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ABSTRACT

Radar reflectivity (Z) data are either directly assimilated using 3DVar, 4DVar, or ensemble Kalman filter,

or indirectly assimilated using, for example, cloud analysis that preretrieves hydrometeors from Z. When

directly assimilating radar data variationally, issues related to the highly nonlinear Z operator arise that can

cause nonconvergence and bad analyses. To alleviate the issues, treatments are proposed in this study and

their performances are examined via observing system simulation experiments. They include the following:

1) When using hydrometeor mixing ratios as control variables (CVq), small background Z can cause ex-

tremely large cost function gradient. Lower limits are imposed on the mixing ratios (qLim treatment) or the

equivalent reflectivity (ZeLim treatment) in Z observation operator. ZeLim is found to work better than

qLim in terms of analysis accuracy and convergence speed. 2) With CVq, the assimilation of radial velocity

(Vr) is ineffective when assimilated together with Z data due to the much smaller cost function gradient

associated with Vr. A procedure (VrPass) that assimilates Vr data in a separate pass is found very helpful.

3) Using logarithmic hydrometeor mixing ratios as control variables (CVlogq) can also avoid extremely large

cost function gradient, and has much faster convergence. However, spurious analysis increments can be

created when transforming the analysis increments back to mixing ratios. A background smoothing and a

lower limit are applied to the background mixing ratios, and are shown to be effective. Using CVlogq with

associated treatments produces better reflectivity analysis that is much closer to the observation without

resorting to multiple analysis passes, and the cost function minimization also converges faster. CVlogq is

therefore recommended for variational radar data assimilation.

1. Introduction

The numerical weather prediction (NWP) model is

becoming increasingly important tool for forecasting

convective-scale weather (Lilly 1990; Stensrud et al.

2013; Sun et al. 2014). To properly initialize convective

storms and other precipitation systems within an NWP

model, the assimilation of weather radar observations is

critical because they provide the high temporal and

spatial resolutions needed to observe such systems, and

are the most important operational observation plat-

form that is able to observe their interior structures

(Lilly 1990). The radial velocity (Vr) and reflectivity (Z)

are the twomain observed variables byDoppler weather

radar. Among them, the assimilation of reflectivity is

more challenging, especially in a variational framework,

because of the high nonlinearity of its observation op-

erator and its close involvement with the complex

microphysics.

Over the past two to three decades, a number of

methods have been proposed for assimilating radar

reflectivity observations. These methods fall into the

categories of semiempirical or indirect assimilation

methods, variational, ensemble Kalman filter (EnKF),

and hybrid ensemble–variational (EnVar) methods. In

practice, to be able to analyze multiple hydrometeorCorresponding author: Dr. Ming Xue, mxue@ou.edu
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species associated with ice microphysics schemes,

semiempirical method such as the so-called complex

cloud analysis schemes (Albers et al. 1996; Zhang

et al. 1998) are often used together with another

analysis scheme that assimilates other observations

(Hu et al. 2006a; Xue et al. 2003). The cloud analysis

schemes derive precipitating hydrometeors based on

reflectivity and other cloud observations, and adjust

temperature and moisture fields within precipitation

regions, and have been shown to be effective in ini-

tializing convective storms, hurricanes and alleviating

the precipitation spin up problem (e.g., Dawson and

Xue 2006; Hu et al. 2006a; Jiang et al. 2015; Zhao and

Xue 2009). Due to their relatively low computational

cost, they have been routinely used in realtime fore-

casting systems (Kain et al. 2010; Xue et al. 2013) and

operational forecasting (Hu et al. 2017; Weygandt

et al. 2008). However, cloud analysis algorithms have

their issues. They rely on empirical relations and as-

sumptions to derive hydrometeor, temperature and

moisture increments and do not adequately consider

information and uncertainties contained in forecast

background or observations, as optimization-theory-

based modern data assimilation (DA) methods do.

There is therefore a need to be able to assimilate re-

flectivity data directly using variational or ensemble-

based methods.

Alterative to variational methods, EnKF has been

shown to be quite effective in assimilating radar reflec-

tivity observations into models that contain complex

microphysics (Aksoy et al. 2009; Jung et al. 2008; Tong

and Xue 2005; Xue et al. 2006; Xue et al. 2010). Because

EnKF does not require the linear tangent or adjoint of

the observation operators, it can handle nonlinear ob-

servation (such as radar reflectivity) operators without

much technical difficulty. However, nonlinear operators

do violate the Gaussian error distribution assumption

inherent with Kalman filter, leading to suboptimal

solutions, especially for dense highly nonlinear ob-

servations (Lorenc 2003). In addition, EnKF relies on

ensemble-based background error covariance which is

affected by sampling error andmodel error (Houtekamer

andMitchell 1998; Houtekamer et al. 2009); this problem

can be alleviated to some extent by covariance local-

ization techniques and/or by using a hybrid ensemble-

variational (EnVar) framework that combines the

ensemble-based and static background error covari-

ances (Hamill and Snyder 2000). For example, the

current operational North American Mesoscale Forecast

System (NAM) and Rapid Refresh models of the U.S.

National Weather Service use hybrid 3DEnVar DA

method (Hu et al. 2017; Wu et al. 2017) except that their

ensemble perturbations come from the EnKF system of

the Global Forecast System (Kleist and Ide 2015), and

radar reflectivity data are assimilated using a cloud-

analysis scheme. To directly assimilate reflectivity using

either purely variational or hybrid EnVar method, ad-

joint of its observation operator is needed. Given that

3DVar with static background error covariance is a nec-

essary building block for a hybrid EnVar system, it is

important that reflectivity is assimilated as accurately as

possible using 3DVar.

Attempts had been made to assimilate reflectivity

data within variational frameworks. Although a non-

linear reflectivity observation operator can be used in

variational DA, the linearization of the nonlinear ob-

servation operator can result in convergence prob-

lems and stability issues during variational minimization

process. Within a four-dimensional variational Doppler

radar analysis system (VDRAS) based on a cloud

model that contained warm rainmicrophysics only, Sun

and Crook (1997) compared direct assimilation of re-

flectivity with the assimilation of the rainwater mixing

ratio retrieved from reflectivity (with the assumption of

warm rain only, this can be easily done). They found

that direct assimilation of reflectivity did not perform

as well as assimilating derived rainwater, due to prob-

lems encountered during variational minimization that

were shown to be related to the nonlinearity of the

relation between reflectivity and rainwater mixing ra-

tio. The assimilation of reflectivity within the WRF

3DVar and 4DVar systems follows a similar strategy,

where rainwater mixing ratio converted from radar

reflectivity is assimilated (Wang et al. 2013a,b). This

leads to an indirect assimilation procedure that is also

difficult to realize in the presence of ice microphysics

unless empirical relations are introduced as in cloud

analysis schemes. Earlier, a procedure for assimilating

reflectivity data using 3DVar was implemented byXiao

et al. (2007) within the MM5 and later WRF 3DVar

systems, assuming warm-rain microphysics only. Even

though not discussed in their paper, problem associated

with the nonlinear reflectivity operator should exist.

Gao and Stensrud (2012) directly assimilated re-

flectivity in the presence of multiphase hydrometeors

within a 3DVar framework. To allow for physical par-

tition of radar-observed precipitation among the hy-

drometeors, the reflectivity operator was modified so

that its dependency on liquid or ice hydrometeor types

was a function of temperature. Alternatively, Liu et al.

(2019) chose to keep the original reflectivity operator

unchanged, but employed a temperature-dependent

hydrometeor background error profiles to achieve

physical partitioning of radar-observed precipitation

information among the liquid and ice hydrometeors.

While both approaches produced reasonable analyses
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of hydrometeors, there existed issues related to the

nonlinearity of the observation operator of reflectivity

in their variational minimization processes. Trying to

reduce the issues, Carley (2012) used logarithmic

mixing ratios of hydrometeors as the control variables

(whichwe call CVlogq) insteadofmixing ratios themselves

(called CVq) within a hybrid 3D ensemble–variational

(3DEnVar) system to assimilate radar reflectivity, but the

approach also had its problems.Recognizing the problems,

Wang andWang (2017) proposed an alternative approach

within an EnVar framework that does not use the linear

tangent or adjoint of the reflectivity operator; in their

system reflectivity instead of the hydrometeor mixing ra-

tios is used as a state variable. However, with such an ap-

proach, the EnVar solution is effectively equivalent to that

of EnKF. To be able directly assimilate reflectivity data

within a hybrid EnVar DA system that includes static

background covariance, linear tangent and adjoint of the

observation operator will still be needed and the

nonlinearity problem is therefore unresolved. Kong et al.

(2018) compared direct assimilation of reflectivity be-

tween pure 3DEnVar that uses 100% ensemble covari-

ance and EnKF through observing system simulation

experiments (OSSEs). The analysis results from EnKF

were better than those of pure 3DEnVar, which is af-

fected by the convergence problem related to nonlin-

ear reflectivity observation operator. Similar problem

also existed when static background error is included

in a hybrid 3DEnVar version (Kong et al. 2018).

In previous studies, some treatments have been pro-

posed to deal with the problems related to the nonlinear

reflectivity operator. In Sun and Crook (1997), a lower

limit was added to rainwater mixing ratio (which we call

the qLim approach) in their rainwater-only reflectivity

operator. With the CVlogq approach, issues related to

logarithmic transformation were noticed but not solved

(Carley 2012; Wang and Wang 2017). Thus, the main

goals of this study are to investigate different treatments

specific to different control variables (i.e., the mixing

ratios or logarithmic mixing ratios, and their relative

performance when assimilating reflectivity directly

within a 3DVar framework). OSSEs will be performed

with simulated radar data for a model supercell storm

closely following our earlier studies (Kong et al. 2018;

Liu et al. 2019).

We note here that the choice of water vapor or hy-

drometeor variables in DA systems has received some

attention in the literature. For example, Dee and Da

Silva (2003) recommended the use of pseudo–relative

humidity as the moisture analysis variable because of

easier modeling of its background error and less cou-

pling with temperature analysis. Fletcher and Zupanski

(2006) explored variational assimilation of observations

whose error distribution is lognormal, which may be

more suitable for certain moisture or precipitation ob-

servations. Ingleby et al. (2013) introduced a humidity

control variable via nonlinear transform that is used in

the Met Office variational DA system that seems to

benefit the assimilation of humidity-sensitive satellite

channels. These methods, however, do not directly ad-

dress issues associated with the assimilation of radar

reflectivity, whose observation operator is nonlinear and

error distribution is non-Gaussian.

The rest of this paper is organized as follows. In

section 2, reflectivity observation operators using CVq

or CVlogq are introduced. Problems of using CVq or

CVlogq within a 3DVar framework assimilating re-

flectivity data are discussed in section 3. The proposed

treatments for directly assimilating reflectivity are de-

scribed in section 4. The design of OSSEs is presented in

section 5 while the results of the experiments with dif-

ferent treatments are discussed in section 6. Finally,

conclusions are given in section 7.

2. Reflectivity observation operators

a. Reflectivity observation operator using CVq

The reflectivity observation operator can be written

in a general form:

Z5 10 log
10
(Z

e
) , (1)

where Ze is the equivalent reflectivity factor, which

typically contains the contributions from three cate-

gories of hydrometeor mixing ratios [i.e., rainwater (qr),

snow (qs), and hail (qh)], according to the following

equation:

Z
e
5Z

er
(q

r
)1Z

es
(q

s
)1Z

eh
(q

h
) . (2)

The above assumes that there are three categories

of precipitating hydrometeors within the microphysics

scheme used in a numerical model and only the mixing

ratios are predicted; this is true with the one-moment

Lin ice microphysics scheme (Lin et al. 1983) used in this

study. Based on the default values of the intercept pa-

rameters of hydrometeor size distributions and the de-

fault hail density of the Lin scheme, the equivalent

reflectivity factors contributed from rainwater, snow,

and hail are, respectively,

Z
er
5 3:633 109 3 (rq

r
)1:75, (3)

Z
es
5

(
9:803 108 3 (rq

s
)1.75 T# 08C

4:263 1011 3 (rq
s
)1.75 T. 08C

, (4)
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Z
eh
5 4:333 1010 3 (rq

h
)1:75, (5)

where T is air temperature in Celsius. These equations

are the same as those given in Tong and Xue (2005) but

with the default parameter values plugged in.

b. Reflectivity observation operator using CVlogq

When using the logarithmic mixing ratios as the con-

trol variables (i.e., when using CVlogq), hydrometeor

mixing ratios are transformed into the logarithmic

space. Taking rainwater as an example, the transfor-

mation can be expressed as

q̂
r
5 log

10
(q

r
) . (6)

Thus, the equivalent reflectivity factor for rainwater can

be written as

Z
er
5 3:633 109 3 (r10q̂r)1:75. (7)

Similar transformation can be applied to the reflectiv-

ity components of snow and hail, effectively replacing

qs and qh in Eqs. (4) and (5) with 10q̂s and 10q̂h , re-

spectively. The total equivalent reflectivity for CVlogq

is then

Z
e
5Z

er
(q̂

r
)1Z

es
(q̂

s
)1Z

eh
(q̂

h
) . (8)

We note here that given the observed reflectivity is theZ

in Eq. (1), the log operation applied to equivalent re-

flectivity factor Ze will make the relation between Z and

q̂ linear, at least when there is only one hydrometeor

species. This property likely can make the modeling of

the error statistics of q̂ easier.

3. Problems with CVq and proposed treatments

a. Extremely large gradient of 3DVar cost function
for CVq

In 3DVar, the optimal analysis is obtained by mini-

mizing the following cost function:

J5
1

2
(x2 x

b
)TB21(x2 x

b
)1

1

2
[H(x)2y]TR21[H(x)2y] ,

(9)

where x is the analysis state vector and xb is the back-

ground state vector; y is the observation vector; B and R

are the background and observation error covariance

matrices, respectively; and H is the possibly nonlinear

observation operator, which typically includes spatial

interpolation from model space to observation space,

and transformation from model state variables to ob-

servation variables. TheZ observation operator given in

the previous section is an example that transforms hy-

drometeor mixing ratios to reflectivity.

The minimization of the cost function requires the

calculation of the gradient of the cost function J with

respect to state vector x, and the gradient is given by

=
x
J5B21(x2 x

b
)1HTR21[H(x)2 y] , (10)

where H is the linear tangent version of operator H and

HT is the adjoint of H.

Based on Eqs. (1)–(3), the linear tangent of the Z

operator or the gradient of Z with respect to the rain-

water mixing ratio is

›Z

›q
r

5
›Z

›Z
e

›Z
e

›q
r

5
6:353 1010 3 r1:75q0:75

r

ln103Z
e

. (11)

Very similar equations can be derived for the gradient

with respect to snow and hail mixing ratios.

Considering the simpler situation when only rainwa-

ter contributes to reflectivity (e.g., at the low levels

where only liquid rainwater is expected), the linear

tangent of Z observation operator with respect to rain-

water mixing ratio, after plugging in Zer from Eq. (3), is

›Z

›q
r

5
17:5

ln103 q
r

. (12)

In Eq. (11) or Eq. (12), whenZe or qr is close to zero, the

gradient becomes very large or approaches infinity and

will cause problems to the convergence of cost function

minimization (Sun and Crook 1997; Wang and Wang

2017). The same is true in the case of having snow or hail

mixing ratio only, or when the total Ze including con-

tributions from all species is close to zero. In addition,

when both radial velocity and reflectivity observations

are assimilated together, the much larger gradient of

reflectivity relative to that of radial velocity will make

the assimilation of radial velocity ineffective (i.e., little

correction will be made to the wind components as the

cost function sensitivity to these components is too small

in relative terms). Without a better solution, one possi-

bility of avoiding this problem is to assimilate radial

velocity and reflectivity data separately, in two different

passes (i.e., assimilating reflectivity and other observa-

tions first, then assimilate radial velocity in a second pass

using the analysis of the first pass as the new back-

ground). While this can be theoretically problematic

since the background error is typically not updated

across the analysis passes, it does help realize the impact

of Vr data, as will be seen later in section 3b. Other so-

lutions involve the choice of an alternative control var-

iable and applying additional treatments, as will be

discussed next.
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b. Proposed treatments when using CVq

1) ADDING A LOWER LIMIT TO HYDROMETEOR

MIXING RATIOS IN Z OPERATOR (QLIM)

As mentioned earlier, to avoid extremely large gra-

dient of the cost function, Sun and Crook (1997) intro-

duced a lower limit, «q, to rainwater mixing ratio qr,

effectively setting the gradient of reflectivity with re-

spect to qr to zero in their rainwater-only reflectivity

formula when qr is less than lower limit. Formultiphased

microphysics, with a similar qLim treatment, the Z op-

erator and its linear tangent term are written as

Z5H[max(q, «
q
)], (13)

›Z

›q
5

8><
>:

›Z(q)

›q
q. «

q

0 q# «
q

, (14)

where q can be any of the hydrometeor mixing ratios in

the reflectivity formula.

2) MODIFYING EQUIVALENT REFLECTIVITY FOR

SMALL MIXING RATIO (ZELIM)

The qLim treatment can greatly reduce the extremely

large gradient of cost function when a large lower limit is

used. However, with this treatment, reflectivity obser-

vations cannot be effectively assimilated in the area

where the mixing ratio is no larger than the lower limit

because the linear tangent is zero. To avoid this prob-

lem, an alternative treatment is proposed, which mod-

ifies the equivalent reflectivity for small mixing ratio in

the Z operator, to the following:

Z
e
5

(
Z

e
(q) Z

e
.5 «

Ze

Z
e
(q)1 «

Ze
Z

e
, «

Ze

, (15)

where «Ze
is a small equivalent reflectivity value. This

treatment avoids the problem associated with Ze in

Eq. (11) going to zero.

3) USING A SEPARATE PASS TO ASSIMILATE VR

DATA (VRPASS)

As mentioned in section 3a, when using CVq, because

the cost function gradient for the observation term

corresponding to radial velocity Vr observation is much

less than Z observation, especially when q is small, the

impact of assimilating Vr observations is difficult to re-

alize when both ofVr andZ observations are assimilated

together (Sun and Crook 1997; Wang and Wang 2017).

To alleviate this problem, we use two separate analysis

passes, with Vr data analyzed in a second 3DVar pass.

Thus, the minimization procedures of the Vr cost func-

tion are not affected by the extremely large gradient of

the cost function corresponding to the Z observation.

This approach is theoretically problematic in a 3DVar

framework, however, when the background error can-

not be easily updated after Z and other observations are

assimilated. When Vr data are assimilated in the second

pass, if the wind fields have been updated by other ob-

servations, using the same background error of wind

fields tend to overestimate the Vr data impact. In our

case, the Z and Vr data can only directly affect some of

the state variables (i.e., state variables that appear in

their observation operators). The 3DVar background

error covariance typically does not contain cross co-

variance among the hydrometeor and wind variables for

convective-scale DA. In the experiments of this paper,

only Z and Vr data are assimilated and the state vari-

ables they update do not overlap, therefore there is no

theoretical problem employing the VrPass treatment. In

practice, multiple analyses passes are often used within

3DVar in order to allow for the use of different back-

ground error correlation scales (e.g., Li et al. 2012;

Schenkman et al. 2011). Performing separate analysis

passes does increase computational cost. The increase

will be even more in a hybrid EnVar system when the

ensemble-based covariance processing carries signifi-

cant cost. Furthermore, to be theoretically correct, the

coupling EnKF system that provides the ensemble per-

turbations should also be performed using separate

passes, assimilating the same set of observations in

each pass, as was tested in Pan et al. (2014). This will

create much more computational burden; therefore, a

single pass that assimilates all observations is strongly

preferred.

4) USING LOGARITHMIC MIXING RATIOS AS THE

CONTROL VARIABLES (CVLOGQ)

An alternative way to avoid the extremely large gra-

dient of the cost function for reflectivity DA is to use a

logarithmic transformation of the hydrometeor mixing

ratios for the control variables [i.e., using CVlogq, as

given in Eq. (6)]. With CVlogq, the linear tangent of Z

operator with respect to logarithmic rain mixing ratio

can be written as

›Z

›q̂
r

5
17:5Z

er

Z
e

. (16)

If considering a single-phased hydrometeor only, the

linear tangent term will be a constant, that is, 17.5 dBZ

[log(kg kg21)]21 . If taking into account multiphased

hydrometeors, the linear tangent term will not be a

constant but no larger than 17.5 dBZ [log(kgkg21)]21.
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Thus, the extremely large gradient of the cost function

can be avoided when using CVlogq.

4. Problems with CVlogq and treatments

a. Problem with spatial spreading of analysis
increment

As mentioned in the previous section, using CVlogq

can avoid the extremely large gradient of cost func-

tion for small values of mixing ratios or equivalent

reflectivity, making the assimilation of larger reflec-

tivity values (e.g., .35 dBZ) and radial velocity ob-

servations more effective. However, new problems

can arise with the use of CVlogq. With CVlogq, typi-

cally, background errors with Gaussian spatial corre-

lation (e.g., Huang 2000) for hydrometeor mixing

ratios are simulated in log(q) space (Carley 2012).

However, when transforming the Gaussian-shaped

analysis increment in log(q) space back to the q

space, the analysis increment is no longer Gaussian-

like because of the high nonlinearity of the log

transformation. With the nonlinear transform, strange

looking/suspiciously shaped analysis increments can

result in the increment of q. To illustrate, we examine

the single-observation analysis problem. Assume that

the background errors of hydrometeors are spatially

homogenous, and the observation is located at grid

point j. Since the observation operator is an identity

matrix here, the solution of 3DVar for this single-

observation test is the same as that of optimal inter-

polation (Kalnay 2002). Thus, the analysis increment of

q̂[ log(q) at grid point i is

dq̂
i
5 ŝ2

br̂ij(ŝ
2
b 1 ŝ2

o)
21
d , (17)

where ŝ2
b and ŝ2

o are background and observation error

variances, respectively; d is the observation innova-

tion; and r̂ is background error correlation for log(q)

(Kalnay 2002). At the observation point j, the analysis

increment is

dq̂
j
5 ŝ2

b(ŝ
2
b 1 ŝ2

o)
21
d . (18)

When dividing (17) by Eq. (18):

r̂
ij
5

dq̂
i

dq̂
j

. (19)

The above is also the effective spatial correlation of

background error expressed in terms of the spatial

spread of analysis increment of the control variable.

Similarly, the background error correlation between q

at points i and j is equal to

r
ij
5

dq
i

dq
j

. (20)

To convert the increment from log(q) space back to the

q space, the following equation is used:

dq5 10dq̂1logqb 2q
b
. (21)

Using Taylor series expansion, expanded around the

value logqb, 10
q̂ (q̂5 dq̂1 logqb) can be written as

10dq̂1logqb 5 10logqb 1 10logqb ln103 dq̂

1 �
‘

k52

10logqb(ln10)kdq̂k(k!)21 . (22)

Substituting Eq. (22) into Eq. (21), the analysis incre-

ment of q given increment of q̂ is

dq5 10dq̂1logqb 2 q
b

5 10logqb 1 10logqb ln103 dq̂

1 �
‘

k52

10logqb(ln10)kdq̂k(k!)21 2 q
b

5 q
b
ln103 dq̂1 �

‘

k52

q
b
(ln10)kdq̂k(k!)21 . (23)

With Eq. (19), substituting Eq. (23) into Eq. (20), we

obtain

r
ij
5
dq

i

dq
j

5

q
bi
ln103 dq̂

i
1 �

‘

k52

q
bi
(ln10)kdq̂k

i (k!)
21

q
bj
ln103 dq̂

j
1 �

‘

k52

q
bj
(ln10)kdq̂k

j (k!)
21

5

�
11 �

‘

k52

(ln10)k21
dq̂k21

i (k!)21

�
�
11 �

‘

k52

(ln10)k21
dq̂k21

j (k!)21

�3 q
bi

q
bj

3 r̂
ij
. (24)

Based on Eq. (24), we have the following discussions on

the relationship between r and r̂:

1) If the analysis increment of log(q) is very small, and

the background is homogeneous (constant) (i.e., if

dq̂/ 0 and qbi5 qbj), Eq. (24) can then be written as

r
ij
’ r̂

ij
, (25)

whichmeans that the effective spatial correlation in q

space is almost the same as that in log(q) space.

2) If the analysis increment in log(q) space is not small

compared to the background value, and the back-

ground is homogeneous, because the analysis incre-

ment near the observation point is always no greater
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than that in the observation point (i.e., dq̂i # dq̂j),

then Eq. (24) will give rise to

r
ij
# r̂

ij
, (26)

which means that if the background is homogeneous,

the effective correlation of q is always no larger than

that of log(q).

3) If the analysis increment in the log(q) space is very

small, but the background is inhomogeneous (i.e.,

dq̂/ 0 and qbi 6¼ qbj), Eq. (24) can be written as

r
ij
’

q
bi

q
bj

3 r̂
ij
, (27)

which means that when the background at the anal-

ysis grid point i is larger (or smaller) than that at the

observation point j, the effective correlation in q

space is larger (or smaller) than that in the log(q)

space. As a result, the analysis increment of q at grid

point i will be larger (or smaller) than what the

Gaussian correlation model would suggest.

In summary, when a Gaussian-like spatial correlation

function is used to simulate the background error cor-

relation in the space of control variable log(q), the ef-

fective spatial correlation in q will be almost Gaussian

only when the analysis increments are very small and the

background is homogenous within the radius of mean-

ingful correlation. When either of the two conditions is

not satisfied, the effective correlation function in q can

deviate significantly from Gaussian, leading to strange

looking/suspiciously shaped analysis increments in q.

To better understand the above discussions, single-

pseudo-observation experiments in a one-dimensional

space with homogenous and inhomogeneous back-

ground are conducted. The grid spacing is 2 km and the

grid number is 30. A homogeneous background of

rainwater mixing ratio q is set as 0.3 g kg21. To simulate

an inhomogeneous background, a sectional function in

terms of the gridpoint number n is assumed as follows:

q
b
5

8<
:

0:1 n, 14

0:3 14# n# 16

0:7 n. 17

. (28)

An observation of rainwater mixing ratio itself is placed

at the 15th grid point and the observed value is 1 or

0.6 g kg21, respectively (Fig. 1a). The observation error

is assumed to be 0 g kg21. Thus, the optimal analysis

increments at the observation point should be 0.7 and

0.3 g kg21, in the two cases, respectively, according to

Eq. (18) (as applied to q), which represent large and small

analysis increment relative to the background value (of

0.3g kg21) at the observation point, respectively. The

background error variance is assumed to be homoge-

neous, and a Gaussian function with 5km de-correlation

scale is used to construct the background error corre-

lation model. A configuration summary for single-

observation tests is given in Table 1.

The shape of the analysis increment using CVq for

both observations is Gaussian-like (red line in Fig. 1b),

and independent of the background. With CVlogq, the

same Gaussian function is used to construct the back-

ground error correlation model. Thus, the shape of the

analysis increment of log(q) is also Gaussian-like as

shown in Fig. 1c. As discussed earlier, the Gaussian-like

spatial correlation function of log(q) background error

cannot be Gaussian-like in q space unless the analysis

increment is very small (so that the problem is nearly

linear) and the background is homogenous; this will

reflect on the spatial spread of analysis increment in q

space. As shown in Fig. 1b, when the analysis increment

is small and the background is homogenous (CVlogq-

IS-BH, black dash line in Fig. 1b), the shape of the

analysis increment of q is essentially Gaussian-like and

close to that of CVq (CVq-IS red dash line). Conversely,

if the analysis increment is large, the spread of the

analysis increment from CVlogq becomes narrower

(CVlogq-IL-BH, black solid line). When the back-

ground is spatially inhomogeneous (blue line in Fig. 1a),

the analysis increment in q is overestimated or under-

estimated (CVlogq-IS-BI and CVlogq-IL-BI, blue lines

in Fig. 1b). This is because that even though the background

error spatial correlation is assumed to be Gaussian for

log(q), the spatial correlation for q is not Gaussian accord-

ing to Eq. (27) when the background value of q is spatially

varying. Such situation commonly occurs in convective re-

gions, and the gradient in q can be especially large at the

cloud boundaries. In short, the spatial spread of q analysis

increment using CVlogq is consistent with earlier discus-

sions on the spatial correlation of the background error.

b. Treatment: Adding a smoothing function and a
lower limit to background (XbSL)

To alleviate above problems caused by inhomoge-

neous background, a smoothing function (denoted f, a

five-point smoothing function is used in our study) is

used to smooth the background when converting dq̂

back to dq. A five-point smoother, also called the tri-

angular smoother, is given by

q
j
5

q
j22

1 2q
j21

1 3q
j
1 2q

j11
1 q

j12

9
, (29)

where qj is the smoothed value at grid point j. In other

words, when converting dq̂ to dq, the background qb
used in conversion is replaced by qb. It is important to
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note that the background used for calculating innova-

tion is still the original one (without applying the

smoother). In addition, to avoid negative infinite value

in the logarithmic transform, a lower limit is added to

the background. Thus, Eq. (21) can be written as

dq5 10dq1logff [max(qb ,«b)]g2 f [max(q
b
, «

b
)]. (30)

This smoothing procedure avoids large discontinuity in

the analysis increment of q.

To examine the impact of the above smoothing

function, single-observation experiments similar to the

previous section are conducted but using a smoothed

inhomogeneous background (red line in Fig. 2a).

Figure 2b shows that the problem of overestimating or

underestimating analysis increments (blue line) are

somewhat alleviated when the smoothed background

is used when converting dq̂ back to dq.

5. Assimilation system and experimental design

The use of log(q) control variables is first added to the

ARPS 3DVar system (Xue et al. 2003; Gao et al. 2004),

which is used to test our treatments proposed in section 4

through OSSEs. We note that no cross-variable back-

ground error covariance is included so the 3DVar system

is more or less univariate, especially when the mass con-

tinuity constraint that couples three wind components

together (Hu et al. 2006b) is not included, as is the case in

this paper (so as to showmore clearly the direct impact of

assimilation Vr data). A supercell storm that occurred on

20 May 1977 in Del City, Oklahoma (Ray et al. 1981), is

selected for the OSSEs. The model configurations are

similar to those of Tong and Xue (2005) and Kong et al.

(2018) except for a larger domain. The domain size is

513 513 35 grid points, with 2km horizontal and 0.5km

vertical grid spacings, respectively. The recursive filter

length scales for the background error spatial covariance

in the horizontal and vertical directions are 4.1 and 1.4km,

respectively, which are optimal for ARPS 3DVar for the

current OSSE problem (Kong et al. 2018). A limit of 200

iterations was imposed for the minimization and the

convergence criteria for cost function were set to 10212.

Temperature-dependent background error variance

profiles for the hydrometeors (Liu et al. 2019), of which

the error variance ranged from 0 to 1.2 kkg21, are used

for all experiments. Observation errors of radial velocity

FIG. 1. Single-observation tests (see Table 1) with (a) two

backgrounds (black dash line for homogeneous background,

and blue line for inhomogeneous background) and two obser-

vations (red dots at 1 and 0.6 g kg21). (b) Analysis increments of

large (solid line) or small (dashed line) amplitude and using

CVq (red line) or CVlogq for the case of spatially homogeneous

background (black lines) and inhomogeneous background (blue

 
lines). (c) Analysis increment in log(q) space using CVlogq. In

(b) and (c), solid lines are for the case of large analysis incre-

ments (for observation of 1 g kg21) while dashed lines are for the

case of small analysis increments (for observation of 0.6 g kg21).
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and reflectivity are assumed to be 1m s21 and 3dBZ,

respectively. With these error standard deviations, un-

biased normal distribution random errors are added to

the simulated radial velocity and reflectivity to simulate

observations errors. A single radar observes the simu-

lated storm from the southwest corner of the model

domain, and Vr and Z observations are simulated from

model output at 5-min intervals. TheVr observations are

assumed to be available at grid points where simulated

reflectivity is no less than 10dBZ while Z observations

throughout the domain are assimilated. The assimila-

tion of clear-air reflectivity helps suppress spurious

reflectivity in the background (Tong and Xue 2005).

Using CVq, three sets of experiments are conducted with

1) qLim treatment (CVq-qLim), 2)ZeLim treatment (CVq-

ZeLim), and 3) ZeLim and VrPass treatments together

(CVq-ZeLim-VrP). When using qLim and VrPass treat-

ments together (CVq-qLim-VrP), because there is no cross

correlation between hydrometeor and wind variables, the

windanalysis obtained in the secondpass ofCVq-qLim-VrP

using Vr data will be the same as that in CVq-ZeLim-VrP

since the results only depend on the backgroundwind fields.

Since themain purpose of theVrPass is to improve thewind

analysis, experiment CVq-qLim-VrP is not performed. For

CVlogq, two sets of experiments are conducted, which are

4) using CVlogq without treatment (CVlogq-NT) and 5)

withXbSL treatment (CVlogq-XbSL), respectively.A list of

experiments using different treatments is given in Table 2.

With the above five combinations of control variables

and treatments, we perform five cycled DA experiments,

over a 1-h period, corresponding to simulated storm time of

25min through 85min. Our experiment setup closely fol-

lows that 3DVar experiment in Kong et al. (2018) except

that a large domain is used to allow for the examination of

longer forecasts. The 5-min spinup ensemble forecasts are

first run from randomly perturbed initial conditions at

20min, and the first analysis is performed at 25min, using

the ensemble mean forecast as the background. The DA

cycles are run at 5-min intervals until 85min when 60-min-

long forecasts are launched. The final analyses and 30- and

60-min forecasts are compared.

The differences in the final analyses of the cycled ex-

periments are the results of many DA cycles. To better

identify the direct impact of the different control vari-

ables and treatments, we perform a set of single-time

analysis experiments, where the forecast background

from cycled experiment CVq-qLim at 85min is used in

all experiments. At this time the simulated supercell

storm is well developed. The results of these single-time

analyses are presented first in the next section.

6. Experimental results

a. Results of single-time analyses

For experiments CVq-qLim, CVq-ZeLim, and CVlogq-

XbSL, we first need to determine the optimal values of the

lower thresholds, that is, of «q, «Ze
, and «b, respectively.We

do this through the single-time analysis by trying different

TABLE 1. Configuration summaries for single-observation tests.

Experiment

name

Control

variable Increment Background

CVq-IL CVq Large Homogeneous or

inhomogeneous

CVq-IS Small Homogeneous or

inhomogeneous

CVlogq-IL-BH CVlogq Large Homogeneous

CVlogq-IL-BI Large Inhomogeneous

CVlogq-IS-BH Small Homogeneous

CVlogq-IS-BI Small Inhomogeneous

FIG. 2. As in the single-observation tests using inhomogeneous

background in Fig. 1, but also showing (a) the smoothed background

(red line) and (b) the corresponding analysis increments (blue lines)

for observation of 1 (solid lines) and 0.6 g kg21 (dashed lines).
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values. For the qLim treatment using CVq, Fig. 3a shows

that the magnitude of the cost function gradient decreases

monotonically in the 3DVar minimization when «q is in-

creased from 1028 to 1025 kgkg21, indicating a clear im-

pact of imposing qLim. However, because the gradient is

effectively set to zero when the expectedmixing ratio is no

larger than the threshold in Eq. (14), a larger «qwill lead to

less chance of adjustment to mixing ratio in the analysis.

The root-mean-square innovations (RMSI) of reflectivity

with different «q values are calculated for all grid points

where the observed reflectivity is greater than 15dBZ. The

number of observations used is on the order of 100.

Figure 3b shows that when increasing the threshold, RMSI

decreases until the threshold reaches 1025kgkg21. Even

though a close fit to observations does not necessarily

indicate a good analysis and may degrade the forecast,

however, because convergence problem occurs with the

3DVar analysis when the background or expected analysis

values of mixing ratio approaches zero, how well the an-

alyzed mixing ratio field fits the observations gives a good

idea on the success of the variational analysis. Based on the

RMSIs in Fig. 3b, «q 5 1026kgkg21 is considered the

optimal choice and is there used in the cycled CVq-qLim

experiment in the remainder of this paper. Using the same

approach, the optimal thresholds of ZeLim and XbSL

[i.e., «Ze
in Eq. (15) and «b in Eq. (30)], are found to be

1mm6m23 and 1026 kg kg21, respectively, and these

values are used in the corresponding cycled experi-

ments. For general applications, these threshold values

should be further optimized.

The reflectivity RMSIs of the forecast background

and the analyses of single-time analysis experiments

CVq-qLim, CVq-ZeLim, CVlogq-NT, and CVlogq-

XbSL are shown in Fig. 4. All analysis RMSIs are much

smaller than that of background, indicating that the

3DVar is effective in assimilating the reflectivity ob-

servations in these experiments. When using CVq, in

terms of RMSI, the ZeLim treatment is better than

qLim, producing average RMSI that is about 1 dB

lower. When using CVlogq without any special treat-

ment in CVlogq-NT, the RMSI is similar to that of

CVq-ZeLim while with additional XbSL treatment in

CVlogq-XbSL, the analysis is further improved, al-

though only by a small amount (Fig. 4).

Overall, the differences in reflectivity RMSIs of the

final analyses using CVq and CVlogq are not that large

(Fig. 4). A much bigger difference is in the 3DVar

minimization convergence speed. This can be seen in the

reduction rate of reflectivity RMSI as a function of

minimization iterations, as shown in Fig. 5; it is clear that

the convergence using CVlogq is much faster than using

CVq. After about 15 iterations, the reflectivity RMSIs of

CVlogq experiments become much lower than those of

CVq experiments. For CVlogq experiments, the mini-

mum of RMSI is essentially reached after 50 iterations

while for CVq experiments, at least 200 iterations are

needed, and the final RMSI of CVq-qLim stays higher

than those of other experiments at 200 iterations

(Fig. 5). The use of CVlogq generally reduces that

range of values of the cost function gradient with re-

spect to the control variable, leading to faster conver-

gence. In general terms, the choice of control variable

TABLE 2. Configuration summaries for radar DA experiments

using different treatments.

Experiment name Control variable Treatments

CVq-qLim CVq qLim

CVq-ZeLim ZeLim

CVq-ZeLim-VrP ZeLim1VrPass

CVlogq-NT CVlogq No treatment

CVlogq-XbSL XbSL

FIG. 3. (a) The total logarithmic magnitude of the cost function gradient with different lower limit of q or «q in

Eq. (14) and (b) the reflectivity RMSIs for background (black line) and analysis (blue line) with different «q, for the

single-time 3DVar analysis using CVq applying qLim.
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and certain special treatment affects the condition

number of the minimization problem (Bouttier and

Courtier 1999).

The treatments related to hydrometeor mixing ratios

or reflectivity or the choice of mixing ratio-related

control variables have been shown to have direct ef-

fect on the analysis of hydrometeor fields which directly

affect the analyzed reflectivity and therefore the fit

of analyzed reflectivity to observations or reflectivity

RMSI. The effects on the analyzed wind fields are not

necessarily the same. The quality of the wind analysis is

examined by looking at radial velocity RMSIs. Those for

the forecast background, and the wind analyses of CVq-

ZeLim, CVq-ZeLim-VrP, and CVlogq-NT are shown in

Fig. 6. It can be seen that the assimilation of radial ve-

locity observations together with the reflectivity data

within the same pass produces a rather small impact on

the background RMSI when using CVq (in CVq-

ZeLim); this is due to, as suggested earlier, the gra-

dient of the part of cost function associated with Vr

observations is much smaller than that associated with

reflectivity observations, making the assimilation ofVr

data ineffective. When Vr data are assimilated in a

separate pass after the Z observations are assimilated

(i.e., with the VrPass treatment), the radial velocity

RMSI is significantly reduced; this is because the cost

function minimization is not affected by the gradient

ofZ-related cost function. Interestingly, when CVlogq

is used, the problem does not occur even when both Vr

and Z data are assimilated together. This suggests that

CVlogq is a preferred choice, since assimilating different

data in different passes creates new problems (e.g., with

respect to the background error estimation), especially

when the analysis system is multivariate and/or when

more observation types are included.

The composite reflectivity and horizontal wind vec-

tors at 2.5 km height, and reflectivity and wind vectors in

vertical cross sections through the maximum reflectivity

of the right-moving and left-moving storms at 85min

from truth simulation, for forecast background, and for

analyses from single-time analysis experiments CVq-

qLim, CVq-ZeLim-VrP, CVlogq, and CVlogq-XbSL are

shown in Fig. 7. In the truth simulation, the maximum

reflectivity of left and right movers are over 65 dBZ

(Fig. 7a). The main right moving cell is deep and the

reflectivity shows bounded weak echo region (BWER)

and an echo overhang in its vertical cross section

(Fig. 7b) while the left mover does not exhibit such

features. Compared to the truth, the reflectivity in the

forecast background is weaker (less than 50 dBZ), es-

pecially for the left mover (Fig. 7d). In the background

reflectivity of the main cell (Fig. 7e), there is no BWER

or overhang echo. For the left-mover, there is not even

clear updraft and the height of the echo top is at 9 km

instead of the 12 km in truth simulation (Fig. 7f).

After assimilating radar data, the analyzed reflectivity

fields of CVq-qLim (Fig. 7g) and CVq-ZeLim (Fig. 7j)

are significantly improved over the background except

for the central region of the main cell (Figs. 7h,k). As

discussed earlier, it is a known problem with direct

variational assimilation of reflectivity using CVq that

very large gradients of cost function can be produced in

areas of small Ze, preventing efficient minimization

convergence in areas of large Ze (because gradients are

relatively small there and variational adjustments are

small and ineffective). Imposing lower limits on q or Ze

helps, but does not completely eliminates this problem.

FIG. 4. The reflectivity RMSIs of the forecast background, and

those of the final analyses of single-time analysis experiments

CVq-qLim, CVq-ZeLim, CVlogq-NT, and CVlogq-XbSL.

FIG. 5. Reflectivity RMSIs with different minimization iteration

steps for CVq-qLim, CVq-ZeLim, CVlogq-NT, and CVlogq-XbSL.
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In CVq-qLim, some spurious reflectivity is present in

expected clear air regions (Fig. 7g) because the gradient

is set to zero when mixing ratio is no larger than the

threshold in Eq. (15), rendering the assimilation of clear-

air reflectivity data ineffective there. However, the

ZeLim treatment in CVq-ZeLim does not have such

problem (Fig. 7j).

For Vr data assimilated together with Z data, neither

qLim nor ZeLim treatment helps improve wind field

analysis. To more clearly see the impact of different

control variables and treatments on wind analysis, the

composite reflectivity and wind vectors are shown in

Fig. 8 for a zoomed in region over the left moving

cell. The wind fields from CVq-qLim and CVq-Zelim

(Figs. 8c,d) are hardly changed from the background

(Fig. 8b). After applying VrPass treatment (i.e., when

the Vr data are analyzed in a separate pass from the Z

data), the horizontal winds in Fig. 8e are much closer to

the true simulation (Fig. 8a), and the differences are

most clear in the reflectivity core region of the left

mover, where the background winds (Fig. 8b) are mostly

from the south while those in truth (Fig. 8a) and CVq-

ZeLim-VrP analysis (Fig. 8e) are mostly from the east.

Since the vertical component in Vr is very small, the

vertical velocity is not much changed by the Vr assimi-

lation directly so the differences are less obvious in the

vertical cross sections (Figs. 7n,o).

When using CVlogq, the intensity and location of the

reflectivity cores are nowmore like the truth (Figs. 7p–r)

than CVq-qLim or CVq-ZeLim; with CVlogq, the

3DVar is not affected by the extremely large gradient

of the cost function as discussed in section 3a. For the

same reason, even without the VrPass treatment, the

wind analysis of CVlogq-NT (Fig. 8f) is still as good as

CVq-ZeLim-VrP (Fig. 8e). However, Fig. 7p does

show that some spurious reflectivity analysis incre-

ments appear between the main cell and the left-

mover. In addition, the reflectivity in the upper part

of the main cell (Fig. 7q) and the left-mover (Fig. 7r)

are overestimated and underestimated, respectively.

Because there are fewer radar data covering the upper

part of the storm, the analysis mainly depends on the up-

ward spread of lower-level analysis increments. However,

due to the logarithmic transformation from logq to q in-

crements in the presence of an inhomogeneous back-

ground, improper spreading of the analysis increment can

occur as discussed in section 4b. After using the XbSL

treatment, the problems with overestimated or under-

estimated analysis increments are greatly alleviated, as

shown in Figs. 7s–u. The spurious reflectivity between the

right and left movers is now absent (Fig. 7s) and the re-

flectivity analyses at the upper levels are also improved

(Figs. 7t,u).

b. Results of analyses and forecasts during the
DA cycles

For easiness to see the direct effect of different

treatments in the 3DVar, the results of single-time an-

alyses are presented earlier. In practice, cycled DA is

needed for better results, especially for 3DVar radar

DA which does not include cross covariance in the

background error. Multiple DA cycles are needed to

propagate information in reflectivity and Vr observa-

tions to other state variables. To evaluate the quality of

analyses and forecasts, we plot the RMSIs of the ana-

lyses and forecasts during the 60-long DA period with

5-min cycles in Fig. 9. The final analyses and 30- and

60-min forecasts in terms of reflectivity and wind vec-

tors from different experiments are plotted in Fig. 10.

The singe-time analysis results in the previous section

show that the ZeLim treatment is better than the qLim

treatment, in terms of both RMSI and reflectivity

analysis. Since both treatments aim to avoid the very

large gradient of cost function, only the ZeLim treat-

ment is kept for CVq in the following cycled DA and

forecast experiments. Therefore, results of experiments

CVq-ZeLim, CVq-ZeLim-VrP, CVlogq-NT, and CVlogq-

XbSL are presented.

The RMSIs of analyses and forecasts during the DA

cycles are calculated in the area where the observed

reflectivity is greater than 15 dBZ (Fig. 9). Without the

VrPass treatment, theVr analysis RMSIs of CVq-ZeLim

are clearly larger than those of other experiments

(Fig. 9a). With the VrPass treatment, the Vr analysis

RMSIs of CVq-ZeLim-VrP are much lower, and are

very similar to those of CVlogq experiments. For re-

flectivity, the CVlogq-NT analyses are always the worst

FIG. 6. The radial velocity RMSIs for forecast background, and

the analyses of single-time analysis experiments CVq-ZeLim,

CVq-ZeLim-VrP, and CVlogq-NT.
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FIG. 7. (left) The composite reflectivity (shading) and wind vectors at 2.5 km

AGL, and reflectivity and wind vectors in vertical cross sections through the

maximum reflectivity of (middle) the main right-mover storm and (right) the left

mover at 85min from (a)–(c) truth simulation, (d)–(f) forecast background, and

the analyses from single-time analysis experiments (g)–(i) CVq-qLim, (j)–(l)

CVq-ZeLim, (m)–(o) CVq-ZeLim-VrP, (p)–(r) CVlogq, and (s)–(u) CVlogq-

XbSL. The full ranges of model domain are plotted, in the x and y direction from 0

to 98 km, and in the vertical from surface to 16 km height.
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during the cycles, likely due to the improper incre-

ment spread issue, while the RMSIs of CVlogq-XbSL

are clearly reduced and are the lowest among all ex-

periments during the intermediate cycles. The fore-

cast RMSIs of CVlogq-NT and CVlogq-XbSL, are

much closer, however, within the cycles, suggesting

that some of the discontinuities within the analyzed

hydrometeor fields in CVlogq-NT may not be that

harmful to forecasts as small-scale structures can be

smoothed by the model time integration. The fact that

the wind fields are analyzed the same way in the two

experiments (Fig. 9a) also can help reduce the forecast

differences between the two experiments. The RMSIs

of CVq-ZeLim and CVq-ZeLim-VrP experiments are

generally between those of two CVlogq experiments for

reflectivity (Fig. 9b).

The wind and composite reflectivity analyses at the

end ofDA cycles are shown in the first column of Fig. 10;

they are very similar to the results of the corresponding

single-time analyses shown in Fig. 7. Among them, there

is some sign of spurious echo between the twomain cells

(Fig. 10j) in CVlogq-NT as in the single-time analysis

case, and the maximum reflectivity at the core of the two

cells are slightly overestimated. In general, the shape

and intensity of the two cells are better analyzed in the

CVlogq experiments (Figs. 10j,m) are better than those

in the CVq experiments (Fig. 10d), compared to the

truth (Fig. 10a).

FIG. 8. As in the first column of Fig. 7, but only showing the left mover. Experiment CVlogq-XbSL is not included

because its treatment does not affect wind analysis, which is the focus of this figure.
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c. Results of 1-h-long forecasts

The 1-h-long free forecasts are produced from the

final analyses at 85min from various cycled DA ex-

periments to see how the different treatments affect

forecasts. The 30- and 60-min forecasts are shown in

the second and third columns of Fig. 10. The intensity,

structure and location of the right mover are repro-

duced quite well in all experiments throughout the

hour; there are, however, large differences among the

experiments for the prediction of the left mover. In

the truth simulation, the left mover underwent another

splitting between 115 and 145min (Figs. 10b,c), which

makes accurate prediction more difficult.

Without the VrPass treatment in CVq-ZeLim, be-

cause the Vr information is ineffectively assimilated and

the circulation of the left-mover is not well analyzed, the

left-mover basically dissipated by 30min of forecast

(Fig. 10e); by 60min, a new left-mover developed at the

original location (Fig. 10f). When using VrPass treat-

ment, the prediction of left-mover in CVq-ZeLim-VrP is

much improved (Figs. 10h,j), and appears comparable to

those of CVlogq-NT and CVlogq-XbSL (Figs. 10k,j,n,o).

While theXbSL treatment can greatly reduce the improper

analysis increment spreading in CVlogq-NT as shown

in the previous section, the reflectivity forecast differ-

ences between CVlogq-NT and CVlogq-XbSL become

very small after 30min of forecast. The discontinuous

analysis increments in CVlogq-NT may have been

smoothed by the model integration so that the differ-

ences in the forecasts become small.

Figure 11 shows the RMSIs of Vr and Z forecasts (in

areas of observed reflectivity exceeding 15dBZ) at 5-min

intervals starting from the final cycled analyses of CVq-

ZeLim, CVq-ZeLim-VrP, CVlogq-NT, and CVlogq-

XbSL. The CVq-ZeLim-VrP has the most accurate initial

condition in terms of both Vr and Z, and it produces the

best forecasts (Fig. 11). The reflectivity RMSI of CVq-

ZeLim at the analysis time is slightly smaller than those of

CVlogq-NT and CVlogq-XbSL but its analysis RMSI for

Vr is much larger (Fig. 11a), leading to rapid increase in

reflectivity forecast error (Fig. 11b) and its reflectivity

forecast becomes the worst after 10min while its Vr fore-

cast is always theworse (Fig. 11a). The reflectivityRMSI of

CVlogq-NT at analysis time is somewhat larger than that

of CVlogq-XbSL and others but becomes very similar to or

slightly smaller than that of CVlogq-XbSL after 20min.

Overall, the forecasts from the two CVlogq experiments

are very similar, while that of CVq-ZeLim is clearly the

worst. By analyzing Vr data in a second pass in CVq-

ZeLim-VrP, the final analysis errors are slightly smaller

than the two CVlogq experiments and such advantage

is maintained throughout the 1-h-long forecast. About

30min into the assimilation cycles, CVlogq-XbSLproduces

the lowest analysis errors though (Fig. 9b). Considering

additional issues associated with the use ofmultiple passes,

CVlogq-XbSL appears to be the preferred choice.

7. Summary and conclusions

In this study, 3DVar is used to directly assimilate ra-

dar radial velocity and reflectivity data for a supercell

storm. A complex reflectivity observation operator that

considers both liquid and ice phases is used. Several

issues arise that are related to the high nonlinearity

of the reflectivity observation operator. Special treat-

ments are proposed to deal with the issues. Their per-

formances are examined through OSSEs. For the

OSSEs, radial velocity and radar reflectivity data are

simulated from a single Doppler radar, sampling a

simulated supercell storm. The radar data are assim-

ilated using 3DVar with different treatments, at 5-min

cycles over a 1-h period; the quality of analyses and

forecasts during the assimilation cycles, and of 1-h-long

forecasts are compared. To better examine the direct

effects of different treatments, single-time analyses are

also performed with the same forecast background.

FIG. 9. RMSIs of (a) radial velocity and (b) reflectivity forecasts

(higher values in the sawtooth shaped curves) and analyses (lower

values) during 1-h-long DA cycles of CVq-ZeLim (green dashed

line), CVq-ZeLim-VrP (black solid line), CVlogq-NT (red dashed

line), and CVlogq-XbSL (blue solid line).
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FIG. 10. The wind vectors at 2.5 km AGL and composite reflectivity (shading) at (left) 85, (middle) 115, and

(right) 145min of truth simulation time, for (a)–(c) the truth simulation, and (left) the analysis and

(middle),(right) forecasts of (d)–(f) CVq-ZeLim, (g)–(i) CVq-ZeLim-VrP, (j)–(l) CVlogq-NT, and (m)–(o)

CVlogq-XbSL.
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The issues, related treatments, and experimental re-

sults are summarized as follows:

1) When using the mixing ratios of hydrometeors as

the control variables (denoted CVq), 3DVar suffers

from extremely large gradient of the cost func-

tion due to the existence of very small background

reflectivity, making the assimilation of reflectivity in

many regions, especially within the core regions of

convective cells, ineffective. To avoid such extremely

large gradient of the cost function, a lower limit is

imposed on the hydrometeor mixing ratios them-

selves (denoted treatment qLim). An alternative

treatment is imposed on equivalent reflectivity factor

in the reflectivity observation operator (denoted

treatment ZeLim). Results show that both qLim

and ZeLim treatments are effective in avoiding the

extremely large gradient of cost function and in

improving the reflectivity analysis. However, with

the qLim treatment, observations in regions where

background hydrometeor mixing ratios are below

the lower limit cannot be effectively assimilated

because the gradient of the cost function correspond-

ing to the observations becomes zero. Normally, the

lower limits are chosen to be very small values, and

their optimal values are found through experimen-

tations within this study. Experiments show that

the ZeLim treatment performs better than qLim

in producing analyses and forecasts that better fit

observations.

2) When reflectivity and radial velocity are assimilated

together using CVq, the assimilation of radial veloc-

ity is ineffective, because the gradient of the part of

cost function corresponding to radial velocity data is

much smaller than that corresponding to reflectivity

data. Little adjustment is made to the wind fields by

the radial velocity data. To be able to effectively

assimilate radial velocity data, a separate analysis

pass is introduced so that reflectivity and radial

velocity data are analyzed in different 3DVar passes

(denoted treatment VrPass). Results show that the

radial velocity analysis is greatly improved with the

VrPass treatment. The use of separate passes does

include extra computational cost though, and can

create theoretical problems if the background errors

are not properly updated in subsequent passes.

3) An alternative way to alleviate the problem caused

by extremely large gradient of the cost function is to

use the logarithmic hydrometeor mixing ratios (de-

noted CVlogq) instead as the control variables. With

CVlogq, the relationship between the reflectivity in

dBZ and hydrometeor mixing ratios is much more

linear. Themagnitude of the gradient of cost function

is greatly reduced compared to using CVq, so that

radial velocity and reflectivity observations can be

effectively assimilated together and no lower limit

needs to be imposed on either q or equivalent

reflectivity. In addition, the convergence of cost

function minimization is much faster with CVlogq

than with CVq.

4) However, other issues exist with CVlogq. The

analysis increments of mixing ratios and hence

reflectivity in certain regions of the storm can be

over or underestimated. This problem is investigated

through single-observation experiments. When the

analysis background is inhomogeneous or has large

spatial gradient, the analysis increment of hydro-

meteor fields can be improperly spread spatially

due to the nonlinear transformation between in-

crements of q and logq, which leads to the observed

FIG. 11. RMSIs of 1-h forecasts for (a) Vr and (b) Z from the

cycled analyses of CVq-ZeLim (green line), CVq-ZeLim-VrP

(black line), CVlogq-NT (red line), and CVlogq-XbSL (blue line).
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over or underestimation. To address this problem,

a smoothing function and a lower limit are applied to the

background hydrometeor mixing ratios when trans-

forming the hydrometeor mixing ratio increments back

to mixing ratio increments (denoted treatment XbSL).

This treatment is found to be able to suppress most of

the spurious spreading of analysis increments.

5) At the end of the 1-h-long DA cycles, the analysis

errors of both reflectivity and radial velocity are the

lowest in the experiment using CVq with ZeLim and

VrPass treatments, while the analysis errors in the

middle of the DA cycles are smallest in the experi-

ment using CVlogq with XbSL treatment.

6) For the ensuing forecasts after 1-h-long DA cycles,

the experiment using CVq with ZeLim treatment,

with and without the VrPass treatment yield the best

and worst forecasts, respectively, in terms of the errors

in reflectivity and radial velocity. The forecasts of the

experiments using CVlogq as control variables with

and without XbSL treatment are similar to that using

CVq with ZeLim and VrPass treatments, especially in

terms of reflectivity forecast error. Given the desire of

using a single pass to assimilate all observations, and

the much faster convergence speed using CVlogq, the

use of logarithmic hydrometeor mixing ratios as con-

trol variables together with the proposed XbSL treat-

ments is recommended for directly assimilating radar

reflectivity and radial velocity data using 3DVar.

In summary, several treatments are proposed and

found to be helpful to dealing with problems arising

from direct radar DA using 3DVar method. Although

these treatments are tested here only for a 3DVar sys-

tem, it is expected to benefit hybrid EnVar DA that

share the same problems mentioned above when static

background error covariance is included. In future

studies, the proposed treatments will be applied to a

hybrid EnVar DA system, such as that described in

Kong et al. (2018), to further examine their impacts.

We note here that the proposed treatments in this study

are based on a single-moment microphysics scheme, for

which the intercept parameters of particle size distri-

butions are fixed. In reality, a small mixing ratio does

not necessarily correspond to small reflectivity. In fu-

ture studies, we will investigate the issues of nonlinear

operator and necessary treatments when a multimoment

microphysics scheme is used, where the reflectivity ob-

servation operator will contain both mixing ratio and

number concentration of hydrometeors.
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