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ABSTRACT

A dual-resolution (DR) version of a regional ensemble Kalman filter (EnKF)-3D ensemble variational (3DEnVar) coupled
hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh forecasting system. The
DR 3DEnVar system combines a high-resolution (HR) deterministic background forecast with lower-resolution (LR) EnKF
ensemble perturbations used for flow-dependent background error covariance to produce a HR analysis. The computational
cost is substantially reduced by running the ensemble forecasts and EnKF analyses at LR. The DR 3DEnVar system is tested
with 3-h cycles over a 9-day period using a 40/∼13-km grid spacing combination. The HR forecasts from the DR hybrid
analyses are compared with forecasts launched from HR Gridpoint Statistical Interpolation (GSI) 3D variational (3DVar)
analyses, and single LR hybrid analyses interpolated to the HR grid. With the DR 3DEnVar system, a 90% weight for the
ensemble covariance yields the lowest forecast errors and the DR hybrid system clearly outperforms the HR GSI 3DVar.
Humidity and wind forecasts are also better than those launched from interpolated LR hybrid analyses, but the temperature
forecasts are slightly worse. The humidity forecasts are improved most. For precipitation forecasts, the DR 3DEnVar always
outperforms HR GSI 3DVar. It also outperforms the LR 3DEnVar, except for the initial forecast period and lower thresholds.
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1. Introduction

Studies have shown that background error covariance
(BEC) plays an important role in atmospheric data assim-
ilation (DA), and especially for the mesoscale and convec-
tive scale where weather systems are more transient and in-
termittent (Zhang et al., 2006; Meng and Zhang, 2007; Liu
and Xue, 2008; Ancell et al., 2014). In typical 3D varia-
tional (3DVar) systems, static BEC is usually used in the
cost function, which does not contain flow-dependent spa-
tial covariance (Lorenc, 1986); any cross-covariances usu-
ally only reflect static, large-scale balances (Barker et al.,
2004; Descombes et al., 2015). For smaller scale flows, flow-
dependent spatial covariance and cross-covariances tend to
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have increasing importance.
The ensemble Kalman filter (EnKF), originally proposed

by Evensen (1994), uses flow-dependent BEC derived from
an ensemble of forecasts. EnKF has become increasingly
popular in recent years and has been applied to opera-
tional (e.g., Buehner et al., 2010a, b) or prototype numerical
weather prediction (NWP) systems (e.g., Hamill et al., 2011;
Wang et al., 2013). However, due to the relatively small en-
semble size dictated by available computing resources, sam-
pling error in the ensemble-derived BEC is usually signifi-
cant (Hamill et al., 2001; Miyoshi et al., 2014; Anderson,
2016). Covariance localization is typically used to help al-
leviate the problem, which can affect flow balances (Hamill
et al., 2001; Greybush et al., 2010). As an alternative way
of alleviating the problem, Hamill and Snyder (2000) pro-
posed a hybrid algorithm, in which a weighted average of the
static and flow-dependent covariances is used within a 3DVar
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framework; they found that the hybrid system outperforms
EnKF when the ensemble size is small or when the model
error is large. An alternative computationally more efficient
implementation of the hybrid idea, called the extended con-
trol variable (ECV) method, was later proposed by Lorenc
(2003). The ECV method extends the original control vector
in the 3DVar cost function by adding an additional term—
the extended control variable term preconditioned upon the
square root of the ensemble covariance. Wang et al. (2007)
showed that the method of Hamill and Snyder (2000) using a
simple weighted average and the ECV method are mathemat-
ically equivalent. With the ECV approach, a hybrid 3D en-
semble variational (3DEnVar) algorithm is relatively easy to
implement within an existing 3DVar framework. Recent stud-
ies have demonstrated that forecasts initialized from analyses
of a hybrid algorithm are usually better than those from tradi-
tional 3DVar, and are comparable to or better than those from
pure EnKF (Wang et al., 2009; Li et al., 2012; Zhang and
Zhang, 2012; Wang et al., 2013; Zhang et al., 2013; Pan et al.,
2014; Schwartz and Liu, 2014). This approach has been used
in several global NWP (Kuhl et al., 2013; Wang et al., 2013;
Kleist and Ide, 2015) and regional mesoscale systems (e.g.,
Wang et al., 2008a, b; Schwartz and Liu, 2014; Schwartz et
al., 2015; Wu et al., 2017).

Most of the hybrid DA studies mentioned above em-
ployed single-resolution (SR) configurations, in which the
deterministic EnVar analysis and the ensemble analyses and
forecasts are performed at the same resolution. For a high-
resolution (HR) DA system, SR configuration can be com-
putationally expensive, especially for operational purposes.
For these reasons, dual-resolution (DR) hybrid schemes have
been proposed, which combine HR background forecasts and
hybrid analysis with BECs derived from low-resolution (LR)
ensemble forecasts that are typically provided by a cycled
EnKF system (Buehner et al., 2010b; Hamill et al., 2011;
Clayton et al., 2013; Kleist and Ide, 2015).

For regional models, one DR hybrid example was re-
cently reported in Schwartz et al. (2015), based on Weather
Research and Forecasting (WRF) DA systems. Schwartz et
al. (2015) compared the WRF SR and DR hybrid analyses
and forecasts over a ∼3.5-week period. They found that the
45/15-km DR analyses were completed around three times
faster and required about one quarter of the disk space of
the 15-km SR analyses. Moreover, forecasts launched from
the 15-km SR hybrid analyses had no significant differences
from those launched from the 45/15-km DR hybrid analyses,
although forecasts from the SR system captured more fine-
scale features. The DR hybrid system consumes much less
computational resource than the 15-km SR hybrid system.

The Rapid Refresh (RAP) forecasting system is an
hourly-updated operational DA/prediction system of the U.S.
National Weather Service using a 13-km horizontal grid spac-
ing, and it replaced the operational Rapid Update Cycle (Ben-
jamin et al., 2004) system as a regional operational analy-
sis and forecast system in 2012. RAP uses the WRF-ARW
model (Skamarock and Klemp, 2008) for forecasting and
the Gridpoint Statistical Interpolation (GSI) analysis system

(Wu et al., 2002; Kleist et al., 2009) for DA. GSI 3DVar
was used until February 2014, when it was replaced by a
hybrid 3DEnVar using flow-dependent covariances derived
from the Global Forecast System (GFS) EnKF system. An
updated version was implemented in August 2016 using 75%
flow-dependent covariances derived from a GFS 80-member
ensemble run at an ∼30-km grid spacing (Benjamin et al.,
2016). In a sense, the operational RAP hybrid DA system is
using a DR algorithm, although the ensemble forecasts are
from a completely different model, and the GFS EnKF en-
semble forecasts are only available four times a day; there-
fore, many hourly RAP hybrid analyses share forecasts from
the same cycle. Such a configuration is clearly not optimal.
Thus, a self-consistent EnKF DA system for RAP itself, run-
ning at LR, is desirable for maximum consistency and com-
putational cost saving.

In fact, a regional GSI-based EnKF system using the
EnSRF (ensemble square-root filter) (Whitaker and Hamill,
2002) had already been established for RAP in Zhu et al.
(2013), and tested at a grid spacing (40 km) three times that of
the operational RAP. The same RAP operational data stream,
with 3-h intervals over a 9-day period, was assimilated, and
18-h deterministic forecasts were evaluated. Results showed
that the EnKF system was consistently better than the paral-
lel GSI 3DVar system. Building on the EnKF system tested
in Zhu et al. (2013), Pan et al. (2014) implemented a coupled
EnKF-3DEnVar hybrid system and evaluated it at the same
40-km resolution as Zhu et al. (2013) for the same test period.
With equal weights given to the static and flow-dependent co-
variances, the hybrid system outperformed GSI 3DVar, and
was either comparable to or slightly better than the EnKF sys-
tem (Pan et al., 2014).

The EnKF and 3DEnVar hybrid systems implemented for
RAP in Zhu et al. (2013) and Pan et al. (2014) were tested at
a reduced resolution with a 40-km grid spacing because run-
ning the ensemble analyses and forecasts at the full ∼13-km
resolution is expensive. With a DR hybrid system, a single
hybrid analysis is performed at the native ∼13-km grid spac-
ing to provide initial conditions for the RAP deterministic
forecast (the operational RAP is deterministic at this time),
using ensemble forecasts produced at the 40-km grid spac-
ing at a much lower cost. Testing and evaluating an ∼13-km
hybrid system coupled with EnKF cycles at the 40-km grid
spacing is the main goal of this paper.

The rest of the paper is organized as follows: section
2 describes the implementation of the coupled DR EnKF-
3DEnVar hybrid system for RAP; the design of the testing
experiments is given in section 3; the results and compar-
isons of the experiments are discussed in section 4; section 5
provides conclusions and additional discussion.

2. GSI-based DR EnKF-3DEnVar hybrid sys-

tem

The GSI-based DR EnKF-3DEnVar hybrid system for
RAP is based on the EnKF system reported in Zhu et al.
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(2013) and the 3DEnVar hybrid system reported in Pan et
al. (2014); both were tested at a reduced SR with a 40-km
grid space. Two-way and one-way coupling can be applied
in a DR hybrid system (Clayton et al., 2013; Schwartz et al.,
2015). For one-way coupling, EnKF only provides the LR
ensemble covariance for HR hybrid 3DEnVar analyses. In
the two-way DR hybrid, an additional step is performed that
re-centers the LR ensemble about the HR analysis. However,
Clayton et al. (2013), Wang et al. (2013) and Schwartz et al.
(2015) found relatively small impacts of performing such a
re-centering. Furthermore, keeping the DR system one-way
coupled with the LR EnKF system makes the intercompar-
isons cleaner. Thus, one-way coupling is employed in this
study.

Figure 1 shows the flowchart for the one-way-coupled DR
EnKF-3DEnVar hybrid cycles used in this paper. As with
the SR hybrid system documented in Pan et al. (2014), the
GSI system is used for observation processing, including data
quality control, thinning and calculation of the innovations.
The EnKF system directly ingests observation innovations
processed by GSI and produces an ensemble of analyses. The
EnKF analyses and forecasts are run on the 40-km grid. In
the DR system, a single deterministic forecast and 3DEnVar
hybrid analysis are produced on the HR grid of ∼13-km grid
spacing in each cycle, using the 40-km ensemble forecasts
from the EnKF cycles for flow-dependent BECs. In the rest
of this paper, LR refers to the 40-km grid spacing, and HR
refers to the ∼13-km grid spacing.

Specifically, the DR hybrid algorithm is described below,
with the presentation of the general algorithm mostly follow-
ing Pan et al. (2014) and Schwartz et al. (2015). The analysis
increment vector, δδδxxx, of the DR hybrid can be expressed as

δδδxxx = δδδxxx1+SSS DDDααα , (1)

where δδδxxx1 is the HR analysis increment vector associated

with the static background covariance with a length of nh,
and SSS DDDααα is the increment associated with flow-dependent
covariances from the K-member ensemble. Equation (1) in-
cludes an interpolation operator SSS , that interpolates the DDDααα
from LR to HR space, while it is an identity matrix for an
SR 3DEnVar algorithm. DDD is a nl × (Knl) matrix defined as
DDD = [diag(xxx′l1) diag(xxx′l2) . . . diag(xxx′lK)], where nl is the
dimension of the state vector on the LR grid, and l indicates
the lower resolution. diag() is an operator that converts vec-
tor xxx′li into a diagonal matrix with size nl × nl (Wang, 2010;
Schwartz et al., 2015). The subscript i indicate the ith mem-
ber of the ensemble. ααα is an extended control variable with
column vector length of Knl formed by concatenating ex-
tended control variables for each ensemble member αααK as

ααα =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ααα1
ααα2
...
αααK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

The corresponding cost function to obtain the analysis incre-
ment δδδxxx1 and ααα is expressed as

J(δδδxxx1,ααα) = β1Jb+β2Je+ Jo

=
1
2
β1δδδxxxT

1 BBB−1δδδxxx1+
1
2
β2ααα

TAAA−1ααα

+
1
2

[HHHδδδxxx− yyy′]TRRR−1[HHHδδδxxx− yyy′] , (3)

where Jo is observation term, HHH is the tangent-linear obser-
vation operator, yyy′ is the observation innovation vector, BBB is
the static BEC, and RRR is the observation error covariance. AAA
is a Knl ×Knl block diagonal matrix that prescribes the co-
variance localization scale for the flow-dependent covariance
derived from the ensemble forecasts. β1 and β2 in front of
Jb and Je are the weights given to static and ensemble BECs,

Fig. 1. Flowchart of a full GSI-based EnKF-3DEnVar DR hybrid DA cycle with one-
way coupling between the EnKF (upper portion at 40-km horizontal grid spacing) and
3DEnVar DR hybrid analysis (lower portion at 13-km horizontal grid spacing). The
arrows pointing from EnKF downward to 3DEnVar indicates the prevision of 40-km
ensemble perturbations from EnKF to hybrid analyses. GSI is used as the DA system
for 3DEnVar.
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respectively, and they are constrained by

1
β1
+

1
β2
= 1 . (4)

The gradients of the cost function with respect to δδδxxx1 and ααα
have the form

∇δδδxxx1 J = β1BBB−1δδδxxx1+HHHTRRR−1(HHHδδδxxx− yyy′) , (5)

∇αααJ = β2AAA−1ααα+DDDTSSS THHHTRRR−1(HHHδδδxxx− yyy′) , (6)

where DDDT and SSS T are the adjoints of DDD and SSS in Eq. (1),
respectively. SSS T is applied to HHHTRRR−1(HHHδδδxxx− yyy′), while SSS is
applied to DDDααα from the LR space to HR space.

3. Experimental design

3.1. Model and domain configuration
In the RAP hybrid DA system, WRF is used as the fore-

cast model. The Model Evaluation Tools (Brown et al., 2009)
developed by the Developmental Testbed Center is used for
forecast verification.

As stated earlier, the DR hybrid system uses a 40/∼13-
km horizontal grid spacing combination. The LR domain at
40-km grid spacing for the ensemble covers North America
with 207× 207 horizontal grid points (bold box in Fig. 2a),
while the HR domain at ∼13-km grid spacing has 616× 616
horizontal grid points covering roughly the same domain (the
HR domain is not plotted in Fig. 2). Both domains have 50
vertical levels extending up to 10 hPa at the model top us-
ing terrain-following hydrostatic-pressure-based vertical co-
ordinates that stretch with height (Skamarock et al., 2008).
The static background error statistics calculated based on the
NCEP North American Model forecasts using the National
Meteorological Center method, as provided in the GSI system
(Hu et al., 2016), are used in this study. The error statistics
are latitude and sigma-level dependent only; they are inter-
polated to the analysis grid within GSI. The flow-dependent
BECs are derived from the ensemble forecasts provided by
the EnKF system at the 40-km grid spacing.

3.2. Observations for assimilation and verification
As in Pan et al. (2014), the operational data stream of

RAP excluding satellite radiance data is assimilated in the
DR hybrid system. The distributions of the data at 0000 UTC
May 8 are shown in Fig. 2. Eighteen-hour forecasts from
the analyses are verified against surface and sounding data
in the HR domain. The surface data verified include surface
pressure, 2-m relatively humidity (RH), 2-m temperature (T ),
10-m zonal and meridional wind components (U and V , re-
spectively); the sounding observations include RH, T , U and
V .

3.3. Verification techniques
The root-mean square error (RMSE) is used to evaluate

the forecasts, and the bootstrap resampling method (Candille
et al., 2007; Buehner and Mahidjiba, 2010; Schwartz and Liu,

2014) following Pan et al. (2014) is used to determine the sta-
tistical significance of error differences. The RMSEs are cal-
culated against the observations at certain levels and forecast
hours first, and then aggregated over all cycles for specific
forecast hours for skill evaluation.

To assess the statistical significance, bootstrap resampling
is performed. New samples are created by randomly drawing
from the dataset 3000 times, allowing the same data to be
drawn more than once. With the resample, we calculate the
aggregated RMSEs along with a two-tailed confidence inter-
val from 5% to 95%. As in Pan et al. (2014), RMSE dif-
ferences are calculated between a specific experiment and its
benchmark first. The bootstrap method is then applied to the
RMSE differences with confidence intervals from 5% to 95%
to determine the significance of improvement. When all con-
fidence intervals of the RMSE differences are below/above
zero, the experiment is significantly better/worse than the
benchmark experiment at a 90% confidence level. Additional
discussion on the use of the bootstrap method for calculat-
ing the statistical significance of forecast differences can be
found in Pan et al. (2014), Schwartz and Liu (2014), and Xue
et al. (2013).

The Gilbert skill score (GSS) (Gandin and Murphy, 1992)
is used to evaluate the precipitation forecast skills of 12-h de-
terministic forecasts against the 4-km NCEP Stage IV precip-
itation data in the CONUS (Conterminous United States) do-
main in which the data are available (Lin and Mitchell, 2005).

3.4. Experimental design
As in Zhu et al. (2013) and Pan et al. (2014), the same

test period from 8–16 May 2010 is used, which contained
active episodes of convection. All DA experiments start at
0000 UTC 8 May and end at 2100 UTC 16 May with continu-
ous three-hourly cycles. The initial fields and boundary con-
ditions are interpolated from operational GFS analyses and
forecasts. Random perturbations are created by the random
CV3 option in the WRF DA system (Barker, 2005; Barker
et al., 2012) and added to the GFS analysis initial condition
at 0000 UTC 8 May 2010 to start the ensemble forecasts for
the EnKF and the GFS forecasts to create perturbed ensemble
boundary conditions (Torn et al., 2006).

Pan et al. (2014) suggested that the BEC weighting fac-
tor, as one of the important tuning parameters in a hybrid
algorithm, has a great impact on the performance of the hy-
brid DA system. To examine the performance of the DR hy-
brid system and its sensitivity to the weighting factor, three
DR hybrid experiments—namely, HyDR05, HyDR09 and
HyDR10—are run using 50%, 90% and 100% weights given
to the ensemble BEC, respectively. Because HyDR09 pro-
duces the best analyses and forecasts among all DR hybrid
experiments, it is also called the DR hybrid control experi-
ment, named HyDR Ctl (Table 1).

The well-tuned 3DEnVar experiment (Hybrid1W Ctl) at
the 40-km grid from Pan et al. (2014) is adopted as a bench-
mark, and the same well-tuned EnKF experiment with 40
members from Pan et al. (2014) is also used in this study
to provide the LR ensemble perturbations for the DR hybrid
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Fig. 2. Example of the horizontal distributions of (a) sounding, profile and VAD (Velocity Azimuth Display), (b) surface
stations over land and for ships, (c) GPS-PW (Precipitable Water) and GPS-RO (Radio Occultation), and (d) aircraft
observations at 0000 UTC 8 May.

Table 1. List of DA and forecast experiments. In the experiment names, “Hy” and “Var” indicate the hybrid and 3DVar DA methods,
respectively. “LR”, “HR” and “DR” following the DA method indicate 40 km, ∼ 13 km and 40/ ∼ 13 km, respectively. The digits such as
“09” indicate the weight of the ensemble covariance. “HRF” indicates that forecasts are performed at HR.

Experiment

Ensemble
covariance
weighting

factor
(1/β2)

Horizontal
localization
scale (km)

Vertical
localization

scale
[in ln(p)]

For initial conditions or
background forecasts

Analysis/
ensemble
horizontal

grid spacing
(km)

Forecast
horizontal

grid spacing
(km)

HyDR Ctl/HyDR09 0.9 300 0.3 DR hybrid analyses ∼ 13/40 ∼ 13
HyDR05 0.5 300 0.3 DR hybrid analyses ∼ 13/40 ∼ 13
HyDR10 1.0 300 0.3 DR hybrid analyses ∼ 13/40 ∼ 13
HyLR HRF As in Pan et al. (2014) — Analyses of Hybrid1W Ctl

of Pan et al. (2014)
40/40 ∼ 13

VarHR HRF — — — GSI 3DVar analyses on HR
grid

∼ 13/ ∼ 13 ∼ 13



MAY 2018 PAN ET AL. 523

experiments. Hybrid1W Ctl from Pan et al. (2014) employed
half and half static/flow-dependent covariance, a horizontal
covariance localization scale of 300 km, and a vertical covari-
ance localization scale of 0.3 in terms of natural logarithm of
pressure. Experiment HyLR HRF (Table 1) involves fore-
casts initialized from interpolated fields from the analyses of
Hybrid1W Ctl every cycle. A HR GSI 3DVar DA experi-
ment, named VarHR HRF, is also run at the ∼13-km reso-
lution (Table 1). In other words, HR forecasts from the LR
hybrid control experiments and the HR 3DVar analyses are
used as references for evaluating forecasts from DR DA ex-
periments.

The analyses of DR DA may benefit from the HR back-
ground forecasts, which contain more detailed flow struc-
tures. The configurations of HyDR05 are the same as
HyLR HRF, except that the deterministic background fore-
casts of HyDR05 are performed on the ∼13-km grid in-
stead of the 40-km grid. In HyLR HRF, forecasts are run
at ∼13-km grid spacing from interpolated 40-km analyses
of Hybrid1W Ctl. The comparison between HyDR05 and
HyLR HRF isolates the impact of the increased background
forecast resolution.

For variational minimization in either 3DVar or 3DEn-
Var, two outer-loop iterations and 100 inner-loop iterations
are used. Evaluations are mainly based on forecasts on the
∼13-km grid, launched from either the HR analyses or fields
interpolated from LR 40-km analyses. All experiments are
listed in Table 1.

4. Results and discussion

In Pan et al. (2014), the skills of EnKF, 3DEnVar hybrid
and 3DVar at a single reduced 40-km resolution were com-
pared. The results showed 3DEnVar hybrid using 50% en-
semble covariance significantly outperformed GSI 3DVar for
all variables through the entire 18-h forecast period, while
3DEnVar hybrid had a comparable performance to EnKF
overall. In this section, the performance of the DR hybrid
system and its sensitivity to the weighting factor of BECs
and the resolution of background forecasts are examined. In
section 4.4, precipitation forecast skills are evaluated.

4.1. Sensitivity to the covariance weighting factor in DR
hybrid experiments

In Pan et al. (2014), the lowest RMSEs were obtained
when using 50% ensemble BEC in their 40-km control hy-
brid experiment, Hybrid1W Ctl. At an ∼13-km grid spac-
ing, smaller-scale features can be captured, which tend to
be more transient and hence more flow-dependent. The
analysis may benefit from a higher weight for the en-
semble covariance. Experiments HyDR05, HyDR09 (also
named HyDR Ctl) and HyDR10 are compared to examine
the impact of flow-dependent covariance in the DR hybrid
system.

The aggregated 3-h forecast RMSEs verified against
sounding data are shown in Fig. 3. The RMSEs at each pres-

sure level were obtained by averaging values within a layer
50 hPa above and below that pressure from all cycles, except
for the topmost and lowest levels. The 3-h forecasts are also
used as the background in each DA cycle, and their errors can
be used as a proxy for measuring the DA quality. The results
show that HyDR09 has the smallest RMSEs for RH, U and
V at almost all levels. For T , the RMSEs from HyDR09 are
higher than those from HyDR05 above 800 hPa. The perfor-
mance of HyDR10 is comparable to or worse than HyDR05
for RH below 600 hPa, and for T , U and V at all levels. These
results indicate that, with the DR hybrid 3DEnVar system,
when the grid spacing of the hybrid analysis as well as the
background forecast is decreased from the 40-km used in Pan
et al. (2014) to ∼13-km, optimum results are obtained when
the weight for the ensemble BECs is 90% (among the weights
examined), instead of the 50% for the SR LR case. This may
be because of the increased level of flow dependency of the
background errors at HR, as suggested earlier. Raising the
weighting factor for the flow-dependent covariances means
that more mesoscale information can be involved in the DA.
However, the forecasting skill of T to the weighting factor is
opposite to RH, U and V at the middle to upper levels.

4.2. Comparison of DR hybrid DA with HR 3DVAR

In this section, we compare the performance of experi-
ments HyDR Ctl (i.e., HyDR09) using hybrid 3DEnVar with
VarHR HRF, which uses the pure 3DVar DA method run at
HR (see Table 1).

The 9-day aggregated RMSEs of the 3-h forecasts veri-
fied against sounding data at all levels are shown in Fig. 4.
As shown in Fig. 4, VarHR HRF underperforms HyDR Ctl,
with its errors being significantly larger for RH, U and V at
most levels, while the errors for T are comparable.

The overall domain- and level-aggregated RMSEs veri-
fied against sounding and surface data are shown in Fig. 5
and Fig. 6, respectively, for analyses (hour 0) and forecasts at
3-h intervals up to 18 hours. HyDR Ctl significantly outper-
forms VarHR HRF at the analysis and forecast for all vari-
ables throughout the entire forecast period. The RMSEs of
all variables are noticeably lower in the analyses than in the
forecasts, and forecast errors increase quickly in the first three
hours before becoming more stable thereafter; such rapid
error growth is likely associated with fast small-scale error
growth.

Overall, the DR coupled EnKF-3DEnVar hybrid scheme
significantly outperforms the 3DVar scheme for all variables
at all forecast hours when verified against soundings and sur-
face observations. The results suggest the efficacy of using a
DR configuration for a hybrid DA system.

4.3. Impact of HR background forecast
The impacts of the HR background forecast are inves-

tigated by comparing HyLR HRF with HyDR05, in which
the only differences lie with the resolution of the background
forecasts. HyDR Ctl is also included in this section to assess
the impacts of HR background forecasts and flow-dependent
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Fig. 3. Aggregated 3-h forecast RMSEs along with confidence error bars at different height levels verified against
sounding data for (a) RH, (b) T , (c) U, and (d) V for experiments HyDR05, HyDR09, and HyDR10. The error bars
represent the two-tailed 90% confidence interval (5% on the left and 95% on the right) using the bootstrap distribution
method.

covariance.
The 3-h forecast RMSEs verified against sounding data

(Fig. 4) show that HyDR05 underperforms HyLR HRF for
RH and performs comparably for T , U and V at most lev-
els. When using a higher weighting factor of 90% for flow-
dependent covariances in HyDR Ctl, the RMSEs are smaller
than those from HyDR05 for RH at all levels, except for T
at 1000–800 hPa, and U and V at 500–300 hPa. These re-
sults suggest that HyDR Ctl benefits from the HR with 90%
flow-dependent covariances.

The comparisons among HyLR HRF, HyDR Ctl and
HyDR05 of the domain-aggregated RMSEs for the analyses
and forecasts up to 18 hours against sounding data are shown
in Fig. 5. The RMSEs of HyDR05 are comparable or slightly
worse than those from HyLR HRF, while the RMSEs of
HyDR Ctl are significantly smaller than those of HyLR HRF
for all variables except T . At the lower resolution of 40 km,
the best analyses and forecasts were obtained in Pan et al.
(2014) when equal weights were given to the static and flow-
dependent covariances in the hybrid DA. As the grid resolu-
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Fig. 4. As in Fig. 3 but for experiments HyLR HRF, HyDR Ctl, VarHR HRF and HyDR05. The error bars indicate the
two-tailed 90% confidence interval using the bootstrap method with 5% on the left and 95% on the right.

tion increases, the smooth static covariance becomes less ap-
propriate, which explains why a higher ensemble covariance
weight of 90% used in HyDR Ctl is beneficial.

The impacts of the HR background forecasts are further
examined by verifying analyses and forecasts up to 18 hours
against surface data (Fig. 6). HyDR Ctl has significantly
smaller RMSEs than HyLR HRF for 2-m RH and 10-m U
and V from the analysis time and throughout the entire fore-
cast period, and for surface pressure except at a few fore-

cast hours. Large differences are found in the RH errors be-
tween the HR 3DVar/DR hybrid and the LR 3DEnVar hybrid
(Fig. 6b), suggesting that for the surface moisture field DA
can benefit significantly from the increased background res-
olution, given the better resolution of terrain and mesoscale
boundary layer structures. For 2-m T , smaller errors at the
analysis time in HyDR Ctl and VarHR HRF than those in
HyLR HRF indicate a better fit of the analyses to surface T
observations. However, the forecast errors of T in HyDR Ctl
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Fig. 5. The bar chart in each frame shows the RMSEs of forecasts verified against sounding data, aggregated over the
entire domain and over the nine-day period. The lower panel shows the 90% confidence interval of the RMSE differ-
ences between HyDR Ctl and VarHR HRF or HyDR05 and HyLR HRF for (a) RH, (b) T , (c) U, and (d) V , for different
forecast hours. If the interval does not include zero, the difference is statistically significant at the 90% confidence level.
The error bars in the histograms represent the two-tailed 90% confidence interval with 5% at the bottom and 95% on
the top using the bootstrap distribution method.

and VarHR HRF become larger after three hours of forecast-
ing than those in HyLR HRF.

The results seem to suggest that the humidity and wind
fields benefit more from the higher background resolution
with increasing flow-dependent covariance, while this is not
necessarily the case for the temperature forecasts, at least
when verified against conventional data in terms of the RM-
SEs. Experiments with various combinations of resolutions
used in the analysis and forecasting steps shed some light on
such complex behaviors (not shown), but are not enough to
fully answer the questions. Results also imply a need for
multi-scale DA algorithms that explicitly treat observations
and background errors representing different scales (Li et
al., 2015) and use scale-dependent (Buehner and Shlyaeva,
2015) and/or multi-scale covariance localization (Miyoshi
and Kondo, 2013).

4.4. Precipitation forecast skill
In this section, the precipitation forecasts from

HyLR HRF, HyDR Ctl, VarHR HRF and HyDR05 are veri-
fied against the 4-km NCEP Stage IV precipitation data. The
GSS (Gandin and Murphy, 1992), also known as the equi-
table threat score, is calculated, as in Pan et al. (2014), for
the 0.1, 1.25 and 2.5 mm h−1 thresholds.

The GSSs are shown in Fig. 7. That HyDR Ctl outper-
forms VarHR HRF for all thresholds and all forecast hours
suggests that the analysis method is important for precipita-
tion forecasting skill. The results are consistent with those of
Schwartz (2016), who examined DR hybrid DA with a 20/4-
km grid combination.

With the HR forecasts, HyDR05 has better skill than
HyLR HRF after five hours at the threshold of 0.1 mm h−1,
and at one to eight hours at the threshold of 2.5 mm h−1.
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Fig. 6. The bar chart in the upper panel of each frame shows the RMSEs of forecasts verified against surface station
observations, aggregated over the entire domain and over the nine-day period, for (a) surface pressure, (b) 2-m RH, (c)
2-m T , (d) 10-m U, and (e) 10-m V for different forecast hours. Confidence error bars represent the two-tailed 90%
confidence interval (5% at the bottom and 95% on the top) using the bootstrap distribution method. The lower panel of
each frame shows the 90% confidence interval of the RMSE differences between HyDR Ctl, VarHR HRF or HyDR05
and HyLR HRF.

With more flow-dependent covariance being used, HyDR Ctl
shows the best skill among all experiments after 10 hours at
the 0.1 mm h−1 threshold, and generally all hours at the 1.25
and 2.5 mm h−1 thresholds.

The results indicate that, for precipitation, especially
heavier precipitation, there is a clear benefit to running the
hybrid DA at HR (relative to the LR hybrid), and to us-
ing ensemble-derived flow-dependent covariance (relative to
3DVar). The improved precipitation forecasts are consistent
with reduced errors in the analyses and forecasts of humidity.

5. Summary and conclusions

Based on the NCEP operational GSI variational frame-
work, a coupled EnKF-3DEnVar DR hybrid DA system, us-

ing a 40/∼13-km combination, is tested for the RAP model
configuration. The LR ensemble is provided by a single LR
EnKF system developed and tested in Zhu et al. (2013), and
the single LR EnKF-3DEnVar hybrid system tested in Pan et
al. (2014) is used as a benchmark to evaluate the performance
of the coupled DR hybrid system. As in Zhu et al. (2013) and
Pan et al. (2014), a nine-day period from 8–17 May 2010,
containing active convective systems, is used to examine the
performance of the DR hybrid DA system. The conventional
data stream used by the operational RAP system is assimi-
lated. The analyses and forecasts are verified against surface
and sounding observations, while HR precipitation forecasts
are verified against Stage IV precipitation data.

A 90% weight for the ensemble covariance produces the
best forecasts with the DR hybrid system (HyDR Ctl), while
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Fig. 7. Aggregated precipitation GSSs of 13-km forecasts as a function of forecast length for thresholds of (a) 0.1 mm
h−1, (b) 1.25 mm h−1 and (c) 2.5 mm h−1.

a 50% percent weight given to the flow-dependent ensemble
covariance is found to have the best performance with the
40-km LR hybrid system in Pan et al. (2014). The compar-
isons among HyLR HRF, HyDR Ctl and HyDR05 suggest
that the hybrid analyses and forecasts can benefit from the HR
background (3-h deterministic HR forecast) when the weight
given to the ensemble covariance is larger. In comparison,
the impacts of the HR background forecasts are limited when
50% static covariance is used. By increasing the weight for
the ensemble covariance to 90% within the DR hybrid sys-
tem, the humidity and wind fields are improved throughout
the 18 hours of the forecast, and the improvements to the hu-
midity fields are the largest. However, the response of tem-
perature forecasting skill to the weighting factor is opposite
to other variables at the middle to upper levels. The exact
reasons require further investigation.

The overall benefits of performing the hybrid analyses
at HR while still keeping the EnKF cycles at LR to reduce
the computational cost are clear, especially for the precipita-
tion forecasting skill. Such benefits can be larger when the
grid resolution becomes convection-allowing or convection-
resolving. Corresponding to the largest improvement of RH,
the precipitation forecast skill from the DR hybrid system is

higher than that from the HR 3DVar method, suggesting that
the analysis method is as important as the analysis resolu-
tion for convection-allowing predictions. These results are
consistent with Schwartz (2016), in which 4-km convection-
allowing forecasts using 20/4-km DR hybrid DA based on
the GSI system were examined. Their precipitation forecasts
over the first 12 hours from 4-km 3DVar and hybrid 3DEn-
Var were better than the forecasts from corresponding down-
scaled 20-km analyses. All precipitation forecasts from their
4-km hybrid analyses were more skillful than those from their
4-km 3DVar analyses.
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