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ABSTRACT

Spread and skill of mixed- and single-physics convection-allowing ensemble forecasts that share the same

set of perturbed initial and lateral boundary conditions are investigated at a variety of spatial scales. Forecast

spread is assessed for 2-m temperature, 2-m dewpoint, 500-hPa geopotential height, and hourly accumulated

precipitation both before and after a bias-correction procedure is applied. Time series indicate that themixed-

physics ensemble forecasts generally have greater variance than comparable single-physics forecasts. While

the differences tend to be small, they are greatest at the smallest spatial scales and when the ensembles are not

calibrated for bias. Although differences between the mixed- and single-physics ensemble variances are

smaller for the larger spatial scales, variance ratios suggest that the mixed-physics ensemble generates more

spread relative to the single-physics ensemble at larger spatial scales. Forecast skill is evaluated for 2-m

temperature, dewpoint temperature, and bias-corrected 6-h accumulated precipitation. The mixed-physics

ensemble generally has lower 2-m temperature and dewpoint root-mean-square error (RMSE) compared to

the single-physics ensemble. However, little difference in skill or reliability is found between the mixed- and

single-physics bias-corrected precipitation forecasts. Overall, given that mixed- and single-physics ensembles

have similar spread and skill, developers may prefer to implement single- as opposed to mixed-physics

convection-allowing ensembles in future operational systems, while accounting for model error using

stochastic methods.

1. Introduction

Over the past decade, advances in computing power

have enabled numerical weather prediction (NWP) fore-

casts from fine-resolution convection-allowing ensembles.

As early as 2007, the Center for Analysis and Pre-

diction of Storms (CAPS) began running an experi-

mental 10-member, 33-h ensemble with 4-km grid

spacing over the contiguous United States (CONUS)

to facilitate the prediction of severe weather during

the 2007 NOAA Hazardous Weather Testbed Spring

Forecasting Experiment (HWT SFE; Xue et al. 2007).

This convection-allowing ensemble produced skill-

ful and useful forecasts of composite reflectivity, accu-

mulated precipitation, and probability of precipitation

(Xue et al. 2007; Schwartz et al. 2010; Clark et al. 2009).

More recent HWT SFEs have studied aspects of

convection-allowing ensemble design using controlled

experiments based on subsets of the Community Lev-

eraged Unified Ensemble (CLUE; Clark et al. 2018).

HWT SFEs have also examined various applications of

convection-allowing ensembles, including their use to

create probabilistic all-hazards severe weather forecast

guidance (Kain et al. 2008; Sobash et al. 2011), tornadoCorresponding author: Eric D. Loken, eric.d.loken@noaa.gov

APRIL 2019 LOKEN ET AL . 305

DOI: 10.1175/WAF-D-18-0078.1

� 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

mailto:eric.d.loken@noaa.gov
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


pathlength forecasts (Clark et al. 2013), and probabi-

listic tornado (Gallo et al. 2016) and hail (Gagne et al.

2017; Adams-Selin and Ziegler 2016) forecasts. Ulti-

mately, the work done in past HWT SFEs led to the

implementation of the High Resolution Ensemble

Forecast system version 2 (HREFv2; Clark et al. 2017)

as the first operational convection-allowing ensemble in

the fall of 2017.

In general, ensembles can offer benefits over deter-

ministic models because they account for uncertainties

in initial conditions (ICs) and model physics (e.g.,

Roebber et al. 2004; Leutbecher and Palmer 2008;

Clark et al. 2009). Convection-allowing ensembles

show unique promise because they not only account

for these uncertainties, but each of their members is

able to explicitly simulate convection, which has been

shown to result in better predictions of convective mode

and evolution (e.g., Kain et al. 2006; Done et al. 2004).

Indeed, while it has long been known that ensem-

ble mean forecasts tend to outperform forecasts from

similarly configured deterministic models at convection-

parameterizing resolution (e.g., Epstein 1969; Leith 1974;

Clark et al. 2009), recent evidence suggests that

convection-allowing ensembles tend to outperform de-

terministic models at convection-allowing resolution

as well (e.g., Coniglio et al. 2010; Loken et al. 2017;

Schwartz et al. 2017).

Despite the promise of convection-allowing ensem-

bles, much is still unknown about their optimal con-

figuration (e.g., Roebber et al. 2004; Romine et al.

2014; Duda et al. 2014; Johnson and Wang 2017).

One problem is that the vast majority of convection-

allowing ensembles are underdispersive [i.e., observed

events routinely fall outside of the forecast probability

density function (PDF)], especially for precipitation

fields (e.g., Clark et al. 2008, 2010; Romine et al. 2014).

Many previous studies have investigated methods to

increase ensemble spread at convective-parameterizing

resolutions, including perturbing initial conditions (e.g.,

Toth and Kalnay 1993, 1997; Molteni et al. 1996) and

using multiple models (e.g., Wandishin et al. 2001; Hou

et al. 2001; Ebert 2001; Eckel and Mass 2005) and

physics parameterizations (e.g., Stensrud et al. 2000;

Gallus and Bresch 2006). More recent work has stud-

ied the impact of incorporating multiple planetary

boundary layer (PBL) and/or microphysics schemes

within convection-allowing ensembles (e.g., Schwartz

et al. 2010; Duda et al. 2014; Johnson and Wang 2017),

generally finding that mixed-microphysics and mixed-

PBL ensembles result in improved ensemble spread

and skill. For example, during the 2015 Plains Elevated

Convection at Night (PECAN) experiment, Johnson

and Wang (2017) found that both of two mixed-physics

convection-allowing ensembles—which used a variety

of microphysics and PBL schemes—produced better

nocturnal precipitation and nonprecipitation forecasts

compared to a single-physics ensemble, which used

Thompson microphysics (Thompson et al. 2004) and the

Mellor–Yamada–Nakanishi–Niino (MYNN; Nakanishi

2000, 2001; Nakanishi and Niino 2004, 2006) PBL. The

mixed-physics ensembles in Johnson and Wang (2017)

generally produced better subjective forecasts of noc-

turnal convection as well: relative to the single-physics

ensemble, they reduced nocturnal mesoscale convec-

tive system (MCS) location errors, produced improved

storm structures in nocturnal initiating convection, and

had more members forecast observed nocturnal con-

vective initiation. That multiple microphysics and PBL

parameterizations can improve forecasts related to

convection is unsurprising; previous research has found

simulated thunderstorms to be quite sensitive to mi-

crophysics parameterizations (e.g., Gilmore et al. 2004;

van den Heever and Cotton 2004; Snook and Xue

2008). However, it is currently unknown—especially

for convective-allowing ensembles—whether the ben-

efits of using multiple microphysics and PBL parame-

terizations are apparent only at relatively small spatial

scales. Given that larger spatial scales are associated

with greater predictability (Lorenz 1969), it is possible

that accounting for the uncertainties in modeled mi-

crophysics and PBL may matter less for larger spatial

scales, where predictability is already relatively high.

For example, it is possible that, while a mixed-physics

ensemble improves the precise placement of forecast

convective systems and produces better forecasts of

storm structure, the overall forecasts (i.e., the general

location of forecast precipitation-producing systems)

provided by a mixed- and single-physics convection-

allowing ensemble may not be drastically different at

synoptic (or larger meso) scales. It is also possible that

the relative benefits (i.e., superior forecast spread and

skill) of using multiple microphysics and PBL param-

eterizations may depend on the variable of interest

(e.g., mass-related or low-level variables; Clark et al.

2010) and/or forecast hour/time of day. Given that

ensembles with only one microphysics and one PBL

scheme are easier for model developers to maintain, it

is important to determine if and when a single-physics

convection-allowing ensemble can perform nearly as

well as a mixed-physics ensemble.

For this task, the present study uses data from the

2016 CLUE (Clark et al. 2018), a collection of 65

ensemble members with similar specifications and

postprocessing methods contributed by a variety of

organizations [e.g., the National Severe Storms Labo-

ratory (NSSL), CAPS, the University of North Dakota,
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NOAA’s Earth Systems Research Laboratory/Global

Systems Division (ESRL/GSD), and the National Cen-

ter for Atmospheric Research (NCAR)] during the 2016

HWT SFE. Forecast spread (i.e., ensemble variance) is

analyzed for 2-m temperature, 2-m dewpoint tempera-

ture, 500-hPa geopotential height, and hourly accumu-

lated precipitation at a variety of spatial scales; forecast

skill is evaluated for hourly and 6-h accumulated pre-

cipitation. Up to 36-h forecasts are considered.

The remainder of this paper is organized as follows:

section 2 details the methods used, section 3 presents the

results, section 4 examines ensemble forecasts in four

cases, section 5 summarizes and discusses the results,

and section 6 concludes the paper by considering im-

plications for ensemble design and offering suggestions

for future work.

2. Methods

a. Dataset

The 65-member CLUE was run for 24 days during

the 2016 NOAAHWT SFE, which spanned from early

May to early June. Herein, 36-h forecast data from

two 2016 CLUE subsets are analyzed for 23 days of the

2016 NOAA HWT SFE (Table 1; note that 24 May

2016 is excluded from analysis since not all members

had data available on that day). Subjective analysis

of archived radar reflectivity data suggests that this

23-day analysis period contained a mixture of strongly

and weakly forced convective events and both dis-

crete and linear convective modes; however, the data-

set included slightly more strongly than weakly forced

events and slightly more linear than discrete dominant

convective modes.

The two ensemble subsets examined include a

9-member CAPS subset with multiple microphysics and

PBL schemes (henceforth referred to as the mixed-

physics ensemble) and a 10-member CAPS subset with

only Thompson microphysics and the Mellor–Yamada–

Janjić (MYJ; Mellor and Yamada 1982; Janjić 2002)

PBL scheme (henceforth referred to as the single-

physics ensemble). While such small ensembles pro-

vide less than optimal sampling of the forecast PDF,

previous research (e.g., Clark et al. 2011; Schwartz et al.

2014) suggests that even relatively small ensembles

(i.e., 10–20 members) can provide skillful precipita-

tion forecasts. All members from both ensemble sub-

sets use 3-km horizontal grid spacing over a domain

covering the CONUS, although the analysis domain

is restricted to the eastern 2/3 of the CONUS (Fig. 1).

Further, all members contain 1680 grid points in the

east–west direction and 1152 grid points in the north–

south direction, have perturbed initial and lateral boundary

conditions (LBCs), and use the Noah land surface

model (Chen and Dudhia 2001) and the Advanced

Research Weather Research and Forecasting dynamic

core (Skamarock et al. 2008). Initialization for all mem-

bers is done on weekdays using analyses from the

0000 UTC 12-km North American Mesoscale Model

(NAM). Radar (WSR-88D) data, and surface and

upper-air observations are assimilated using the Ad-

vanced Regional Prediction System three-dimensional

variational data assimilation and cloud analysis system

(ARPS 3DVAR; Xue et al. 2003; Gao et al. 2004; Clark

et al. 2016). Specifications for both ensemble subsets

are summarized in Table 2. Notably, both the mixed-

and single-physics ensembles use one common mem-

ber (core01), since it is the control member of both

subsets. Further, the mixed-physics ensemble con-

tains 9 members instead of 10 since data from core02

were unavailable throughout the analysis period.

However, preliminary tests (not shown) indicate

the results presented herein are similar whether the

9-member mixed-physics ensemble is compared against a

10- or 9-member (with s-phys-rad06 excluded) single-

physics ensemble.

b. Evaluating ensemble spread

1) ENSEMBLE VARIANCE

To determine ensemble spread, forecast ensemble

variance is computed for four variables—2-m tempera-

ture, 2-m dewpoint temperature, 500-hPa geopotential

height, and hourly accumulated precipitation—for

forecast hours 0–36 using Eq. (B7) in Eckel and Mass

(2005):

Variance5
1

M
�
M

m51

�
1

(n2 1)
�
n

i51

(e
m,i

2 e
m
)2
�
, (1)

where M is the number of forecast–observation data

pairs (which, here, includes the number of non-

overlapping spatial windows in the domain over each of

the 23 days in the analysis), n is the number of ensemble

members, em,i is the value of the ith ensemble member at

m, and em is the ensemble mean at m. To assess the

impact of spatial scale, variance is calculated for square

neighborhoods of varying sizes using the ‘‘upscaling’’

method (Ebert 2009), which assigns the mean of the

TABLE 1. Dates from the 2016 NOAA HWT SFE included in

the dataset.

Month Day

May 2–6; 9–13; 16–20; 23; 25–27; 30–31

June 2–3
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finer-resolution grid boxes making up a given neigh-

borhood to that neighborhood.

While a variety of neighborhood sizes from 3 to

720 km are analyzed, only five sizes are displayed

herein. These neighborhoods contain 1, 8, 24, 48, and

96 grid boxes per side. Since all ensemble members

operate at 3-km horizontal grid spacing, the five

neighborhoods measure 3, 24, 72, 144, and 288 km,

respectively, on each side. Only neighborhoods falling

completely within the analysis domain are included in

the variance calculations, and the ‘‘upscale’’ averaging

is done prior to computing the ensemble mean. The

difference between the mixed- and single-physics en-

semble variance (i.e., mixed-physics variance minus

single-physics variance) and the ratio of single-physics

ensemble variance to mixed-physics ensemble variance

FIG. 1. 2016 CLUE domain (black contour) and analysis domain (gray shading).

TABLE 2. Mixed- and single-physics ensemble member specifications (adapted from Clark et al. 2016, 2018). A superscript ‘‘a’’ denotes

use in the mixed-physics ensemble, while a superscript ‘‘b’’ denotes use in the single-physics ensemble. NAMa and NAMf denote the

12-km NAM analysis and forecast, respectively. Here, 3DVAR refers to the ARPS three-dimensional variational data assimilation and

cloud analysis (Xue et al. 2003; Gao et al. 2004). Elements in the IC column ending with ‘‘pert’’ are perturbations extracted from a 16-km

grid-spacing 3-h Short-Range Ensemble Forecast (SREF; Du et al. 2014) member. Elements in the LBC column after the first row refer

to SREF member forecasts. Ensemble microphysics schemes include Thompson (Thompson et al. 2004), Predicted Particle Properties

(P3; Morrison and Milbrandt 2015), Milbrandt and Yau (MY; Milbrandt and Yau 2005), and Morrison (Morrison et al. 2005). Ensemble

boundary layer schemes include MYJ (Mellor and Yamada 1982; Janjić 2002), Yonsei University (YSU; Noh et al. 2003), and MYNN

(Nakanishi 2000, 2001; Nakanishi and Niino 2004, 2006).

Ensemble member IC LBC Microphysics PBL

core01a,b NAMa13DVAR NAMf Thompson MYJ

core03a core01 1 arw-p1_pert arw-p1 P3 YSU

core04a core01 1 arw-n1_pert arw-n1 MY MYNN

core05a core01 1 arw-p2_pert arw-p2 Morrison MYJ

core06a core01 1 arw-n2_pert arw-n2 P3 YSU

core07a core01 1 nmmb-p1_pert nmmb-p1 MY MYNN

core08a core01 1 nmmb-n1_pert nmmb-n1 Morrison YSU

core09a core01 1 nmmb-p2_pert nmmb-p2 P3 MYJ

core10a core01 1 nmmb-n2_pert nmmb-n2 Thompson MYNN

s-phys-rad02b core01 1 arw-p1_pert arw-p1 Thompson MYJ

s-phys-rad03b core01 1 arw-n1_pert arw-n1 Thompson MYJ

s-phys-rad04b core01 1 arw-p2_pert arw-p2 Thompson MYJ

s-phys-rad05b core01 1 arw-n2_pert arw-n2 Thompson MYJ

s-phys-rad06b core01 1 arw-p3_pert arw-p3 Thompson MYJ

s-phys-rad07b core01 1 nmmb-p1_pert nmmb-p1 Thompson MYJ

s-phys-rad08b core01 1 nmmb-n1_pert nmmb-n1 Thompson MYJ

s-phys-rad09b core01 1 nmmb-p2_pert nmmb-p2 Thompson MYJ

s-phys-rad10b core01 1 nmmb-n2_pert nmmb-n2 Thompson MYJ
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(i.e., single-physics variance/mixed-physics variance)

are also computed.

Because systematic biases from each ensemble mem-

ber contribute to forecast spread but not to forecast un-

certainty (since systematic biases are not uncertain; e.g.,

Eckel and Mass 2005; Clark et al. 2010, 2011), a prob-

ability matching technique (Ebert 2001; Clark et al.

2010) is used to eliminate systematic biases among

the ensemble members. Conceptually, this technique

assigns the PDF of one dataset to another dataset to

eliminate systematic ensemble biases. Herein, because

the core01 member serves as the control member of

both the mixed- and single-physics ensemble, the PDF

of the core01 member is assigned to each of the other

ensemble members. This is done by first sorting each

member’s forecast precipitation values from all grid

points on a given day and forecast hour from largest to

smallest. Then, for each member, the grid point con-

taining the largest forecast precipitation value is re-

placed with the largest forecast value from the core01

member, and so on until all of the values have been

replaced. In this way, the spatial patterns of each

member’s original forecasts are maintained, but the

amplitudes of each member’s forecast are replaced

with amplitudes from the core01 member (e.g., Clark

et al. 2010). Hence, after probability matching, all en-

semble members contain the same bias (i.e., the bias of

the core01 member) for a given forecast hour on a

given day, where bias is defined by

bias5
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N
�
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i51

F
i

1

N
�
N
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O
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5
�
N
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F
i

�
N

i51

O
i

, (2)

where N is the number of grid points within the analysis

domain, Fi is the forecast precipitation value at point

i, and Oi is the observed precipitation value at point

i. Unlike in Clark et al. (2010), the PDF of the obser-

vations is not assigned to each ensemble member for this

portion of the study, since the primary purpose here is

to evaluate ensemble spread (as opposed to skill), and

using the PDF of the core01 member—which is already

appropriately gridded for analysis—is more convenient

than using multiple observation datasets. As with the

raw dataset, bias-corrected variance differences (i.e.,

mixed-physics variance minus single-physics variance)

and ratios (i.e., bias-corrected single-physics variance/

bias-corrected mixed-physics variance) are computed.

2) RANK HISTOGRAMS

While ensemble variance gives ameasure of agreement

between ensemble members, it does not tell whether an

ensemble forecast system contains an appropriate

amount of spread relative to the observations. Rank

histograms (e.g., Hamill 2001), which tally the rank of

the observation relative to the ensemble members’

forecasts, fill this role. Sloped rank histograms indicate

ensemble biases, while U-shaped rank histograms can

indicate ensemble underdispersion relative to the ob-

servations or conditional bias (Hamill 2001).

Herein, rank histograms are computed for the mixed-

and single-physics ensemble’s hourly precipitation fore-

casts at six forecast hours (i.e., hours 6, 12, 18, 24, 30, and

36). NCAR/EOL Stage IV precipitation data (Lin 2011)

are used as the observational dataset, although the ranks

are computed on the forecast grid. Rank histograms are

created before and after accounting for systematic

ensemble biases using the technique based on proba-

bility matching described above. While observational

errors may impact the shape of rank histograms (e.g.,

Hamill 2001), observational errors are assumed to be

small relative to the spread of the ensemble and are

therefore not accounted for in the rank histograms

presented herein.

c. Evaluating ensemble skill

1) HOURLY ENSEMBLE MEAN 2-M TEMPERATURE

AND DEWPOINT TEMPERATURE

Each ensemble’s mean hourly 2-m temperature and

dewpoint temperature forecasts are verified against

data from 2232 Automated Surface Observing Systems

(ASOSs) falling within the analysis domain (Fig. 2).

Specifically, the gridded mean ensemble forecasts are

interpolated to the observation points shown in Fig. 2

using nearest neighbor interpolation, as performed

by Model Evaluation Tools Version 6.1 (METv6.1;

Developmental Testbed Center 2017). METv6.1 is then

used to compute root-mean-square error (RMSE) values

for each ensemble’smean 2-m temperature and dewpoint

temperature at each forecast hour from 0 to 36, aggre-

gated over the 23-day dataset.

A two-sided paired permutation test (e.g., Good

2006) is used to test for significant differences between

the mixed- and single-physics RMSE at each forecast

hour for ensemble mean 2-m temperature and dew-

point temperature. A paired permutation test is used in

favor of a one-sample t test on the RMSE differences

(e.g., Mittermaier et al. 2013) since the permutation

test does not require an assumption that the data

follow a normal distribution and avoids the estimation

of an effective sample size. The paired permutation test

uses the mixed- and single-physics RMSE values from

each of the 23 individual days in the dataset. For each

day, the mixed- or single-physics RMSE is randomly
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assigned to list 1, while the other RMSE is assigned to

list 2, and the difference between the two lists’ mean

RMSE is noted. This procedure is repeated 10000 times

to form a null distribution of mean RMSE differences.

The actual mean RMSE difference (mixed-physics

RMSE minus single-physics RMSE) is compared to the

null distribution to assess significance using a 5 0.05.

2) 6-H PRECIPITATION

Six-hour ensemble precipitation forecasts are eval-

uated for six nonoverlapping forecast periods, which

cover forecast hours 0–6,1 6–12, 12–18, 18–24, 24–30,

and 30–36. NCAR/EOL Stage IV precipitation data

(Lin 2011) are treated as ‘‘truth’’ for verification. The

Stage IV data are produced on an approximately

4.8-km polar stereographic grid with 1121 east–west

grid points and 881 north–south grid points; therefore,

a neighbor budget method (Accadia et al. 2003) is used

to remap the data to a 3-km Lambert conformal grid

with 1680 east–west grid points and 1152 north–south

grid points to match the grid used by the forecasts.

The remapped Stage IV data are used for verification

and are compared against bias-corrected precipitation

forecasts from the mixed- and single-physics ensem-

bles. Probability matching (Clark et al. 2010) is again

used to calibrate each ensemble for bias. In this portion

of the study, the PDF of the remapped Stage IV ob-

servation data is assigned to each ensemble member

to eliminate systematic and nonsystematic biases, as in

Clark et al. (2010). Metrics used for verification in-

clude: fractions skill score (FSS; Roberts and Lean

2008), area under the relative operating characteristics

curve (AUC; e.g., Marzban 2004), and attributes dia-

grams (Hsu and Murphy 1986).

Given its design to be computed over a variety of

neighborhoods, FSS is useful for determining forecast

skill at a variety of spatial scales. Unlike some other

forecast evaluation metrics (e.g., area under the rel-

ative operating characteristics curve), FSS depends on

bias; more biased forecasts always produce lower FSS

values at large spatial scales and usually produce

lower FSS values at small spatial scales (Mittermaier

and Roberts 2010). FSS can be expressed mathemat-

ically as

FSS5 12

1

M
�
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m51

(F
m
2O

m
)2

1
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m51
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m 1 �

M

m51
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! , (3)

where M is the number of forecast–observation pairs

(which includes the number of overlapping spa-

tial windows in the domain over each day in the

analysis), Fm is the ensemble mean forecast fraction

at m, and Om is the observed fraction at m. Herein,

FSS is computed for accumulated 6-h precipitation at

each of the aforementioned 6-h forecast periods us-

ing 0.10-, 0.25-, 0.50-, 0.75-, and 1.00-in. precipitation

FIG. 2. ASOSs (blue dots) used for verification within the analysis domain (shaded).

1While verification metrics are shown beginning with the first

6-h period aftermodel initialization, it should be noted that the first

several forecast hours likely fall within the spinup period for each

ensemble member. Results from the early forecast periods should

be interpreted accordingly.

310 WEATHER AND FORECAST ING VOLUME 34



thresholds. Forecasts (observations) meeting or ex-

ceeding the threshold are considered to be ‘‘yes’’

forecasts (observations). To determine how FSS var-

ies with spatial scale, ten square neighborhoods are

examined; these measure 3, 6, 9, 12, 18, 24, 36, 48, 72,

and 144 km per side.

A skillful baseline FSS score is given by

FSS
useful

5 0:51
f
0

2
, (4)

where f0 represents the fractional coverage of ‘‘yes’’

forecasts over the entire domain (and, in this case, over

all days in the analysis; Roberts and Lean 2008). Note

that FSSuseful, as given in Eq. (4), is equivalent to

FSSuniform in Roberts and Lean (2008). The smallest

scale for which FSS 5 FSSuseful is considered to be the

smallest useful scale (i.e., the scale at which the forecast

contains useful information; Roberts and Lean 2008).

As with the 2-m temperature and dewpoint temperature

skill verification, a two-sided paired permutation test

(Good 2006) is used to test for significant differences

between the mixed- and single-physics ensemble FSS at

each spatial scale for each of the six 6-h periods.

The two ensembles’ 6-h accumulated precipitation

forecasts are further evaluated usingAUC (e.g.,Marzban

2004), which measures a forecast system’s ability to dis-

criminate between events and nonevents (e.g., Mason

and Graham 2002). AUC values greater than or equal

to 0.70 are considered useful in an ensemble framework

(Buizza et al. 1999). The same five precipitation

thresholds used in the FSS analysis are used in the

AUC computations to convert the quantitative pre-

cipitation forecasts (QPF) into binary forecasts. In

each ensemble member, grid points that meet or ex-

ceed the given threshold are assigned a value of 1,

while all other grid points are assigned a value of 0.

Next, at each point, the ratio of ensemble members

containing a 1 to the number of members contain-

ing a 0 is computed. This fraction is smoothed using

a two-dimensional kernel density function to create

forecast probability values (e.g., Brooks et al. 1998;

Sobash et al. 2011; Loken et al. 2017). Specifically, the

following equation is used:
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n51
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#
, (5)

where f is the forecast probability at a point, N is the

number of points where at least one ensemble member

exceeds the precipitation threshold, dn is the distance

from the current point to the nth point, and s is the

standard deviation of the Gaussian kernel [hereafter

referred to as the spatial smoothing parameter as in

Sobash et al. (2011) and Loken et al. (2017)]. Spa-

tial smoothing parameter values from 2 to 144 km are

tested. AUC is then computed by summing contin-

gency table elements over all grid boxes in the domain

and over all days in the analysis. As in Loken et al.

(2017), probability of detection [POD; Eq. (3) in Loken

et al. 2017] and probability of false detection [POFD;

Eq. (4) in Loken et al. 2017)] are computed at the fol-

lowing levels of probability: 1%, 2%, and from 5% to

95% in increments of 5%. Grid points meeting or ex-

ceeding the given probability level are considered to be

‘‘yes’’ forecasts, while other grid points are considered

to be ‘‘no’’ forecasts at the given probability level. A

two-sided hypothesis test based on resampling (Hamill

1999; Loken et al. 2017) is used to test whether differ-

ences between the mixed- and single-physics AUC

values are significant, using a 5 0.05.

Because AUC does not give information about fore-

cast reliability (Wilks 2001), attributes diagrams (Hsu

and Murphy 1986) are used to assess forecast reliability.

Attributes diagrams, which plot observed relative fre-

quency against forecast probability, are used to assess

the impact of spatial smoothing on reliability at each of

the five precipitation thresholds and at each of the six

6-h forecast periods. To determine whether statistically

significant differences exist between the two ensem-

bles’ reliability, each ensemble’s reliability component

of the Brier score (Murphy 1973) is computed for each

forecast period and value of the spatial smoothing pa-

rameter for each day in the dataset. Specifically, the

reliability component of the Brier score can be ex-

pressed as

Reliability5
1

N
�
K

k51

n
k
(p

k
2 o

k
)2 , (6)

where N is the number of grid points in the analysis

domain, K is the number of forecast probability bins, nk

is the number of forecasts in bin k, pk is the forecast

probability in bin k, and ok is the mean observed relative

frequency in bin k (Wilks 1995). A paired permutation

test (Good 2006) is then used to test for significance at

a 5 0.05 in the same manner as previously described.

3. Results

a. Ensemble spread

1) RAW ENSEMBLE VARIANCE

For each of the four variables analyzed (i.e., 2-m

temperature, 2-m dewpoint temperature, 500-hPa geo-

potential height, and hourly accumulated precipitation),

the smallest (largest) spatial scales generally have the
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greatest (lowest) variances at a given forecast hour

(Figs. 3a,d,g,j). This finding makes sense: as the spatial

scale (i.e., size of the neighborhood) increases, the

variance becomes less sensitive to small, local differ-

ences between ensemble members due to the in-

creased spatial averaging. Physically, it also makes

sense that the smallest scales will have the greatest

variances, since smaller eddies are more difficult to

predict and are therefore associated with more un-

certainty (e.g., Lorenz 1969).

Consistent with the findings of Clark et al. (2010),

a diurnal cycle is noted in the 2-m temperature, 2-m

dewpoint, and hourly precipitation variance time series

(Figs. 3a,d,j). The hourly precipitation time series

(Fig. 3j) contains the most well-defined diurnal cycle;

local maxima in variance exist around forecast hours

3 (i.e., 0300 UTC) and 24 (i.e., 0000 UTC the next day).

Less well-pronounced diurnal cycles are seen in the 2-m

temperature and 2-m dewpoint variance time series

(Figs. 3a,d). Both variables have local minima in vari-

ance around forecast hours 12 and 26. As in Clark et al.

(2010), the 500-hPa geopotential height variance time

series does not exhibit a diurnal cycle. The 500-hPa

geopotential height variance generally increases with

time, with the variance increasing faster for the smaller

spatial scales.

FIG. 3. Time series of (a)mixed- (solid) and single-physics (dashed) ensemble variance, (b) variance differences (mixed-physics variance

minus single-physics variance), and (c) variance ratios (single-physics variance/mixed-physics variance) for 2-m temperature forecasts at

spatial scales of 3 (black), 24 (purple), 72 (blue), 144 (light green), and 288 km (dark green). (d)–(f) As in (a)–(c), but for 2-m dewpoint

temperature forecasts. (g)–(i) As in (a)–(c), but for 500-hPa geopotential height forecasts. (j)–(l) As in (a)–(c), but for hourly precipitation

forecasts. A black dashed line denotes a variance difference of 0 in the center column and a variance ratio of 1 in the right column.
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Variance differences (Figs. 3b,e,h,k) indicate that the

mixed-physics ensemble nearly always generates greater

variance than the single-physics ensemble at a given

spatial scale and forecast hour for a given variable. This

difference in variance is generally greater at the smaller

spatial scales. For 500-hPa geopotential height, the dif-

ference increases steadily as forecast time increases

(Fig. 3h). For the other variables, the difference depends

on the diurnal cycle.

To determine how the proportion of spread gen-

erated by the mixed-physics ensemble varies with

time, ratios of single-physics ensemble variance/mixed-

physics ensemble variance are computed (Figs. 3c,f,i,l).

While the 500-hPa geopotential height variance

ratios remain approximately constant with time and

do not differ dramatically with spatial scale (Fig. 3i),

the variance ratios from the other fields have more

noticeable variations with time and spatial scale. For

example, the 2-m temperature ratios reach a local

maximum at approximately forecast hour 18 (Fig. 3c),

indicating that, proportionally, the mixed-physics en-

semble contributes less variance at that time than at

other forecast hours. The 2-m dewpoint and hourly

precipitation ratios also vary with time, although with

much less well-defined local maxima and minima

(Figs. 3f,l). Despite these variations, the variance ra-

tios remain below 1.0 for nearly all spatial scales and

forecast hours for all four variables, signifying that

the mixed-physics ensemble generally produces more

spread, proportionally, relative to the single-physics

ensemble.

Interestingly, for the 2-m temperature, 2-m dewpoint

temperature, and hourly accumulated precipitation

fields, the variance ratio is smallest—indicating that the

mixed-physics generates proportionally more spread—

for the largest spatial scales (Figs. 3c,f,l). Thus, even

while the difference between the mixed- and single-

physics variances is lowest for the largest spatial scales

(Figs. 3a,b,d), the proportion of variance created by the

mixed-physics ensemble is largest—at least for these

three variables.

2) BIAS-CORRECTED ENSEMBLE VARIANCE

Correcting for bias preserves the general shape of

the variance time series for a given variable but tends

to decrease the variance from both the mixed- and

single-physics ensembles (Figs. 4a,d,g,j). This result is

expected given that the bias-correction procedure re-

moves some of the ‘‘artificial’’ spread that results from

systematic biases among the ensemble members (Clark

et al. 2010). The reduced spread in the bias-corrected

time series is most clearly seen in the 500-hPa geo-

potential height variances (Figs. 4g, 3g).

After bias-correction is applied, the difference be-

tween the mixed- and single-physics ensemble vari-

ance is reduced for all four variables at nearly all

forecast hours and spatial scales (Figs. 4b,e,h,k and

Figs. 3b,e,h,k). The precipitation variance difference

after bias-correction (Fig. 4k) is especially noteworthy:

the difference between the mixed- and single-physics

ensemble variance after bias-correction is nearly 0 at

all forecast hours and spatial scales. This result implies

that the mixed-physics ensemble had more systematic

biases—and therefore more ‘‘artificial’’ spread (Clark

et al. 2010)—than the single-physics ensemble. Thus,

removing the systematic biases from both ensembles

would be expected to reduce the variance of the mixed-

physics ensemble more than that from the single-

physics ensemble.

For each of the four variables studied, bias-correction

tends to push the single-physics ensemble variance/

mixed-physics ensemble variance ratios slightly to-

ward 1.0 (Figs. 4c,f,i,l and Figs. 3c,f,i,l). In nearly all

cases, this change indicates an increased proportion

of variance generated by the single-physics ensemble

when bias correction is applied. The effect is seen for

most spatial scales and forecast hours.

3) RANK HISTOGRAMS

Before correcting for systematic biases, both en-

sembles’ rank histograms are skewed to the right for all

six forecast hours examined (Fig. 5), suggesting both

ensembles tend to overforecast 1-h precipitation. The

mixed-physics rank histograms (Figs. 5a–f) tend to be

more strongly skewed than the corresponding single-

physics rank histograms (Figs. 5g–l), especially at the

later forecast hours. This result suggests that the sys-

tematic biases within the mixed-physics ensemble are

predominantly in one direction (i.e., positive), pro-

ducing an ensemble system with more overforecasting

bias than the single-physics ensemble.

Correcting for systematic biases flattens both en-

sembles’ rank histograms (Fig. 6), a result consistent

with Clark et al. (2009). However, some skewness

remains at all forecast hours since the bias-correction

procedure replaces the PDF of each member with

the PDF of the core01 control member, which has

suboptimal bias. As expected, the mixed-physics

ensemble benefits more from the bias-correction

technique than the single-physics ensemble due to

its greater initial systematic biases. A slight U shape

is noted in both ensembles after bias correction,

particularly at forecast hour 24 (Figs. 6d,j), suggest-

ing that both ensembles are underdispersive relative to

the observations. Adding more members to each en-

semble could potentially alleviate this underdispersion
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by providing a more complete sampling of the

forecast PDF.

b. Ensemble skill

1) HOURLY 2-M TEMPERATURE AND DEWPOINT

TEMPERATURE RMSE

The mixed- and single-physics ensembles produce

forecast hourly 2-m temperatures that have subjectively

similar RMSE values throughout the 36-h forecast pe-

riod (Fig. 7a). Between forecast hours 14 and 27, a sig-

nificant difference between the two ensembles’ hourly

2-m temperature RMSE is noted at only one forecast

hour (i.e., hour 24). Results from the paired permutation

test show that a significant difference between the two

ensembles’ hourly 2-m temperature RMSE exists

22 times out of the 37 possible forecast/analysis hours

(i.e., hours 0–36). In 18 of these cases, the mixed-

physics ensemble has the lower RMSE.

The RMSE from the two ensembles’ 2-m dewpoint

temperature forecasts have greater subjective and ob-

jective differences. The mixed-physics ensemble RMSE

is always less than the corresponding single-physics

RMSE for all forecast hours examined (Fig. 7b).

FIG. 4. Bias-corrected time series of (a) mixed- (solid) and single-physics (dashed) ensemble variance, (b) variance differences (mixed-

physics variance minus single-physics variance), and (c) variance ratios (single-physics variance/mixed-physics variance) for 2-m tem-

perature forecasts at spatial scales of 3 (black), 24 (purple), 72 (blue), 144 (light green), and 288 km (dark green). (d)–(f) As in (a)–(c), but

for 2-m dewpoint temperature forecasts. (g)–(i) As in (a)–(c), but for 500-hPa geopotential height forecasts. (j)–(l) As in (a)–(c), but for

hourly precipitation forecasts. A black dashed line denotes a variance difference of 0 in the center column and a variance ratio of 1 in the

right column. Axis scales are identical to those in Fig. 3.
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Moreover, a significant difference between the two en-

sembles’ 2-m dewpoint temperatureRMSE values exists

for 32 of the 37 forecast hours analyzed. The greatest

difference occurs between forecast hours 14 and 25

(i.e., from 1400 UTC to 0100 UTC the next day). One

possible explanation for the mixed-physics ensemble’s

superior performance is that the systematic biases of

its three PBL schemes have different signs, leading to

less overall bias—and therefore less error—in its 2-m

temperature forecasts compared to the single-physics

ensemble.

2) 6-H PRECIPITATION

(i) FSS

For all six 6-h forecast periods, the greatest FSSs are

associated with the largest spatial scale (i.e., 144 km) and

the lowest precipitation threshold (i.e., 0.10 in.; Figs. 8a–f).

FIG. 5. (a) Rank histogram for themixed-physics ensemble’s forecast 1-h accumulated precipitation, valid for forecast hour 6. (b)–(f) As in

(a), but valid for forecast hours 12, 18, 24, 30, and 36, respectively. (g)–(l) As in (a)–(f), but for the single-physics ensemble.

FIG. 6. As in Fig. 5, but for bias-corrected mixed- and single-physics ensemble forecasts.
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In all cases, the FSS progressively decreases as the

precipitation threshold increases from 0.10 to 1.00 in.

For a given threshold and spatial scale, the mixed- and

single-physics ensemble forecasts produce qualita-

tively similar FSS values. FSS differences are not sta-

tistically significant (at a 5 0.05) at any of the spatial

scales or precipitation thresholds after the first 6-h

period (i.e., forecast hours 0–6; Figs. 8b–f). During the

first 6-h forecast period, FSS differences are significant

at one spatial scale (144 km) for the 0.75-in. forecasts,

seven spatial scales (3, 18, 24, 36, 48, 72, and 144 km) for

the 0.50-in. forecasts, and all 10 spatial scales for the

0.25- and 0.10-in. forecasts (Fig. 8a). Notably, in each

instance of significance, the single-physics ensemble

produces the greater FSS.

In general, FSS gradually decreases with increasing

forecast lead time. This pattern holds for both mixed-

and single-physics forecasts and is shown explicitly

for the 0.10-, 0.25-, 0.50-, and 1.00-in. thresholds

(Figs. 9a–d). When a forecast’s FSS decreases below

FSSuseful depends on both the precipitation threshold

and spatial scale of the forecast; higher precipitation

thresholds and smaller-scale forecasts reach FSSuseful
faster. However, whether the ensemble contains mixed-

or single-physics parameterizations does not appear to

dramatically impact the time taken for its forecast to

reach FSSuseful. Both the mixed- and single-physics

ensembles have qualitatively similar FSS values for a

given 6-h forecast period, precipitation threshold, and

spatial scale. Statistically significant differences be-

tween the two ensembles’ FSS exist only during the first

6-h forecast period, and the single-physics ensemble

has the higher FSS in all cases of significance.

(ii) AUC from 6-h probabilistic forecasts

In general, for both the mixed- and single-physics

forecasts, AUC tends to be higher for the lower thresh-

old forecasts (e.g., Fig. 10a), perhaps because $1.00-in.

rainfall events are rarer and more difficult for a forecast

system to place precisely compared to lighter precipi-

tation events. As more spatial smoothing is applied

(Figs. 10a–f), the AUC values of all forecasts examined

become increasingly similar. More spatial smooth-

ing also increases the AUC of all forecasts examined,

up to a point. For a given threshold and forecast pe-

riod, the mixed-physics ensemble generally produces

slightly greater AUC than the single-physics ensem-

ble; however, the differences are small. The greatest

differences between mixed- and single-physics en-

semble AUC occur with the highest precipitation

threshold (i.e., 1.00 in.) and during the 6-h period

ending at forecast hour 30 (i.e., 0000–0600 UTC one

day after the forecast is initialized; Figs. 10a–f). No-

tably, none of the differences between the mixed- and

single-physics ensemble AUC are statistically signifi-

cant at a 5 0.05.

The impact of varying the standard deviation of the

Gaussian kernel (henceforth referred to as the spatial

FIG. 7. Time series of mixed- (red) and single-physics (blue) ensemble RMSE for (a) forecast hourly 2-m

temperature and (b) 2-m dewpoint temperature. Red squares (blue circles) denote a statistically significant dif-

ference (a # 0.05) between the mixed- and single-physics RMSE values with the mixed-physics (single-physics)

ensemble having the lower RMSE.
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smoothing parameter) at all six 6-h forecast periods is

assessed explicitly in Figs. 11a–f. Regardless of forecast

period or ensemble physics configuration (i.e., mixed

or single physics), AUC increases relatively rapidly as

the spatial smoothing parameter is increased from

2 to 12km and then increases more gradually as the

spatial smoothing parameter is further increased to

72km (Figs. 7a–f). With the application of even more

spatial smoothing, theAUCbegins to level off or slightly

decrease. The larger precipitation threshold forecasts

benefit more from additional spatial smoothing rela-

tive to the lower threshold forecasts; the same amount of

spatial smoothing increases the higher-threshold fore-

casts’ AUC values more than the lower-threshold fore-

casts’ AUC values.

(iii) Attributes diagrams

Varying the spatial smoothing parameter directly

influences forecast reliability. With less spatial

smoothing, the higher probabilities tend to be over-

forecast while the lower probabilities tend to be slightly

underforecast (e.g., Fig. 12a). More spatial smoothing

decreases the number of high-probability forecasts

while increasing the number of low-probability fore-

casts. Therefore, up to a point, increasing the spatial

smoothing parameter improves forecast reliability. Of

the values tested, a spatial smoothing parameter of 72

or 96 km—depending on the precipitation threshold—

produces the best reliability (Figs. 12a–d). As the spa-

tial smoothing parameter is increased beyond 96 km,

the forecasts tend toward an underforecasting bias at

the medium and higher forecast probabilities as well

as a reduction in forecast sharpness. In general, a spa-

tial smoothing parameter of 72 km provides optimal or

near optimal reliability as well as discrimination ability.

This finding holds for both the mixed- and single-

physics ensemble forecasts at precipitation thresholds

ranging from 0.10 to 1.00 in. Statistically significant

differences between the two ensembles’ reliability

component of the Brier score exist only at the 0.10- and

0.25-in. thresholds (Figs. 12a,b). Notably, the single-

physics ensemble has the superior reliability in all cases

of a statistically significant difference between the two

ensembles’ reliability values.

FIG. 8. Mixed- (solid) and single-physics (dashed) ensemble fractions skill score as a function of spatial scale for the 6-h forecast

period spanning forecast hours (a) 0–6, (b) 6–12, (c) 12–18, (d) 18–24, (e) 24–30, and (f) 30–36. In each case, 0.10- (red), 0.25- (gold),

0.50- (light blue), 0.75- (dark blue), and 1.00-in. (purple) precipitation threshold forecasts are shown. Filled circles indicate signifi-

cance at a 5 0.05.
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Reliability is sensitive to precipitation threshold:

particularly for the smaller spatial scales, the lower-

threshold forecasts (i.e., the 0.10- and 0.25-in. fore-

casts; Figs. 12a,b) have better reliability than the

higher-threshold forecasts (i.e., the 0.50- and 1.00-in.

forecasts; Figs. 12c,d). The higher-threshold forecasts

also suffer from a greater reduction of sharpness

compared to the lower-threshold forecasts as the spa-

tial smoothing parameter is increased, since already-

rare high forecast probabilities become forecast even

less often. However, for a given threshold and spatial

smoothing parameter, the mixed- and single-physics

ensembles have qualitatively similar forecast reliabil-

ity, provided the probability bins each contain a suf-

ficient number of forecasts. In situations when a

statistically significant difference exists between each

ensemble’s reliability component of the Brier score,

the single-physics ensemble almost always has the su-

perior reliability. Each ensemble’s reliability is not

very sensitive to forecast hour; reliability curves are

qualitatively similar for each of the six forecast periods

examined (Figs. 13a–f).

4. Select cases

To provide a visual comparison of the mixed- and

single-physics ensemble precipitation forecasts, 1-in.

forecasts are examined on four case study days. These

include three ‘‘high precipitation’’ cases and one

‘‘failure’’ case. All case study forecasts are valid for

the 6-h period ending at forecast hour 30 (i.e., 0000–

0600 UTC on the day after the forecast was initialized),

since the greatest differences in mixed- and single-

physics ensemble AUC were found to have occurred

during this period. The first three case study days were

selected by choosing the three days with the greatest

number of points meeting or exceeding 1 in. of observed

6-h rainfall inside the analysis domain, while the final

case was chosen subjectively as an interesting case in

which both ensembles produced large forecast misses

FIG. 9. Fractions skill score as a function of forecast period for mixed- (solid) and single-physics (dashed) en-

semble 6-h precipitation forecasts at (a) 0.10-, (b) 0.25-, (c) 0.50-, and (d) 1.00-in. thresholds. In each case, 3- (red),

24- (gold), 48- (light blue), 72- (dark blue), and 144-km (purple) spatial scales are shown. The FSSuseful value is

denoted by a solid black line. Filled circles indicate significance at a 5 0.05.
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and low objective verification scores. The 1-in.

threshold was selected since that threshold gave

the greatest difference between the mixed- and

single-physics ensemble AUC. The 1-in. thresh-

old was also chosen because, from an operational

perspective, accurately predicting higher-impact

(i.e., heavier precipitation) events is arguably more

difficult and desirable for forecasters to achieve;

therefore, ensemble forecasts of these events were

deemed worthy of closer examination. All forecasts

were created using a spatial smoothing parameter

s of 72 km since, of the values tested, s 5 72 km

generally produced forecasts with the best reliability

and discrimination ability. Single-day AUC and FSS

are computed and displayed for each case. The FSS is

calculated using a square neighborhood of 252 km

(i.e., 3.5s) per side.

a. 27 May 2016

During the day of 26 May 2016, a surface cyclone

developed and strengthened in the lee of the Rocky

Mountains. Storms initiated along the warm front

in southern Kansas at around 1800 UTC 26 May

and grew upscale as they moved to the northeast. In

the late afternoon, additional storms formed along

the dryline, which extended from west-central Kansas

to southwestern Texas. These storms also grew up-

scale, bringing heavy rainfall to central Texas and

western Oklahoma during the 0000–0600 UTC fore-

cast period on 27 May. Fueled by abundant moisture

FIG. 10. AUC formixed- (solid) and single-physics (dashed) 0.10- (red), 0.25- (gold), 0.50- (light blue), 0.75- (dark

blue), and 1.00-in. (purple) 6-h accumulated precipitation threshold forecasts using a spatial smoothing parameter

of (a) 2, (b) 24, (c) 48, (d) 72, (e) 96, and (f) 120 km. AUC values are plotted for the 6-h forecast periods ending at

forecast hours 6, 12, 18, 24, 30, and 36.

APRIL 2019 LOKEN ET AL . 319



and instability, another complex of storms produced

heavy rainfall over southeastern Texas during the

period.

The mixed- and single-physics ensemble forecasts

highlight the same general regions for $1-in. 6-h

rainfall (Figs. 14a,b), and both demonstrate reason-

able forecast quality, with both AUC values $ 0.75.

Differences between the two forecasts include the

mixed-physics ensemble’s better prediction of heavy

rainfall in central Missouri as well as in southwestern

Nebraska and northeastern Colorado. Additionally,

the magnitudes of the two forecasts’ probabilities

differ slightly in northeastern Kansas and south-central

Arkansas. However, these differences are minor;

the two forecasts are generally similar. Neither pre-

dicts the southeastern Texas or western Oklahoma

precipitation well. Plots of individual member 1-in.

forecasts (Figs. 15a–c) are also similar between the

two ensembles, although the mixed-physics ensemble

more accurately depicts the threat of heavy pre-

cipitation in southwestern Nebraska and central

Missouri. Nevertheless, given their broad similarities,

both ensembles would likely provide comparable value

to forecasters.

b. 18 May 2016

Two main regions in the analysis domain recorded

$1-in. observed 6-h precipitation totals from 0000 to

0600 UTC 18 May 2016: south-central Texas and the

Florida Peninsula. In central Texas, storms initiated

along a southwest–northeast oriented cold front dur-

ing the midafternoon of 17 May. These storms grew

FIG. 11. AUC for mixed- (solid) and single-physics (dashed) 0.10- (red), 0.25- (gold), 0.50- (light blue), 0.75- (dark blue), and 1.00-in.

(purple) 6-h accumulated precipitation forecasts as a function of the spatial smoothing parameter for the 6-h forecast period spanning

forecast hours (a) 0–6, (b) 6–12, (c) 12–18, (d) 18–24, (e) 24–30, and (f) 30–36.
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upscale as they propagated south-southeastward dur-

ing the forecast period, bringing heavy rainfall to

portions of south-central Texas. In Florida, a broad

region of storms formed as a low-amplitude 700-hPa

shortwave trough moved northeastward through the

Peninsula, providing forcing for ascent in an envi-

ronment characterized by rich boundary layer mois-

ture and moderate instability.

Both ensembles produce similar forecasts, which

perform well (Figs. 14c,d). Each forecast assigns

modest probabilities to south-central Texas and the

Florida Peninsula, where heavy rainfall was observed;

however, both forecasts also have a notable false

alarm region extending from northeastern Texas into

Louisiana and southern Arkansas. The mixed-physics

ensemble has an additional small false alarm region in

western North Carolina and southern Virginia, which

is absent from the single-physics forecast. How-

ever, the mixed-physics ensemble has fewer mem-

bers forecasting $1.00-in. precipitation in southern

Arkansas, and it has one member forecasting $1.00-in.

precipitation in the southern Texas Panhandle near

a small region of .1.00-in. observed precipitation

(Figs. 15d–f). Nevertheless, these differences are sub-

tle, and the two ensemble forecasts are generally

similar.

c. 28 May 2016

At 1200 UTC 27 May a 500-hPa shortwave trough

was located in eastern Colorado. Storms began to form

near the associated surface low in eastern Colorado

around 1800 UTC, while storms began to initiate in

central Kansas and northern Oklahoma ahead of a cold

front at approximately 1900 UTC. Additional convective

FIG. 12. Attributes diagrams for mixed- (solid) and single-physics (dashed) ensemble 6-h precipitation forecasts

ending at forecast hour 30 using a threshold of (a) 0.10, (b) 0.25, (c) 0.50, and (d) 1.00 in. In each case, forecasts

produced using a spatial smoothing parameter of 2 (gold), 24 (light blue), 48 (dark blue), 72 (purple), 96 (red), 120

(orange), and 144 km (dark red) are shown. The line of perfect reliability (solid black), no skill (short-dashed black),

and lines of sample relative climatological frequency (long-dashed black) are also displayed. Filled circles indicate

significant differences in the reliability component of the Brier score at a5 0.05, with the single-physics ensemble

having the better reliability. Insets within each panel show the number of forecasts as a function of forecast

probability and use a logarithmic y axis. Note the y-scale differences in the inset plots.
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activity developed in eastern Nebraska and northern

Missouri near 2200 UTC. The convection in all three

areas grew upscale andmoved northeastward during the

0000–0600 UTC forecast period on 28 May. Farther

south, a preexisting MCS moved southeastward during

the forecast period, impacting southeastern Texas and

southwestern Louisiana.

The two ensemble forecasts are similar but not

identical (Figs. 14e,f). Both assign nonzero probabili-

ties to most of Wisconsin and Iowa as well as east-

ern portions of Nebraska, Kansas, Oklahoma, and

Texas. Neither ensemble correctly predicts heavy

precipitation along the Gulf coast in southeastern

Texas and southern Louisiana. However, the mixed-

physics ensemble arguably does a better job of repre-

senting the overall situation there compared to the

single-physics ensemble. For example, the mixed-

physics ensemble has multiple members forecasting

long, narrow, west-southwest–east-northeast swaths

of $1-in. precipitation, which is close to the observed

scenario but displaced to the northwest (Figs. 15g–i).

The mixed-physics ensemble also does a better job

of depicting the threat of heavy precipitation in

southern Nebraska and west-central Kansas, where the

FIG. 13. Attributes diagrams for mixed- (solid) and single-physics (dashed) ensemble 0.10-in. threshold 6-h accumulated precipitation

forecasts for the 6-h forecast period spanning forecast hours (a) 0–6, (b) 6–12, (c) 12–18, (d) 18–24, (e) 24–30, and (f) 30–36. In each

case, forecasts produced using a spatial smoothing parameter of 2 (gold), 24 (light blue), 48 (dark blue), 72 (purple), 96 (red), 120 (orange),

and 144 km (dark red) are shown. The line of perfect reliability (solid black), no skill (short-dashed black), and lines of sample relative

climatological frequency (long-dashed black) are also displayed. Filled squares (circles) indicate significant differences in the reliability

component of the Brier score at a 5 0.05, with the mixed-physics (single-physics) ensemble having the better reliability. Insets within

each panel show the number of forecasts as a function of forecast probability and use a logarithmic y axis. Note the y-scale differences

in the inset plots.
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single-physics ensemble displays zero probabilities.

Finally, the mixed-physics ensemble reduces the mag-

nitude of probabilities in south-central Wisconsin and

western Illinois, where $1-in. rainfall was not ob-

served. Still, the two forecasts are similar enough that,

in terms of forecast value, the mixed-physics ensemble

likely provides only marginal benefits over the single-

physics ensemble in this case.

d. 24 May 2016

Just before 2200UTC23May, a line of storms extending

from eastern Nebraska into northern Wisconsin formed

FIG. 14. The 30-h probabilistic 1.00-in. precipitation forecast (shaded) from (a) the mixed-physics ensemble and

(b) the single-physics ensemble. Forecasts are valid for 0000–0600 UTC 27May 2016. Black hatching denotes 3-km

points containing observed$1.00-in. precipitation over the 6-h period when the forecast is valid. Single-day AUC

and FSS are displayed at the top of each plot. (c),(d)As in (a) and (b), but valid for 18May 2016. (e),(f)As in (a) and

(b), but valid for 28 May 2016. (g),(h) As in (a) and (b), but valid for 24 May 2016.
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ahead of a cold front. These storms began moving

northeast while producing heavy rainfall. A 700-hPa

shortwave trough provided additional forcing for

ascent, helping to sustain the line of storms un-

til approximately 0500 UTC 24 May. Around 0500 UTC,

new storms began to form in northern Kansas along

an outflow boundary from convection to the north;

these storms led to reports of $1-in. rainfall before

0600 UTC. Farther south, discrete cells formed

ahead of a dryline in west-central Texas around

2230 UTC 23 May. These storms moved east-

northeastward and largely remained discrete, providing

FIG. 15. Individual ensemble member 30-h 1.00-in. precipitation forecasts from (a) the mixed-physics ensemble and (b) the single-

physics ensemble, valid for 0000–0600 UTC 27May 2016. (c) Observed precipitation$ 1.00 in., valid for the same 6-h period as in (a) and

(b). (d)–(f) As in (a)–(c), but valid for 18 May 2016. (g)–(i) As in (a)–(c), but valid for 28 May 2016. (j)–(l) As in (a)–(c), but valid for

24 May 2016.
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parts of west-central Texas with heavy rainfall before

dissipating.

Interestingly, while neither ensemble performed

particularly well on this day, each ensemble focused its

probabilities on slightly different locations. The mixed-

physics ensemble placed a local probability maximum

over central Oklahoma, while the single-physics en-

semble focused its probability maximum over central

Texas (Figs. 14g,h). Both ensembles had individual

members forecasting $1-in. rainfall in portions of the

upper Midwest, close to where$1-in. rainfall occurred

(Figs. 15j–l). Although both ensembles performed

relatively poorly on this day, the single-physics en-

semble had a greater AUC and only a slightly worse

FSS. Subjectively, the single-physics ensemble out-

performed the mixed-physics ensemble in this case

by drastically reducing the false alarm in central

Oklahoma and having more members forecast $1-in.

rainfall in northern Kansas and the Texas Panhandle

(Figs. 15j–l).

5. Summary and discussion

This study investigated how the spread and skill of

mixed- and single-physics convection-allowing ensem-

ble forecasts varied with forecast hour and spatial scale.

Ensemble spread was assessed by computing ensemble

variance for four variables—2-m temperature, 2-m

dewpoint temperature, 500-hPa geopotential height,

and hourly accumulated precipitation—using both raw

and bias-corrected variance time series for forecast

hours 0–36. Rank histograms were used to determine

how well the spread of each ensemble’s hourly pre-

cipitation forecasts corresponded to the spread of the

observations. Meanwhile, ensemble skill was evaluated

for forecast 2-m temperature, 2-m dewpoint tem-

perature, and 6-h accumulated precipitation. A time

series of RMSE was analyzed for 2-m temperature

and dewpoint, while the 6-h precipitation forecasts

were created—and assessed—in two distinct ways.

First, binary (i.e., yes/no) 6-h precipitation forecasts

were created using 0.10-, 0.25-, 0.50-, 0.75-, and 1.00-in.

thresholds; these were evaluated for six nonoverlapping

6-h periods at spatial scales from 3 to 144km using

FSS. Additionally, probabilistic 6-h precipitation fore-

casts were created at each of the above five thresholds

by spatially smoothing raw ensemble probabilities (i.e.,

the fraction of ensemble members meeting or exceeding

the threshold) at each grid point. Varying values of the

spatial smoothing parameter (from 2 to 144 km) were

tested. Discrimination ability was measured using

AUC, while reliability was assessed using attributes

diagrams. Finally, 6-h, 1-in. probabilistic precipitation

forecasts from the mixed- and single-physics ensembles

were examined for four cases.

When the raw ensemble data were examined, the

mixed-physics ensemble was found to have greater

variance than the single-physics ensemble for all four

variables studied at nearly all forecast hours (from 0 to

36) and spatial scales (from 3 to 288 km). However, the

differences in variance were generally greatest at the

smallest spatial scales and decreased as spatial scale

increased. One explanation for this finding is that, as the

spatial scale of the analysis is increased, precipitation

systems occupy a smaller fraction of each analysis

neighborhood. This is significant because the two en-

sembles’ different representation of microphysics un-

certainty only impacts each ensemble’s forecast where

convection exists; therefore, less fractional coverage of

convection within each neighborhood implies less dif-

ference between the two ensemble forecasts. Another

explanation is that localized differences in the two en-

sembles’ forecast fields (for any of the four variables)

tend to get averaged out as larger neighborhoods are

considered.

Interestingly, while the variance differences suggested

that the mixed-physics and single-physics ensemble

spread became increasing similar at larger spatial scales,

the variance ratios suggested that, proportionally, the

mixed-physics ensemble provided greater spread at

the larger spatial scales compared to the smaller spatial

scales, at least for the 2-m temperature, 2-m dewpoint

temperature, and hourly accumulated precipitation

fields (the 500-hPa geopotential height variance ratios

were generally quite similar at all spatial scales and

forecast hours). This result was surprising. It indi-

cated that, for the 2-m temperature, 2-m dewpoint, and

hourly precipitation fields, the mixed-physics ensemble

variance decreased less than the single-physics en-

semble variance as spatial scale increased. Neverthe-

less, at large spatial scales, where the variance ratio

was the lowest, the variance of both ensembles was

quite small. This finding suggests that perhaps more

weight should be given to the variance differences as

opposed to the variance ratios when comparing the

mixed- and single-physics ensemble variances at the

larger spatial scales.

To remove the impact of systematic biases on the

ensemble variance, a bias-correction procedure based

on probability matching was applied (Ebert 2001; Clark

et al. 2010); the PDF of each ensemble member was

replaced with the PDF of the core01 member, since this

member was present in both the mixed- and single-

physics ensembles. As in Clark et al. (2010), the bias-

corrected variances were generally lower than the

corresponding raw variances, which makes sense given
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that probability matching reduces the ‘‘artificial’’ en-

semble spread from systematic biases (Clark et al. 2010;

Eckel andMass 2005). Bias-correction also reduced the

difference between the mixed- and single-physics en-

semble variance, probably because the mixed-physics

ensemble contained more systematic biases than the

single-physics ensemble and therefore experienced a

greater reduction in variance after calibration. Addi-

tionally, the single- to mixed-physics variance ratios

moved slightly closer to 1 after bias correction at most

forecast hours and spatial scales for all four variables.

Thus, bias correction reduced some of the apparent

spread benefits provided by the mixed-physics ensemble,

suggesting that the presence of systematic biases artifi-

cially inflated spread in the raw mixed-physics ensemble.

Bias correction most notably reduced the difference be-

tween the mixed- and single-physics ensembles’ hourly

precipitation variance. That the difference was sensitive

to the bias-correction procedure suggests a large portion

of the forecast precipitation variance in each ensemble

(and at all spatial scales) can be attributed to the mag-

nitude of the precipitation forecast and not merely the

placement of precipitation systems.

Rank histogram analysis suggested that both the

mixed- and single-physics ensembles overforecast

hourly precipitation, with the mixed-physics ensem-

ble having the greater bias. Bias correction helped

flatten each ensemble’s rank histogram, with the

mixed-physics ensemble benefitting more from bias

correction due to its greater initial systematic biases.

After bias correction, both ensembles’ rank histograms

were slightly U-shaped for at least some forecast hours,

suggesting that both ensembles were underdispersive

relative to the observations. Notably, the U shape was

slightly more pronounced in the single-physics en-

semble. Nevertheless, the differences were small; there

appeared to be only minor spread advantages to using

the mixed-physics ensemble after bias correction.

Raw mixed- and single-physics ensemble forecasts

had qualitatively similar hourly 2-m temperature RMSE

values at all forecast hours from 0 to 36, despite the

existence of statistically significant RMSE differences at

22 of those hours. Meanwhile, the mixed-physics en-

semble always had a lower RMSE for forecast hourly

2-m dewpoint temperature; the RMSE differences were

significant at 32 of 37 forecast hours. One possible ex-

planation for this finding is that the biases in each

member’s dewpoint temperature have opposite signs

due to their differing PBL schemes. Thus, when com-

bined in an ensemblemean, themixed-physics ensemble

gave a lower RMSE than the single-physics ensemble.

Skill metrics indicated that the mixed- and single-

physics ensembles had similar bias-corrected 6-h

precipitation skill for most forecast periods, spatial

scales, and precipitation thresholds examined. Statisti-

cally significant differences in FSS only existed within the

first forecast period (i.e., forecast hours 0–6). Moreover,

when they did occur, the single-physics ensemble always

had the larger FSS. While the mixed-physics ensemble’s

6-h probabilistic precipitation forecasts tended to have

slightly greater AUC values than the corresponding

single-physics forecasts, the differences were small

(i.e., ,0.05) and not statistically significant.

Interestingly, the degree of spatial smoothing did not

have much influence on the relative skill of the mixed-

and single-physics ensemble forecasts, perhaps sug-

gesting the two ensemble forecasts differed more on the

magnitude rather than location of forecast precipitation.

The case studies examined herein offered some support

for this idea. In the first three cases, the mixed- and

single-physics forecasts assigned nonzero probabilities

to similar locations, while slightly more variation was

present in the forecasts’ magnitudes. In the fourth case,

the two ensembles had more notable differences in the

placement of their nonzero probabilities, although nei-

ther ensemble performed particularly well objectively.

The relative placement (and skill) of each ensemble’s

forecast probabilities may be due to a variety of factors,

including type of convective trigger, strength of forcing

for ascent, and/or dominant convective mode. For ex-

ample, the mixed-physics ensemble may provide more

value and skill relative to the single-physics ensemble

when the large-scale forcing for ascent is weak (e.g.,

Stensrud et al. 2000). However, in general, across the

23 cases in the dataset, differences in the location of

the two ensembles’ precipitation probabilities existed

but were small. Moreover, the spatial smoothing may

have rendered these differences even smaller.

More spatial smoothing produced forecasts with bet-

ter discrimination ability and reliability, up to a point.

This result was unsurprising: smoothing reduces the

magnitude of ensemble probabilities that were initially

too large and spreads them spatially, thereby helping to

account for ensemble underdispersion (e.g., Clark et al.

2018). Beyond 72 or 96km, however, AUC tended to

level off or diminish, and reliability started to decrease

as forecast probabilities became oversmoothed. In ad-

dition to decreasing AUC and reliability, greater spatial

smoothing reduced the sharpness of the higher pre-

cipitation forecasts.

6. Conclusions: Implications for convection-
allowing ensemble design and future work

Overall, the mixed-physics ensemble provides slightly

greater ensemble spread relative to the single-physics
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ensemble, especially at smaller spatial scales and if the

ensemble is not calibrated for bias. This result is con-

sistent with previous work that has found multiple

microphysics and PBL parameterizations can be an

important way to generate spread in convection-

allowing ensembles (e.g., Johnson and Wang 2017;

Clark et al. 2010). However, as the spatial scale of in-

terest is increased, and as systematic bias is taken into

account, the mixed- and single-physics ensemble vari-

ances generally become more similar.

The mixed-physics ensemble also appears to produce

slightly more skillful precipitation forecasts than the

single-physics ensemble, especially for larger precipita-

tion thresholds at later forecast hours. Nevertheless, the

differences between the mixed- and single-physics en-

sembles’ spread and skill are generally small, especially

when systematic biases are taken into account (i.e., the

ensemble is well calibrated) and at larger spatial scales.

Therefore, the small forecast advantages of using a

mixed-physics ensemble may not outweigh other bene-

fits of using a single-physics ensemble operationally.

These benefits include: easier maintenance of a single

physics suite; a more thorough, focused effort toward

improving one physics package; and ensemble members

generated from consistent perturbation methods, thus

ensuring truly equally likely member solutions.

With that said, this study has a number of important

limitations that should be considered before a final

recommendation to model developers can be made.

Most notably, this study examined only four variables

during a single season over a subset of the United States.

To be operationally useful, ensembles should function

well year-round over the entire CONUS and include

more than four variables. Additionally, the mixed- and

single-physics forecasts should be subjectively com-

paredmore extensively and for more forecast fields than

the four 1-in. precipitation forecast cases examined

herein. Ideally, subjective forecaster ratings and feed-

back of the mixed- and single-physics ensemble forecast

output could be systematically compiled over at least

one full season for a variety of fields (e.g., low-level

temperature, dewpoint temperature, simulated reflec-

tivity, relative humidity). In addition to addressing these

limitations, future work may wish to evaluate the in-

dividual impact of multiple microphysics and PBL pa-

rameterizations on ensemble spread and skill. Doing

so would build a more complete understanding of

convection-allowing ensemble design.
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