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ABSTRACT

A wavelet-based algorithm is developed to detect tornadoes from Doppler weather radar radial-velocity
observations. Within this algorithm, a relative region-to-region velocity difference (RRVD) is defined based
on the scale- and location-dependent wavelet coefficients and this difference represents the relative mag-
nitude of the radial velocity shear between two adjacent regions of different scales. The RRVD fields of an
idealized tornado and a realistic tornado from a high-resolution numerical simulation are analyzed first. It
is found that the value of RRVD in the tornado region is significantly larger than those at other locations
and large values of RRVD exist at more than one scale. This characteristic forms the basis of the new
algorithm presented in this work for identifying tornadoes. Different from traditional tornadic vortex
signature detection algorithms that typically rely on the velocity difference between adjacent velocity gate
pairs at a single spatial scale, the new algorithm examines region-to-region radial wind shears at a number
of different spatial scales. Multiscale regional wind shear examination not only can be used to discard a
nontornadic vortex signature to reduce the false alert rate of tornado detection but also has the ability of
capturing tornadic signatures at various scales for improving the detection and warning. The potential
advantage of the current algorithm is demonstrated by applying it to the radar data collected by Oklahoma
City, Oklahoma (KTLX), Weather Surveillance Radar-1988 Doppler (WSR-88D) on 8 May 2003 for a
central Oklahoma tornado case.

1. Introduction

Modern Doppler radars have the ability to scan large
volumes of the atmosphere at high space and time reso-
lutions. Such measurements have provided unprec-
edented opportunities for detecting small-scale hazard-
ous weather phenomena such as tornadoes. A number
of algorithms (e.g., Mitchell et al. 1998; Desrochers and
Donaldson 1992; Wieler 1986; Vasiloff 2001) have been
developed over the years to automatically identify tor-
nado from radar reflectivity and/or radial velocity by

examining hook echoes (Fujita 1958; Browning 1965)
and tornadic vortex signatures (TVSs; Burgess et al.
1975; Crum and Alberty 1993). Among them, the tor-
nado detection algorithms based on hook echoes alone
are usually not reliable enough (e.g., Forbes 1981;
Mitchell et al. 1998). Newer algorithms, such as the
National Severe Storms Laboratory Tornado Detection
Algorithm (NSSL TDA, referred to as NTDA hereaf-
ter; Mitchell et al. 1998) and the past operational
Weather Surveillance Radar-1988 Doppler (WSR-88D)
TVS algorithm, are based primarily on TVSs identified
from the radial velocity data.

TVS is primarily quantified by gate-to-gate azimuthal
shear (Burgess et al. 1975; Brown et al. 1978). With the
WSR-88D TVS algorithm, the presence of a mesocy-
clone is required. The algorithm is invoked after a me-
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socyclone is detected by the mesocyclone detection al-
gorithm (MDA), and it searches in and around the me-
socyclone at each elevation angle for inbound and
outbound velocity extrema. When the shear between
the velocity extrema exceeds a certain threshold (de-
fault is 0.02 s�1) at two or more elevation angles, a TVS
is declared and it is automatically assumed to be tor-
nadic (see, e.g., Mitchell et al. 1998). With the newer
NTDA, the presence of a mesocyclone is not required,
and therefore the detection of nonsupercell tornadoes
is not excluded. The algorithm identifies vortices via
examination of the gate-to-gate azimuthal (adjacent in
azimuth and constant in range) velocity differences
(GVDs; Mitchell et al. 1998), using low thresholds first;
it then attempts to classify them as either tornadic or
nontornadic. Three-dimensional (3D) regions with
GVD exceeding certain thresholds are constructed and
certain characteristics of such 3D regions are then used
to determine the tornadic nature of the 3D detection.
The NTDA was found to have a much higher probabil-
ity of detection (POD) than the WSR-88D TVS algo-
rithm while still keeping the false alarm rate (FAR)
reasonable.

These existing TVS detection algorithms rely heavily
on the velocity differences between two adjacent gate
pairs; there exist, however, many uncertainties with the
estimation and use of such velocity differences, due to
radar data noise, the azimuthal offset of sample vol-
umes from the center of the rotation features (Wood
and Brown 1997), natural small-scale variations in the
flow (Desrochers and Yee 1999), and other data quality
problems (Zittel et al. 2001). These problems can create
spuriously large velocity differences or strong azi-
muthal shears that can significantly increase the false
alarm rate. In addition, because tornado size and inten-
sity vary, it is difficult to set thresholds based primarily
on GVDs that work for all cases (Desrochers and Yee
1999). The discrete sampling of the atmosphere by ra-
dar whose sampling resolution changes with the range
and whose beam positioning relative to the vortex cen-
ter affects GVD values further complicates the issue. It
would be very helpful if additional discriminating pa-
rameters could be found that would better define the
characteristics of tornadoes and their associated vorti-
ces. Ideally, such parameters are insensitive to the
aforementioned problems. Finding such parameters is
the motive of this study.

Since the azimuthal shear signatures associated with
tornadoes as seen in Doppler radial velocity data are
often not confined to two adjacent radar gates in the
azimuth, the shear or velocity difference between larger
distances (compared to the adjacent radar gate distance
in the azimuth) or between regions can provide valu-

able information that can potentially be utilized to re-
duce the false alarm rate of detection. In this paper, we
use the wavelet analysis technique for the quantifica-
tion of velocity differences at different spatial scales
and use these measures to help design or improve tor-
nado detection algorithms. In particular, a set of wave-
let basis functions will be used and each basis function
describes the averaged radial-velocity difference be-
tween two adjacent regions covered by this basis func-
tion. By applying the wavelet analysis to the radial ve-
locity field, a region-to-region velocity difference
(RVD) can be defined in terms of the wavelet coeffi-
cients. When normalized, the relative region-to-region
velocity difference (RRVD) for each scale can be ob-
tained. If the relative difference is larger than a certain
threshold value, then the region at the corresponding
scale can be considered as having a significant radial
wind shear and a high potential for containing a tor-
nado. The normalization allows for a more general de-
termination of the threshold without depending too
much on or being too sensitive to the tornado intensity
information.

For similar reasons noted above, Smith et al. (2003)
and Smith and Elmore (2004) recently showed that a
local, linear, least square approach to calculating the
radial velocity derivatives, including the azimuthal
shear, leads to a significant improvement over the typi-
cally used method of calculating the shear from two
data points. With the approach, a least square estima-
tion of the shear in a local region that includes a num-
ber of radial velocity data points is performed to im-
prove the reliability of the shear estimate. There is a
certain similarity between our wavelet-analysis ap-
proach and their approach, in that both methods utilize
radial velocity data at more than two neighboring data
points. Our approach further examines the shear mag-
nitudes at more than one scale.

This paper is organized as follows. In section 2, wave-
let analysis is introduced and scale-dependent RRVD is
defined. Analyses are performed on radial velocity data
sampled from an idealized tornado and from a realistic
tornado from a high-resolution numerical simulation. A
tornado detection algorithm based on RRVD and other
parameters is proposed in section 3 and applied to a
real tornado case in section 4. Conclusions are given in
section 5.

2. Wavelet analysis and applications to
radial-velocity fields

a. Wavelet transform

Similar to the commonly used Fourier transform, the
wavelet transform is a method of converting a function
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(or signal) into another form or representation, usually
in terms of the wavelet coefficients, that would allow
certain features of the original signal more amenable to
study or enable the original dataset to be described
more succinctly (Daubechies 1992). In the case of a
Fourier transform, the coefficients of different Fourier
components reveal the strength or intensity of the sig-
nal at different wavelengths or frequencies. The mean-
ing of the wavelet coefficients dependents very much
on the choice of the wavelet basis function used, which
has wide variations.

The wavelet transform of a spatial function (or sig-
nal) f(x) in two dimensions can be defined in general by

W�s, l� � �f�x��s,l�x� dx, �1�

where x and l are vectors, x � (x, y) and l � (lx, ly), and
x and y, lx and ly (all are real) are independent spatial
variables. Here, x � (x, y) defines the spatial coordi-
nates of the original function whereas l � (lx, ly) defines
the location at which the local wavelet basis function,
�s,l(x), is centered. We use W(s, l) to represent the
wavelet transform coefficients at scale s and location l.

The wavelet functions, denoted by �s,l(x), are con-
structed by shifting and dilating a wavelet prototype
function �(x), and �s,l(x) can be expressed as

�s,l�x� � p�s���x � l
s �. �2�

The wavelet coefficient W represents the correlation
between the original signal and the corresponding
wavelet basis function or the amount of energy in the
signal at scale s and location l. Here, p(s) is a weighting
function, which is typically p(s) set to 1/�s for energy
conservation.

For discrete signal analyses, we need to use discrete
wavelet transform algorithms (e.g., Daubechies 1992).
The discretization of the wavelet basis function has the
form of

�m,n�x� � ��x � n

s0
m �, �3�

where integers m and n � (nx, ny) are used instead of
the continuous s and l in Eq. (2) and they control the
wavelet dilation and translation, respectively; s0 is a
specified fixed dilation step parameter (�1). The wave-
let transform is then

Wm,n � p�m��f�x��m,n�x� dx, �4�

and Wm,n is the discrete version of the wavelet trans-
form coefficient corresponding to scales and locations
represented by m and n.

According to the above formulations, the wavelet ba-
sis function can be moved to or defined at different
locations of the data field. In our case, for analyzing
radar observations, the basis function can be shifted in
the azimuthal and radial directions. The basis function
itself also can be stretched or compressed, as described
by Eqs. (2) and (3). By using (1) or its discrete version
in (4), the wavelet transform quantifies the local match
of the wavelet function with the original function or
field f(x). When the wavelet matches the shape of the
function well at a specific scale and location, a large
wavelet coefficient W is obtained. Just the opposite
takes place when the wavelet and function do not cor-
relate well, as a low value of coefficient W is obtained.
Thus, using the wavelet transform, a map of local cor-
relations between the wavelet (at various scales and
locations) and the analyzed field can be obtained. By
checking the wavelet coefficients in the wavelet space,
the information of the spatial structures of the field can
be presented in a more useful form.

b. Relative region-to-region velocity difference

Within the Doppler radar radial velocity observa-
tions, a tornado usually appears as a couplet of en-
hanced incoming and outgoing radial velocities. Be-
cause tornadoes usually do not exist in isolation, the
shear information associated with a tornado is often
contained in more than two adjacent radial velocity
sampling volumes or pixels of observations (Vasiloff
2001; Wood and Brown 1997). Here, a pixel corre-
sponds to a radar sampling volume in the image form.
Through wavelet analysis, it is possible to quantify azi-
muthal radial velocity differences between regions of
different scales, and we can use the shear information at
more than the gate-to-gate azimuthal shear scale alone
to help improve tornado detection.

For the description of the azimuthal shear of radial
velocity in an elevation plane in two dimensions, the 2D
Harr wavelet is chosen in this study. Because the main
purpose of our wavelet analysis is to highlight or extract
the azimuthal shear information at multiple scales, the
step-function-like Haar wavelet appears most suitable.
This wavelet function is given by

��x� � ��x, y� � �
1 0 � x �

1
2

, 0 � y � 1

�1
1
2

� x � 1, 0 � y � 1

0 elsewhere

.

�5�
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Note that in our case, x and y denote the azimuthal and
radial directions, respectively. This wavelet basis func-
tion can be dilated to construct a set of wavelet func-
tions representing different scales in the two dimen-
sions. Such 2D wavelet functions can also be expressed
as a series of matrices in discrete form using the dyadic-
scale discretization. For example, the wavelet functions
for the first two scales (m � 1 and 2) can be expressed
in matrices as follows:

�1 � �1 �1
1 �1�, �2 ��

1 1 �1 �1

1 1 �1 �1

1 1 �1 �1

1 1 �1 �1
� ,

�6�

where the subscripts represent m. As can be seen, a 2D
discrete Harr wavelet at scale m � 2 is a dilation in both
the x and y directions from the wavelet at scale m � 1.
The matrices in the above equations are mapped to the
radial velocity data space, so that each element in the
matrices corresponds to one radial velocity measure-
ment while the centers of the matrices correspond to
the central location where the wavelets are defined.
The columns and rows correspond to the radial and
azimuthal directions, respectively. The left half of the
matrices is unity while the right half is negative unity.
There is a jump between the left and right halves of the
matrices, making them suitable for describing azi-
muthal shear features.

When a 2D wavelet function at a given scale is used,
the wavelet coefficient can be used to measure the dif-
ference of the signal f(x) across the two regions corre-
sponding to the left and right halves of the discrete
wavelet function. Applying such a wavelet transform to
the Doppler radial velocity field, a large value of the
wavelet coefficient at a given scale indicates the exis-
tence of a large velocity difference between the two
adjacent regions. The sizes of the regions are 2m � 2m�1

pixels for scale m, and p(m) in Eq. (4) is given by p(m)
� 1/(2m x 2m�1). We can obtain a wavelet coefficient for
each scale m at each particular location that measures
the region-to-region velocity difference (RRVD) at
that location for the corresponding scale.

However, the intensity of the tornado vortex varies
with cases and the wavelet coefficients vary with the
scale so that it is still not easy to determine the general
thresholds for separating a tornadic vortex from non-
tornadic shear signatures. To make it easier to deter-
mine more general thresholds, we define here the nor-
malized or relative wavelet coefficients for each scale
according to

RRVDm,n �
Wm,n

Wm, max
, �7�

where Wm,max is the maximum wavelet coefficient at
scale m. RRVDm,n measures the relative region-to-
region velocity difference at scale m and location n. The
value of RRVD ranges from 0 to 1 at any scale. A large
value of RRVDm,n indicates the presence of a signifi-
cant shear or a jump in the original signal between the
two regions at scale m.

c. Wavelet analysis for an idealized vortex

To quantify the main RRDV characteristics of tor-
nadoes and to determine the suitable RRDV thresholds
for their detection, we first apply our wavelet analysis
to an idealized tornado vortex, given by a modified
Rankine combined vortex model as used by Brown et
al. (2002):

V � Vx�R�Rx��, �8�

where V is the rotational velocity at radius R (from the
vortex center) and Vx is the maximum rotational veloc-
ity at the core radius of Rx, and � � 1 for R � Rx and
� � �0.6 for R 	 Rx. For our sampling experiment in
this section, we assume Rx � 200 m and Vx � 50 m s�1,
similar to Brown et al. (2002). The WSR-88D radial
velocity simulation method of Wood and Brown (1997)
is used here to simulate the radial velocity observations.
Specifically, the radial velocity is sampled at 1° azi-
muthal intervals and at a 250-m range resolution. The
center of the simulated vortex is located 20 km north of
the radar. For simplicity, a 0° elevation angle (strictly
speaking, the lowest elevation angle of the WSR-88D
radar is 0.5°) and uniform reflectivity are assumed. For
an effective sampling volume, the mean radial velocity
vr(
0, r0) at the range, r0, and the azimuth angle, 
0, are
given, following Wood and Brown (1997), by

vr��0, r0� �

�
i

I

�
j

J

�r��i, rj�W�r�2f 4���

�
i

I

�
j

J

W�r�2f 4���

, �9�

where I and J are, respectively, the number of samples
taken along the azimuth and range in the sampling vol-
ume, �r(
i, rj) is the radial velocity in the ith and jth
sampling points, and W(r) and f(
) are the range and
antenna pattern weighting function, respectively. Using
(8), the u and � components of the wind in Cartesian
coordinates are calculated first on a grid of 25-m reso-
lution. The gridpoint values within a radar sample vol-
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ume are averaged, according to (9), to obtain the radial
velocity observations, where �r(
i, rj) is given by

�r��i, rj� � u��i, rj� cos��i�  ���i, rj� sin��i�. �10�

For the simulation of radial velocity data, the angular
effective beamwidth used is 1.39°, that of the WSR-
88D, and the (linear) effective beamwidth (EBW) is
485 m at the 20-km range, which is larger than the core
diameter of 400 m of this idealized vortex. TVS is there-
fore expected in the radial velocity field (Brown 1998).
The simulated radial velocity field is shown in Fig. 1a.
As can be seen, the radial velocity in the left half of the
plotting domain is inbound relative to the radar and is
therefore negative and that in the right half is positive.
A large velocity difference exists across the central axis
of the domain, through the vortex center, and the larg-
est velocity difference occurs between two pixels sepa-
rated by a pixel with nearly zero velocity. This is a TVS

that occurs when one of the beam centers coincide
more or less with the vortex center (Brown 1998). The
wavelet analysis described in section 2a is applied to
this radial velocity field in the radar polar coordinates
and the RRVDs are calculated from Eq. (7) for each
scale and location. The RRVDs for m � 1, 2, and 3 are
plotted in Figs. 1b, 1c, and 1d, respectively. As can be
seen, the RRVDs near the center of the vortex are
larger than 50% for all three scales and are significantly
higher than the values away from the vortex. In fact, the
maximum values all exceed 90% near the center of the
vortex, which should be the case by definition. The
number of pixels whose RRVD is larger than 0.5 is 6 for
scale m � 1 (Fig. 1b), 12 for scale m � 2 (Fig. 1c), and
16 for scale m � 3 (Fig. 1d). Therefore, the signature of
the vortex increases in size in terms of RRVD as the
scale of the RRVD increases. It is clear from this ex-
ample that the multiscale characteristics of RRVD in

FIG. 1. (a) Simulated radial velocity field from the modified Rankine combined vortex and the corresponding
RRVD (%) at scales m � (b) 1, (c) 2, and (d) 3. The radar is 20 km south of the tornado, located at the coordinate
origin.
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the tornado region are different from those in other
regions, suggesting that the RRVDs at multiple scales
can be useful for identifying a tornado vortex in radial
velocity data. In practice, additional criteria will also be
needed to unambiguously identify a tornado.

d. Wavelet analysis for a numerically simulated
tornado

A much more realistic tornado simulated at high spa-
tial resolution is available for further quantifying the
characteristics of RRVD and determining their thresh-
olds. This simulation was performed using the Ad-
vanced Regional Prediction System (ARPS; Xue et al.
2000, 2001), starting from a modified sounding for 20
May 1977 during a Del City, Oklahoma, tornadic su-
percell storm. A uniform horizontal resolution of 50 m
was used together with a vertical stretched grid with a
near-surface vertical resolution of 20 m. Over a half-
hour centering on the period of most intense tornado
activity, a uniform horizontal resolution of 25 m was
used and the model domain was 48 km � 48 km in the
horizontal. A maximum ground-relative wind speed of
over 120 m s�1, located about 30 m above the frictional
ground, was obtained in the simulated tornado, with a
pressure drop of over 80 hPa at the center of the tor-
nado vortex. Detailed description and analyses of the
simulations will be reported elsewhere. In this paper,
we sample the ground-level flow of this simulated tor-
nado in the same way as we did in the earlier idealized
Rankine combined vortex case, again at an azimuthal
resolution of 1° and at a range gate resolution of 250,
with an elevation angle of 0.0°. The same 1.39° effective
beamwidth is assumed. For the experiment reported in
this section, the radar is located 20 km west of the
domain center. The view from west is chosen because
the elliptically shaded ground-level tornado vortex is
narrower in the north–south direction (Fig. 2); the tor-
nado is smaller when viewed from the east or west and
is, therefore harder to detect. As can be seen, the core
diameter of the simulated tornado in the north–south
direction, as determined by the distance between the
minimum and maximum east–west velocities associated
with the tornado vortex, of about �20 and 35 m s�1

(Fig. 2a), respectively, is about 200 m. This tornado, as

→

FIG. 2. The (a) east–west and (b) north–south velocity compo-
nents of the ground-level winds and (c) wind vectors of a numeri-
cally simulated tornado that developed within a numerically simu-
lated supercell storm. A 1-km-squared domain centered on the
tornado is shown; the horizontal resolution of the numerical simu-
lation was 25 m.
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seen at the ground level, is weaker than the idealized
tornado of the previous section. The wind field in this
case is also more complex than the case of the idealized
vortex.

The simulated radial velocity field is shown in Fig. 3a,
together with horizontal wind vectors. In this plot, the
tornado is centered at (0, 20) km while the radar is
located at the coordinate origin. There exists obviously
strong convergence in the tornado region and a region
of strong divergence northwest of the tornado that orig-
inated from the rear-flank downdraft. Apart from that,
the general tornadic vortex features, as revealed by the
radial velocity field, are similar to that of the idealized
vortex case. The central part of the tornado is marked
by a closed circle in the figure. Similar to the earlier
idealized case, we can see a radial velocity couplet with
a large velocity difference within the circled tornadic
region. The RRVDs at different scales are calculated

using (7) and are shown in Figs. 3b–d. The RRVDs at
the location of tornado are again larger than 50% and
significantly higher than those in other regions at all
three scales. The size of the region with large RRVD
(	0.5) increases with the scale. In contrast to the ide-
alized vortex case, relatively large values of RRVD also
exist away from the tornado due to wind shear and
convergence in other parts of the flow but their values
are generally significantly below 0.5.

e. Impact of the distance of tornado from radar and
tornado size on RRVD

As the distance from the tornado to the radar in-
creases, the azimuthal distance at the tornado location
increases so that the tornado becomes more poorly re-
solved in the radar data. The degree of difficulty in
unambiguously detecting a tornado also increases. To
test the ability of RRVD in providing distinguishing

FIG. 3. As in Fig. 1, but for simulated radial velocities and the corresponding RRDVs from the numerically
simulated tornado shown in Fig. 2. The radar is located 20 km west of the tornado.
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information when the tornado is located at larger dis-
tances than examined in the previous subsections, we
resampled both the idealized and simulated tornadoes,
but with the radar located at distances between 20 and
100 km from the tornado, and increased the distance by
5 km from experiment to experiment. In addition, for
the case of the idealized tornado, we further decreased
the core diameter from the original 400 m to 100 m, to
impose more stringent tests on our method. The size of
the simulated tornado remained the same.

Figure 4a shows the radial velocities sampled along
the constant range circles that pass through the center
of the idealized vortex when the radar is located 25, 50,
and 75 km away from the tornado. As can be seen, the
sampled peak velocities are 13.6, 9.3, and 7.3 m s�1 at
ranges of 25, 50, and 75 km, respectively, even though
the true maximum velocity is 50 m s�1. The RRVDs at
the first three scales for the tornado at the three differ-
ent distances are shown in Figs. 4b, 4c, and 4d. Clearly,
the RRVDs near the center of the vortex are larger
than 50% for all three scales and all three ranges. It is
found that for this idealized tornado, even when the
range is 100 km, the RRVDs still show very distinguish-
able characteristics in the region of the tornado.

The effectiveness of RRVD with the more realistic
numerically simulated tornado is further examined for
different radar ranges. The radial velocity field sampled
by a radar located 60 km west of the tornado and the
corresponding RRVDs at the first three scales are
shown in Fig. 5. At this range, the sampling volume or
pixel appears rectangular, with its azimuthal width be-
ing much broader than the range gate length (Fig. 5a),
and only a single positive–negative radial velocity cou-

plet shows up near the vortex center. The incoming and
outgoing peak velocities near the tornado center are
about �6 and 10 m s�1, respectively. The TVS is there-
fore rather weak. However, the presence of a tornado
can still be revealed by RRVDs at all three scales (Figs.
5a–c); the largest RRVDs show up in the tornado re-
gion at all three scales. We further found that even
when the radar range is larger than 70 km, large
RRVDs still show up in the tornado region, but a strong
enough TVS cannot be identified from the radial ve-
locity field, making the detection more difficult or less
reliable. The 70-km range corresponds to an EBW to
core diameter ratio of about 8.5. This suggests that for
this realistic simulated tornado, when this ratio is
smaller than 8.5, RRVD can be a useful and effective
parameter.

In summary, the general formulation of the wavelet
analysis is first introduced in this section. The wavelet
transform based on a 2D Haar wavelet function is then
applied to the radar radial velocity fields associated
with two examples of tornado vortices to quantify the
relatively region-to-region velocity difference (RRVD)
at different scales. For both examples, it is found that 1)
in the wavelet domain the tornado vortex is generally
associated and collocated with large values of RRVD,
2) the large values of RRVD (	0.5) usually exist at
more than one scale, and 3) the size of the region with
large RRVD (	0.5) typically increases with the wavelet
scale. These characteristics of RRVD are reliable until
the ratio of the EBW to the core diameter of the tor-
nado exceeds 8.5 for a tornado with a 55 m s�1 peak
velocity difference. This ratio is usually larger for tor-
nadoes with a larger peak velocity difference. These

FIG. 4. (a) Sampled radial velocity from modified Rankine combined vortex model and corresponding RRVDs
(%) at radar ranges of (b) 25, (c) 50, and (d) 75 km.
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characteristics will be used to help identify tornadoes in
the next section.

3. Tornado detection based on wavelet analysis

We present in this section a wavelet-based tornado
detection algorithm, which we call WTDA for short, by
using RRVDs calculated for different scales combined
with other criteria. If only the RRVD at the smallest
scale is used, it becomes similar to algorithms based on
the gate-to-gate velocity difference (GVD) or azi-
muthal shear. As demonstrated in the last section, the
RRVD is rather effective in identifying regions of
strong shear, and it can do so at different scales. It is
therefore chosen as our primary identification param-
eter (ID). However, the RRVD alone is usually insuf-
ficient to uniquely and reliably identify tornado vortices
without additional information. Two additional identi-
fication parameters are also used in our algorithm.
They are, respectively, the mean reflectivity (MRF) and

the region-to-region radial velocity difference (RVD)
averaged over the same region as that of RRVD at the
corresponding scale. An MRF value larger than 0 dBZ
(Mitchell et al. 1998) is required because strong and
well-organized tornadoes rarely occur in the case of
reflectivity below 0 dBZ and radial velocity measure-
ments are usually not reliable in the absence of reflec-
tivity of sufficient decibel strength. RVD is required to
be larger than a threshold value, which is currently set
for the smallest scale to be the minimum required shear
velocity difference of 11 m s�1 as in NTDA. Typically,
RVD at larger scales tends to be smaller, and its thresh-
old is therefore set to 9 and 8 m s�1 at scales 2 and 3,
respectively. Additional idealized experiments were
performed to determine the proper choice of RVD
threshold values. It is found that for an idealized tor-
nado with a maximum rotational velocity of 50 m s�1,
even when the core diameter is as small as 100 m and
the radar is at the far range of 100 km, the RVDs at the

FIG. 5. As in Fig. 3, but for a radar located 60 km west of the tornado.
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first three scales are still larger than these thresholds.
The function of the RVD parameter is somewhat simi-
lar to that of the 2D features used by Mitchell et al.
(1998), which were constructed from at least three
shear segments. A shear segment is a velocity pair be-
tween adjacent beams whose velocity difference ex-
ceeds an adaptable but specified threshold. However,
the 2D feature does not really examine the wind shear
in two dimensions but the shear between adjacent
beams, in the azimuthal direction only, while the RVD
better represents 2D features by examining the wind
shear in square regions of different scales. The MRF
and RVD requirements are designed to exclude regions
where the RRVDs are large but there is no wind rota-
tion of significant strength.

A flowchart of this algorithm is given in Fig. 6 to
show how the WTDA is implemented based on, for
example, the WSR-88D level-II data. The first step of
the algorithm is the quality control (QC) of raw radar
data, which includes unfolding aliased radial velocities,
removing clutters, range-fold data, and other quality-
related problems (Liu et al. 2003; Zhang et al. 2005; Liu
et al. 2005). This step is important in avoiding data
quality related false detections (Mitchell et al. 1998).
After the QC step, missing values of the radial velocity
are filled in with the median of the four adjacent range
gates as is done in Smith et al. (2003) if the number of
continuously missing measurements along a beam is
less than 3.

The second step is to calculate the three ID param-
eters for each of the three smallest scales. Based on our
earlier examinations of idealized and simulated torna-
does, large values of RRVD exist at two or more scales
in the presence of a tornado, and therefore a scale con-
tinuity check is applied in the third step. For a given
location, if the RRVD exceeds a specified threshold,
for example, 0.5, in any two adjacent scales, the location
of the corresponding pixel or sampling volume is saved.
Note that the threshold of RRVD is an adjustable pa-
rameter. In this paper, the threshold is specified to be
0.5 based on the cases of idealized and simulated tor-
nadoes examined in the previous section. An RRVD
value larger than 0.5 implies that the radial wind shear
in the region is relatively large at the corresponding
scale. Thus, such regions deserve special attention.

The pixels or sampling volumes saved in step 3 are
further checked for their values of MRF and RVD. If
MRF is smaller than 0 dBZ or any of the RVDs at the
first three scales are smaller than their thresholds, the
pixel is discarded. The fifth step builds 2D groups from
the remaining qualifying pixels. Each pixel is first con-
sidered as an individual group. If the distance between

two groups is smaller than two range-gate or azimuthal
intervals, they are combined into the same group. This
process is repeated until the distance between any two
groups is larger than two gate intervals. The sixth step
checks the properties of each group. We require that
the mean reflectivity, which is averaged over all valid
observations in each group, is larger than 0 dBZ, and
further the peak incoming and outgoing velocities are
larger than 6 m s�1 and that there exists a sign change
in the radial velocity in the azimuth direction to ensure
that the vortex is produced by incoming and outgoing
radial velocities. The groups that pass all the above
checks will be considered tornadic. The location of the
group center is defined as the center of the tornado.
The maximum radial velocity and the center location
for each of the tornadic vortices are then recorded.

As mentioned earlier, in our algorithm, the RRVD at
the smallest scale is similar to the velocity difference
between adjacent velocity gate pairs, the key identifier
in the NTDA. However, as discussed in the introduc-
tion, calculating shear from two data points can be un-
reliable due to radar data noise arising from data qual-
ity problems related to, for example, receiver saturation
and moving clutter targets (Zittel et al. 2001). Such
radar data quality problems are difficult to eliminate in
level II data. Natural small-scale variations in the flow

FIG. 6. Flowchart of the wavelet-based tornado detection
algorithm.
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fields can also create representativeness problems with
the GVD calculations (Desrochers and Yee 1999),
thereby causing false alarms. On the other hand, large
GVDs due to data noise tend to be random and local-
ized and their spatial scales are small. Such localized
problems tend to be filtered out effectively in the wave-
let components of larger scales. As was shown in sec-
tion 3, the information about the tornado usually exists
at more than one wavelet analysis scale in the radial
velocity data, and when a tornado is present, it is often
identifiable at all three of the smallest scales in the
normalized wavelet amplitudes, or RRVD in our case.
When the scale continuity check is applied, features
due to small-scale data noise can be filtered out effec-
tively, thereby reducing the false alarm rate. As dis-
cussed in the introduction, the use of multiple data
points in the local, linear least square estimation of the
velocity derivative in the work of Smith et al. (2003)
and Smith and Elmore (2004) serves a somewhat simi-
lar purpose, although the actual approach is different.

It should be pointed out here that Desrochers and
Yee (1999) also applied wavelet analysis to vortex de-
tection and, in their case, to the detection of mesocy-
clones. In their method, the wavelet analysis is used to
remove small-scale variations and fill data gaps so that
the mesocyclone-related signals can be retained at the
scales of interest. Therefore, the purpose of their ap-
plication is very different from ours.

In addition, as pointed out by Desrochers and Yee
(1999), traditional tornado detection algorithms do not
identify the 2D features of the velocity couplet directly
but derive them through 1D azimuthal shear segments.
This is a factor that potentially increases the false alarm
rate (Lee and White 1998). In this paper, the velocity
couplet is described in terms of the region-to-region
velocity difference and RRVD directly measures the
2D radial wind shear at each point and detects the ve-
locity couplet instead of 1D shear segments. Also, be-
cause the size of tornado vortices varies from tens of
meters to 1–2 km, the traditional detection algorithms
often have difficulties in defining suitable criteria for
constructing 2D features from 1D azimuthal shear seg-
ments. The mesocyclone detection algorithms (MDAs)
often misidentify a tornado vortex as a mesocyclone
when the tornado is close to a radar and misidentify a
mesocyclone as a tornado when the mesocyclone is far
away. On the other hand, traditional tornado detection
algorithms do not attempt to identify mesocyclones.
Because our WTDA identifies 2D features in terms of
the wavelet functions representing different scales, it
may provide a natural way for combining MDA and
TDA. This can be an area of future research.

4. Testing of WTDA with the 8 May 2004 central
Oklahoma tornado case

a. Statistical characteristics of RRVD

The real test of any detection algorithm should be
against real tornado cases. Radar data collected by the
Oklahoma City, Oklahoma, WSR-88D (KTLX) on 8
May 2003 are used to examine the performance of our
detection algorithm. On that day, a weak supercell tor-
nado (F0) formed at 2206 UTC about 20 km south of
the KTLX radar. It reached an intensity of F4 by 2220
UTC but dissipated by 2236 UTC after moving to about
15 km northeast of the KTLX radar. The tornado trav-
eled for about 27 km on the ground (NCDC 2003). This
tornado was observed by the radar in a series of seven
volume scans. A good description of the case can be
found in Burgess (2004). In each volume scan, the tor-
nado core region in the lowest elevation of KTLX data
is subjectively identified for verification purposes.

To examine the statistical characteristics of radial ve-
locity data within the tornadic and nontornadic regions,
we separate the radar observations in the lowest eleva-
tion into two groups. The observations within the tor-
nado region are classified into group I, which contains
147 observations from the seven lowest elevations. The
gate-to-gate check of the NTDA is applied to the non-
tornadic regions. If the velocity difference is larger than
11 m s�1, the corresponding radar observations are
classified into group II so that they will be examined by
the detection algorithm (those with smaller velocity dif-
ferences are ignored). Here, the 11 m s�1 threshold is
that used in NTDA (Mitchell et al. 1998). Group II
contains 9352 observations. As can be seen, the number
of observations in group II is far larger than that in
group I. All data points in group II should eventually be
discarded by the tornado detection algorithm as we
know they are not tornadic. It will be shown that the
WTDA is more effective in eliminating data points in
group II based on the statistical features of the two
groups of data.

When the wavelet transform is applied to each sweep
of radar observations, RRVD can be calculated accord-
ing to Eq. (7). The frequency histograms of RRVD are
plotted for the first three scales in Fig. 7 for group I data
and in Fig. 8 for group II data. According to Figs. 7a
and 8a, the RRVD values for the smallest scale (m � 1)
at most of the observation points are smaller than 0.5 in
both groups. This indicates that it is difficult to distin-
guish real tornadic from nontornadic wind shear when
using the smallest scale alone. However, as scale index
m increases, the difference in the histograms between
the two groups becomes larger. In group II, most of the
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RRVD values remain in the range of 0–0.5 for scale
indices 2 and 3 while a very small percentage (�5%) of
values exceed 0.5 for all scales, indicating that at least
95% of nontornadic shears can be eliminated when a

FIG. 7. Frequency histograms of RRVDs for data points in
group I (tornadic shears) at scales m � (a) 1, (b) 2, and (c) 3.

FIG. 8. As in Fig. 7, but for RRVDs for data points in group II
(nontornadic shears).
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RRVD threshold of 0.5 is used. For group I, however,
the distribution is increasingly biased toward large val-
ues of RRDV as the scale index increases; in fact, for
scale index 3, 90% of RRVD values exceed 0.5. These
distinctive characteristics exhibited at the different
scales between the tornadic (group I) and nontornadic
(group II) regions agree with the findings obtained
from the earlier idealized and simulated tornado vortex
experiments; that is, RRVDs at multiple scales can be
very helpful for separating tornadoes from nontornadic
shears.

b. Results of the WTDA

The WTDA algorithm is applied to the seven volume
scans of data from the KTLX radar that were collected
on 8 May 2003 to test the effectiveness of the algorithm.
To examine the effectiveness of the scale continuity
check in rejecting nontornadic shears as compared to
the 2D feature construction and elimination procedure
in the NTDA, the number of 2D features initially iden-
tified by the NTDA procedure and that of 2D groups
identified after our scale-continuity check are calcu-
lated.

A 2D feature is composed of at least three shear
segments. Constructing 2D features is a way of elimi-
nating nontornadic shear features by checking the 2D
spatial continuity performed in NTDA. The numbers of
constructed 2D features in all seven scans examined are
listed in the first row of Table 1. In NTDA, the number
of constructed 2D features in each lowest scan is no less
than 30. This implies that the tornado-like 2D features
have to be eliminated by other steps, such as the 3D
feature construction step performed in NTDA, which
uses data from more elevations. This step tends to be
sensitive to the number of elevations available, which
mostly depends on the distance of the tornado from the
radar. In addition, we found that the 2D feature check
used in NTDA actually missed the true tornadic feature
at 2235 UTC among a total of 35 two-dimensional fea-
tures it identified.

A scale continuity check is one of the ways of elimi-
nating nontornadic shear in WTDA. We show here that
most of the nontornadic shears can be eliminated by
our scale continuity check using the lowest-elevation

scan only. The number of 2D groups remaining after
the scale continuity check is counted and listed in the
second row of Table 1. After the check, the remaining
number of 2D groups in all scans is no more than eight
and all true tornadic features are found to remain. The
scale continuity check is therefore very effective in
eliminating nontornadic features while keeping the tor-
nadic ones.

We note here that NTDA does include additional
steps, including the construction of 3D features using
more elevations, which will also eliminate some of the
2D features listed in the first row of Table 1. This step
can also be applied in our algorithm, although we hope
that 3D feature checking can be more effectively
achieved by performing in the future 3D wavelet analy-
sis.

Most of the remaining nontornadic 2D groups can be
further eliminated by the ensuing steps in our algo-
rithm; this is illustrated below for one scan time. The
numbers of remaining 2D groups after passing through
all steps in WTDA are listed in the third row of Table
1 for different times. All true tornadic shears in the
scans during this test period except that at 2211 UTC
are identified uniquely by WTDA, while the two non-
tornadic shears remaining at 2211 UTC after all check
steps of WTDA are caused by ground clutter.

An example of applying our WTDA algorithm to the
data from the KTLX radar is shown in Fig. 9. Figure 9a
shows the observed radial velocity field roughly be-
tween the 10- and 20-km-range circles at 2220 UTC 8
May 2003. Nine 2D features in total are identified by
NTDA in the plotted region in Fig. 9a and they are
marked by small labeled circles. Among these, only the
circle labeled 1 is the location of a true tornado, while
the other features are caused by, for example, data
noise and data quality problems.

The corresponding fields of the RRVD at the first
three scales are plotted in Figs. 9b–d. As shown in Fig.
9b, RRVD is larger than 0.5 at circles 1, 6, 7, and 8 but
small at other circles. This means that the other five
nontornadic 2D features have been effectively elimi-
nated even when using RRVDs for the smallest scale
only. Note that at scale 1, both the maximum value of
RRDVs and the area coverage of the values exceeding

TABLE 1. The number of remaining 2D features (groups) after an NTDA azimuthal gate-to-gate check, after the WTDA scale
continuity check, and finally after all steps in WTDA.

Time UTC 2206 2211 2215 2220 2225 2230 2235

2D features after NTDA check 32 31 41 46 31 46 35
2D groups after scale continuity check 4 8 3 2 6 8 7
2D groups after all WTDA steps 1 3 1 1 1 1 1
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0.5 are larger for circle 2 than for circle 1, where the
true tornado is located. This hints at the unreliability of
RRVD at the smallest scale, which is closest to the
gate-to-gate shear. Starting from scale 2, the feature
associated with the true tornado becomes clearly dom-
inant in term of the RRVD value. At scale 2, the fea-
ture associated with circle 7 is still identifiable (Fig. 9c)
but all other features (circles 6 and 8) become very
weak relative to the background values. In particular,
all values of RRVD in circle 6 becomes smaller than
0.5, and thus this nontornadic feature arising from data
noise is eliminated. At scale 3, only the tornadic fea-
ture is clearly identifiable. Thus, there are two features
(circles 1 and 7) that pass the scale continuity check.
When we further examine the group property of the
remaining features in step 6, there is no sign change for
the radial velocity in the group that is indicated by
circle 7. Thus, the nontornadic feature 7 can be dis-
carded by the ensuing steps in the WTDA. The above

example demonstrates that the scale continuity check is
able to successfully eliminate most of the nontornadic
features identified by simple gate-to-gate shear check-
ing.

5. Summary and conclusions

In this paper, wavelet analysis is applied to the de-
tection of tornadoes from Doppler radial velocity ob-
servations. A tornado detection algorithm is developed
based on the wavelet analysis (called WTDA) as a
proof of concept. The scale- and location-dependent
wavelet coefficients derived from the radial velocity
field are used to define a relative region-to-region ve-
locity difference (RRVD). The RRVD is shown to ef-
fectively describe the 2D region-to-region wind shear at
different spatial scales and is therefore used in WTDA
as a key discriminating parameter. This is in contrast to
the gate-to-gate shears corresponding to the (radar)

FIG. 9. (a) Radar radial velocity field observed by the KTLX radar at 2220 UTC 8 May 2003, and the
corresponding RRVD (%) at scales m � (b) 1, (c) 2, and (d) 3.
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grid scale used in typical tornado detection algorithms.
Multiscale RRVDs make it more flexible to identify
tornadic vortices with less sensitivity to the intensity or
size of the tornado and are more effective in eliminat-
ing nontornadic shears caused by data noise and/or
quality problems.

The wavelet analysis is first applied to radial velocity
data sampled from idealized as well as numerically
simulated tornadoes, for the purpose of understanding
the characteristics of RRVD associated with tornado
vortices. It is found that the tornado vortices are collo-
cated with areas where the RRVDs are large and their
values usually exceed 0.5 at more than one scale. Based
on these characteristics, the WTDA is developed using
RRVD as the primary identification parameter. The
WTDA is further tested with WSR-88D data from an 8
May 2003 central Oklahoma tornado case. The scale
continuity check in the WTDA, in terms of the
RRVDs, is found to be effective in eliminating nontor-
nadic shears.

The effectiveness of RRVD is also examined by
looking at a smaller idealized tornado, and sampling
the tornadoes from longer ranges. It is found that when
the ratio of the azimuthal distance between two adja-
cent constant-range gates to the tornado core diameter
is smaller than 8.5 for a relatively weaker tornado,
RRVD can provide very useful information for tornado
detection. The WTDA was further applied to the 10
May 2003 Oklahoma tornado case (results not pre-
sented in this paper) to examine the capability of
WTDA for a tornado at a larger distance. In this case,
an F1 tornado started at 0525 UTC and ended at 0533
UTC and traveled for about 2 mi on the ground. The
core diameter of the tornado was about 280 m (NCDC
2003) and the tornado was observed by the KTLX ra-
dar at a range of about 90 km at 0528 UTC. The WTDA
was applied to the lowest-elevation scans around this
time and the results show that after a scale continuity
check, only four 2D features remained and the tornado
was also correctly identified after ensuing steps in the
WTDA algorithms.

The thresholds used for the other identification pa-
rameters in WTDA are specified based mostly on pre-
vious papers (e.g., Mitchell et al. 1998) and the experi-
ence of the authors. These thresholds worked the best
for the cases examined in this paper as well as for the
tornado case of 3 May 1999 near Oklahoma City (re-
sults not shown in this paper). Optimal values for a
wide variety of cases would require testing against a
large radar dataset and tornado database. This is
planned for the future but we believe the examples
shown in this paper serve the proof-of-concept purpose
that demonstrates the efficacy of the wavelet analysis.

In addition, the current WTDA algorithm does not in-
clude a continuity checking across the elevations and it
is believed that the vertical check, when implemented
in the future, can further improve the reliability of the
algorithm. We may also seek to implement wavelet
analysis in the vertical direction and apply the concept
used in the elevation plane to three dimensions. At the
same time, the fact that our multiscale wavelet-based
algorithm does a reasonably good job without multiel-
evation data represents an important advantage, espe-
cially for radars not operating in conventional sit-and-
spin modes. The latter include mobile radars that often
focus on the low levels, and the dynamically adaptive
radars of the Engineering Research Center for Collabo-
rative Adaptive Sensing of the Atmosphere (CASA).
The rapid detection of tornadoes and other low-level
hazardous weather and the use of the detection infor-
mation to adaptively steer the scanning of its network
of radars are important goals of CASA (see, e.g., Xue
et al. 2006).

Since no direction comparisons have been performed
against a large enough tornado database, we do not
claim the superiority of our WTDA over any of the
existing, established tornado detection algorithms. The
need for tuning and refinement of our algorithms is
expected when we test the algorithm against a large
enough dataset. Eventually, we want to implement our
algorithm within the NSSL Warning Decision Support
System-Integrated Information (WDSS-II) system and
perform side-by-side comparisons with the NSSL TDA
to further evaluate the performances of WTDA. In ad-
dition, the scale-dependent parameter RRVD devel-
oped in this paper can also be used as a parameter in
probabilistic tornado detection algorithms, in a manner
similar to that done in Lakshmanan et al. (2005).
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