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ABSTRACT

This work examines the impact of coarsely resolved and temporally interpolated lateral boundary conditions
(LBCs) on the dispersion of limited-area-model (LAM) ensemble forecasts. An expression is developed that
links error variance spectra to ensemble spread while accounting for spatial and ensemble mean errors. The
balances required by this expression are used to show that LBC constraints on small-scale error variance growth
are sufficient to help cause underdispersive LAM ensemble simulations. The hypothesis is tested in a controlled
and efficient manner using a modified barotropic channel model. Ten-member ensemble simulations are produced
over many cases on a ‘‘global’’ periodic channel domain and each of four smaller nested LAM domains. Lateral
boundary effects are specifically isolated since all simulations are perfect except for initial condition perturbations
and the use of coarsely resolved and/or temporally interpolated ‘‘one-way’’ LBCs. This configuration excludes
other analysis and external model system errors that are not caused directly by the implementation of LBCs.

Statistical results accumulated over 100 independent cases demonstrate that LAM ensembles remain under-
dispersive even when using a complete set of LBCs from an external ensemble forecast. The small-scale con-
straints on error growth are present in any modeling system using coarsely resolved or temporally interpolated
one-way LBC forcing. Although not tested here, similar limitations may apply to global variable-resolution
models because of insufficient small-scale variance outside the perimeter of higher-resolution subdomains. The
results of this work suggest the need to apply statistically consistent, small-scale LBC perturbations at every
time step throughout the LAM simulations.

1. Introduction

It is well known that skill in predicting future at-
mospheric motions is limited due to the natural growth
of errors resulting from imperfect observations and anal-
yses (Thompson 1957; Lorenz 1963). More precisely,
accepted predictability theories ascribe an inverse re-
lationship between wavenumber and time limits of pre-
dictive skill (e.g., Lorenz 1969a). In apparent contra-
diction to these theories, several predictability experi-
ments using limited-area models (LAMs) report little or
no error growth resulting from perturbed initial condi-
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tions (Paegle et al. 1997, and references therein). At-
tempts to explain these seemingly optimistic results
have focused either on enhanced local forcing (e.g., to-
pography or surface inhomogeneities) or on the errors
introduced by the use of ‘‘one-way’’ lateral boundary
conditions (LBCs). The latter effect is favored in the
literature and is the subject of the current work. While
previous studies have considered LBC constraints on
error growth for individual LAM forecasts (reviewed
below), this work emphasizes the impact of coarsely
resolved and temporally interpolated LBCs on the dis-
persion of LAM ensemble forecasts.

Results from dynamical, or ‘‘classic,’’ predictability
experiments show that any small error in the initial con-
ditions (ICs) will grow and spread to other wavenumbers
via upscale and downscale transport of energy (e.g.,
Charney et al. 1966; Smagorinsky 1969; Lorenz 1982;
Baumhefner 1984; Dalcher and Kalnay 1987; Reynolds
et al. 1994; and many others). Error growth rate esti-
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mates from such studies are model dependent and are
limited to relatively larger scales because of practical
constraints on model resolution. Alternatively, predict-
ability estimates may be obtained theoretically by eval-
uating the spectral distribution of errors following a
manipulation of simplified equations of atmospheric
motion (Lorenz 1969b,c; Leith 1971; Leith and Kraich-
nan 1972; Boer 1984; Lilly 1984; Thompson 1984; and
others). Error growth rate estimates from these studies
are not limited in scale, but do not adequately represent
the full range of atmospheric instabilities. In spite of
their different approaches, the main conclusion from
either type of study is that small-scale errors are ex-
pected to grow most rapidly so that short wavelengths
have short predictability limits. This behavior is ex-
pected regardless of whether errors originated from IC
uncertainty or from numerical model deficiencies (Lo-
renz 1984; Dalcher and Kalnay 1987; Reynolds et al.
1994; Toth et al. 1997; Harrison et al. 1999; Orrell et
al. 2001).

The predictability theories outlined above have led
some to a rather pessimistic viewpoint of mesoscale
predictability because of the expectation that error
growth is more rapid at smaller scales (Tennekes 1978).
However, Lilly (1984) and Anthes et al. (1985) represent
those who proffer the alternative hypothesis that en-
hanced localized forcing and highly organized circu-
lations may help slow error growth rates. An obvious
approach for testing these conflicting hypotheses at
smaller scales is to use limited-area models because they
can obtain highly resolved solutions with reasonable
computational expense.

Anthes et al. (1985) and Anthes (1986) were among
the first to conduct predictability experiments using
LAMs. In contrast to results from earlier studies using
global models, they reported little or no error growth
resulting from small variations in the initial conditions.
Furthermore, they showed that their simulations were
more sensitive to variations in the LBCs than to the ICs.
Errico and Baumhefner (1987) followed on this work,
reporting that IC error growth is restricted in a meso-
scale model due to dissipation of errors through gravity
waves, the ‘‘sweeping out’’ of errors by the LBCs, and
numerical dissipation of subgrid-scale errors. Anthes et
al. (1989) reported similar results, stating that ‘‘. . . the
quality of the LBC is more important than any other
factor tested in the temporal evolution of model errors.’’
Vukicevic and Paegle (1989) and Vukicevic and Errico
(1990) contributed further by demonstrating that one-
way LBC constraints on error growth are more pro-
nounced as the size of the regional domain decreased.
They showed that unperturbed LBC information crossed
the domain more quickly on smaller domains and had
less time to interact with amplifying IC errors.

While LBCs are now recognized as an artificial con-
straint on mesoscale error growth (Warner et al. 1997),
other studies have emphasized the possibility for en-
hanced predictability due to stronger dynamical forcing

from the lower boundary. For example, sensitivity to
small-scale IC errors could be small in cases where to-
pographic forcing is dominant (Van Tuyl and Errico
1989; Vukicevic and Errico 1990). Warner et al. (1989)
also found that error growth over the interior of the
mesoscale domain decreased most rapidly during the
first eight forecast hours, before lateral boundary errors
could have propagated into the area tested. They sug-
gested that this decrease in error was due to geostrophic
adjustment, surface forcing, and redevelopment of
smoothed features. These results indicate that simple
turbulence models of error growth that anticipate the
most rapid error growth at small scales may not fully
explain actual error growth behaviors.

The difficulties in obtaining predictability estimates
using LAMs also cause problems for short-range en-
semble forecasting (SREF). Specifically, recent SREF
experiments have shown that the ensembles are under-
dispersive (Hamill and Colucci 1997; Du and Tracton
1999; Hou et al. 2001; Wandishin et al. 2001). That is,
the verifying analysis often does not fall within the range
of possible solutions forecast by the ensemble. Du and
Tracton (1999) found that a regional ensemble with a
larger domain produces greater spread than does an en-
semble with a smaller domain, especially for those var-
iables that were perturbed in the ICs. Furthermore, they
found that the contribution to ensemble spread increases
with time from LBC perturbations and decreases with
time from the IC perturbations. Similarly, Hou et al.
(2001) showed that ensemble spread grows quickly for
a SREF system configured so that each member forecast
has a unique LBC; a SREF system configured so that
each member has the same LBC had a slower rate of
ensemble dispersion. These and other similar results
(Hamill and Colucci 1997; Hou et al. 2001) demonstrate
that, with time, LAM ensemble spread becomes increas-
ingly determined by the spread in the LBCs as high-
frequency components are ‘‘swept’’ from the LAM do-
main.

Results from the studies reviewed above do not in-
dicate with certainty the relative importance of the dif-
ferent effects contributing to artificial constraints on er-
ror growth rates and ensemble dispersion in LAMs. The
evidence tends to favor LBC effects, but other mech-
anisms such as enhanced local forcing, physical param-
eterizations, or poorly specified initial perturbations
have not been eliminated from consideration. To help
focus and control the research problem, we begin with
the following assumptions. First, it is assumed that nat-
ural error growth at large scales is (or can be) stated
accurately using global model forecasts. This is impor-
tant because error growth at scales larger than the LAM
domain is controlled exclusively through the LBCs (La-
prise 2003). Second, we assume that error growth rates
at small scales in LAMs should behave the same as
calculated for global models operating at equivalent res-
olution. Specifically, we favor the ‘‘pessimistic’’ view-
point that errors grow most rapidly at small scales.
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Third, we assume that LAM ensembles should produce
the same spread as global ensembles when operated with
the same model and initial perturbations. That is, LBCs
should not artificially constrain LAM ensemble spread.

These stated assumptions allow a more complete and
controlled investigation of the impact of coarsely re-
solved LBCs on error growth rates and ensemble dis-
persion in LAMs using a simplified and idealized ‘‘per-
fect’’ model configuration. Following a ‘‘big brother’’
methodology (Vukicevic and Paegle 1989; Laprise et
al. 2000; De Elı́a and Laprise 2002; Denis et al. 2002b,
2003), an appropriate high-resolution model is used to
construct a known truth on a global, or laterally un-
bounded domain. Then, using the same model operating
with the same resolution, simulations are run on regional
domains with LBCs given by a subset of the control
fields. With this approach, the only unavoidable source
of model errors are those introduced by the use of the
one-way LBCs. Additional errors may be introduced by
perturbing the ICs, or by filtering the control fields to
remove small-scale information from the LBCs. If the
evolution of the large-scale fields is specified using per-
fect LBCs, then differences between small-scale error
growth on the regional and global domains may be at-
tributed directly to LBC effects. In this study, we seek
to identify LAM constraints on error growth rates and
ensemble dispersion caused specifically by the use of
coarsely resolved and/or temporally interpolated LBCs
on different-sized domains.

A statistical framework for evaluating output from
the global and LAM ensembles is presented in section
2. The simplified model used for this research is de-
scribed in section 3. In section 4, statistical results from
a ‘‘global’’ ensemble using the simplified model are
shown to behave qualitatively in the same way expected
from the theoretical and experimental results described
above. This result allows generalization of the findings
in sections 5 and 6 that discuss the effect of coarsely
resolved and temporally interpolated LBCs on the dis-
persion of LAM ensembles. The work is summarized
in section 7.

2. Ensemble statistics

Statistical measures of ensemble performance are in-
troduced in this section. These measures include the
ensemble mean square error, dispersion, and total error
variance. The total error variance has equivalent vector
(spatial) and spectral representations, allowing decom-
positions of error variance into contributions by differ-
ent scales of motion. An expression is derived that pro-
vides a direct link between ensemble dispersion and the
scale decomposition of error variance. This expression
allows one to measure how ensemble dispersion is af-
fected by error growth at individual scales of motion.

a. Notation

Spatial and ensemble means are described here using
notation inspired largely by Stephenson and Doblas-
Reyes (2000). Suppose xi is a vector defined on a p-
element grid, obtained by aligning in a column the grid
points of two- or three-dimensional fields of forecasts
or analyses contained in an N-member ensemble, where
i 5 1, . . . , N. The ensemble mean (also a p-element
vector) is defined as

N1
x 5 x . (1)O iN i51

The scalar spatial mean for the ith ensemble member is
given by

p1 1
^x & 5 x 5 1 · x , (2)Oi i,k ip pk51

where 1 is a p-element vector of ones. A useful norm
representing the average sum of squares (dot product)
over the grid is

p1 1
2 2\x \ 5 x · x 5 x . (3)Oi i i i,kp p k51

It is helpful to note for later derivations that \1\ 2 5
(1/p)1 · 1 5 1. Note that an appropriate area-weighting
factor should be applied in these definitions when rep-
resenting fields projected on a conformal latitude–lon-
gitude grid (Stephenson and Doblas-Reyes 2000). We
do not include such a factor here because the model
used for this work is constructed using a strictly Car-
tesian grid.

Henceforth, let f i(t) denote individual forecast vectors
from the ensemble, and a(t) represent the analysis vector
corresponding to each forecast. These notations and the
statistical measures they help define below are appli-
cable for gridded fields on both global and limited-area
domains unless specified otherwise.

b. Ensemble MSE and dispersion

One of the most basic measures of ensemble forecast
accuracy is the ensemble mean-square error (MSE),

N1
2 2S 5 \f 2 a\ . (4)O iN i51

It is useful to manipulate S 2 by adding and subtracting
the ensemble mean forecast and analysis a with thef
result that

N1
2 2 2S 5 \f 2 f\ 1 \f 2 a\ . (5)O iN i51

Note that cross-product terms vanish after taking the
ensemble average during expansion of the norm. Let D2

5 1/N \fi 2 \ 2 define the ensemble dispersion,NS fi51

or spread, so that (5) becomes
2 2 2S 5 D 1 \f 2 a\ . (6)
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These results show that the squared error of the ensem-
ble mean \ 2 a\ 2 is less than the ensemble mean squaref
error S 2 because ensemble dispersion D2 allows unpre-
dictable components of the flow to be averaged out in
the ensemble mean (Leith 1974; Stephenson and Dob-
las-Reyes 2000).

c. Total biased error variance

Ensemble MSE and dispersion are commonly used
measures of ensemble accuracy, but do not provide for
a direct scale decomposition of error growth. The de-
sired scale decomposition is provided by the total biased
error variance, s 2, because it has equivalent vector and
spectral definitions. In vector form, s 2 is defined as an
ensemble average error variance relative to a spatial
mean so that

N1
2 2s 5 \(f 2 a) 2 ^f 2 a&1\ . (7)O i iN i51

The unity vector multiplies the scalar spatial mean to
enable vector subtraction and to allow proper applica-
tion of the norm notation.

The total biased error variance (s 2) may be obtained
equivalently in spectral form as (Errico 1985)

N K211
2 2s 5 2|F (k) | , (8)O O iN i51 k51

where Fi(k) is the discrete Fourier transform of fi 2 a
and k 5 1, . . . , K 2 1 are the set of Nyquist resolved
wavenumbers on the grid (Errico 1985). In this form,
error variances may be computed individually for spe-
cific wavenumbers, or accumulated over a range of
scales.

One-dimensional spectra are obtained from the two-
dimensional fields using the procedure described by Er-
rico (1985). Specifically, linear trends are first removed
from each row and column of the two-dimensional grid.
Then variance spectra are obtained by summing the
magnitude of Fourier coefficients within annular rings
in wavenumber space. Although universally valid, the
variance decomposition (8) is an approximation when
applied to nonperiodic fields on limited-area domains
(Errico 1985, 1987; Denis et al. 2002a). Additional de-
tails on the decomposition are given by Errico (1985)
and Nutter (2003).

The total biased error variance s 2 can be related to
S 2 as follows. First, multiply the grid average for each
forecast ^f i& and analysis ^a& by the unity vector 1. Next,
add and subtract the resulting vectors within (4) and
manipulate to obtain

N1
2 2S 5 \(f 2 a) 2 ^f 2 a&1\O i iN i51

N1
21 (^f & 2 ^a&) . (9)O iN i51

The combination of (7) and (9) reveals that

N1
2 2 2s 5 S 2 (^f & 2 ^a&) . (10)O iN i51

Hence, the total biased error variance is the ensemble
MSE reduced by the ensemble mean square spatial error.
The spatial error (bias) term becomes negligible on large
or laterally unbounded domains so that the ensemble
mean square error can be used as an approximation for
the total biased error variance.

d. Scale decomposition of dispersion

A key aspect of this work is to study the impact of
scale-deficient lateral boundary conditions on LAM en-
semble dispersion. To study this effect as a function of
wavelength, an expression is needed that links ensemble
dispersion to the spectral decomposition of total error
variance. Such an expression is obtained directly from
(6) and (10) so that

N1
2 2 2 2D 5 s 1 (^f & 2 ^a&) 2 \f 2 a\ . (11)O iN i51

Using the spectral variance (8), Eq. (11) shows that
ensemble dispersion is determined by the accumulated
contributions to error variance at all resolved wave-
lengths, the ensemble mean-square spatial error, and a
reduction from the squared error of the ensemble mean.
Hence, a loss of error variance at any scale constrains
ensemble dispersion unless offset by changes in the bias
terms. This expression is used later to evaluate the im-
pact of LBCs on ensemble dispersion by comparing the
magnitudes of each term obtained for both global and
LAM simulations.

The latter two terms in (11) cannot be decomposed
in a simple way to reveal their contributions to D2 at
different scales. However, if these terms are nearly the
same for both global and LAM simulations, then their
contributions to D2 are negated under comparison. Un-
der this condition, the direct spectral relation between
error variance and ensemble dispersion is maintained.
In the perfect model simulations conducted for this
work, the ensembles are unbiased and the spatial error
term is negligible on large domains. However, on small
domains, the spectral calculation of ensemble dispersion
could become distorted because of phase errors intro-
duced by upscale perturbation growth. The ensemble
bias term could become large in practical application
due to model deficiencies. However, ensembles can be
calibrated to remove such biases (Hamill and Colucci
1997; Hamill 2001).

e. Normalized error variances

The basic statistics defined above are simple measures
of accuracy that do not account for skill relative to a
standard benchmark. Since the theoretical upper bound
for S 2 and s 2 at error saturation is twice the climate
variance of analyses (Leith 1974; Nutter 2003), the cli-
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FIG. 1. Configuration of grids nested within the zonally periodic channel domain labeled
L (large), M (medium), Sc (small, center), and Ss (small, south). Each grid is nested only
once within the full channel grid; there are no ‘‘multiple nests.’’ The dimensions and
number of points defining each grid are as indicated.

matological variance provides a natural standard of fore-
cast skill.

Let be the coefficients obtained from the dis-F (k)aj

crete Fourier transform of the analysis field a j, where
j 5 1, . . . , M, and M denotes the number of independent
cases. Then, following Eq. (8), the fraction of total var-
iance contributed by wavenumber(s) k1 through k2 (1 #
k1 # k2 # K 2 1), averaged over all M cases, is de-
termined using

kM N 21 1
22|F (k) |O O O i jM Nj51 i51 k5k1h̃ (k) 5 . (12)a kM 21

22|F (k) |O O a jM j51 k5k1

The normalization applies equally to all wavenumbers
and has a theoretical maximum value of 2.

3. Model description and its configurations

Numerical experiments are conducted using a single-
level parameterized potential vorticity (PPV) channel
model configured to isolate the effects of LBCs on LAM
ensemble dispersion while avoiding analysis and model
system errors. Although simplified, the PPV model re-
mains nonlinear, dispersive, and sensitive to IC pertur-
bations.

The PPV model is based on the quasigeostrophic po-
tential vorticity equation. Minimal treatment of baro-
clinic effects requires a multilevel modeling system.
However, Holton (1979, section 8.4.2) suggests that the
first-order effects of vorticity stretching may be included
in a single-level barotropic model by parameterizing the
baroclinic component of quasigeostrophic potential vor-
ticity in terms of the Rossby radius of deformation.

Let j [ z 2 l2c define the parameterized potential
vorticity, where z denotes relative vorticity, c is the
streamfunction, and l is the inverse of the Rossby radius
of deformation, specified so that l21 5 1414.2 km. If
we apply this approximation to the quasigeostrophic
potential vorticity equation and introduce a fourth-order

numerical diffusion term having an eddy diffusion co-
efficient n, we obtain the PPV model

]j ]c ]j ]c ]j
45 2 1 b 2 n¹ j, (13)1 2]t ]y ]x ]x ]y

where b is the meridional gradient of earth’s vorticity
evaluated at 458N latitude.

The PPV model (13) is solved numerically on a uni-
form mesh with a grid spacing of (Dx, Dy) 5 25 km
and a time step of Dt 5 7.5 min. The eddy diffusion
coefficient is specified as n 5 1.0 3 1012 m4 s21 to yield
an e-folding dissipation time of about four time steps
for the shortest resolved wavelength (Xue 2000). Spatial
derivatives are evaluated using second-order centered
finite differences, while temporal integration is con-
ducted using the second-order, two-step leapfrog-trap-
ezoidal scheme (e.g., Durran 1999). An Arakawa (1966)
Jacobian is applied to conserve domain-integrated en-
strophy and kinetic energy. A complete description of
the model and its numerical configuration is given by
Nutter (2003).

PPV model simulations are run with both ‘‘global’’
and limited-domain simulations (Fig. 1). The global
model configuration operates on a periodic channel do-
main. Impermeable, free-slip north and south bound-
aries enforce zero vorticity and constant streamfunction
using specified Dirichlet boundary conditions. Periodic
boundary conditions along the zonal (east/west) direc-
tion allow uninterrupted flow so that c (x 1 Lx, y) 5
c (x, y) and j(x 1 Lx, y) 5 j(x, y). Initial conditions
are obtained on the periodic channel domain by adding
random perturbations to an analytic shear flow, inte-
grating the model forward 20 days to allow the flow to
destabilize, then resetting time to zero (Nutter 2003).
Integrations are restarted and proceed for another 15
days to produce model-generated ‘‘truth’’ states. All
global and LAM simulations have the same time step
and grid spacing as the model-generated truth runs to
remove the impact of numerical discretization errors.

The LAM simulations are configured using one-way
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Dirichlet boundary conditions for c and j obtained from
subsets of the global model simulations (Fig. 1). The
one-way LBC scheme in the LAM simulations applies
a seven-point peripheral wave-absorbing zone (Davies
1976, 1983). This method is selected because of its sim-
plicity and common use in many current operational and
research model configurations. Baumhefner and Perkey
(1982) explored the significance of boundary errors in
LAMs and found that differences in simulations using
two different LBC formulations was small compared to
the error generated by inaccurate boundary forcing.
Therefore, the particular choice of LBC scheme is not
expected to change the outcome of the experiments con-
ducted here.

The PPV model used herein has the advantage of
simplicity but transfers energy more slowly across the
spectrum compared to true atmospheric flows. The PPV
model lacks forcing due to factors such as moist physics,
radiation, thermal gradients, or interaction with the low-
er boundary. Therefore, the climate variance for the PPV
model is not stationary, but drifts lower with time. For
these reasons, climate variances are computed as a func-
tion of time over 100 independent truth cases and used
to normalize all error variances presented in later sec-
tions. In spite of these limitations, normalized error
growth behaviors presented below are at least qualita-
tively consistent with results obtained from more real-
istic models.

4. Statistics of ‘‘global’’ model ensemble

Ensemble simulations using the global periodic chan-
nel configuration are needed to establish benchmark er-
ror growth characteristics for the PPV model.

a. Production of ensembles

The model-generated climatology of 100 independent
cases is used to obtain ICs and perturbations for ensem-
bles following the method used by Schubert and Suarez
(1989). Specifically, two unique states are randomly se-
lected from the model’s set of climatological states. Per-
turbations are then formed by scaling the difference be-
tween the two samples by a factor of 0.10. Finally, the
perturbation field is added to an IC field represented by
another climatological state. This perturbation proce-
dure is repeated 10 times for a given initial field to create
the starting conditions for 10-member ensemble simu-
lations. One hundred independent 10-member ensemble
simulations are constructed by assigning perturbations
to ICs given by each of the available climatological
cases.

The perturbation method used here is rather simplis-
tic, but it effectively creates ensemble dispersion by
introducing errors that grow through nonlinear model
dynamics. Ensemble dispersion was defined previously
as a scalar statistic following Eq. (5). A slight alteration
to this definition yields a vector form of dispersion,

denoted d2, that may be viewed as a two-dimensional
contour plot. Specifically, at each grid point p in the
domain, field dispersion for an N-member ensemble is
given by

N1
2 2d 5 (f 2 f ) . (14)Op p,i pN i51

Figure 2 shows the results of this calculation for the
example ensemble case. Growth of dispersion for the
streamfunction is notably slow. This result is expected
from any barotropic model, especially given synoptic-
scale perturbations. On the other hand, vorticity dis-
persion grows very quickly in the first two days, and
gradually organizes with time toward larger scales. Dis-
persion varies widely in space and time for both vari-
ables, a characteristic that is common to all ensemble
systems. As reported in Nutter (2003), all statistics are
evaluated in terms of vorticity since its error growth is
more active at small scales than for other variables.

b. Normalized error variance spectra

Vorticity error growth characteristics for the ‘‘global’’
model configuration are considered first in terms of their
normalized error variance spectra [Eq. (12)]. The results
shown in Fig. 3 are calculated hourly for each 10-mem-
ber ensemble, then averaged over all 100 independent
cases. Although simulations are conducted on the full
periodic channel domain, variance spectra are calculated
separately for each of the four subdomains outlined pre-
viously in Fig. 1. These calculations enable direct com-
parisons to results from LAM simulations presented in
later sections.

Results shown in Fig. 3 reveal that error growth due
to initial perturbations is most rapid at short wave-
lengths. Error variance contributions at wavelengths 50
# l # 250 km approach the expected maximum value
of 2 within about 48 h on all subdomains. In general,
error growth rates become progressively slower at lon-
ger wavelengths. The simulations are not run long
enough to allow error saturation at scales larger than
about 1000 km. However, this is not considered im-
portant since the model experiments are designed to
investigate impacts of LBC constraints on small-scale
error growth. Error growth rates for the PPV model are
slower than those found in primitive equation models,
but behave in a manner that is qualitatively consistent
with theory and observations. Hence, results from these
numerical experiments may be generalized in a quali-
tative manner.

An interesting behavior is seen in the 1500-km wave-
length band when compared on the different subdo-
mains. On the large and medium grids (Figs. 3a,b), the
normalized error variance for this band reaches 1.5 by
the end of the simulations. Corresponding values are
about 1.2 on the small, centered grid and 1.8 on the
small, southern grid (Figs. 3c,d). This result suggests
that synoptic-scale waves are less predictable when dis-
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FIG. 2. Example case showing ensemble dispersion [Eq. (14)] for (a) day 0, (b) day 2, (c) day 4, and (d) day 6. A ‘‘spaghetti’’ plot drawn
with solid black lines shows the (516, 540, 564) 3 106 m2 s21 streamlines from each of the 10 ensemble members. Vorticity dispersion, or
spread, is shaded (310210 s22), while streamfunction dispersion is shown with dashed contours at 2 3 1012 m4 s22 intervals. Nested grid
outlines from Fig. 1 are shown for perspective.
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FIG. 3. Normalized vorticity error variance, averaged over 100 independent 10-member global ensemble simulations. Error variances are
shown for specific wavelengths (km) or accumulated over 250-km wavelength bands as indicated by the labels on each curve.

placed outside the central shear zone. To see this, note
the enhanced spread among the 516 3 106 and 564 3
106 m2 s21 ‘‘spaghetti’’ streamlines near troughs and
ridges in Fig. 2 compared to the central 540 3 106

m2 s21 streamlines. The large and medium domains en-
compass broader regions that include areas outside the
central shear zone and therefore have error variance
values at 1500-km wavelengths that are between the two
extremes seen on the smallest domains.

Several of the curves in Fig. 3 slightly exceed at times
the expected maximum value of 2. This result is ex-
plained by noting that IC perturbations introduced ad-
ditional vorticity into the system. Consequently, the vor-
ticity variance of forecasts averaged over all cases is up
to 10% greater than the climate vorticity variance of
analyses. If error variances are normalized by the var-
iance of perturbed forecasts rather than the variance of
unperturbed analyses, all the curves remain less than or
equal to the maximum expected value of 2 (not shown).
Since the difference is less than 10%, error variances
continue to be normalized by analysis variances to re-
main consistent with the statistical notation as defined
in section 2.

c. Ensemble bias, dispersion, and MSE

Equation (11) was derived to help link error variance
spectra to ensemble dispersion. To compare the relative
magnitudes of each term in this expression, the follow-
ing ensemble summary statistics are shown in Fig. 4:

• Ensemble dispersion, D2 5 1/N \fi 2 \ 2,NS fi51

• Total biased error variance, s 2 5 1/N N K21S Si51 k51

2 | Fi(k) | 2,
• Ensemble mean squared spatial error, (sme)2 5 1/N

(^fi& 2 ^a&)2,NSi51

• Grid mean square of the ensemble mean error, (eme)2

5 \ 2 a\ 2,f
• Ensemble mean square error, S 2 5 1/N \f i 2 a\ 2.NSi51

The ensemble mean-square error is included to high-
light the balance of terms in Eqs. (6) and (10). The
results shown in Fig. 4 show that the sum of ensemble
mean error ‘‘(eme)2’’ and ensemble dispersion D2 equal
the ensemble mse (S 2) at all times and on all limited-
area domains. This result shows that basic error growth
characteristics of the simplified PPV model ensemble
behave as expected.
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FIG. 4. Ensemble summary statistics for vorticity (310210 s22), averaged over 100 independent 10-member global ensembles. See text
(section 4c) for a description of variables shown.

On the other hand, Eq. (10) suggests that s 2 is a good
approximation for the ensemble MSE, provided that the
ensemble average spatial-mean error is small. Since the
spatial-mean error term is positive, s 2 must be less than
or equal to S 2. Figures 4a and 4b reveal the contradic-
tory result that s 2 is up to 15% greater than S 2 on the
large and medium domains. This contradiction is ex-
plained by the fact that removal of linear trends from
the data fields prior to calculating Fourier transforms
introduces additional variance in higher wavenumbers
(Errico 1985). Indeed, the error variance curve obtained
from the periodic global domain (not shown)—where
detrending is not required—is almost identical to the S 2

curve in Fig. 4a. On both the small domains (Figs. 4c,d),
the spatial bias term becomes nontrivial about 5 days
into the simulations. At this point, the relationship be-
tween s 2 and S 2 predicted by Eq. (10) is confirmed.
Specifically, as errors grow toward longer wavelengths
exceeding the size of the smaller subdomains (1500
km2), the spatial mean error grows larger and contrib-
utes to a reduction of s 2 relative to S 2.

Although we cannot decompose directly the contri-
butions made by various wavelengths to ensemble dis-
persion, it is possible to decompose the total error var-

iance, which is then related back to ensemble dispersion
and ensemble MSE. The only limitation to this argument
is the effect of spatial biases. The spatial biases shown
in Fig. 4 are small, thus enabling the link between en-
semble dispersion and error variance contributions at
different wavelengths as defined by Eq. (11).

5. Effects of coarsely resolved LBCs

Consider now the impact of applying coarsely re-
solved LBCs in otherwise perfect simulations. Coarsely
resolved LBC fields are generated by applying a low-
pass spatial filter to fields from global model simulations
running at the same resolution as the LAM. The low-
pass filter is a Fourier transform procedure (Errico 1985;
Laprise et al. 2000; Nutter 2003) that removes com-
pletely all wavelengths shorter than 150 km while per-
fectly retaining the amplitudes of wavelengths longer
than 450 km. The filtering process preserves the ac-
curacy of large-scale motions while removing those
which would not be present on a grid having 3 times
less spatial resolution as the LAM grid. All simulations
in this section are run with hourly updated LBCs by
applying linear interpolation in time between updates.
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FIG. 5. Normalized vorticity error variance [Eq. (12)], averaged over 100 independent 10-member LAM ensemble simulations having
hourly updated, low-pass-filtered LBCs (150-km wavelength cutoff ). Line labels (km) indicate wavelengths(s) contributing to error variances.
Dashed reference lines are reproduced from Fig. 3, showing error variances from subsets of the global ensemble simulations.

Test runs using LBCs updated every time step revealed
only trivial differences from the results presented below.
The experimental procedure is similar to that used most
recently by Laprise et al. (2000), De Elı́a and Laprise
(2002), and Denis et al. (2002b, 2003). The effect of
temporal interpolation between LBC updates is isolated
and is described in section 6.

a. Ensemble error variance spectra

One hundred independent 10-member LAM ensemble
simulations are run using hourly updated, low-pass-fil-
tered LBCs. Initial conditions and LBCs for individual
LAM ensemble members are obtained as direct subsets
of the corresponding global ensemble members (section
4a), with filtering applied before extracting LBC fields.
Error growth in the ensemble occurs due to IC pertur-
bations, use of one-way LBCs, and lack of small scales
in filtered LBCs. Comparison of error variance spectra
to those from the global ensemble simulations in section
4b provides a direct measure of the impact of using
coarsely resolved LBCs.

When simulations are configured with unfiltered (ful-
ly resolved) ICs and low-pass-filtered (coarsely re-

solved) LBCs (Fig. 5), error variances in the 50–250-
km wavelength band grow rapidly and reach saturation
after about 24 to 36 h. The shortwave error variances
saturate at values that are about 20% smaller than those
from the global ensembles on the large grid and about
40%–50% smaller on the medium and small grids. Fur-
thermore, error variance growth is constrained at larger
scales up to about 750 km. It is clear from these results
that the absence of small scales in the LBCs places
strong constraints on the maximum values of error var-
iance spectra at small scales. This conclusion is con-
sistent with those obtained in several previous studies
using more complex models (e.g., Anthes et al. 1985;
Anthes 1986; Errico and Baumhefner 1987; Anthes et
al. 1989; Vukicevic and Paegle 1989; Vukicevic and
Errico 1990; Hamill and Colucci 1997; Paegle et al.
1997; Warner et al. 1997; Du and Tracton 1999; Hou
et al. 2001).

An alternative way to view the impact of coarsely
resolved LBCs is to divide the LAM variance spectra
by the variance spectra obtained on subsets of the glob-
al control simulations. This ratio should be unity for
perfect LAM simulations. The results in Fig. 6a show
the absence of small scales in the filtered initial con-



2368 VOLUME 132M O N T H L Y W E A T H E R R E V I E W

FIG. 6. Ratio between vorticity variance spectra global and LAM simulations on the
medium domain shown as a function of time. (a) Simulations are run with low-pass-filtered
ICs and hourly updated LBCs (150-km wavelength cutoff ). (b) Simulations are run with
perfect (unfiltered) ICs and low-pass-filtered LBCs.

ditions. As the simulation progresses, dynamic down-
scaling produces variance at small scales, but ‘‘sweep-
ing’’ of coarsely resolved LBCs constrains the LAM
variance saturation to less than 20% of the variance
from the laterally unbounded simulations. In Fig. 6b,
small-scale variance declines with time as features pass
through the domain and are not reproduced by down-
scaling effects. Saturation occurs again at just under
20% of the variance for global simulations. The sat-
uration level is dependent on domain size and moves
closer to unity on larger domains (not shown) since
dynamic downscaling has more time to redevelop
smaller-scale features before they are swept through
the downstream boundary. The saturation level also
depends on model dynamics, since small scales will

develop more quickly in a more unstable model (cf.
Fig. 8 in De Elı́a and Laprise 2002).

b. Ensemble summary statistics

The same set of ensemble summary statistics are pre-
sented as in section 4c to quantify the impact of error
variance constraints on LAM ensemble dispersion. For
clarity, the statistics are now shown in Fig. 7 as differ-
ences between those calculated from the global and the
LAM ensembles.

The loss of error variance at small scales noted in
Fig. 5 appears as a decrease in total error variance in
the LAM ensembles compared to that of the global
ensembles on all domains after about 12 h. The LAM
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FIG. 7. Difference in vorticity summary statistics (section 4c) for LAM ensemble simulations having hourly updated, low-pass-filtered
LBCs (150-km wavelength cutoff ) compared to statistics from global ensemble simulations as shown in Fig. 4. Results are averaged over
100 independent 10-member ensemble simulations. On ordinate, ‘‘e’’ denotes base-10 exponential notation.

ensemble dispersion also is less than that of the global
ensembles on all domains. Since the bias terms remain
nearly unchanged, the loss of dispersion is attributed
directly to the loss of error variance at small scales
[Eq. (11)]. The loss of dispersion is most notable on
the medium and small domains, where it is reduced
by about 10% to 40%. The magnitude of decrease is
related to the size of domain and advective time scale
of features passing through the domain (Warner et al.
1997).

An interesting characteristic noted on all domains is
the increase in total error variance in the LAM simu-
lations during the first 12 h. Close examination of Fig.
5 shows that this increase in variance is contributed at
smaller scales. The source of this extra variance early
in the LAM simulations is due to the different solution
obtained by solving the Helmholtz equation to obtain
streamfunction from smoothed LBCs. This introduces
the error variance at small scales and also contributes
to an increase in ensemble mean error (Fig. 7). As small-
scale features are swept from the LAM domain, error
variance becomes negative relative to the global sim-
ulations because error growth is constrained. In spite of
the initial increase in error variance, ensemble disper-
sion remains decreased in all simulations because of the

increase in ensemble mean error in the absence of
changes in the spatial bias [see Eq. (11)].

6. Effects of temporally interpolated LBCs

a. LBC error ‘‘pulsing’’

Using a highly controlled model configuration, it was
demonstrated above that the ‘‘sweeping out’’ of small-
scale features by coarsely resolved LBCs is sufficient
to limit ensemble dispersion by constraining error var-
iance growth. We now present an example simulation
to highlight the similar, and often neglected, error
growth behavior introduced by temporal interpolation
between available LBC updates. The example case
shown in Fig. 8 is perfect except for errors created using
3-hourly interpolated LBCs. The initial and lateral
boundary conditions are subsets of output from a full-
channel simulation running at the same resolution as the
LAM model. The IC is not shown because it has no
error.

During the first 1.5 h of the simulation (Figs. 8a–c),
errors develop within the peripheral seven-point wave-
absorbing zone because of differences between the lin-
early interpolated LBC and the interior solution. Then,
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FIG. 8. Example LAM simulation run on the small, center domain (Fig. 1) showing effects of LBC update interval in an otherwise perfect
simulation. LBCs are given every 3 h and are linearly interpolated at each step between the updates. Gentle curves are streamlines from the
control simulation that provides the LBCs (12 3 106 m2 s21 intervals). Positive (negative) vorticity errors exceeding 0.5 3 1025 s21 are
indicated by light (dark) shades. Positive (negative) streamfunction errors are shown with solid (dashed) contours at 65 3 104 m2 s21

intervals (zero line omitted).

from 2 to 3 h (Figs. 8d–f ), errors within the buffer zone
decline and vanish. This error growth ‘‘pulse’’ repeats
between subsequent 3-hourly updates of perfect LBCs,
with the peripheral errors vanishing at 3, 6, and 9 h
(Figs. 8f, 8l, and 8r). Errors in the buffer zone are great-
est near the midpoint of the LBC update cycle when
the respective linearly and nonlinearly evolving external
and internal solutions are most inconsistent. Once in-
troduced, the LBC pulse errors continue to propagate
inward and modify the LAM solution. As the LAM
solution becomes more infected with each successive
error ‘‘pulse,’’ the LBC inconsistency becomes stronger

and generates larger errors, which then propagate farther
inward.

The example simulation demonstrates that the LBC
update interval determines the spatial scale of errors that
can be introduced by aliasing of fields passing through
the lateral boundary, provided that advection or wave
propagation is the main cause of local changes in the
solution. To formalize this argument, suppose a wave
passes through the boundary with speed | cx | . If the
LBC is updated with frequency f LBC, then the minimum
wavelength that can be fully sampled is lLBC 5
2 | cx | / f LBC. Thus, the minimum spatial scale of aliasing
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FIG. 8. (Continued )

errors introduced while waves pass through the bound-
ary increases with less frequent LBC updates. If this
minimum scale is longer than the smallest resolved
wavelength on the LAM domain, then LBC pulsing er-
rors will contribute to constraints on error variance
growth while ‘‘sweeping’’ through the domain. LBC
pulsing errors are maximized at small scales due to the
filtering effect, but may also form at larger scales by
slightly reducing the amplitude of all nonstationary
waves passing through the lateral boundary.

The Rossby wave phase relation can help quantify the
temporal filtering effect for the PPV model used in this
study. Zonal phase speeds for waves passing through the
boundary are given by cx 5 U0 2 b/(k2 1 l2). Assuming
zonal flow (l 5 0), k 5 2p/Lx, and | cx | defined above,
we find that lLBC 5 2 | U0 2 b /4p2 | / f LBC. Results ob-2Lx

tained from this expression for selected nesting frequen-
cies and appropriate choices for constants U0 and b are
shown in Fig. 9. There is a cusp in the curves for external
wavelengths of ;5400 km where the Rossby waves are
stationary and do not suffer any filtering due to temporal
interpolation of LBCs. All values of lLBC are positive
because the absolute value of cx was used.

The results in Fig. 9 show that for half-hourly updated
LBCs, all waves are sampled well enough to have ad-
equate spatial resolution on the LAM domain. When
using hourly updated LBCs, external wavelengths less
than 3000 km move fast enough to produce aliasing
errors at scales up to about 100 km. Since less than 1%
of the total vorticity variance in this model is represented
by these scales (Nutter 2003), LBC pulsing errors re-
main negligible if LBCs are updated at least once per
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FIG. 9. Minimum resolved spatial scale of aliasing error after temporal filtering due to
linear interpolation of LBCs between available updates at indicated intervals. The dotted
horizontal line marks the smallest 2Dx 5 50 km wavelength resolved on the LAM domain.
See text for additional description.

hour. When using 3-hourly LBC updates, external wave-
lengths shorter than 3000 km generate aliasing errors at
scales no smaller than 150 km while passing through
the lateral boundary.

The vorticity errors in the example case (Fig. 8) pro-
duce approximately 5 to 10 anomaly couplets along each
side of the domain. Since each side has a length of 1500
km, this result suggests that the vorticity errors in this
example from at wavelengths of about 150 to 300 km.
This estimate is similar to those indicated in Fig. 9 for
3-hourly LBC updates.

The LBC pulse error is seen on each of the four
domains tested (not shown in examples), but takes lon-
ger to propagate across the medium (3000 km)2 and
large (6000 km)2 domains. As expected, the pulse effect
is less pronounced when using hourly LBC updates and
more pronounced when using 6-hourly LBC updates.
Note that in practical applications the LBC pulse effect
could be swamped by other errors when the LBCs are
given by discordant external analyses or forecasts. Fur-
thermore, note that the distribution of phase speeds
varies with the complexity of the synoptic setting.
Therefore, the intensity at which LBC pulse errors are
produced also varies with time and location.

b. Ensemble error variance spectra

Consider next the the impact of temporal interpolation
of LBCs on error growth in LAM ensemble simulations
using the same statistical framework as above. Statistics
are averaged over 100 independent 10-member ensem-
ble simulations. Initial conditions and LBCs for indi-
vidual LAM ensemble members are again obtained as
direct subsets of the corresponding global ensemble
members (section 4a). Since LBCs are fully resolved
(unfiltered), the only sources of error growth are IC
perturbations and the use of temporally interpolated one-
way LBCs. The impact of LBCs on the LAM ensemble
simulations is determined as before by comparing error
variance spectra directly to those obtained from the lat-
erally unbounded global simulations.

Experiments were run using LBCs updated at hourly,
3-hourly, and 6-hourly intervals. Given hourly LBC up-
dates, statistical results (not shown) revealed that error
variance growth was not seriously degraded because the
LBCs were sampled with adequate frequency to avoid
the filtering effect described earlier (Nutter 2003). The
results presented here are obtained from simulations
having 3-hourly updated LBCs. Results from simula-
tions having 6-hourly updated LBCs (not shown) re-
inforce the concept that LBC constraints on error var-
iance growth increase with longer LBC update intervals
(Nutter 2003).

Given 3-hourly LBC updates (Fig. 10), losses of error
variance occur at small scales due to ongoing LBC
sweeping of filtered inflow caused by inadequate tem-
poral sampling. Saturation values in the shortest wave-
length band range from about 1.5 on the small-centered
grid to about 1.75 on the large domain. Thus, the fil-
tering response from 3-hourly LBC interpolation re-
duces maximum shortwave error variance growth by
about 10% to 25% from the expected value of 2. Smaller
reductions are seen in spatial scales up to around 750
km. The LBC error pulse is also evident, although the
magnitude of oscillations accounts for at most about 5%
of the error variance values in the 50–250-km wave-
length band at saturation. Hence, IC perturbations are
the dominant source of error growth for these ensemble
simulations. Comparison of these results to those in Fig.
5 reveals that the use of coarsely resolved LBCs pro-
vides a stronger constraint on error growth than does
temporal interpolation between LBC updates.

c. Ensemble summary statistics

Using the same format as in section 5b, Fig. 11 shows
how the loss of error variance at small scales due to
interpolation between 3-hourly LBC updates affects
overall ensemble behavior. The total error variance (s 2)
decreases on all domains relative to the global simu-
lations after about 12 to 24 h due to the LBC filtering
effect discussed earlier in section 6a. The error pulse
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FIG. 10. As in Fig. 5, except for LAM ensemble simulations having 3-hourly updated, unfiltered (fully resolved) LBCs.

associated with perfect 3-hourly LBC updates also ap-
pears as discussed in section 6a. The spatial bias remains
nearly identical for both LAM and global ensembles.
Thus, following Eq. (11), the increases in both s 2 and
ensemble mean error (eme2) during the first 24 to 48 h
offset each other so that the LAM ensemble experiences
an immediate loss of dispersion that deepens with time.
The initial increases in total error variance and ensemble
mean error were explained at the end of section 5b. The
LBC error pulse seen in s 2 also affects ensemble dis-
persion, although the magnitude of the oscillation is
small compared to the overall loss of dispersion.

7. Example of LAM ensemble dispersion

An example of global ensemble dispersion was shown
for one example case in Fig. 2. That same case is run
again, but now as a LAM ensemble configured with 3-
hourly updated and low-pass-filtered LBCs run on the
medium domain (see Fig. 1). As in all previous LAM
ensembles, the ICs and LBCs for individual members
are obtained as direct subsets of the corresponding glob-
al ensemble members.

To visualize the documented loss of ensemble dis-
persion due to LBC filtering effects, the following loss
ratio is defined at each grid point p in the domain:

2d (global)p1 2 , (15)
2d (LAM)p

where is the local dispersion defined by Eq. (14). If2dp

this loss ratio is negative, then the LAM ensemble has
less dispersion than the global ensemble.

The example LAM ensemble and its dispersion loss
ratio is shown in Fig. 12. The ‘‘spaghetti’’ contours and
streamfunction dispersion appear much the same as in
the appropriate portion of the global ensemble (Fig. 2).
At the initial time (Fig. 12a), regions of increased and
decreased vorticity dispersion relative to the global en-
semble appear evenly distributed and similar in mag-
nitude since the loss ratio is near zero everywhere. After
12 h have elapsed (Fig. 12b), regions showing strong
reductions of dispersion appear along the upstream side
of the domain. At the same time, the dispersion loss
ratio remains evenly distributed and near zero within
the downstream portion of the domain. The reductions
near the upstream boundary are obviously attributed to
the spatial and temporal filtering effects associated with
the LBCs. The area impacted by loss of dispersion grows
with time as LBC errors sweep through the domain from
west to east. Locally, the LAM ensemble dispersion loss
ratio shows reductions of a factor of 8 or larger. When
averaged across the domain, the reduction of LAM en-



2374 VOLUME 132M O N T H L Y W E A T H E R R E V I E W

FIG. 11. As in Fig. 7, except for LAM ensemble simulations having 3-hourly updated, unfiltered (fully resolved) LBCs.

semble dispersion shown by this example is consistent
with the ensemble summary statistics shown earlier
(e.g., Fig. 7).

8. Conclusions

LAM ensemble simulations were conducted using a
simplified model configuration specifically designed to
isolate the impact of infrequently updated or coarsely
resolved LBCs on ensemble dispersion. An expression
was developed that provides a relationship between en-
semble dispersion, error variance spectra, ensemble
mean error, and spatial bias. The advantage of analyzing
results using error variance spectra is that we can de-
termine which wavelengths are most directly impacted
by LBC constraints and measure their collective impact
on the loss of LAM ensemble dispersion. It was shown
that the ensemble mean error and spatial biases in the
LAM ensemble simulations are nearly the same as those
from the global ensemble simulations. Therefore, a loss
of error variance identified at small scales is sufficient
to explain the reduction in LAM ensemble dispersion
when using ‘‘one-way’’ LBCs. The loss of dispersion
is greater on smaller domains because features are ad-
vected more quickly from one side to the other. Hence,
LAM ensembles configured with very large domains
(such as the NCEP Short-Range Ensemble Forecast sys-

tem) will experience minimal LBC constraints on dis-
persion, while those configured with smaller domains
may experience rather serious constraints.

It is demonstrated that the impact of coarsely resolved
LBCs or temporal interpolation of LBCs on error growth
in LAM simulations is quite similar. Both act to remove
small-scale features from the external fields passing
through the lateral boundary, thereby constraining en-
semble dispersion. Of the two effects considered here,
the impact of coarsely resolved LBCs has a stronger
impact than temporal interpolation when the LBC up-
date frequency is reasonably high. The simplified model
approach used here removes other factors from consid-
eration that could increase ensemble mean error and
ensemble bias, therefore distorting the direct relation-
ship between error variance and ensemble dispersion.
Nonetheless, the error growth behaviors shown here are
certainly present to some extent in more sophisticated
atmospheric models using one-way LBCs and may also
exist in global variable resolution models where advec-
tion of scale-deficient flow into the high-resolution re-
gion will constrain error growth rates at small scales.

An unresolved question from this work is how large
is the impact relative to other modeling and LBC data
deficiencies. In particular, large-scale LBC errors pres-
ent in most forecast and analysis systems result from
the use of discordant external and nested models. Errors
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FIG. 12. As in Fig. 2, except shading is the vorticity dispersion loss ratio [Eq. (15)] from an example LAM ensemble run on the medium
domain (Fig. 1) having 3-hourly updated, low-pass-filtered LBCs.

of this type are, by design, excluded from the simple
model configuration since they are not caused by the
use of one-way LBCs. It is beyond the scope of the
present study to compare the magnitudes of externally
created LBC errors versus those specifically created by
the use of one-way LBCs.

The results shown here in Figs. 5 and 10 are con-
sistent with those obtained in previous studies using
full primitive equation LAMs (Baumhefner and Perkey
1982; Anthes et al. 1985; Errico and Baumhefner 1987;
Vukicevic and Paegle 1989; Vukicevic and Errico
1990; Laprise et al. 2000; De Elı́a and Laprise 2002).

Therefore, error growth behaviors established for other
aspects of this work should generalize at least quali-
tatively to more complex model systems. When con-
sidering an extension of the current study to other mod-
eling systems, the magnitude of the LBC constraint
will depend on the speed at which waves pass through
the lateral boundaries and on the amplitudes of IC per-
turbations. Furthermore, the time scale needed to reach
saturation is likely to decrease, but the shape of the
normalized error growth curves should remain un-
changed.

Results from this paper suggest the need to apply
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finescale LBC perturbations at every time of the LAM
simulations, especially on LAM domains that are small
compared to the advective time scale. The model and
analysis method tools developed in the current study
form a basis for developing a new method (Nutter 2003)
that is designed to help restore the error variance and
ensemble dispersion lost through LBC constraints. The
new method was developed to apply statistically con-
sistent LBC perturbations that remain spatially and tem-
porally coherent while passing through the boundaries.
With a few noted exceptions, the LBC perturbations are
shown to capably restore error variance growth and
LAM ensemble dispersion without compromising the
integrity of the individual solutions. This is the subject
of Nutter et al. (2004).
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