated between experiment 319 

*Hybrid ; the benchmark experiment is Hybrid1W_Ctl here and *Hybrid   refers to one of hybrid 320 

sensitivity experiments. 321 

All CLSs used in the En3DVar hybrid experiments described above are constant with 322 

height. However, the cut-off radii used in the well-tuned EnKF control experiment of Zhu et al. 323 

(2013) (EnKF_CtrHDL in their paper) are height- and observation-type dependent based on the 324 

vertical position of the observations. These localization settings are shown in Fig.  3.  The 325 

horizontal cut-off radius  at the model top is 1.5 times the value at the surface for all state 326 

variables; as shown in Fig.  3a,  increases from 700 km at the surface to 1050 km at the model 327 

top. The vertical cut-off radius  is not only height dependent, but also observation-type 328 

dependent. For RH and T observations (solid line in Fig.  3b), the vertical cut-off radii at the model 329 

top and surface are set to a quarter of 1.1 and half of 1.1, respectively. For wind observations (dash 330 

line in Fig.  3b),   is twice as large as that for RH and T observations. For surface pressure 331 

observations and GPS PW data (which are most strongly linked to low-level moisture), their vertical 332 

localization radii are set to a constant value of 1.6. These settings were used in the control 333 

experiment of Zhu et al. (2013), and their choices were guided by the correlation scales found in the 334 

NMC-method-derived error statistics used by GSI and were further tuned based on sensitivity 335 

experiments.  336 

In the En3DVar system, height-dependent localization is straightforward to implement, but 337 

not observation-type-dependent localization, because unlike the serial EnKF scheme, En3DVar 338 

analyzes all observations simultaneously and the localization is performed in the state instead of the 339 

observation space (Campbell et al. 2010). Theoretically, if the localization treatment were the same 340 

for the EnKF ensemble mean analysis as for the En3DVar analysis and when the ensemble-derived 341 

covariance is used at 100%, the results from the two algorithms should be very close. We observed 342 

rcut

rcut

ln(pcut )

ln(pcut )
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differences between such EnKF and En3DVar analyses in our experiments, and want to see if 343 

localization is the main cause for these differences. We are interested in finding out if the height- 344 

and observation-dependent covariance localization treatments would have similar effects in 345 

En3DVar as in EnKF. These are examined in the next three experiments (Hybrid_Con, Hybrid_HD 346 

and Hybrid3G), all performed with 100% ensemble covariance and all used one-way coupling. 347 

Hybrid_Con uses constant CLSs corresponding to the cut-off radii of EnKF_Ctl at the 348 

surface. In Hybrid_HD, the height-dependent horizontal CLSs are chosen to match the height-349 

dependent cut-off radii of EnKF_Ctl closely, while the vertical CLSs for all variables are chosen to 350 

be the same as that for wind observations in EnKF_Ctl (Table 1).   351 

The only way to apply different localization to different observations is to break the 352 

En3DVar analysis into multiple steps of analysis, with each step analyzing a sub-set or a sub-group 353 

of observations. To do this, the corresponding EnKF analysis that provides the ensemble 354 

perturbations also needs to be broken up into multiple steps and the EnKF and En3DVar need to be 355 

run in alternating order. The disk I/O costs reading and writing the ensembles will be much 356 

increased so will be the costs of En3DVar minimizations. Doing this significantly increases the 357 

overall computational costs for operational implementation (the costs of associated gridded data IO 358 

are also significant, apart from CPU costs) but is doable in a research mode. Towards this end, 359 

experiments EnKF3G and Hybrid3G are run, where each analysis is broken into 3 steps, with each 360 

step analyzing one of the three groups of observations consisting of 1) RH and T, 2) U and V, 3) and 361 

PS and GPS PW data, respectively. Within each step, the EnKF ensemble analysis is followed by an 362 

En3DVar hybrid analysis step using the latest EnKF-updated ensemble perturbations. 363 

Because the EnKF includes both static and adaptive covariance inflation (Zhu et al. 2013), it 364 

is difficult to maintain the same amount and effects of inflation when each EnKF analysis in broken 365 

into three steps. Applying the static inflation every EnKF sub-step can over-inflate the covariance, 366 
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while applying it only in the last step would change the overall behavior of the filter. Because our 367 

primary goal here is to determine if the difference between the EnKF and En3DVar analyses (with 368 

100% ensemble covariance) is primarily caused by the observation-based localization, to avoid the 369 

above issue, we run EnKF3G without any covariance inflation and examine the RMSE differences 370 

between the EnKF and En3DVar analyses. We just need to find out if the En3DVar hybrid analyses 371 

are closer to the EnKF analyses when observation-type dependent localization is similarly used in 372 

the En3DVar through the split-step procedure. 373 

The mean domain average absolute RMSE difference, defined as  374 

*

1

1 N
k k

Hybrid Benchmark

k

DB RMSE RMSE
N 

   ,     (6) 375 

is used to measure how close the En3DVar and EnKF analyses are. The differences between 376 

Hybrid_Con and EnKF_Ctl, Hybrid_HD and EnKF_Ctl, Hybrid3G and EnKF3G (Table 2) will be 377 

calculated to examine the impacts of constant localization, height-dependent localization, and 378 

observation-dependent localization, respectively. The statistical significance of DB is also 379 

determined by using bootstrap resampling. The DBs at cycles are randomly selected 3000 times, for 380 

this sample; a mean is calculated, along with a two-tailed 90% confidence interval from 5% to 95%. 381 

If the error bars from the experiments pair do not overlap, the differences between En3DVar and 382 

EnKF are significantly reduced at the 90% confidence level.  383 

Finally, to see how the En3DVar hybrid scheme compares with the EnKF and GSI for 384 

smaller ensemble sizes, we run the EnKF and 1-way and 2-way coupled En3DVar hybrid with 20 385 

instead of 40 ensemble members, and the experiments are called EnKF20, Hybrid1W20 and 386 

Hybrid2W20 (Table 1). The ensemble covariance is used at 50% in the En3DVar hybrid analyses. 387 

The relative percentage improvement (RPI) comparing to experiment GSI 388 

exp*

1 1 1

1 1 1
( ) /

N N N
k k k

GSI GSI

k k k

RPI RMSE RMSE RMSE
N N N  

        (7) 389 
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are used to discuss the results of these experiments in the following sections. The exp*  refer to one 390 

of ensemble size sensitivity experiments. 391 

4. Results of experiments 392 

a. Single observation tests 393 

Single-observation tests are often performed to verify DA code correctness and evaluate 394 

algorithm behaviors. EnKF differs from 3DVar in its use of flow-dependent BEC derived from the 395 

forecast ensemble. For the En3DVar scheme that uses a combination of static and flow-dependent 396 

covariances, the analysis increment from a single observation should be somewhere between those 397 

of EnKF and 3DVar, which represent the extreme ends of the En3DVar hybrid analysis, 398 

corresponding to 100% and 0% use of the ensemble covariance, respectively. Single observation 399 

tests also reveal clearly how spatial covariance localization works, or if it works as expected. Here, 400 

we place a temperature observation at 500 hPa over Norman, Oklahoma, with a 1 K innovation over 401 

the background and an observation error standard deviation of 0.8 K.  The background ensemble for 402 

the single observation test is taken from the EnKF system after 5 days of 3-hourly analysis cycles 403 

employing the full set of observations; the GSI and En3DVar analyses use the mean of the 3-hour 404 

ensemble forecasts as the background, therefore the background used by the En3DVar, EnKF and 405 

GSI are the same. The key parameter settings used in these tests are the same as the corresponding 406 

control experiments with full data sets.  407 

The resulting GSI analysis increment has a circular shape in T (Fig.  4a), reflecting its static, 408 

isotropic spatial covariance structure while the T increment of EnKF is stretched along the direction 409 

of geopotential height contours (Fig.  4b) reflecting the flow-dependent covariance structures. With 410 

21   = 0.5, the En3DVar hybrid T increment is also stretched along the direction of geopotential 411 

height contours (Fig.  4c) but not as much as in the case of EnKF and the increment is broader. 412 
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Overall, it lies in-between the increments of EnKF and GSI. In all cases, the maximum increment is 413 

a little over 0.4 K, about half of the observation innovation, which is consistent with expectations. 414 

In the vertical cross section, the T increment of GSI is not exactly elliptic but has a tendency 415 

to follow the terrain-following coordinate surfaces (Fig.  4d). This is because the (isotropic) 416 

recursive filters used to model the static BEC are applied along coordinate lines (Purser et al. 417 

2003b).  As a consequence of the balance operators and background error statistics used in the GSI 418 

(Kleist et al. 2009a), the wind increment is close to zero at the observation level, cyclonic below 419 

and anticyclone above the observation; these structures are consistent with the thermal wind 420 

balance. The locations of the T increment maxima of EnKF (Fig.  4e) and En3DVar (Fig.  4f) are 421 

shifted slightly above the observation location, and the increments are wider and deeper for the 422 

En3DVar than for EnKF. The latter is because for an observation at 500 hPa, the constant CLS for 423 

En3DVar is about 100 km wider in the horizontal, and about 0.6 deeper in the vertical than the 424 

corresponding height-dependent cut-off radii of EnKF at the same height level as indicated by Fig.  425 

3. The wind increments for the EnKF are more complicated (Fig.  4e); they do not show the simple 426 

thermal wind balance, indicating significant unbalanced components in the analysis. Their 427 

magnitudes are about twice as large as the GSI wind increments. For the En3DVar hybrid, the wind 428 

increments appear to be a combination of the GSI and EnKF wind increments, containing a larger-429 

scale balanced component also (Fig.  4f).  430 

Overall, we see that the En3DVar hybrid analysis increments appear to be a combination of 431 

the GSI and EnKF analysis increments, reflecting the combined use of static and flow-dependent 432 

background covariances (c.f., Eq. 1). Other single-observation experiments with different CLSs and 433 

different covariance weights show that the En3DVar hybrid system responds as expected to the 434 

changes in these parameters (results not shown). These results suggest that the En3DVar hybrid 435 

system works correctly. 436 
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b. GSI, EnKF and En3DVar hybrid control experiments 437 

The RAP system had been run experimentally in real-time for several years at the NOAA 438 

Earth System Research Laboratory (ESRL) before being officially implemented at NCEP in May 439 

2012. In this study, we borrow from a recent configuration of the experimental 13-km RAP for our 440 

40-km grid spacing tests.  441 

In this section, we present and compare the results from the En3DVar hybrid 1-way 442 

(Hybrid1W_Ctl) and 2-way coupled (Hybrid2W_Ctl), EnKF (EnKF_Ctl) control experiments, and 443 

those of the GSI experiment. 444 

The RMSE profiles of the 3-hour forecasts verified against sounding data are shown in Fig.  445 

5. These forecasts were launched from the GSI, EnKF ensemble mean, and En3DVar hybrid 446 

analyses. The RMSE for each pressure level was calculated by averaging values obtained from all 447 

cycles within a layer 50 hPa above and below that pressure, except for the lowest and topmost 448 

levels. The RMSEs of EnKF_Ctl are overall lower than those of GSI except for the temperature at 449 

the upper levels where the error can be ~0.1 K greater. The performances of one-way and two-way 450 

coupled En3DVar hybrid schemes are very close. With half static and half flow-dependent 451 

covariances in these experiments, Hybrid1W_Ctl and Hybrid2W_Ctl outperform GSI, and are also 452 

generally better than EnKF_Ctl except for RH above 500 hPa, V at 100 hPa, and T below 900 hPa.  453 

The average RMSEs for all levels over the entire domain are shown in Fig.  6 for forecast 454 

hours 3 through 18. Generally, both EnKF and En3DVar hybrid significantly outperform GSI for all 455 

the variables throughout the forecast period at the 90% confidence level (the intervals of error 456 

differences do not include zero). For RH, the average RMSEs of En3DVar hybrid are slightly higher 457 

than those of EnKF_Ctl by 9 hours, which appears to be related to the larger errors at 3 hours at the 458 

upper levels (Fig.  5a); they become slightly smaller after 9 hours. However, the improvement of 459 

En3DVar hybrid over EnKF for RH is not statistically significant. For T and U, the domain-460 
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averaged RMSEs of En3DVar hybrid are significantly and consistently smaller than those of GSI 461 

and EnKF throughout the forecast period (Fig.  6b,c). For V, the errors of the En3DVar and EnKF 462 

are very similar and are all clearly lower than those of GSI. The reason that En3DVar performs 463 

better than EnKF for U may be related to the dominance of the east-west flows that may increase 464 

the validity of the static covariance. Overall, the En3DVar hybrid out-performs GSI and EnKF for T 465 

and V for the 18 hours of the forecast.  466 

Fig.  7 shows the average RMSEs for 3-18 hour forecasts against surface observations. For 2 467 

m T and 10 m U, EnKF and En3DVar outperform GSI at all forecast hours significantly, with the 468 

EnKF significantly outperforming the En3DVar hybrid at most forecast hours. For 2 m RH and 10 469 

m V, EnKF occasionally underperforms GSI slightly but at most forecast hours it is better. The 470 

En3DVar hybrid schemes improve over EnKF further, enough to ensure better or equal 471 

performance than GSI for all hours, and more clearly so for RH. For surface pressure, EnKF 472 

underperforms GSI initially but becomes better after 9 hours; throughout the forecast period, the 473 

En3DVar hybrid outperforms both GSI and EnKF significantly. In general, there is little difference 474 

between the 1-way and 2-way En3DVar hybrid schemes; this result may be due to the relative short 475 

9-day testing period; if the cycles were run for a much longer time period, a larger divergence 476 

between the EnKF and En3DVar hybrid may develop in a 1-way coupling mode, then 2-way 477 

coupling would show a bigger advantage. When the En3DVar hybrid runs at a higher resolution 478 

than the EnKF in a dual-resolution mode, there may also be more beneficial with the 2-way 479 

coupling. 480 

Overall, the En3DVar hybrid schemes significantly outperform GSI 3DVar for all the 481 

variables at all forecast hours for sounding and surface observations; and are comparable, even 482 

better than EnKF for some variables. The results indicate the benefit of combining the static and 483 
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flow-dependent covariances. In the next section, the sensitivity to the covariance weighting factors 484 

is examined. 485 

Finally, one may have concern that the 9-day cycled assimilation period is not long enough 486 

for the ensemble DA system to spin up (over the course of evaluating and testing our EnKF and 487 

En3DVar hybrid systems, we had run over 100 cycled experiments so extending the experiment 488 

period would be expensive). To answer this question, we examine how the short-range forecast 489 

errors evolve through the 9-day period. Fig.  8 shows the domain-averaged 3-hour forecast RMSEs 490 

verified against sounding data at 0000 and 1200 UTC through the test period. We can see that the 491 

relative performances of GSI 3DVar, EnKF and En3DVar hybrid do not change much throughout 492 

the 9-day period, even in the earlier days. These results indicate that the ensemble system had spin-493 

up rather quickly.  494 

c. Sensitivity to covariance weighting factors 495 

We perform a set of four 1-way-coupled En3DVar hybrid experiments with 21  =0.1, 0.5, 496 

0.9 and 1.0, which are the weights given to the ensemble covariance. The one with 21   =0.5, 497 

called Hybrid05 here, is the same as experiment Hybrid1W_Ctl discussed earlier (Table 1). The 498 

vertical profiles of 3 hour forecast RMSEs verified against sounding data are shown in Fig.  9 for 499 

these four experiments, GSI, and EnKF_Ctl. It can be seen that the En3DVar hybrid and EnKF 500 

schemes generally outperform GSI, except for RH at 700 to 400 hPa levels for Hybrid09 and 501 

Hybrid10, i.e., the hybrid scheme with 90 or 100% ensemble covariances. Introducing 10% static 502 

covariance into the En3DVar hybrid framework reduces the error slightly (comparing Hybrid09 to 503 

Hybrid10 for RH), and further increasing it to 50% brings the RH errors below those of GSI at all 504 

levels (Fig.  9a).   505 
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The average RMSEs for all levels over the entire domain are shown in Fig.  10 for forecast 506 

hours 3 through 18. All En3DVar hybrid experiments significantly outperform GSI 3DVar for all 507 

variables throughout the entire forecast period at the 90% confidence level, except for the RH of 508 

Hybrid10 after 9 hours. The errors of Hybrid05 are about the lowest among all En3DVar hybrid 509 

experiments, while errors of Hybrid10 are the greatest and significantly worse than those of 510 

EnKF_Ctl. RMSE differences between Hybrid01 and EnKF_Ctl are generally smaller than those 511 

between Hybrid09 and EnKF_Ctl for T, U and V.  512 

Overall, introducing 10% ensemble covariance into the variational framework in Hybrid01 513 

has a much larger impact (compare Hybrid01 to GSI) than adding 10% static covariance into the 514 

En3DVar hybrid framework (compare Hybrid09 to Hybrid10), and the errors of Hybrid01 are 515 

generally between those of Hybrid05 and GSI and are closer to those of Hybrid05, especially for 516 

wind fields.  Hybrid05 gives the smallest errors on average.  517 

It can also be noticed from Fig.  9 that EnKF_Ctl outperforms Hybrid10, except for wind 518 

between 500 and 200 hPa levels. As pointed out earlier, if covariance localization treatments were 519 

the same in EnKF and Hybrid10, their results should be very close given that the ensemble 520 

covariance is used at 100% in both cases. The use of height- and observation-type-dependent 521 

covariance localization in the EnKF but not in the En3DVar hybrid is suspected to be the main 522 

cause of the differences; it had been found to help improve the EnKF results in Zhu et al. (2013) but 523 

is not used within the En3DVar hybrid. In the following section, we want to see if doing something 524 

similar within the En3DVar hybrid framework can improve the En3DVar hybrid results too. 525 

d. Sensitivity to ensemble covariance localization  526 

In Zhu et al. (2013), several tests with the horizontal and vertical covariance localizations 527 

were performed. In this paper, the EnKF experiment uses the same configuration as experiment 528 
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EnKF_CtrlHDL of Zhu et al (2013), with height- and observation-type-dependent localization radii. 529 

For the En3DVar analysis, covariance localization also requires tuning. Because En3DVar realizes 530 

covariance localization in the state or grid point space, it is difficult if at all possible to use 531 

observation-type-dependent localization.  532 

In this section, we first look at the experiments that use smaller or larger horizontal and 533 

vertical CLSs than those used in Hybrid1W_Ctl. For weighting factor 21/  =0.5, we test three 534 

horizontal CLSs, =700, 1095 and 1300 km (in Hybrid_HS, Hybrid1W_Ctl, and Hybrid_HL, 535 

respectively) and three vertical CLSs = 0.36, 1.1 and 1.8 (for Hybrid_VS, Hybrid1W_Ctl and 536 

Hybrid_VL, respectively). The domain-average forecast RMSE differences between 3 hour 537 

forecasts and those of Hybrid1W_Ctl are shown in Fig.  11.  When the CLSs increase or decrease 538 

from those of control experiment, the En3DVar hybrid performs worse for almost all variables, 539 

except for T when the horizontal CLS is increased (Fig.  11). However, even though reduced CLSs 540 

are not preferred according to Fig.  11, the RH errors are reduced at levels above 800 hPa when 541 

using reduced CLSs (not shown), suggesting that we may be able to benefit from the use of 542 

observation-type and/or height-dependent CLSs, as in the case of EnKF (Zhu et al. 2013). Doing so 543 

may also help further improve the En3DVar hybrid performance. 544 

For a better comparison with EnKF_Ctl, height-dependent localization is introduced into the 545 

En3DVar hybrid framework when the ensemble covariance is used at 100% (Hybrid_HD). As 546 

shown in Fig.  12, Hybrid_HD outperforms Hybrid_Con (with constant localization scale and 100% 547 

ensemble covariance) and is much closer to EnKF_Ctl for RH, U and V. For wind, Hybrid_HD is 548 

even slightly better than EnKF_Ctl at the middle levels (Fig.  12c,d) while Hybrid_Con is poorer 549 

than EnKF_Ctl at all levels. For RH, EnKF_Ctl still has smaller RMSEs than hybrid_HD above 700 550 

hPa, and this appears to be because of the smaller cut-off radii in the EnKF when observation-type-551 

dependent localization is used.  552 

Sh

Sv



 

25 

 

The cut-off radii used in the EnKF control experiment are height- and observation-type 553 

dependent. Within the serial EnKF algorithm where observations are assimilated one by one, and 554 

localization is applied to the covariances between individual observation and the state variables, 555 

observation-type-dependent localization can be easily implemented. However, the En3DVar hybrid 556 

algorithm analyzes all observations simultaneously by variational minimization in the state space in 557 

which covariance localization is applied (Campbell et al. 2010), it is impossible to apply the 558 

observation-type-dependent localization used by EnKF within En3DVar using a single analysis 559 

step.  560 

To study the differences caused by observation-type-dependent localization scales, we break 561 

each coupled EnKF-En3DVar analysis into three sub-steps of coupled EnKF (EnKF3G) - En3DVar 562 

(Hybrid3G) analyses, with each step analyzing a sub-group of observations that share the same 563 

height-dependent localization scales. Here, we use the absolute RMSE differences between a pair of 564 

hybrid and EnKF experiments (Table 2) together with the 90% confidence interval as determined by 565 

the bootstrap resampling procedure to determine the statistical significance of the differences. When 566 

the error bars do not overlap, we consider the RMSE differences between En3DVar and EnKF 567 

statistically significant. As shown in Fig.  13, the RMSE differences are reduced, by about 1/4 to 1/3 568 

for RH, U and V when height-dependent localization is used in Hybrid_HD compared to 569 

Hybrid_Con, and the reduction is smaller and statistically significant except for T. When 570 

observation-type-dependent localization is used, the differences between Hybrid3G and EnKF3G 571 

are further reduced significantly for RH, U and V. For RH (which has the largest difference between 572 

the En3DVar hybrid and EnKF according to Fig.  12a), the RMSE difference is about 0.5% versus 573 

the 1.25% of the constant localization case. The reductions for T, U and V are smaller but still 574 

evident.  575 
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Fig.  14 shows the profiles of the RMSE differences together with the 90% confidence 576 

interval. In reference to Fig.  12, those levels where domain average absolute RMSE differences of 577 

1GHD are greater than 1GC correspond to the levels where the Hybrid_HD outperforms 578 

Hybrid_HC, given that EnKF_Ctl is generally the best among the three experiments. For 3GHD, the 579 

average absolute RMSE differences are the smallest for RH at all levels, for T above 800 hPa and 580 

for U and V above 600 hPa. For U and V, the 3GHD differences are slightly larger below 700 hPa 581 

than 1GHD and clearly smaller than 1GC. These results show that when similar height- and 582 

observation-type-dependent covariance localizations are used in the En3DVar framework using 583 

100% ensemble covariance, some of the differences between the EnKF and En3DVar analyses are 584 

significantly reduced, and such localization treatment generally brings the En3DVar results closer to 585 

the better EnKF results. The reduction in the RMSE differences for RH is greater than those for T, 586 

U and V when height- and observation-type-dependent localization are used. Because the relative 587 

humidity tends to contain smaller scale structures than temperature and wind fields and can benefit 588 

from tighter localization more when using height- and observation-type-dependent localization. 589 

However, because there are still differences between the EnKF and En3DVar algorithm, some 590 

differences still exist between their results, as indicated by the red bars in Fig.  13. When the 591 

ensemble covariance is used at 50%, height-dependent localization did not improve the En3DVar 592 

hybrid results as much as in the 100% case (not shown).  593 

In summary, the use of height-dependent localization in the En3DVar hybrid framework 594 

when using full ensemble covariance improves the resulting model forecasts at almost all levels and 595 

forecast hours. Height- and observation-type-dependent localizations used in EnKF are responsible 596 

for about half of the differences between the EnKF and the En3DVar with full ensemble covariance.  597 

e.  Sensitivity to ensemble size 598 
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Previous studies (e.g., Hamill and Snyder 2000; Wang et al. 2008a) had found that the 599 

En3DVar hybrid system is more robust than EnKF when the ensemble size is small. As mentioned 600 

earlier, EnKF20, Hybrid1W20 and Hybrid2W20 use 20 instead of 40 ensemble members for control 601 

experiments (EnKF40, Hybrid1W40 and Hybrid2W40 corresponding to EnKF_Ctl, Hybrid1W_Ctl 602 

and Hybrid2W_Ctl respectively in this section). Fig.  15 shows the relative percentage improvement 603 

(RPI) of EnKF and 1-way coupled En3DVar hybrid compared to GSI for different forecast hours. 604 

The RPIs of experiments with 20 members are compared with the corresponding control 605 

experiments using 40 members. A negative RPI indicates an improvement (error reduction) over 606 

GSI. With an ensemble size of only 20, EnKF20 performs the worst for the variables and almost all 607 

forecast hours, and even worse than GSI for RH at all forecast hours, T at 12 hours and U at 3 hours. 608 

The EnKF and En3DVar hybrid with 40 ensemble members almost always improve more than the 609 

corresponding ones with 20 members. The improvement of the En3DVar hybrid over EnKF for 20 610 

members is consistent for all variables and all forecast hours, and actually reverses the direction of 611 

improvement with 40 members (i.e., better rather worse) for RH at 3 and 6 hours and V at 18 hours. 612 

These results show even greater value of the static covariance utilized through the En3DVar hybrid 613 

framework when the ensemble size is small. The 2-way interactive En3DVar hybrid experiment 614 

Hybrid2W20 compared with Hybrid2W40 has very similar relative performance as the 615 

corresponding En3DVar hybrid 1-way coupling experiments with 20 and 40 members; the results 616 

are therefore not shown. 617 

5. Precipitation forecast skills on 13-km grid 618 

In this section, precipitation forecasts on the 13 km grid initialized from the 40 km GSI, 619 

EnKF_Ctl ensemble mean, Hybrid1WCtl and Hybrid2WCtl analyses (labeled as GSI13, EnKF13, 620 

Hybrid1W13 and Hybrid2W13, respectively) are compared. Considering extensive CPU and 621 
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storage requirements, we launched the forecasts only twice a day at 00 and 12 UTC. The 622 

precipitation forecasts are verified against the NCEP Stage IV precipitation data. GSSs calculated 623 

for the 0.1, 1.25 and 2.5 mm h
-1

 thresholds are calculated as in Zhu et al. (2013). 624 

The GSSs and BIASs are shown in Fig.  16. Both EnKF and En3DVar hybrid outperforms 625 

GSI on average for all forecast hours and thresholds shown. EnKF13 has higher GSSs than Hybrid 626 

for 0.1 mm h
-1

 after 3 hours. For greater thresholds of 1.25 and 2.5 mm h
-1

, forecasts of 627 

Hybrid1W13 are comparable to EnKF13 by 7 hours, and are better than Hybrid2W13 during the 628 

first four hours, which is consistent with the RH domain-averaged RMSEs verified against sounding 629 

(Fig.  6a). Fig.  6d,e show that EnKF generally has the highest positive BIASs. The En3DVar 630 

hybrid scheme has the lowest BIASs in the first 5 hours of the forecast, and values between those of 631 

GSI and EnKF after 5 hours. The differences among the biases are relatively small and all of them 632 

have positive biases for both thresholds examined. Overall, in terms of GSS, the En3DVar hybrid 633 

outperform GSI at almost all forecast hours, and are comparable to EnKF13 for the larger 634 

thresholds at the early forecast hours but become slightly worse at the later hours. The somewhat 635 

the worse performance of precipitation forecasts with the En3DVar hybrid appears to be consistent 636 

with the deterioration of humidity forecasts of the En3DVar hybrid scheme compared to EnKF even 637 

though there is a general improvement with other variables (Fig.  15).  638 

6. Summary and discussions 639 

In this paper, a coupled EnKF-En3DVar hybrid data assimilation system based on the NCEP 640 

operational GSI variational framework is established and tested for the Rapid Refresh (RAP) 641 

forecasting system. It uses a recently developed, well-tuned, 40-member EnKF system (Zhu et al. 642 

2013) to update and provide the ensemble perturbations. A 9-day spring period starting from May 8, 643 

2010 that contains active convection is used to examine the performance of the system through 644 
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comparisons with parallel experiments using the EnKF and GSI 3DVar. The En3DVar hybrid, 645 

EnKF and GSI experiments use the same observational data sets as the operational RAP system 646 

except for the exclusion of satellite radiance data. The experiments are performed at a reduced 647 

resolution of ~40 km grid spacing with 3-hourly assimilation cycles rather than at the native 13 km 648 

grid spacing with hourly cycles of the operational RAP. The systems are evaluated based on 649 

forecast RMSEs verified against surface observations and upper air sounding data for 3 to 18 hour 650 

forecasts. The effects of static and ensemble covariance weighting factors, covariance localization 651 

configurations, and ensemble size are also examined through sensitivity experiments. 652 

With equal weighting for the ensemble and static covariances, the En3DVar hybrid scheme 653 

outperforms GSI for all variables at all levels with statistical significance, and are slightly better 654 

than EnKF, especially for later forecast hours. The En3DVar hybrid scheme benefits from the 655 

combined use of static and ensemble covariances. Introducing 10% flow-dependent covariance into 656 

the standard 3DVar framework has a much bigger positive impact than including 10% static 657 

covariance in the En3DVar framework. The forecasts from En3DVar analyses with 100% ensemble 658 

covariance and constant CLSs are worse than those from pure EnKF analyses using height- and 659 

observation-type-dependent covariance localization, especially for relative humidity. The height-660 

dependent localization scheme in which the horizontal localization cut-off radii increase with 661 

height, and the observation-type-dependent localization scheme in which the cut-off radii for 662 

relative humidity and temperature observations are set to be smaller than those for winds led to 663 

smaller forecast RMSEs for the pure EnKF, especially at the high and low levels. Using similar 664 

height-dependent localization, the RMSEs of En3DVar with 100% ensemble covariance are 665 

significantly reduced and become close to those of pure EnKF. When using similar observation-666 

type-dependent covariance localization by running the coupled EnKF-En3DVar analyses in three 667 

steps with each of the steps analyzing a subset of observation variables (in a similar way as in 668 
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EnKF), the results of the En3DVar with 100% ensemble covariance become even closer to those of 669 

EnKF. The benefit of height- and observation-type-dependent localization is negligible when the 670 

ensemble covariance is used at 50%. The multi-step EnKF-En3DVAR analysis procedure is, 671 

unfortunately, not very practical due to much increased computational costs. It is straightforward for 672 

pure EnKF because the algorithm is serial, where observations are assimilated sequentially. 673 

Deterministic forecasts were launched on a 13 km grid from interpolated 40-km En3DVar 674 

hybrid control (with equal weighting for static and ensemble covariances), EnKF ensemble mean 675 

and GSI analyses at 0000 and 1200 UTC of each day. Hourly accumulated precipitation is better 676 

predicted in the En3DVar hybrid and EnKF experiments than GSI. But for a threshold of 0.1 mm h
-

677 

1
, En3DVar hybrid does not improve the precipitation forecast as much as the EnKF does. This 678 

appears to be consistent with the lack of improvement in the humidity forecast when using constant 679 

localization. Apart from the differences in the localization in the two schemes, a thorough 680 

understanding of the cause of the poorer precipitation forecasts for this threshold than EnKF will 681 

require much investigation.  682 

Despite the encouraging results, the En3DVar hybrid system still has much room for further 683 

improvement. Adding satellite and radar data and examining their impacts are among the desired 684 

tasks, as is a dual-resolution implementation where the En3DVar is performed at a higher resolution 685 

than the EnKF cycles. These aspects will be pursued in future studies.  686 

Acknowledgments. This work was primarily supported by the FAA Aviation Weather Research 687 

Program through grant DOC-NOAA NA080AR4320904, and by MOST of China grant 688 

2013CB430100. Additional support was provided by NSF grants AGS-0802888, OCI-0905040, 689 

AGS-0941491, AGS-1046171, and AGS-1046081, and by the NOAA Warn-on-Forecast program.  690 

The 4
th

 author is also supported by NOAA THORPEX NA08OAR4320904, NASA NIP 691 

NNX10AQ78G and NOAA HFIP Grant NA12NWS4680012.  692 

http://twister.caps.ou.edu/PetaApps_Abstract.html


 

31 

 

References 693 

Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 694 

129, 2884-2903. 695 

Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble 696 

filters. Tellus A, 59, 210-224. 697 

Anderson, J. L., 2012: Localization and Sampling Error Correction in Ensemble Kalman Filter Data 698 

Assimilation. Mon. Wea. Rev., 140, 2359-2371. 699 

Barker, D. M., W. Huang, Y. R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A Three-Dimensional 700 

Variational Data Assimilation System for MM5: Implementation and Initial Results. Mon. 701 

Wea. Rev., 132, 897-914. 702 

Benjamin, S. G., D. Dévényi, S. S. Weygandt, K. J. Brundage, J. M. Brown, G. A. Grell, D. Kim, B. 703 

E. Schwartz, T. G. Smirnova, T. L. Smith, and G. S. Manikin, 2004: An hourly 704 

assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495-518. 705 

Benjamin, S. G., W. R. Moninger, S. S. Weygandt, M. Hu, D. Devenyi, J. M. Brown, T. Smirnova, 706 

J. Olson, C. Alexander, K. Brundage, G. Grell, S. Peckham, T. L. Smith, S. R. Sahm, and B. 707 

Jamison, 2009: Technical review of rapid refresh/RUC project, NOAA/ESRL/GSD internal 708 

review, 3 Nov 2009. 709 

Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble 710 

transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420. 711 

Bonavita, M., L. Torrisi, and F. Marcucci, 2008: The ensemble Kalman filter in an operational 712 

regional NWP system: Preliminary results with real observations. Quart. J. Roy. Meteor. 713 

Soc., 134, 1733-1744. 714 

Bonavita, M., L. Isaksen, and E. Hólm, 2012: On the use of EDA background error variances in the 715 

ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 138, 1540-1559. 716 



 

32 

 

Brown, B. G., J. H. Gotway, R. Bullock, E. Gilleland, and D. Ahijevych, 2009: The Model 717 

Evaluation Tools (MET): Community tools for forecast evaluation. 25th Conf. Int. 718 

Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and 719 

Hydrology, Paper 9A.6. 720 

Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error 721 

covariances: Evaluation in a quasi-operational NWP setting. Quart. J. Roy. Meteor. Soc., 722 

131, 1013-1043. 723 

Buehner, M. and A. Mahidjiba, 2010: Sensitivity of Global Ensemble Forecasts to the Initial 724 

Ensemble Mean and Perturbations: Comparison of EnKF, Singular Vector, and 4D-Var 725 

Approaches. Monthly Weather Review, 138, 3886-3904. 726 

Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010a: Intercomparison of 727 

variational data assimilation and the ensemble Kalman filter for global deterministic NWP. 728 

Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 1567-1586. 729 

Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010b: Intercomparison of 730 

variational data assimilation and the ensemble Kalman filter for global deterministic NWP. 731 

Part I: Description and single-observation experiments. Mon. Wea. Rev., 138, 1550-1566. 732 

Burgers, G., P. J. v. Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman 733 

filter. Mon. Wea. Rev., 126, 1719-1724. 734 

Campbell, W. F., C. H. Bishop, and D. Hodyss, 2010: Vertical covariance localization for satellite 735 

radiances in ensemble Kalman filters. Mon. Wea. Rev., 138, 282-290. 736 

Candille, G., C. Côté, P. L. Houtekamer, and G. Pellerin, 2007: Verification of an Ensemble 737 

Prediction System against Observations. Monthly Weather Review, 135, 2688-2699. 738 



 

33 

 

Courtier, P., E. Andersson, E. Keckley, J. Pailleux, D. Vasiljevic, M. Hamurd, A. Hollingsworth, F. 739 

Rabier, and M. Fisher, 1998: The ECMWF implementation of three-dimensional variational 740 

assimilation (3D-Var). I: formulation. Quart. J. Roy. Met. Soc., 124, 1783-1808. 741 

Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using 742 

Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143-10162. 743 

Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical 744 

implementation. Ocean Dynamics, 53, 343-367. 745 

Fujita, T., D. J. Stensrud, and D. C. Dowell, 2007: Surface data assimilation using an ensemble 746 

Kalman filter approach with initial condition and model physics uncertainties. Mon. Wea. 747 

Rev., 135, 1846-1868. 748 

Gandin, L. S. and A. H. Murphy, 1992: Equitable skill scores for categorical forecasts. Mon. Wea. 749 

Rev., 120, 361-370. 750 

Gao, J.-D., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational 751 

data analysis method with recursive filter for Doppler radars. J. Atmos. Ocean. Tech., 21, 752 

457-469. 753 

Gaspari, G. and S. E. Cohn, 1999: Construction of correlation functions in two and three 754 

dimensions. Quart. J. Roy. Meteor. Soc., 125, 723-757. 755 

Ge, G., J. Gao, M. Xue, and K. K. Droegemeier, 2012: Diagnostic pressure equation as a weak 756 

constraint in a storm-scale three dimensional variational radar data assimilation system. J. 757 

Atmos. Ocean. Tech., 29, 1075-1092. 758 

Hamill, T. M. and C. Snyder, 2000: A hybrid ensemble Kalman filter - 3D variational analysis 759 

scheme. Mon. Wea. Rev., 128, 2905-2919. 760 

Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background 761 

error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 2776-2790. 762 



 

34 

 

Hamill, T. M., J. S. Whitaker, M. Fiorino, and S. G. Benjamin, 2011a: Global ensemble predictions 763 

of 2009's tropical cyclones initialized with an ensemble Kalman filter. Mon. Wea. Rev., 139, 764 

668-688. 765 

Hamill, T. M., J. S. Whitaker, D. T. Kleist, M. Fiorino, and S. G. Benjamin, 2011b: Predictions of 766 

2010’s tropical cyclones using the GFS and ensemble-based data assimilation methods. 767 

Mon. Wea. Rev., 139, 3243-3247. 768 

Hayden, C. M. and J. Purser, 1995: Recursive filter objective analysis of meteorological fields: 769 

Applications to NESDIS operational processing. J. Appl. Meteor., 34, 3-15. 770 

Houtekamer, P. L. and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter 771 

technique. Mon. Wea. Rev., 126, 796-811. 772 

Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 773 

2005: Atmospheric data assimilation with an ensemble Kalman filter: Results with real 774 

observations. Mon. Wea. Rev., 133, 604-620. 775 

Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal 776 

chaos: A local ensemble transform Kalman filter. Physica D: Nonlinear Phenomena, 230, 777 

112-126. 778 

Jung, Y., M. Xue, and M. Tong, 2012: Ensemble Kalman filter analyses of the 29-30 May 2004 779 

Oklahoma tornadic thunderstorm using one- and two-moment bulk microphysics schemes, 780 

with verification against polarimetric data. Mon. Wea.  Rev., 140, 1457-1475. 781 

Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009a: Introduction of 782 

the GSI into the NCEP global data assimilation system. Weather and Forecasting, 24, 1691-783 

1705. 784 

Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, R. M. Errico, and R. Yang, 2009b: Improving 785 

incremental balance in the GSI 3DVAR analysis system. Mon. Wea. Rev., 137, 1046-1060. 786 



 

35 

 

Le Dimet, F. X. and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of 787 

meteorological observations: Theoretical aspects. Tellus, 38A, 97-110. 788 

Li, Y., X. Wang, and M. Xue, 2012: Assimilation of radar radial velocity data with the WRF 789 

ensemble-3DVAR hybrid system for the prediction of hurricane Ike (2008). Mon. Wea. Rev., 790 

140, 3507-3524. 791 

Lin, Y. and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly precipitation analyses: 792 

Development and applications. 19th Conf. Hydrology, San Diego, CA, Amer. Meteor.Soc., 793 

Paper 1.2. 794 

Liu, C. and M. Xue, 2013: A unified framework for four-dimensional ensemble-variational hybrid 795 

data assimilation. Mon. Wea Rev., To be submitted. 796 

Liu, C. and Q. Xiao, 2013: An ensemble-based four-dimensional variational data assimilation 797 

scheme. Part III: Antarctic applications with Advanced Research WRF (ARW) using real 798 

data. Mon. Wea. Rev., 141, 2721-2739. 799 

Liu, C., Q. Xiao, and B. Wang, 2008: An ensemble-based four-dimensional variational data 800 

assimilation scheme. Part I: Technical formulation and preliminary test. Mon. Wea. Rev., 801 

136, 3363-3373. 802 

Lorenc, A., 2003: The potential of the ensemble Kalman filter for NWP - a comparison with 4D-803 

Var. Quart. J. Roy. Meteor. Soc., 129, 3183-3204. 804 

Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. 805 

Soc., 112, 1177-1194. 806 

Lynch, P., 1997: The Dolph-Chebyshev window: A simple optimal filter. Mon. Wea. Rev., 125, 807 

655-660. 808 

Lynch, P. and X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. 809 

Wea. Rev., 120, 1019-1034. 810 



 

36 

 

Lynch, P. and X.-Y. Huang, 1994: Diabatic initialization using recursive filters. Tellus, 46A, 583-811 

597. 812 

Meng, Z. and F. Zhang, 2007: Tests of an Ensemble Kalman Filter for Mesoscale and Regional-813 

Scale Data Assimilation. Part II: Imperfect Model Experiments  Mon. Wea.  Rev., 135, 814 

1403–1423  815 

Mizzi, A. P., 2012: Comparison of a GSI/ETKF Regional Hybrid Using WRF/ARW with 816 

GSI/LETKF and GSI/EnKF Regional Hybrids. 16th Conference on Integrated Observing 817 

and Assimilation Systems for Atmosphere, Oceans, and Land Surface, New Orleans, LA, 818 

Amer. Met. Soc. 819 

Parrish, D. F. and J. C. Derber, 1992: The National Meteorological Center's spectral statistical-820 

interpolation analysis system. Mon. Wea. Rev., 120, 1747-1763. 821 

Purser, R. J., W.-S. Wu, D. F. Parrish, and N. M. Roberts, 2003a: Numerical aspects of the 822 

application of recursive filters to variational statistical analysis. Part II: Spatially 823 

inhomogeneous and anisotropic general covariances. Mon. Wea. Rev., 131, 1536-1548. 824 

Purser, R. J., W.-S. Wu, D. F. Parrish, and N. M. Roberts, 2003b: Numerical aspects of the 825 

application of recursive filters to variational statistical analysis.  Part I: Spatially 826 

homogeneous and isotropic Gaussian covariances. Mon. Wea. Rev., 131, 1524-1535. 827 

Putnam, B. J., M. Xue, Y. Jung, N. A. Snook, and G. Zhang, 2013: The analysis and prediction of 828 

microphysical states and  polarimetric variables in a mesoscale convective system using 829 

double-moment microphysics, multi-network radar data, and the ensemble Kalman filter. 830 

Mon. Wea. Rev., Accepted. 831 

Rabier, F., H. Jarvinen, E. Klinker, J.-F. Mahfouf, and A. Simmons, 2000: The ECMWF 832 

operational implementation of four-dimensional variational assimilation. I: Experimental 833 

results with simplified physics. Quart. J. Roy. Met. Soc., 126, 1143-1170. 834 



 

37 

 

Raynaud, L., L. Berre, and G. Desroziers, 2011: An extended specification of flow-dependent 835 

background error variances in the Meteo-France global 4D-Var system. Quart. J. Roy. 836 

Meteor. Soc., 137, 607-619. 837 

Schwartz, C. S. and Z. Liu, 2013: Convection-permitting forecasts initialized with continuously 838 

cycling limited-area 3DVAR, ensemble Kalman filter, and “hybrid” variational-ensemble 839 

data assimilation systems. Monthly Weather Review. 840 

Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. D. Powers, 841 

2005: A Description of the Advanced Research WRF Version 2, 88 pp. 842 

Talagrand, O. and P. Courtier, 1987: Variational assimilation of meteorological observations with 843 

the adjoins vorticity equation. Part I: Theory. Quart. J. Roy. Meteor. Soc., 113, 1311-1328. 844 

Tong, M. and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a 845 

compressible nonhydrostatic model: OSS Experiments. Mon. Wea. Rev., 133, 1789-1807. 846 

Wang, X., 2010: Incorporating ensemble covariance in the Gridpoint Statistical Interpolation 847 

variational minimization: A mathematical framework. Mon. Wea. Rev., 138, 2990-2995. 848 

Wang, X., 2011: Application of the WRF Hybrid ETKF–3DVAR Data Assimilation System for 849 

Hurricane Track Forecasts. Wea. Forecasting, 26, 868-884. 850 

Wang, X., C. Snyder, and T. M. Hamill, 2007: On the theoretical equivalence of differently 851 

proposed ensemble/VAR hybrid analysis schemes. Mon. Wea.  Rev., 135, 222–227. 852 

Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008a: A hybrid ETKF-3DVAR data 853 

assimilation scheme for the WRF model. Part II:  Real observation experiment. Mon. Wea. 854 

Rev., 136, 5132-5147. 855 

Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008b: A hybrid ETKF-3DVAR data 856 

assimilation scheme for the WRF model. Part I:  Observing system simulation experiment. 857 

Mon. Wea. Rev., 136, 5116-5131. 858 



 

38 

 

Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008c: A Hybrid ETKF–3DVAR Data 859 

Assimilation Scheme for the WRF Model. Part II: Real Observation Experiments. Monthly 860 

Weather Review, 136, 5132-5147. 861 

Wang, X., T. M. Hamill, J. S. Whitaker, and C. H. Bishop, 2009: A Comparison of the Hybrid and 862 

EnSRF Analysis Schemes in the Presence of Model Errors due to Unresolved Scales. Mon. 863 

Wea. Rev., 137, 3219-3232. 864 

Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble-variational 865 

hybrid data assimilation for NCEP Global Forecast System: Single resolution experiments. 866 

Mon. Wea Rev., Accepted. 867 

Whitaker, J., D. T. Kleist, X. Wang, and T. Hamill, 2011: Tests of a hybrid variational-ensemble 868 

global data assimilation system for hurricane prediction. 24th Conf. Wea. Forecasting/20th 869 

Conf. Num. Wea. Pred., Amer. Meteor. Soc., Paper J16.2. 870 

Whitaker, J. S. and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. 871 

Mon. Wea. Rev., 130, 1913-1924. 872 

Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with 873 

the NCEP Global Forecast System. Mon. Wea. Rev., 136, 463-482. 874 

Wu, W.-S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with 875 

spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 2905-2916. 876 

Xue, M., Y. S. Jung, and G. F. Zhang, 2010: State estimation of convective storms with a two-877 

moment microphysics scheme and an ensemble Kalman filter: Experiments with simulated 878 

radar data. Quart. J. Roy. Meteor. Soc., 136, 685-700. 879 

Xue, M., J. Schleif, F. Kong, K. W. Thomas, Y. Wang, and K. Zhu, 2013: Track and Intensity 880 

Forecasting of Hurricanes: Impact of Convection-Permitting Resolution and Global 881 



 

39 

 

Ensemble Kalman Filter Analysis on 2010 Atlantic Season Forecasts. Wea. Forecasting. In 882 

press. 883 

Zhang, F., M. Zhang, and J. Poterjoy, 2013: E3DVar: Coupling an ensemble Kalman filter with 884 

three-dimensional variational data assimilation in a limited-area weather prediction model 885 

and comparison to E4DVar. Mon. Wea. Rev., 141, 900-917. 886 

Zhang, M. and F. Zhang, 2011: E4DVar: Coupling an ensemble Kalman filter with four-887 

dimensional variational data assimilation in a limited-area weather prediction model. Mon. 888 

Wea. Rev., 140, 587-600. 889 

Zhu, K., Y. Pan, M. Xue, X. Wang, J. S. Whitaker, S. G. Benjamin, S. S. Weygandt, and M. Hu, 890 

2013: A regional GSI-based ensemble Kalman filter data assimilation system for the Rapid 891 

Refresh configuration: Testing at reduced resolution. Mon. Wea Rev., 141, 4118-4139. 892 

 893 

  894 



 

40 

 

List of figures 895 

Fig.  1. Flowchart of a full GSI-based EnKF-En3DVar hybrid data assimilation cycle, with one-way 896 

or two-way coupling between the EnKF (upper portion) and En3DVar hybrid control analysis 897 

(lower portion denoted En3DVar). The thick upward pointing arrow indicates the feedback of 898 

the En3DVar hybrid analysis to the EnKF in the two-way coupling procedure, when the 899 

En3DVar hybrid control analysis is used to replace the ensemble mean of the EnKF analyses. 900 

Fig. 2. Example of the horizontal distributions of observation at 0000 UTC May 14: (a) sounding 901 

(circles) and profile (pluses), (b) surface stations over land and for ships, buoys, etc., (c) 902 

aircraft observations, (d) satellite retrieval winds, and (e) GPS precipitable water (PW) data. 903 

The small box in (a) is the domain used by 13 km forecasts. (a)-(d) are adopted from Zhu et 904 

al. (2013). 905 

Fig.  3. Profiles of (a) horizontal and (b) vertical cut-off radii for the EnKF control experiment. The 906 

horizontal axis is the cut-off radius of a given observation at a particular vertical position 907 

given in pressure. The vertical axis is the vertical position of observations given by the 908 

pressure 909 

Fig.  4. Analysis increments at 500 hPa resulting from a single 500 hPa temperature observation 910 

over Norman Oklahoma (shown by the black dot) that is 1 K above the background for (a) 911 

GSI, (b) EnKF, and (c) En3DVar Hybrid schemes, valid at 0300 UTC 13 May 2010. The 912 

contours and shading are for the background geopotential height (gpm) and temperature 913 

increments, respectively. Lower panels are analysis increments in an east-west vertical cross 914 

section through the observation point, for (d) GSI, (e) EnKF, and (f) En3DVar hybrid. 915 

Shaded is the temperature increment. Thick contours (solid for positive and dash for 916 

negative) are for the north-south wind increment; thin contours are for potential temperature 917 

from 294 to 338 K at 4 K intervals. 918 
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Fig.  5. Vertical profiles of mean 3-hour forecast RMSEs verified against sounding data for (a) RH, 919 

(b) T, (c) U, and (d) V for the labeled experiments. Error bars represent the two-tailed 90% 920 

confidence interval (5% on the left and 95% on the right) using the bootstrap distribution 921 

method. 922 

Fig.  6. The 9-day and domain-averaged forecast RMSEs verified against sounding data for (a) RH, 923 

(b) T, (c) U, and (d) V, for different forecast hours. 924 

Fig.  7. The 9-day and domain-averaged forecast RMSEs verified against surface observations and 925 

the 90% confidence interval of the RMSE differences between En3DVar hybrid experiments 926 

and GSI/EnKF_Ctl for (a) surface pressure, (b) 2-m RH, (c) 2-m temperature, (d) 10-m U, and 927 

(e) 10-m V for different forecast hours. The horizontal axis is forecast hour. The error bars in 928 

domain-averaged forecast RMSEs represent the two-tailed 90% confidence interval. 929 

Fig.  8. Domain-averaged 3-hour forecast RMSEs (upper panels in each frame) verified against 930 

sounding data at 0000 and 1200 UTC through test period and the 90% confidence interval of 931 

RMSE differences (lower panel of each frame) between the En3DVar hybrid and EnKF 932 

experiments and GSI for (a) RH, (b) T, (c) U, and (d) V. 933 

Fig.  9. The same as Fig.  5 but for experiments GSI, Hybrid01, Hybrid05, Hybrid09, Hybrid10 and 934 

EnKF_Ctl. 935 

Fig.  10. The same as Fig.  6, except for for experiments GSI, Hybrid01, Hybrid05, Hybrid09, 936 

Hybrid10 and EnKF_Ctl. 937 

Fig.  11. Mean forecast RMSE differences between different experiments and Hybrid1W_Ctl, 938 

verified against sounding data, for 3-hour forecast averaged over the 9-day forecast period 939 

over the entire model domain. 940 

Fig.  12. The same as Fig.  5 but for experiments EnKF_Ctl, Hybrid_HD and Hybrid_Con. 941 
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Fig.  13. Nine-day and domain-averaged absolute 3-hour forecast RMSE differences verified 942 

against sounding data, where 1G means difference between Hybrid_Con and EnKF_Ctl, 943 

1GHD means difference between Hybrid_HD and EnKF_Ctl, and 3GHD means difference 944 

between Hybrid3G and EnKF3G. The error bars represent the two-tailed 90% confidence 945 

interval. 946 

Fig.  14. Nine-day and domain-averaged profiles of absolute RMSE differences between 947 

Hybrid_Con and EnKF_Ctl (labeled 1GC), Hybrid_HD and EnKF_Ctl (labeled 1GHD), 948 

Hybrid3G and EnKF3G (labeled 3GHD) for (a) RH, (b) T, (c) U, and (d) V. The error bars 949 

represent the two-tailed 90% confidence interval. 950 

Fig.  15. The relative percentage improvement (RPI, negative represents an improvement or error 951 

reduction) of Hybrid1W20, Hybrid1W40,  EnKF20 and EnKF40 comparing to experiment 952 

GSI for (a) RH, (b) T, (c) U, and V . The horizontal axis is forecast hour. 953 

Fig.  16. Averaged precipitation GSSs and BIASs of 13-km forecasts as a function of forecast 954 

length for thresholds (a) (b) 0.1 mm h-1, (c) (d) 1.25 mm h-1, and (e) (f) 2.5 mm h-1. 955 

  956 
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 957 

Fig.  1. Flowchart of a full GSI-based EnKF-En3DVar hybrid data assimilation cycle, with one-way 958 

or two-way coupling between the EnKF (upper portion) and En3DVar hybrid control analysis 959 

(lower portion denoted En3DVar). The thick upward pointing arrow indicates the feedback of the 960 

En3DVar hybrid analysis to the EnKF in the two-way coupling procedure, when the En3DVar 961 

hybrid control analysis is used to replace the ensemble mean of the EnKF analyses. 962 

  963 
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 964 

 965 

Fig. 2. Example of the horizontal distributions of observation at 0000 UTC May 14: (a) sounding 966 

(circles) and profile (pluses), (b) surface stations over land and for ships, buoys, etc., (c) aircraft 967 

observations, (d) satellite retrieval winds, and (e) GPS precipitable water (PW) data. The small box 968 

in (a) is the domain used by 13 km forecasts. (a)-(d) are adopted from Zhu et al. (2013). 969 
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 970 
Fig.  3. Profiles of (a) horizontal and (b) vertical cut-off radii for the EnKF control 971 

experiment. The horizontal axis is the cut-off radius of a given observation at a particular 972 

vertical position given in pressure. The vertical axis is the vertical position of observations 973 

given by the pressure.  974 
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 975 
Fig.  4. Analysis increments at 500 hPa resulting from a single 500 hPa temperature observation 976 

over Norman Oklahoma (shown by the black dot) that is 1 K above the background for (a) GSI, (b) 977 

EnKF, and (c) En3DVar Hybrid schemes, valid at 0300 UTC 13 May 2010. The contours and 978 

shading are for the background geopotential height (gpm) and temperature increments, respectively. 979 

Lower panels are analysis increments in an east-west vertical cross section through the observation 980 

point, for (d) GSI, (e) EnKF, and (f) En3DVar hybrid. Shaded is the temperature increment. Thick 981 

contours (solid for positive and dash for negative) are for the north-south wind increment; thin 982 

contours are for potential temperature from 294 to 338 K at 4 K intervals. 983 

  984 
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 985 

Fig.  5. Vertical profiles of mean 3-hour forecast RMSEs verified against sounding data for (a) RH, 986 

(b) T, (c) U, and (d) V for the labeled experiments. Error bars represent the two-tailed 90% 987 

confidence interval (5% on the left and 95% on the right) using the bootstrap distribution method.  988 



 

48 

 

 989 
Fig.  6. The 9-day and domain-averaged forecast RMSEs verified against sounding data for (a) RH, 990 

(b) T, (c) U, and (d) V, for different forecast hours. Error bars represent the two-tailed 90% 991 

confidence interval (5% at the bottom and 95% on the top) using the bootstrap distribution method. 992 

  993 
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 994 

Fig.  7. The 9-day and domain-averaged forecast RMSEs verified against surface observations and 995 

the 90% confidence interval of the RMSE differences between En3DVar hybrid experiments and 996 

GSI/EnKF_Ctl for (a) surface pressure, (b) 2-m RH, (c) 2-m temperature, (d) 10-m U, and (e) 10-m 997 

V for different forecast hours. The horizontal axis is forecast hour. The error bars in domain-998 

averaged forecast RMSEs represent the two-tailed 90% confidence interval. 999 

1000 
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 1001 
Fig.  8. Domain-averaged 3-hour forecast RMSEs (upper panels in each frame) verified against 1002 

sounding data at 0000 and 1200 UTC through test period and the 90% confidence interval of RMSE 1003 

differences (lower panel of each frame) between the En3DVar hybrid and EnKF experiments and 1004 

GSI for (a) RH, (b) T, (c) U, and (d) V. 1005 
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 1007 

Fig.  9. The same as Fig.  5 but for experiments GSI, Hybrid01, Hybrid05, Hybrid09, Hybrid10 and 1008 

EnKF_Ctl.   1009 
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 1010 

Fig.  10. The same as Fig.  6, except for for experiments GSI, Hybrid01, Hybrid05, Hybrid09, 1011 

Hybrid10 and EnKF_Ctl.   1012 
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 1013 
Fig.  11. Mean forecast RMSE differences between different experiments and Hybrid1W_Ctl, 1014 

verified against sounding data, for 3-hour forecast averaged over the 9-day forecast period over the 1015 

entire model domain.  1016 
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 1018 
 1019 

Fig.  12. The same as Fig.  5 but for experiments EnKF_Ctl, Hybrid_HD and Hybrid_Con. 1020 

  1021 
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 1022 
Fig.  13. Nine-day and domain-averaged absolute 3-hour forecast RMSE differences verified 1023 

against sounding data, where 1G means difference between Hybrid_Con and EnKF_Ctl, 1GHD 1024 

means difference between Hybrid_HD and EnKF_Ctl, and 3GHD means difference between 1025 

Hybrid3G and EnKF3G. The error bars represent the two-tailed 90% confidence interval. 1026 

  1027 
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 1028 
Fig.  14. Nine-day and domain-averaged profiles of absolute RMSE differences between 1029 

Hybrid_Con and EnKF_Ctl (labeled 1GC), Hybrid_HD and EnKF_Ctl (labeled 1GHD), Hybrid3G 1030 

and EnKF3G (labeled 3GHD) for (a) RH, (b) T, (c) U, and (d) V. The error bars represent the two-1031 

tailed 90% confidence interval.  1032 
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 1033 
Fig.  15. The relative percentage improvement (RPI, negative represents an improvement or error 1034 

reduction) of Hybrid1W20, Hybrid1W40,  EnKF20 and EnKF40 comparing to experiment GSI for 1035 

(a) RH, (b) T, (c) U, and V . The horizontal axis is forecast hour. 1036 

  1037 
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 1038 
Fig.  16. Averaged precipitation GSSs and BIASs of 13-km forecasts as a function of forecast 1039 

length for thresholds (a) (b) 0.1 mm h
-1

, (c) (d) 1.25 mm h
-1

, and (e) (f) 2.5 mm h
-1

.  1040 
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Table 1. List of data assimilation experiments. In the horizontal and vertical localization columns, 1041 

means increasing with height. 1042 

Experiment 

group 

Experiment 

(including 

alternative 

names) 

Ensemble 

covariance 

weighting factor   

( 21/  ) 

Horizontal 

cut-off 

radius for 

hybrid/EnKF 

(km) 

Vertical cut-off 

radius for 

hybrid/EnKF in ln(p)  

Ensem

ble 

size 

EnKF-

En3DVar 

Coupling 

Control 

experiment

s 

GSI  N.A. 

EnKF_Ctl 

/EnKF40 

- 700 

1050 

RH and T: 1.1/4  

1.1/2 

U and V: 1.1/2  

1.1 

ps and pw: 1.6 

40 - 

Hybrid1W_Ctl 

/Hybrid1W40 

/Hybrid05 

0.5 ~1095 1.1 40 1-way 

Hybrid2W_Ctl 

/Hybrid2W40 

0.5 ~1095 1.1 40 2-way 

Sensitivity 

experiment

s on 

covariance 

weighting 

factors 

Hybrid01 0.1 ~1095 1.1 40 1-way 

Hybrid09 0.9 ~1095 1.1 40 1-way 

Hybrid10 1.0 ~1095 1.1 40 1-way 

Sensitivity 

experiment

s on 

localization 

scales 

Hybrid_HS 0.5 ~701 1.1 40 1-way 

Hybrid_HL 0.5 ~1300 1.1 40 1-way 

Hybrid_VS 0.5 ~1095 0.36 40 1-way 

Hybrid_VL 0.5 ~1095 1.8 40 1-way 

Sensitivity 

experiment

s on height- 

and 

observation

-type- 

dependent 

localization 

scales 

Hybrid_Con 0.0 ~701 1.1 40 1-way 

Hybrid_HD 0.0 700 

1050 

1.1/2  1.1 40 1-way 

Hybrid3G 0.0 700 

1050 

RH and T: 1.1/4  

1.1/2 

U and V: 1.1/2  

1.1 

ps and PW: 1.6 

(observations are 

assimilated in 3 

groups) 

40 1-way 

EnKF3G - 700 

1050 

RH and T: 1.1/4  

1.1/2 

U and V: 1.1/2  

1.1 

ps and PW: 1.6 

(observations are 

assimilated in 3 

groups) 

40 1-way 
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Sensitivity 

experiment

s on 

ensemble 

size 

EnKF20 - 700 

1050 

RH and T: 1.1/4  

1.1/2 

U and V: 1.1/2  

1.1 

ps and PW: 1.6 

20 - 

Hybrid1W20 0.5 ~1095 0.3 20 1-way 

Hybrid2W20 0.5 ~1095 0.3 20 2-way 

 1043 

  1044 
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Table 2 list of mean domain average absolute RMSE difference pair 1045 

Name Hybrid* Benchmark 

1GC Hybrid_Con EnKF_Ctl 

1GHD Hybrid_HD EnKF_Ctl 

3GHD Hybrid3G EnKF3G 

 1046 


