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ABSTRACT

In a companion paper, the authors showed that lateral boundary condition (LBC) constraints on small-scale
error variance growth are sufficient to limit dispersion in limited-area-model (LAM) ensemble simulations. The
error growth constraints result from the use of coarsely resolved and temporally interpolated LBCs. The effect
is present in any modeling system using ‘‘one-way’’ LBC forcing unless the forcing model has the same resolution
as the LAM and the LBCs are updated at every time step. This limitation suggests the need to apply statistically
consistent, finescale LBC perturbations at every time step during LAM simulations. In this paper, a new method
for implementing LBC perturbations is developed to help counter the above effect by creating a statistically
consistent source of error growth along the lateral boundaries. The LBC perturbations are designed to amplify
with time while coherently propagating into the domain.

The procedure is tested in a controlled and efficient manner using a modified barotropic channel model. Ten-
member ensemble simulations are produced over many cases on a periodic channel domain and each of four
smaller nested domains. Lateral boundary effects are specifically isolated since the simulations are perfect except
for initial and lateral boundary condition perturbations and the use of coarsely resolved and/or temporally
interpolated one-way LBCs. Statistical results accumulated over 100 independent cases demonstrate that the
application of LBC perturbations capably restores ensemble dispersion, especially on smaller domains where
LBC effects propagate quickly through the domain. The paper closes with some comments on the relevance of
the LBC perturbation procedure in practical settings.

1. Introduction

In a companion paper, Nutter et al. (2004) showed
that the use of coarsely resolved and/or temporally in-
terpolated lateral boundary conditions (LBCs) is suffi-
cient to cause underdispersive limited-area-model
(LAM) ensemble forecasts. Although this result was
measured using a simplified model configuration, the
effect is present to some extent in all typical modeling
systems using ‘‘one-way’’ LBC forcing. In practice,
these LBC constraints can be minimized by operating
very large regional domains, or they can simply be ig-
nored at the discretion of the model’s developer. The
LBC constraints may have great significance for LAM
configurations having relatively smaller regional do-
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mains, especially those used by smaller groups for en-
semble forecasting or storm-scale predictions. Hence,
in this paper we explore the possibility that LBC con-
straints on error variance growth and ensemble spread
may be avoided by applying statistically consistent, fine-
scale LBC perturbations at every time step throughout
the LAM simulations.

The use of coarsely resolved and temporally inter-
polated LBCs restricts small-scale error growth in
LAMs because of the LBC ‘‘sweeping’’ effects that were
documented by Nutter et al. (2004) using a carefully
controlled approach. This limitation of LAMs has im-
portant consequences because it artificially inflates es-
timates of predictability limits which, in turn, errone-
ously decreases the apparent forecast uncertainty. The
LBC sweeping mechanism associated with coarsely re-
solved LBCs has been considered previously by a num-
ber of authors including Errico and Baumhefner (1987),
Vukicevic and Errico (1990), Paegle et al. (1997), Warn-
er et al. (1997), Hou et al. (2001), and De Elı́a and
Laprise (2002). Nutter et al. (2004) additionally con-
sidered error growth constraints introduced by temporal
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interpolation between relatively infrequent LBC updates
and extended the analysis to quantify the impact on
LAM ensemble dispersion. In combination, these LBC
constraints are present in any LAM using one-way LBC
forcing and are sufficient to contribute to the reduction
of LAM ensemble dispersion.

To help improve the design of LAM ensemble sys-
tems, LBC perturbations are introduced in this paper to
offset LBC sweeping effects by creating a statistically
consistent source of error growth along the lateral
boundaries. The LBC perturbations are designed to am-
plify with time while coherently propagating into the
domain. The perturbations are shown to help restore
small-scale error growth that would otherwise be swept
away through the downstream boundary.

The application of LBC perturbations described here-
in has not previously been attempted to the authors’
knowledge. The method goes beyond the common (and
essential) practice of using an ensemble of unique LBCs
provided by individual members of an external model
ensemble. Earlier results by Nutter et al. (2004) showed
that an ensemble of LBCs does not mitigate the LBC
constraint on error growth at small scales because the
LBCs are still coarsely resolved in both space and time.
Hence, the LBC perturbation method described here is
superposed upon the full set of LBCs originating as
output from an ensemble of external model forecasts.1

We begin in section 2 with a brief review of the
simplified model configuration and statistical measures
that were used by Nutter et al. (2004). A detailed de-
scription of the LBC perturbation procedure is given in
section 3. Statistical results shown in section 4 quantify
how well the perturbations help restore LAM ensemble
dispersion. Concluding remarks address the need for
additional development before LBC perturbations can
be applied in operational settings.

2. Configuration of numerical experiments

a. Numerical model and its configurations

Numerical experiments for this work are conducted
using the same single-level modified barotropic vorticity
channel model used by Nutter et al. (2004). The model
is configured specifically to isolate the effects of LBCs
on LAM ensemble dispersion while avoiding analysis
and model system errors. Although simplified, the mod-
el remains nonlinear, dispersive, and sensitive to initial
condition (IC) perturbations. The model is based on a
parameterized version of the quasigeostrophic potential

1 The set of ‘‘perturbed’’ LBCs traditionally refers to the set of
unique LBCs provided by an external model ensemble. The reader
should be aware that this terminology is somewhat misleading for
the set of external LBCs because perturbations are applied only to
their initial states, which are then allowed to grow freely without
further intervention. In contrast, the LBC perturbations described
herein are applied to the existing set of external LBCs throughout
the LAM simulation.

vorticity equation (Holton 1979, section 8.4.2), so we
call it the parameterized potential vorticity (PPV) mod-
el. The model and its numerics are described fully in
Nutter (2003) and summarized in Nutter et al. (2004).

PPV model simulations are run with ‘‘global’’ and
limited-domain configurations. Both configurations op-
erate with the same time step and with 25-km grid spac-
ing to avoid the impact of numerical discretization errors
when comparing simulations to a model-generated truth.
The global model configuration is a zonally periodic
channel domain dimensioned 18 000 km from west to
east and 6000 km from south to north. Four different
LAM domains are defined as subsets of the periodic
channel domain (see Fig. 1 in Nutter et al. 2004). The
largest nested domain is (6000 km)2, the medium-sized
domain is (3000 km)2, and the two smallest domains
are (1500 km)2. One of the small domains is displaced
southward in the channel relative to the centralized po-
sition of the others to evaluate error growth in a less
unstable part of the flow.

The LAM simulations are configured using one-way
Dirichlet boundary conditions for streamfunction (c)
and parameterized potential vorticity (j ) obtained from
subsets of the global model simulations. The one-way
LBC scheme used in the LAM simulations applies a
seven-point peripheral relaxation zone (Davies 1976,
1983) for j. Boundary values of c are then specified
before obtaining c across the limited domain by in-
verting a Helmholtz equation for j (Nutter et al. 2004).
Simpler methods may be used for applying LBCs in a
quasigeostrophic model (Charney et al. 1950), but we
use the one-way scheme because it is currently used in
most configurations of atmospheric LAMs.

LBCs are obtained by linearly interpolating between
subsets of the global simulations at 1-, 3-, and 6-hourly
intervals. Coarsely resolved LBC fields are generated
by applying a low-pass spatial filter to fields from global
model simulations running at the same resolution as the
LAM. The low-pass filter is a Fourier transform pro-
cedure (Errico 1985; Laprise et al. 2000; Nutter 2003)
that removes completely all wavelengths shorter than
150 km while perfectly retaining the amplitudes of
wavelengths longer than 450 km. The filtering process
preserves the accuracy of large-scale motions while re-
moving those which would not be present on a grid
having 3 times less spatial resolution as the LAM grid.
This analysis procedure is similar to that used most
recently by Laprise et al. (2000) and De Elı́a and Laprise
(2002).

One hundred independent 10-member ensemble sim-
ulations are constructed by assigning perturbations to
initial conditions given random states from the model-
generated climatology (Nutter 2003; Nutter et al. 2004).

b. Ensemble statistics

Given a forecast ensemble fi, i 5 1 . . . N, and the
verifying analysis a, Nutter et al. (2004) showed that
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we can link ensemble dispersion to the spectral decom-
position of total error variance using the relation

N1
2 2 2 2D 5 s 1 (^f & 2 ^a&) 2 \f 2 a\ , (1)O iN i51

where ^ · & denotes a spatial average and \ · \ 2 is the
average sum of squares (dot product) over the grid. The
ensemble dispersion (D2) is the square of the ensemble
spread (deviation about its mean), and s 2 is the ensem-
ble’s total biased error variance. The remaining terms
are, respectively, the ensemble mean square spatial error
(sme)2 and the squared error of the ensemble mean
(eme)2.

Equation (1) will be applied in section 4 to evaluate
the extent to which perturbed LBCs help restore ensem-
ble dispersion. Toward this end, the total biased error
variance (s 2) may be obtained spectrally as (Errico
1985)

N K211
2 2s 5 2|F (k) | , (2)O O iN i51 k51

where Fi(k) is the discrete Fourier transform of fi 2 a
and k 5 1, . . . , K 2 1 are the set of Nyquist resolved
wavenumbers on the grid (Errico 1985). When s 2 is
obtained spectrally for limited-area domains, the result
is slightly greater than the spatially integrated error var-
iance because detrending the fields before the transform
introduces variance at small scales (Errico 1985). How-
ever, the spectral variance inflation is present for all
model configurations tested in this work, so it does not
invalidate the intercomparison of results obtained using
different LBC treatments.

The latter two terms in (1) cannot be decomposed in
a simple way to reveal their contributions to D2 at dif-
ferent scales. However, if these terms are nearly the
same for both global and LAM simulations, then their
contributions to D2 are negated under comparison. Un-
der this condition, the spectral relation between error
variance and ensemble dispersion is maintained. In the
perfect model simulations conducted for this work, the
ensembles are unbiased and the spatial error term is
negligible on large domains. However, on small do-
mains, the spectral calculation of ensemble dispersion
could become distorted because of phase errors intro-
duced by upscale perturbation growth. The ensemble
bias term could become large in practical application
because of model deficiencies. However, ensembles can
be calibrated to remove such biases (Hamill and Colucci
1997; Hamill 2001).

All diagnostics for this work are presented in terms
of vorticity because it retains more power in the PPV
model at small scales than do the streamfunction, ve-
locity, or kinetic energy (Nutter 2003).

3. LBC perturbations

The procedures used to develop and apply LBC per-
turbations to the LAM ensemble simulations are detailed

in this section. The general procedure for implementing
LBC perturbations at each time step is as follows (details
to follow). A two-dimensional perturbation field is gen-
erated on the LAM grid using inverse Fourier trans-
forms. The perturbation field has zero mean and is pe-
riodic in both x and y directions. The LBC perturbation
field is initialized by assigning random phase angles to
each wavenumber. Amplitudes of the perturbations are
determined by the loss of error variance at specific
wavelengths due to LBC effects. Once initialized, the
field is translated at the Rossby phase speed for each
wavenumber so that perturbations passing through the
lateral boundary remain coherent in both space and time.
Perturbation amplitudes increase with time based on the
amount of error variance needed to restore the portion
lost due to LBC sweeping. After the perturbation field
is constructed, it is added to the spatially and temporally
interpolated LBC field given by subsets of an external
model simulation. The perturbed LBC field is then
blended with the LAM solution only within a peripheral
wave relaxation zone at each time step.

a. Implementation

1) PHASE ANGLE FORM OF FOURIER SERIES

The net effect of using coarsely resolved and tem-
porally interpolated LBCs is a loss of variance at small
scales, and hence, a reduction in the total biased error
variance (Nutter et al. 2004). The total biased error var-
iance [Eq. (2)] is computed using one-dimensional spec-
tra as described in section 2. The error variance cal-
culations retain only wave amplitudes for isotropic
wavenumbers and are averaged over many independent
cases. The phase angle form of the Fourier series (e.g.,
Walker 1988) is most compatible with this statistical
framework and is used to synthesize random fields hav-
ing predetermined error variance spectra.

Consider the Fourier series expansion of a one-di-
mensional periodic function f (x) 5 f (x 1 L):

` 2pkx 2pkx
f (x) 5 a 1 a cos 1 b sin , (3)O0 k k1 2 1 2[ ]L Lk51

where ak and bk are real amplitude coefficients. The
phase-angle form of the Fourier series is obtained by
letting ak 5 ck cos(2uk) and bk 5 ck sin(2uk), where
ck 5 and uk is the phase angle for wave-2 2Ïa 1 bk k

number k. Apply these definitions for ak and bk in (3)
and manipulate so that

` 2pkx
f (x) 5 a 1 c cos(u ) cosO0 k k 1 2[ Lk51

2pkx
2 c sin(u ) sink k 1 2]L

` 2pkx
5 a 1 c cos 1 uO0 k k1 2[ ]Lk51
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`1
iu i(2pkx /L) 2iu 2i(2pkx /L)k k5 a 1 [c e e 1 c e e ]. (4)O0 k k2 k51

Equation (4) shows that a periodic function can be
synthesized simply by specifying a real amplitude co-
efficient (ck) and phase angle (uk) for each wavenumber
k. This form is useful because the one-dimensional var-
iance spectra retain only the magnitudes of complex
Fourier coefficients. The phase angles remain unknown
but may be specified randomly.

Fast Fourier transform (FFT) algorithms use the com-
plex form of the Fourier series. To convert (4) to the
more useful complex form, introduce complex Fourier
coefficients

1 1
iukF(0) 5 a , F(k) 5 c e 5 (a 2 ib ),0 k k k2 2

1 1
2iukF(2k) 5 c e 5 (a 1 ib ). (5)k k k2 2

Apply these coefficients in (4) so that
`

2pikx /L 22pikx /Lf (x) 5 F(0) 1 [F(k)e 1 F(2k)e ]O
k51

` 2`

2pikx /L 2pikx /L5 F(k)e 1 F(k)eO O
k50 k521

`

2pikx /L5 F(k)e . (6)O
k52`

The extension of Eqs. (3) to (6) into their two-di-
mensional forms is not difficult but involves many ad-
ditional terms. While details of the derivation are omit-
ted (see Walker 1988), the complex form of the Fourier
series for a two-dimensional periodic field f (x, y) 5 f (x
1 Lx 1 Ly) is

` ` kx ly
f (x, y) 5 F(k, l) exp 2pi 1 . (7)O O 1 2[ ]L Lk52` l52` x y

The discrete Fourier series used for the calculations is

N /2N /2 yx kx ly
f (x, y) . F(k, l) exp 2pi 1 ,O O 1 2[ ]L Lk52N /211 l52N /211 x yx y

(8)

where x 5 (k 1 Nx/2 1 1)Dx and y 5 (l 1 Ny/2 1
1)Dy. Even integers Nx and Ny denote the number of
grid points along each dimension of the domain. In prac-
tice, Fourier series approximation of real fields makes
use of complex conjugate symmetries so that the neg-
ative l wavenumbers are omitted (Press et al. 1992).

Equation (8) can be used to synthesize a field having
predetermined variance spectra | F9(k, l) | 2 and random
phase angles uk,l by specifying

2|F9(k, l) |
F(k, l) 5 (cosu 1 i sinu ), (9)k,l k,l! 2

except the factor of 1/2 is omitted for k 5 0 and k 5
Nx/2. This factor is required since error variance spectra
obtained previously using FFT algorithms were multi-
plied by 2 because of the complex conjugate symmetry
in transforms of real data.

2) AMPLITUDE OF PERTURBATIONS

Amplitudes of the LBC perturbations are defined by
the predetermined loss of error variance at specific
wavelengths due to LBC effects (Nutter et al. 2004).
Thus, if denotes the one-dimensional error variance2sk

spectra obtained from previous global and LAM sim-
ulations, amplitudes of the perturbation spectra are de-
termined using (9) with

2 2 2| F9(k, l) | 5 s (global) 2 s (LAM),k k (10)

where k 5 . The perturbation spectra are dis-2 2Ïk 1 l
tributed equally among all the wavenumber pairs (k, l)
contained within each annular wavenumber ring ℵ(k)
6 (1/2)dk, where ℵ denotes nearest integer. Variances
are set to zero for wavenumber pairs where k exceeds
that of the smallest resolved wavelength since these
were not accumulated in the one-dimensional spectra.
Furthermore, negative values of | F9(k, l) | 2 are set to
zero because, in this case, the error variance in the LAM
simulations already exceeds that of the global simula-
tions.

Results in Fig. 1 show | F9(k, l) | 2 obtained for the
LAM ensemble configuration having 3-hourly updated,
low-pass-filtered LBCs. Difference spectra are negative
for about the first 12 h, indicating that the LAM sim-
ulations have more error variance than do the corre-
sponding subsets of the global simulations. The addi-
tional error is introduced almost immediately when the
Helmholtz equation is solved to obtain streamfunction
from smoothed LBCs (Nutter et al. 2004, section 5).
Errors are created at first along the boundaries, but then
pass through the domain so that further growth becomes
limited by the LBC constraints discussed in detail by
Nutter et al. (2004). After about 12–18 h, laterally un-
constrained error variance growth in the global simu-
lations exceeds that measured in the LAM simulations.

When the difference spectra are negative, amplitudes
of the LBC perturbation field are set to zero, depending
on wavelength. At later times, the amplitude of the per-
turbation is greatest at wavelengths between about 100
and 1000 km. Indeed, these are the scales that were
most strongly affected by the filtering effects associated
with spatial and temporal filtering of LBCs (Nutter et
al. 2004). Difference spectra are not shown beyond
72 h because there is minimal additional growth beyond
this time. Hence, the LBC perturbation field constructed
using the difference spectra in Fig. 1 begin with zero
amplitude, then begin to grow after about 12 h until
reaching a nearly constant value around 72 h.

The difference spectra for these simulations were
computed each hour. These spectra were interpolated
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FIG. 1. Difference in error variance spectra (310212 s22) between global ensemble simulations and LAM
ensemble simulations having 3-hourly updated, low-pass-filtered LBCs.

linearly in time before generating LBC perturbation
fields at every 7.5-min time step of the PPV model.
Temporal interpolation of the spectra before generating
the perturbation field does not reduce small-scale var-
iance as does interpolation between external LBC fields.
Furthermore, temporal changes in the difference spectra
are small since statistics were obtained as averages over
100 cases. In practical applications, data will not be
available hourly, perhaps only every 3, or 6, h. A pos-
sible approach for these scenarios is to fit analytic curves
to the set of difference spectra (e.g., Lorenz 1982;
Dalcher and Kalnay 1987; Schubert and Suarez 1989;
Stroe and Royer 1993; Reynolds et al. 1994; De Elı́a
and Laprise 2002). Attempts were made to fit such
curves here, but it was difficult to obtain parameters that
produced accurate fits across all scales of motion. This
is an issue that should be addressed further with appli-
cation to more complex atmospheric LAMs.

3) TRANSLATING THE PERTURBATION FIELD

The perturbation field is initialized by specifying uni-
form random phase angles 0 # uk,l # 2p in (9). Once
initialized, the phase angles are stored and incremented
at each time step to cause a translation of the pertur-
bation field when it is synthesized using (8). This trans-
lation is important for providing temporally and spa-
tially coherent wave structures as they pass through the
lateral boundary. The field is translated at some char-
acteristic speed ck by incrementing the phase angles
such that

u (t 1 Dt) 5 u (t) 1 kc Dt,k,l k,l k (11)

where again, k 5 .2 2Ïk 1 l
An appropriate choice of translation speed for this

work is the Rossby phase speed. Since the available
error variance spectra are one-dimensional, we use the
isotropic, or unidirectional phase speed

2c 5 (U k 2 bk/k )/k,k 0 (12)

where U0 is the base-state zonal flow speed.
Rossby phase speeds calculated using specified PPV

model constants are less than 12 m s21. The x component
of group velocity remains near 12 m s21 while the y
component of group velocity is generally less than 0.001
m s21. Thus, the entire perturbation field translates from
west to east at about 12 m s21. This propagation speed
implies that the perturbation field will affect the breadth
of the small, medium, and large limited-area domains
in about 35, 70, and 140 h, respectively. However, ex-
amination of many individual simulations (Nutter 2003)
reveals that LBC errors completely infect these respec-
tive subdomains in about 24, 36, and 60 h when using
3-hourly LBC updates, and progress about 25% faster
when using 6-hourly updates. The more rapid rate of
error propagation is due to the superposition of the zonal
jet on the base-state flow, and also because the Helm-
holtz equation is inverted to obtain streamfunction with
LBC interpolation errors occuring at increasingly larger
scales. It is clear from these arguments that the specified
speed of the LBC perturbation field is somewhat con-
servative, although supported by dynamical equations
of motion. Other choices for the translation speed could
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be more appropriate in applications using full primitive
equation models. This question remains beyond the
scope of the present study.

b. Example simulation with perturbed LBCs

An example perturbation vorticity field (z9) was con-
structed at multiple times using (8) with the difference
spectra in Fig. 1. Results are shown in Fig. 2. Stream-
function perturbations are obtained by solving the Pois-
son equation ¹2c9 5 z9. The solution to the Poisson
equation is unique to within a constant value when using
periodic boundary conditions. Therefore, the spatial
mean ^c9& was subtracted from each solution to ensure
that the perturbation streamfunction remains unbiased.

As explained previously, error variances from the
LAM simulation are greater than those of the global
simulations for about the first 12 h. Therefore, the am-
plitude of vorticity perturbations are set to zero since
the LAM simulation already has excessive error vari-
ance during this time. The impact of this choice is seen
in Figs. 2a and 2b as the perturbation field does not
begin to amplify until about 15 h have passed. Careful
examination of the vorticity perturbation field reveals
about 10 to 20 wave couplets across the breadth of the
(3000-km)2 domain. This result is consistent with the
difference spectra shown in Fig. 1 since wavelengths
are on the order of 150 to 300 km.

The vorticity field is translated at the Rossby phase
velocity using (11) and (12). Motion from west to east
is clearly evident in time animation of these fields and
is also seen in Fig. 2 by locating and tracking local
minima and maxima. The translation and simultaneous
amplification of the perturbation field is more easily
seen in the streamfunction perturbations. Using the ap-
proximation F9 5 c9 f, note that the contours of c9
correspond to 10 m2 s22 increments of geopotential
height.

The vorticity and streamfunction perturbations fields
are constructed at each time step, and at the spatial
resolution of a LAM simulation. The perturbations are
then added to the temporally interpolated LBC field pro-
vided by a coarsely resolved external model simulation.
This perturbed external LBC field is then blended with
the LAM solution across the peripheral 7-point relax-
ation zone. The perturbations are produced as a field
covering the entire LAM domain to ensure that the spa-
tial variance is restored using coherent wave patterns.
However, the perturbations are applied only within the
boundary zone and modify the LAM solution only after
propagating into the domain.

An example LAM ensemble obtained from simula-
tions having perturbed LBCs is shown in Fig. 3 with
its dispersion loss ratio [Eq. (15) in Nutter et al. 2004].
At locations where the loss ratio is negative, the LAM
ensemble has less dispersion than the global ensemble.
The ‘‘spaghetti’’ contours and streamfunction dispersion
(represented by the solid and dashed lines) appear much

the same as in Fig. 12 of Nutter et al. (2004). Hence,
the LBC perturbations have not ruined the individual
ensemble member simulations by introducing excessive
noise.

The effects of the LBC perturbations for this example
are seen in the dispersion loss ratio, when compared to
the unperturbed simulation shown as Fig. 12 in Nutter
et al. (2004). During the first 12 to 24 h, the dispersion
loss ratio is similar in both perturbed and unperturbed
simulations. This is expected since the amplitude of the
perturbations is zero through the first 12 h, as discussed
previously. Once the LBC perturbations begin to enter
the LAM domain, they help enhance error variance lo-
cally and the dispersion loss ratio becomes less negative
compared to the unperturbed simulation. Comparison of
the simulations after about 60 h shows that LBC per-
turbations have swept through the domain. Specifically,
regions of increased and decreased vorticity dispersion
relative to the global simulation now appear evenly dis-
tributed throughout the domain. The LBC perturbations
do not apply instantaneously across the breadth of the
domain, but instead propagate inward to restore those
scales that have been filtered out by LBC filtering and
sweeping effects. After 96 h, the domain average dis-
persion loss ratio is 20.95 for the unperturbed simu-
lation and 20.11 for the perturbed simulation. Hence,
the impact of the LBC perturbations has been to restore
LAM ensemble dispersion from a loss of nearly 50%
to a loss of just 10% relative to the global ensemble
simulations.

4. Statistical results

The LAM ensemble simulations run by Nutter et al.
(2004) are repeated here, except LBC perturbations are
created and applied at each time step during the sim-
ulations as discussed in the previous section. Statistical
results are obtained as averages over 100 independent
10-member LAM ensemble simulations and are com-
pared to results obtained from the earlier unperturbed
LAM simulations and also to those obtained from sub-
sets of global model simulations.

a. Ensemble error variance spectra

Consider results from the LAM ensemble configu-
ration having 3-hourly updated, low-pass-filtered
(coarsely resolved) LBCs that are perturbed at every
time step (Fig. 4). Normalized error variances [see Eq.
(12) in Nutter et al. 2004] reveal that the application of
LBC perturbations completely restores error variances
at wavelengths longer than about 500 km to values ob-
tained from the control simulations run on the global
domain. The LBC perturbations are less effective for
smaller scales, where the proportion of error variance
restored depends on domain size. For example, on the
large domain (Fig. 4a), the LBC perturbations restore
about 1/3 of the error variance lost at saturation in the
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FIG. 2. Example of LBC perturbation fields constructed for the medium domain using the difference in error variance spectra between
global ensembles and LAM ensembles having 3-hourly updated, low-pass-filtered LBCs (Fig. 1). Positive (negative) vorticity perturbations
exceeding 0.5 3 1025 s21 are indicated by light (dark) shades. Positive (negative) streamfunction perturbations are shown with solid (dashed)
contours at 60.1 3 106 m2 s21 intervals (zero line omitted).

smallest scales. Compare this to the small, centered do-
main (Fig. 4c), where the LBC perturbations restore
more than 3/4 of the error variance lost in the unper-
turbed LAM simulations.

To explain these results, note that difference spectra
used to determine the amplitude of LBC perturbations
[Eq. (10)] are based on error variance calculations ob-
tained from data over the full extent of the LAM domain.
However, LBC perturbations are applied only within the
peripheral 7-point wave-absorbing zone. The pertur-
bations subsequently disperse and/or dissipate while
propagating through the LAM domain. Furthermore, as
noted previously, the phase propagation speed of the

perturbation field is a conservative estimate of the rate
at which errors pass through the domain. For these rea-
sons, the difference spectra likely underestimate the am-
plitude of LBC perturbations needed to fully restore
LAM error variances to those obtained from global sim-
ulations. The LBC perturbations are more effective on
smaller domains because there is less time for dispersion
and dissipation to reduce their impact while passing
through the LAM domain.

There are other interesting features seen in Fig. 4.
First, note that variance spectra in the perturbed sim-
ulations are identical to those for unperturbed simula-
tions over the first 12 to 24 h. As discussed previously,
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FIG. 3. Example case run on the medium domain with perturbations applied to 3-hourly updated, low-pass-filtered LBCs. A ‘‘spaghetti’’
plot drawn with solid black lines shows the (516, 540, 564) 3 106 m2 s21 streamlines from each of the 10 LAM ensemble members. Reduction
of vorticity dispersion is shaded, while streamfunction dispersion is shown with dashed contours at 2 3 1012 m4 s22 intervals. Compare to
Fig. 12 in Nutter et al. (2004).

the amplitude of the perturbation field is set to zero
during this time because the LAM variance spectra ex-
ceed those of the global simulations. Note also that the
error variance curves continue to oscillate because of
the LBC error ‘‘pulse’’ caused by temporal interpolation
between otherwise perfect LBCs (see Nutter et al. 2004).

LAM simulations were also conducted after adding
perturbations to hourly and 6-hourly updated LBCs (not
shown). Normalized error variances obtained from sim-
ulations having perturbed, hourly updated LBCs (not

shown) reveal that error variances from the perturbed
LAM simulations are nearly superimposed with those
from the laterally unbounded global ensemble simula-
tions. This result shows that the LBC perturbations func-
tion as designed. However, the additional effort of ap-
plying LBC perturbations is not justified for hourly up-
dated LBCs since error growth constraints are minimal
for this configuration (Nutter 2003). Results from the
LAM configuration having 6-hourly updated LBCs (not
shown) reveal similar features as those in Fig. 4, al-
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FIG. 4. Normalized vorticity error variance (solid lines), averaged over 100 independent 10-member LAM ensemble simulations having
perturbed, 3-hourly updated, low-pass-filtered LBCs (150-km wavelength cutoff ). Line labels (km) indicate wavelength(s) contributing to
error variances. Dashed reference lines show error variances from subsets of global ensemble simulations, and dotted lines show error
variances from corresponding LAM ensemble simulations run without LBC perturbations.

though the LBC perturbations are slightly less effective
since they had a greater proportion of total variance to
recover.

b. Ensemble summary statistics

It has been shown that the use of LBC perturbations
capably restores much of the error variance lost by
coarsely resolved and temporally interpolated external
LBC fields, especially on smaller domains and at wave-
lengths longer than 250 km. The primary goal of ap-
plying LBC perturbations is to restore LAM ensemble
dispersion without adversely impacting the individual
ensemble members. Equation (1) provides a direct link
between ensemble dispersion and the error variance
evaluated in the previous subsection. It is useful to com-
pare the relative magnitudes of each term in this equa-
tion to help determine what portion of total error var-
iance (s 2) contributes to ensemble dispersion (D2) rel-
ative to the remaining bias terms. The ensemble mean
square error (S 2) also is evaluated as an overall measure
of performance.

Results are presented here for the model configuration

having perturbed, 3-hourly updated, low-pass-filtered
(coarsely resolved) LBCs (Fig. 5). The loss of error
variance at small scales due to LBC constraints was
noted previously in Fig. 4. The integrated effect is a
decrease in total error variance (s 2) over the first 24–
48 h of the simulation, depending on domain size. In
previous simulations without LBC perturbations, the
loss of total error variance leveled off at a near-constant
value as LBC sweeping reached a balance with small-
scale error growth on the interior of the LAM domain
(see Nutter et al. 2004). In contrast, the amplitude of
the LBC perturbations in the simulations shown here
grow with time and begin to restore the total error var-
iance. Consequently, the difference in spectra between
global and LAM ensembles becomes less negative with
time. The total error variance is not restored completely
as noted in the previous section, but is most effectively
restored on the smaller domains.

An interesting characteristic noted on all domains is
the increase of total error variance in the LAM simu-
lations during the first 12 h. Close examination of Fig.
4 shows that this increase in error variance is due to
contributions at smaller scales. This extra variance ap-
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FIG. 5. Difference in vorticity summary statistics for LAM ensemble simulations having perturbed, 3-hourly updated, low-pass-filtered
LBCs (150-km wavelength cutoff ) compared to statistics from global ensemble simulations. Results are averaged over 100 independent 10-
member ensemble simulations. Line labels in the legend are defined in section 2b. On ordinate, ‘‘e’’ denotes base-10 exponential notation.

pears early in the LAM simulations when the Helmholtz
equation is inverted to obtain streamfunction from per-
turbed LBCs. In spite of the initial increase in error
variance, LAM ensemble dispersion decreases for about
48 h in all simulations because of the increase in en-
semble mean error in the absence of changes in the
spatial bias [see Eq. (1)].

The ensemble statistics oscillate with time due to the
LBC error pulse caused by temporal interpolation. The
oscillation has a 3-h period associated with the interval
at which LBCs are updated from external model fields.
With each update, the external fields are perfect except
for the removal of short waves by low-pass filtering to
emulate coarse resolution and the subsequent addition
of perturbations to restore variance at those scales.

The total error error variance is fully restored when
LBC perturbations are applied in LAM configurations
having hourly updated LBCs (not shown). This result
is expected since error variance spectra were restored
at all wavelengths for this configuration (Nutter 2003).
Furthermore, the use of LBC perturbations does not
introduce additional spatial bias or ensemble mean error.
Most importantly, when using hourly updated LBCs,
LAM ensemble dispersion is fully restored to values
obtained from corresponding subsets of global ensemble

simulations. Results from LAM configurations using 6-
hourly simulations reveal similar results to those shown
in Fig. 5.

5. Scaled LBC perturbations
Results shown in Fig. 4 reveal that the amplitude of

LBC perturbations needed to fully restore error variance
growth is underestimated under certain LAM configu-
rations. Specifically, the perturbation amplitudes are un-
derestimated at wavelengths shorter than 500 km, es-
pecially when applied to large domain simulations hav-
ing coarsely resolved external LBCs updated at intervals
of 3 h or longer. In an attempt to remedy this deficiency,
the perturbation amplitudes were increased by applying
a scale factor to the difference spectra | F9(k, l) | 2 [Eq.
(10)]. The scale factor is defined as ratio of error var-
iances obtained from perturbed LAM ensembles to those
obtained from corresponding subdomains of global en-
semble simulations. Thus, the difference spectra are re-
defined by introducing the scaling factor L so that

2 2L 5 s (global)/s (perturbed LAM) and (13)k k

2 2 2|F9(k, l) | 5 L[s (global) 2 s (unperturbed LAM)].k k

(14)
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The use of scaled LBC perturbations did yield a small
improvement for the LAM configuration having low-
pass-filtered LBCs that were updated every 3 h (not
shown). Given an increase in perturbation amplitudes
of up to 40% after scaling, the increase in error variance
at scales less than 500 km is about 0% to 6%. Although
miniscule improvements were seen in the error variance
spectra, the ensemble summary statistics (not shown)
indicated that ensemble dispersion is almost unchanged
compared to the configuration having unscaled LBC
perturbations. Hence, the significance of these improve-
ments using scaled LBC perturbations is questionable
and not recommended given the additional computa-
tional expense.

6. Summary and discussion

A new method has been developed to apply LBC
perturbations at every time step of LAM simulations.
The LBC perturbations are intended to restore the small-
scale error variances and ensemble dispersion lost due
to coarsely resolved and temporally interpolated exter-
nal LBC fields. Although the procedure outlined herein
was developed within a simplified modeling system, the
results suggest that LBC perturbation procedures can be
implemented effectively to help relax the ‘‘one way’’
LBC constraints on LAM ensemble spread.

The LBC perturbation procedure is based on speci-
fying a random field with desired spectral amplitudes
and translating the field based on the Rossby wave dis-
persion relation. The advantage to this approach is that
a coherent field is maintained through time while al-
lowing for variable wave amplification and dispersion.
It is a statistically based procedure, but is designed to
mimic the dynamical behavior of the system. Simpler,
purely statistical schemes such as an autoregressive, spa-
tially correlated process cannot provide this desirable
property.

Results showed that the application of LBC pertur-
bations in LAM ensemble simulations capably restores
error variances and ensemble dispersion to nearly the
same values obtained from subsets of global ensemble
simulations. Two exceptions were noted. First, error var-
iances were not fully restored at wavelengths shorter
than 500 km, especially for large domain simulations
having coarsely resolved external LBC fields updated
at intervals of 3 h or longer. This deficiency was attri-
buted to the fact that short-wavelength LBC perturba-
tions have small amplitudes and subsequently disperse
and/or dissipate while propagating through the LAM
domain. The second notable exception is that, in spite
of the gain in error variance, ensemble dispersion for
the small domains could not be fully recovered between
about 12 and 48 h of the simulations. This deficiency
was explained by the increase in ensemble mean error
caused by coarsely resolved and temporally interpolated
external LBC fields. The increase in ensemble mean
error causes a decrease in ensemble dispersion that can-

not be recovered by the use of LBC perturbations as
applied herein.

The LBC perturbations are based solely on differ-
ences in error variance spectra. Their only relationship
to the dynamical evolution of flow inside the LAM do-
main is through the nonlinear advection term that trans-
fers energy and enstrophy upscale and downscale
throughout the spectrum. To ensure that the LBC per-
turbations do not overwhelm the quality of the LAM
solution, it is necessary that their amplitudes remain
small. Furthermore, the ensemble mean error can be-
come inflated if the perturbations are too strong. An
increase in ensemble mean error contributes to a loss
of ensemble dispersion, which opposes the effort to re-
store dispersion through increases in error variance. Al-
though not perfect in every aspect, the LBC perturba-
tions developed in this work appear small enough to
satisfy these concerns while restoring most of the en-
semble dispersion and error variance lost through LBC
constraints.

We conclude with comments on how this work may
apply to more realistic modeling systems. Two funda-
mental assumptions were made at the start of this work
(Nutter et al. 2004). First, it was assumed that natural
error growth at large scales is (or can be) stated accu-
rately using global model forecasts. This assumption is
needed to ensure that error variances and ensemble dis-
persion are correct at wavelengths exceeding the breadth
of the LAM domain. LBC perturbations are only effec-
tive at scales up to the size of the LAM domain and
cannot correct deficiencies caused by improper error
growth rates at larger scales. By design, the relative
importance of LBC constraints on small-scale error var-
iance has not been compared to those caused by defi-
ciences in large-scale error variances associated with
the external model. To do so, one needs to account for
different types of external model error originating
through a variety of mechanims. In practice, we must
note that it is possible for large-scale variance con-
straints of external origin (e.g., Hacker and Baumhefner
2004) to overwhelm the effects of LBC constraints act-
ing at small scales. A second assumption was made that
error growth rates at small scales in LAMs should be-
have the same as those in global models operating at
equivalent resolution. The amplitude of the LBC per-
turbations was determined by the difference in error
variance spectra between global ensembles and LAM
ensembles having unperturbed LBCs. So, again, the
LBC perturbations may be less effective at restoring
LAM ensemble spread if there are differences in the
variance spectra caused by dynamical or artificial dis-
crepancies between external and LAM models. A related
assumption is that the model simulations are unbiased,
since ensemble dispersion is linked to the total error
variance, the ensemble mean error and the spatial bias.
This secondary assumption is less important because
corrections can be applied for systematic model errors.
If corrections are not applied, then LBC perturbations
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designed to restore error variance may not be as effec-
tive at directly restoring LAM ensemble dispersion.

A major obstacle faced in applying the LBC pertur-
bation technique to other modeling systems is the de-
termination of appropriate amplitude coefficients need-
ed for constructing the perturbation fields. Global en-
semble systems have been available for more than a
decade. It should not be difficult to obtain error variance
spectra over many cases for these ensembles, especially
since most are integrated using spectral methods. The
greater challenge is to obtain error variance spectra from
LAM ensemble systems. LAM ensemble systems have
existed for several years, but most do not include the
statistical verification packages needed to calculate one-
dimensional error variance spectra. Such packages
would need to be developed, then results accumulated
over many cases. Once an appropriate set of verification
data has been accumulated, corrections for systematic
errors must be applied before obtaining difference spec-
tra. Finally, an issue that requires additional research is
how to determine the vertical structure of LBC pertur-
bations.

Temporal interpolation of coarsely resolved external
LBC fields has been shown to remove small-scale fea-
tures from LAM solutions and quickly sweep out any
set of initial condition perturbations (Nutter et al. 2004).
LBC perturbations applied at every time step will help
offset the effects of these constraints on LAM ensemble
spread. The perturbation procedure was developed for
a simplified modeling system and does have notable
limitations that can be enhanced when redeveloped for
more practical applications. The effort will be most re-
warding for independent organizations running LAMs
on smaller domains where LBC sweeping effects act
most quickly to constrain error growth rates. The ad-
ditional expense of applying LBC perturbations may be
offset by the ability to integrate LAM ensembles over
smaller domains.
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