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Abstract: We investigate the impact of directly assimilating radar reflectivity data using an ensemble
Kalman filter (EnKF) based on a double-moment (DM) microphysics parameterization (MP) scheme
in GSI-EnKF data assimilation (DA) framework and WRF model for a landfall typhoon Lekima
(2019). Observations from a single operational coastal Doppler are quality-controlled and assimilated.
Compared with the baseline experiment initialized by GFS analysis, the reflectivity data assimilation
experiment (Z-DA) resulted in an obvious improvement in both structural analysis and typhoon
forecast skills in terms of intensity, precipitation, and track. Sensitivity experiments were conducted
to evaluate the ability of EnKF to update certain state variables considering that the degree of freedom
of analytical variables increased with a DM MP scheme. When either the total number concentration
or other large-scale state variables that are not directly linked to reflectivity observations via the
observation operator are not updated, the tendency of RMSIs and PS to be imbalanced is significantly
increased during DA cycles compared to those of Z-DA with updating a full set of state variables,
resulting in increased intensity and track forecast errors. These results indicate that the reliable
ensemble covariance could handle the underconstraint issue associated with the DM scheme, and
helps in obtaining more physically balanced analytical fields.

Keywords: radar reflectivity assimilation; ensemble Kalman filter; double-moment microphysics;
typhoon simulation

1. Introduction

Tropical cyclones (TC) can cause heavy losses of property and casualties through
damaging winds and extreme precipitation. China has an average annual landfall of
7–9 TCs, rendering it one of the countries with the most severe TC disasters. Although the
forecast accuracy of TC track has been improved in recent decades due to the continuous
development of numerical weather prediction (NWP) models, the improvement in TC
intensity and precipitation forecasting remains limited.

There are few observation platforms in the TC inner-core region. Radar is capable of
observing TC inner-core structures and circulations at high spatial and temporal resolutions.
Radar radial velocity and reflectivity could provide effective information on the wind
structure and microphysical process at the TC vortex and convective scale [1–3]. The
assimilation of radar data would help in improving the initialization of the TCs. Many
studies have attempted to define convective structures in TC initializations using a three-
dimensional variational (3DVAR) method to assimilate radar radial velocity, leading to
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improved TC forecasts [4–8]. However, using static background error covariance, 3DVAR
is less able to describe the evolution of TCs and obtain correlations among cross-variables.
Compared to 3DVAR, the ensemble Kalman filter (EnKF) has shown encouraging success
in radar radial velocity with flow-dependent ensemble covariance. The EnKF method for
assimilating radar velocity data is useful in TC vortex initialization, and contributes to
improving TC forecast skill in intensity, structure, and rainfall prediction [3,9–11].

Unlike radar radial velocity, a measure of wind field, reflectivity has knowledge about
hydrometers that depends on scatter concentration, phase, size, and other properties. The
assimilation of radar reflectivity is more complex and much more challenging than the
assimilation of radial velocity [12,13]. Cloud analysis is an early approach to assimilating re-
flectivity data into an NWP model, to adjust some of the hydrometer variables and in-cloud
temperatures. Many studies showed the positive impact of using cloud analysis to initialize
convective scale NWP and to mitigate the spin-up problem in short-range forecasts [14–17].
Cloud analysis is a promising tool for TC track and intensity forecasts [7]. However, a
number of empirical relationships between the hydrometer variables and the reflectivity
are included in the cloud analysis method, introducing many additional uncertainties.

The VAR method to directly assimilate reflectivity has two common difficulties. One is
associated with the tangent linear and adjoint of the strong nonlinear observation operator.
Sun and Crook [18] found that, in their 4DVAR scheme, a large gradient of reflectivity cost
function term associated with a small rainwater mixing ratio prevents effective convergence.
To reduce this negative effect of nonlinearity, they retrieved a rainwater mixing ratio from
reflectivity and then assimilated the rainwater mixing ratio into their 4DVAR scheme. Only
warm-rain microphysics was used, and only rainwater mixing ratios were considered in
their framework. Due to the neglect of many other hydrometers, especially ice-related
hydrometers, this method would degrade the quality of analysis and forecast, especially
in strong convective areas. Wang et al. [19] also encountered a similar problem, so they
had to use reflectivity data of less than 55 dBZ. As other ways to mitigate the nonlinear
problem, some kinds of the transformation of the hydrometer (rainwater) mixing ratio
were introduced [20–23]. Another difficulty of direct reflectivity assimilation in variational
schemes is related to static background covariance, which is not only limited in describing
correlations among cross-variables, but also likely to produce unphysical analyses of
hydrometeors due to its static and homogeneous background variances [13]. One potential
solution is to employ a hybrid ensemble-variational (EnVAR) method [21,24] to consider
the model constraints in the form of ensemble covariance. Although the hybrid method
is able to include flow-dependent background covariance, it still faces the nonlinearity
challenge since it obtains the analysis in a variational framework.

In contrast with VAR or hybrid methods, the ensemble Kalman filter (EnKF) is a
powerful approach for directly assimilating radar reflectivity [25–27]. It is easy for EnKF
to use a highly nonlinear observation operator (e.g., radar reflectivity) and models with
complex ice microphysics because the adjoint model is no longer required. Moreover, it
is straightforward for EnKF to utilize covariances between reflectivity and unobserved
model variables. Several encouraging results for direct radar reflectivity assimilation
using EnKF were reported [28]. However, EnKF is vulnerable to model errors [29]. The
microphysics parameterization (MP) process is one of the most important sources of model
errors. In recent years, studies indicated that prediction errors can be reduced by adopting
the double-moment (DM) MP scheme [30–32]. If a DM scheme is adopted in a model,
it would be better to use the same MP scheme in the data assimilation stage. That is,
the reflectivity observation operator is also based on the same DM MP scheme, and the
number concentration of hydrometers is updated in the process of assimilation. Though
using DM MP scheme in EnKF reflectivity DA is theoretically promising, it has a potential
challenge since it increases the number of analytical variables to be estimated, which might
further aggravate the underconstraint problem because only reflectivity observations are
assimilated to update the number of analytical variables. The studies of EnKF to assimilate
reflectivity based on the DM MP scheme are very limited [33–35]. So far, reflectivity has not
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been assimilated by using EnKF based on DM MP scheme for TC simulation. Therefore,
more studies are needed in order to better use EnKF to directly assimilate reflectivity to
improve TC forecasts.

This study investigates for the first time the performance of EnKF reflectivity DA
based on a partial DM MP scheme for a real TC case. We selected supertyphoon Lekima
that occurred on August 2019 in the Northwest Pacific. The impact of the EnKF assimilation
of radar reflectivity on analyses and TC forecasts is examined. Additional sensitivity
experiments were conducted to evaluate the impact of updating the number concentration
of hydrometers and other large-scale cross variables not directly related to the reflectivity
observation operator.

The rest of this paper Is organized as follows: in Section 2, the TC Lekima case, the
forecast model, radar observations, EnKF assimilation system, and experimental setup
are described. Section 3 discusses the impact of reflectivity data on analyses, forecasts of
intensity, track, and precipitation. Sensitivity to the impacts of the analytical variables is
presented in Section 4. The conclusions are given in Section 5.

2. Description of the Data Assimilation Experiments
2.1. Case Overview

Supertyphoon Lekima (2019) was the most intense TC during the 2019 Northwest
Pacific TC season. It made landfall in Wenling, Zhejiang province, reaching 16 force
(52 m/s), at 1745 UTC, 9 August. After the first landfall in Zhejiang, Lekima passed over
Jiangsu, Shandong and made its second landfall in Qingdao at 1250 UTC, 10 August, with
maximal force 9 (23 m/s). Over its inland path, Lekima brought heavy precipitation and
damage to 11 Chinese provinces, rendering it the second costliest TC in China since 2000,
only after TC Fitow (2013). This study investigates the impact of directly assimilating radar
reflectivity using EnKF.

2.2. Numerical Model

Predictions during EnKF cycles are performed using the Advanced Research Weather
Research and Forecast (WRF-ARW) model [36] version 3.9.1. Prognostic state variables
include velocity components (u, v and w), perturbation potential temperature (θ), pertur-
bation dry air mass in column (MU), and water vapor mixing ratio (qv), and microphysical
state variables. In this study, the DM MP scheme of Thompson [37] is used. Microphysical
variables were the mixing ratios of cloud water, rainwater, ice, snow, and graupel, and the
total number concentrations of rain. The forecast domain had 548 × 452 grid points with a
horizontal resolution of 3 km and 51 vertical levels from the surface to 20 hPa (Figure 1).
Other physical parametrizations included the Yonsei University (YSU) planetary boundary
layer scheme [38], the unified Noah land surface model [39], and the rapid radiative transfer
model for global circulation model (RRTMG) shortwave and longwave schemes [40].

2.3. Assimilation Data and Algorithms

Data assimilated in this study were radar reflectivity factor (Z) from a single coastal
WSR-88D radar at Wenzhou station in Zhejiang province. The radar data coverage is shown
in Figure 1. For quality control, the original raw data were processed to remove ground
clutter, speckles, and other artefacts, and converted into a mosaic of observations on a
three-dimensional grid with a horizontal resolution of 3 km and 33 vertical levels. Only
reflectivity data in precipitation regions (≥5 dBZ) were assimilated.

In this study, reflectivity observations were directly assimilated with a GSI EnKF
system using 41 ensemble members. The EnKF scheme used here is commonly called
an ensemble square root filter (EnSRF) [41]. The length scale for horizontal covariance
localization is 12 km, and the scale height (unit of −log (P/Pref) for vertical localization
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is 0.1. The relaxation to a prior spread (RTPS) multiplicative inflation scheme [42] was
applied to account for the deficiency of the ensemble spread in the EnKF:

x′ai ← x′ai

(
α

σb − σa

σa + 1

)
, (1)

where x′ai is the posterior (analysis) perturbation for the i-th ensemble member; σb, σa are
the prior (background) and posterior (analysis) standard deviation (spread) at each grid
point; and α is the inflation parameter, which is 0.95 in this study.
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radar station.

For radar reflectivity assimilation, the gross check in the GSI EnKF system was applied.
The observation error’s standard deviation for reflectivity was specified as 5 dBZ. If the
difference of observation and background reflectivity is greater than 7 times of the standard
deviation of observation error, this observation fails the gross check and is not assimilated.

Unlike most previous research on direct reflectivity assimilation where reflectivity
operators were based on a relatively simple formula that used Rayleigh scattering ap-
proximation and a single-moment (SM) MP scheme [13,21,43], this study adopted a more
advanced and complex observation operator that was initially developed by Jung et al. [27],
who used a fitted approximation to the T-matrix [44] for rain, and the Rayleigh approxi-
mation for ice species. This reflectivity operator takes into account nonspherical shapes
for large precipitation species, and the non-Rayleigh scattering effect for raindrops. This
operator was updated by Xue et al. [33] to add the total number of the concentrations of
hydrometers as input variables, which is consistent with a DM MP scheme.

Using a fitted approximation to the T-matrix for the scattering amplitude calculation,
the formula of rain reflectivity at the horizontal polarization is as follows:

Zh,r =
4λ4α2

raN0r

π4|Kw|2
Λ
−(2βra+1)
r Γ(2βra + 1), (2)

where λ is the radar wavelength, which is approximately 10.7 cm for the S-band radars.
Kw = 0.93 is the dielectric factor for water. Subscript r is the rain, ara = 4.28 × 10−4,
and βra = 3.04 are fitting values of the T-matrix calculation for rain. N0r is the intercept
parameter for rain, which is consistent with Thompson DM MP. Slope parameter Λr for
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rain is established from the intercept parameter and mixing ratio of rain. Γ is the complete
gamma function of particle size distribution (PSD).

For other hydrometer species, the forms of radar reflectivity at the horizontal polariza-
tion are listed below:

Zh,x =
2880λ4N0x

π4|Kw|2
Λ−7

x

(
Aα2

xa + Bα2
xb + 2Cαxaαxb

)
, (3)

where
A =

1
8

(
3 + 4 cos 2φe−2σ2

+ cos 4φe−8σ2
)

, (4)

B =
1
8

(
3− 4 cos 2φe−2σ2

+ cos 4φe−8σ2
)

, (5)

C =
1
8

(
1− cos 4φe−8σ2

)
. (6)

where φ is the mean canting angle, and σ is the standard deviation of the canting angle.
φ = 0 was assumed for all species, and σ = 20

◦
, 60

◦
for snow and graupel, respectively.

Subscript x can be dry snow (ds), dry graupel (dg), rain-snow mixture (rs), or rain-
graupel mixture (rg). αxa, αxb are the fitting results for calculating scattering amplitudes
from Rayleigh scattering approximation. αdsa = 0.194× 10−4, and αdsb = 0.191× 10−4 for
dry snow, αdga = 0.191× 10−3, and αdgb = 0.165× 10−3 for dry graupel. For melting species,
including rain-snow mixture (rs) and rain-graupel mixture (rg), the fitting results are:

αrsa =
(

0.194 + 7.094 fw + 2.135 f 2
w − 5.22 f 3

w

)
× 10−4,

αrsb =
(

0.191 + 6.916 fw − 2.841 f 2
w − 1.160 f 3

w

)
× 10−4,

αrga =
(

0.191 + 2.39 fw − 12.57 f 2
w + 38.71 f 3

w − 65.53 f 4
w + 56.16 f 5

w − 18.98 f 6
w

)
× 10−3,

argb =
(

0.165 + 1.72 fw − 9.92 f 2
w + 32.15 f 3

w − 56.04 f 4
w + 48.83 f 5

w − 16.69 f 6
w

)
× 10−3. (7)

where fw = qr/
(

qr + qs/g

)
is a rain fraction calculated from the mixing ratio of rain, snow,

or graupel.
Once the radar reflectivity factors of all hydrometeor species had been calculated with

Equations (2) and (3), the horizontal logarithmic reflectivity was computed as follows:

ZH = 10 log10

(
Zh,r + Zh,rs + Zh,ds + Zh,rg + Zh,dg

)
(dBZ). (8)

For more details on the radar observation operators, the readers are referred to Jung et al. [27].

2.4. Experimental Design

Figure 2 illustrates the workflow of all the experiments. A control forecast (CNTL)
serving as the baseline was initiated with NCEP GFS analysis at 0600 UTC, 09 August,
and no radar data were assimilated. In all DA experiments, a 41-member ensemble was
first generated at 0600 UTC. The initial fields for Member 41 were taken directly from GFS
analysis, same with that in CNTL, and the initial fields for Members 1–40 were created by
adding random perturbations generated from WRFDA 3DVAR with the cv3 background
error covariance option [45] to the GFS analysis. Then, a 5 h ensemble forecast was launched
for spin-up that would hopefully sample the mesoscale uncertainties of models. The lateral
boundary conditions were generated from the GFS forecasts. To evaluate the impact of
radar reflectivity data on the TC analyses and forecasts, in each DA experiment, radar
reflectivity data were assimilated every 12 min for 5 cycles. The DA cycles started at UTC
1100 and ended at 1200, 9 August, about 5 h before Lekima’s first landfall. The background
fields for each cycle were provided by the 12 min ensemble forecast from the previous
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cycle. At the end of DA cycles, a 12 h deterministic forecast was launched from the analysis
of Member 41 rather than from the ensemble mean in order to exclude the influence of
ensemble forecasting to conduct a fair comparison with CNTL. To examine the impact
of updating different variables, a set of sensitivity experiments were performed. Table 1
lists all experiments presented in this paper. Experiment Z-DA updated a full set of state
variables, namely, u, v, w, MU, θ, qv, hydrometeor mixing ratios (qc, qi, qr, qs, qg), and the
total number concentrations of rain water (Nr), consistent with the Thompson MP scheme
in the WRF model. Experiment Z_NoNr excluded the update of Nr compared to experiment
Z-DA. Increasing the analytical variables (i.e., Nr) in DM MP schemes may aggravate the
underconstraint problem, since only reflectivity observations are assimilated, and the model
error in a real case may lead to filter divergence with unreliable multivariate covariance.
Experiment Z_NoNr was designed to examine the ability of EnKF to simultaneously
estimate all possible state variables associated with the DM MP scheme. Two additional
experiments, Z_NoUV and Z_NoCross (Table 1), were the same as experiment Z-DA but
excluded the update of either horizontal wind components or all large-scale variables (u, v,
w, θ, qv), respectively. These two experiments were designed to investigate the impact of
updated large-scale variables that were not directly linked to reflectivity observations via
the observation operator.
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Table 1. List of experiments.

Experiment Name Assimilated Data Analysis Variables Updated by EnKF

Z-DA Radar reflectivity u, v, w, MU, θ, qv, qc, qi, qr, qs, qg and Nr
Z_NoNr Radar reflectivity As in Z-DA, but Nr was not updated
Z_NoUV Radar reflectivity As in Z-DA, but u and v were not updated

Z_NoCross Radar reflectivity As in Z-DA, but u, v, w, MU, θ and qv were
not updated

CNTL None None

To verify the simulation results, the best track data from the China Meteorological
Administration (CMA) [46,47] were used as the truth. The precipitation observations
were the multisource merged hourly analysis product with a resolution of 0.1

◦ × 0.1
◦

from
CMA [48].

3. Impact of Radar Reflectivity Assimilation
3.1. Impact on TC Analysis and Forecast

At the end of assimilation cycles (12,000 UTC), the forecasted and analyzed composite
reflectivity of experiments CNTL and Z-DA are presented in Figure 3b,c. There was
an obvious asymmetrical double eye-wall structure with the strongest reflectivity in the
northwestern quadrant in the observed truth (Figure 3a). This feature was missing in
the CNTL, but well-captured in experiment Z-DA. Furthermore, CNTL showed stronger
and wider inner-core circulations, especially an overestimated precipitation area that
occurred in the northern quadrant. In experiment Z-DA, a weaker and tighter inner
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core appeared compared to that in CNTL, the overestimated bias was corrected, and the
rainband structures were much closer to the truth.
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The positive impact of radar assimilation on the analysis extended to the following
forecasts (Figure 3d–l). For the 12 min forecast after DA (Figure 3d–f), CNTL still exhibited
wilder and more asymmetric inner rain bands, and was missing a double eye-wall. In
contrast, the forecast initiated from Z-DA analysis was closer to radar observations in bith
the inner core and the region of outer spiral rain bands with weaker and more evenly dis-
tributed precipitation on the eastern coastal area in Zhejiang province. These improvements
in precipitation lasted in the following forecast times (Figure 3g–i).

Figure 4 shows the horizontal wind speed and pressure of the analyses in the final
cycle (1200 UTC, 9 August 2019) for experiments CNTL and Z-DA at a height of 1 km above
the ground and in the vertical west–east cross-section through the individual vortex center
of each experiment. Compared with CNTL, the wind speed was significantly greater, and
the central pressure was lower in experiment Z-DA (Figure 4a,b). For experiment CNTL,
the vortex was asymmetric with the strongest wind speed on the eastern side of the TC
center (Figure 4c,d). With radar data assimilation, experiment Z-DA had a maximal wind of
over 60 m/s, compared with 56 m/s in the CNTL. The height of the wind speed exceeding
44 m/s was over 3 km in the western side in experiment Z-DA, whereas it reached only
1 km in CNTL. Wind speeds exceeding 36 m/s extended to 6 km on both sides of the vortex
in experiment Z-DA. These indicate that a deeper and more symmetrical vortex is obtained
when reflectivity data are assimilated.
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cross−section of horizontal wind speed (shaded, units: m/s) through vortex center in experiments.
(c) CNTL; (d) Z-DA.

3.2. Intensity and Track Forecast

Figure 5 shows a comparison of the track and intensity between experiments CNTL
and Z-DA for a 12 h forecast from 1200 UTC to 0000 UTC, 10 August, together with the
observed best CMA track. Although the maximal wind speeds were underestimated,
a clear improvement was found with reflectivity data assimilation compared to CNTL.
Starting from slightly stronger maximal surface winds, experiment Z-DA had a persistent
smaller intensity error throughout the forecast period (Figure 5a), indicating that radar
reflectivity significantly impacted both the analysis and forecast. Regarding the track,
CNTL showed an obvious westward bias compared to the best track. With radar data
assimilation, experiment Z-DA reduced the westward displacement error and yielded
better track results. Reflectivity data covered only the vortex circulation in the examined
case, and the environmental field (a dominant factor for TC track) was actually not updated
due to the relatively short localization length. With more radar data in the environmental
field, the track forecast might be further improved.

3.3. Precipitation Forecast

Figure 6 presents the 3 h accumulated precipitation from 1800 UTC to 2100 UTC,
9 August, for both CNTL and Z-DA along with CMA precipitation observations. As
verified against the observations, CNTL had a broader maximal rain band with a westward
displacement around the inner core, and underestimated the precipitation north of the
vortex, especially in the area between the city of Shanghai and Jiangsu province. The
assimilation of reflectivity in Z-DA helped in decreasing both the overestimation in the inner
core and underestimation in the north, adjusting the rainfall pattern closer to observations.
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4. Sensitivity Experiments

The ability of EnKF to update certain state variables needs to be further examined,
considering that the degree of freedom of analytical variables increased with a DM MP
scheme. The analysis and forecast root-mean-square innovations (RMSIs) of sensitivity
tests without updating certain state variables are displayed in Figure 7, along with the
Z-DA and CNTL experiments as a benchmark or reference. All the experiments with radar
data assimilation were obviously better than CNTL. Among them, the RMSIs of Z_NoCross
without updating all large-scale cross-variables, including horizontal and vertical wind
components, potential temperature, and water vapor, were obviously the largest for all
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five assimilation cycles. If only excluding the horizontal wind, the result of Z_noUV was
between those of Z-DA and Z_NoCross, indicating that our assimilation could better update
all the large-scale variables through ensemble background error covariance. Furthermore,
the RMSIs of Z_NoNr without updating the number concentrations of rain were also clearly
larger than those of Z-DA at all analytical cycles, suggesting that an imbalance between
mixing ratios and the corresponding total number concentrations may exist when only
mixing ratios are updated. Considering that Z-DA had the lowest RMSIs, it is suggested to
update both microphysical and large-scale variables in the current EnKF system.
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The impacts of not updating certain state variables on the imbalance introduced by
analysis were further investigated. In Figure 8, the domain-averaged absolute surface
pressure tendency, an important criterion for evaluating imbalance, was calculated during
assimilation cycles and the first hour of forecast [49]. The larger the pressure tendencies
were, the less the balance was. Among all the sensitivity experiments without updating
certain variables, pressure tendencies had higher values and more dramatic oscillation than
those in Z-DA. These indicate that updated state variables missing in sensitivity tests could
introduce more noise and provoke greater imbalance into analyses. Experiment Z-DA
showed the smallest pressure tendencies, suggesting that updating all state variables leads
to much more physically consistent analyses in the current reflectivity assimilation.

We also examined the track and intensity forecast for all sensitivity experiments
(Figure 9). Overall, experiment Z-DA with all variables updated had the relatively smallest
errors for both intensity and track forecast, probably because the Z-DA experiment was not
only less unbalanced, but was also able to properly update all state variables. When only
hydrometer variables were updated, most of the benefits of assimilating reflectivity data
were lost, and the intensity forecast was even worse than that in CNTL without assimilating
radar reflectivity.
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5. Conclusions and Discussion

Using the WRF model and GSI-EnKF system with radar DA capabilities, the impacts of
direct radar reflectivity assimilation associated with a DM MP on analysis and forecast for
typhoon Lekima (2019) were investigated. The same Thompson MP scheme was employed
in both the WRF simulation and the observational operator for EnKF DA. As the first
attempt to directly assimilate radar reflectivity by EnKF using a DM MP scheme for a real
TC case, the reflectivity observations from one coastal WSR-88Ds radar were assimilated
every 12 min over a 1 h DA window. Experiments with and without assimilating reflectivity
data were conducted. Results show that the direct assimilation of reflectivity significantly
reduced the RMSEIs of both analyses and forecasts. Compared to those in experiment CNTL
without assimilation, analyses in the Z-DA experiment at the final cycle were much more
accurate, with the circulations and structures much closer to the observations with double
eye-wall structures and stronger wind speeds. With the better analyses, experiment Z-DA
was able to improve Lekima’s forecast skills in terms of track, intensity, and precipitation.

Additional sensitivity experiments were conducted to investigate the underconstraint
issue due to the increased degree of freedom associated with the DM MP scheme. The
results show that experiment Z-DA with all analytical variables updated produced the best
analytical fit to the reflectivity observations and the smallest forecast error growth rate.
The three sensitivity experiments (Z_NoCross, Z_NoUV, and Z_NoNr) without updating
certain analytical variables produced worse results than those of experiment Z-DA for
both analyses and forecasts, while differences among the three sensitivity experiments
were relatively significant. The worst results in Z_NoCross were likely due to the lack of
dynamic consistency in the analyzed fields. To understand the impact of updating different
state variables, the mean absolute values of surface pressure tendency were examined.
Experiment Z-DA, updating both hydrometers and other large-scale variables not directly
involved in observation operator of reflectivity, had the smallest imbalance, resulting in the
largest improvement in the forecast skill of intensity and track. This result indicates that our
EnKF framework could handle the increased degree of freedom issue associated with the
DM MP scheme, which is inconsistent with that in Dong and Xue [28], who used reflectivity
to update only pressure and hydrometers due to the negative impact found when updating
other large-scale variables. One possible reason is that more reliable ensemble covariance
was obtained in the current simulation; further investigation and research are needed in
the future.

As the first attempt to directly assimilate radar reflectivity based on a DM MP for TC
application, this study is meaningful for exploring the potential of radar data in TC forecast.
However, only one case of typhoon was studied, so more experiments with more TC cases
are essential to obtain robust conclusions. Further improvement may also be possible by
investigating many other DA factors, such as the observation errors associated with radar
operator and adaptive vertical localization.
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