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ABSTRACT

Ensemble–variational data assimilation algorithms that can incorporate the time dimension (four-

dimensional or 4D) and combine static and ensemble-derived background error covariances (hybrid) are

formulated in general forms based on the extended control variable and the observation-space-perturbation

approaches. The properties and relationships of these algorithms and their approximated formulations are

discussed. The main algorithms discussed include the following: 1) the standard ensemble 4DVar (En4DVar)

algorithm incorporating ensemble-derived background error covariance through the extended control

variable approach, 2) the 4DEnVar neglecting the time propagation of the extended control variable

(4DEnVar-NPC), 3) the 4D ensemble–variational algorithm based on observation space perturbation

(4DEnVar), and 4) the 4DEnVar with no propagation of covariance localization (4DEnVar-NPL).

Without the static background error covariance term, none of the algorithms requires the adjoint model

except for En4DVar. Costly applications of the tangent linear model to localized ensemble perturbations

can be avoided by making the NPC and NPL approximations. It is proven that En4DVar and 4DEnVar are

mathematically equivalent, while 4DEnVar-NPC and 4DEnVar-NPL are mathematically equivalent. Such

equivalences are also demonstrated by single-observation assimilation experiments with a 1D linear advection

model. The effects of the non-flow-following or stationary localization approximations are also examined

through the experiments.

All of the above algorithms can include the static background error covariance term to establish a hybrid

formulation.When the static term is included, all algorithmswill require a tangent linearmodel and an adjoint

model. The first guess at appropriate time (FGAT) approximation is proposed to avoid the tangent linear and

adjoint models. Computational costs of the algorithms are also discussed.

1. Introduction

Variational data assimilation (DA) (Le Dimet and

Talagrand 1986; Talagrand and Courtier 1987) and the

ensemble Kalman filter (EnKF; Evensen 1994) are two

major advanced approaches for atmospheric DA. The

variational DA approach has been successfully used at

many operational numerical weather prediction (NWP)

centers, first as the three-dimensional variational data as-

similation (3DVar) then the four-dimensional variational

data assimilation (4DVar) method (e.g., Parrish and

Derber 1992; Lorenc et al. 2000; Rabier et al. 2000;

Rawlins et al. 2007; Tanguay et al. 2012). Usually, 3DVar

uses a static, flow-independent, climatological back-

ground error covariance (BEC) that is often spatially

homogeneous and anisotropic (e.g., Parrish and Derber

1992; Purser et al. 2003a). Even though some efforts have

been made to introduce spatially inhomogeneous, an-

isotropic BEC into the 3DVar framework (e.g., Wu et al.

2002; Purser et al. 2003b, Fisher 2003), the determination

of flow-dependent BEC remains a major challenge.
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Compared to 3DVar, the 4DVar method allows the fit-

ting of the model forecast trajectory to observations

distributed over a period of time so as to provide more

accurate model state estimations that are also more

consistent with the prediction model. The use of the

model as a strong constraint within the DA system also

allows for the retrieval of unobserved state variables

from limited observations (e.g., Sun and Crook 1997).

4DVar also implicitly evolves the BEC within the DA

window so that it can be flow dependent, but the BEC

itself defined at the beginning of the DA window is

usually static and is not propagated from one DA win-

dow to another (Lorenc 2003).

EnKF estimates flow-dependent BEC from a set of

ensemble forecasts and updates the ensemble states

based on an optimal linear estimation algorithm (Evensen

1994). Because EnKF estimates and evolves flow-

dependent BEC within and through the data assimilation

cycles, and does not require tangent linear or adjoint

model, EnKF has become increasingly popular within

both research and operational communities. EnKF and its

variants, including the ensemble transform Kalman filter

and local ensemble transform Kalman filter, ensemble

adjustment Kalman filter, and ensemble square root filter

(Bishop et al. 2001; Anderson 2001; Hunt et al. 2007;

Whitaker and Hamill 2002), have now been implemented

at a number of operationalNWPcenters (e.g.,Houtekamer

and Mitchell, 2005; Whitaker et al. 2008; Hamill

et al. 2011a).

The EnKF method can also be extended into the time

dimension to assimilate observations distributed over a

period of time and such algorithms usually rely on BECs

across times to update the state at the analysis time.

Four-dimensional EnKF algorithms include those of

Hunt et al. (2004), Sakov et al. (2010), and S. Wang et al.

(2013), based on variants of EnKF. Computationally, a

pure ensemble-based DA system tends to be more

scalable than traditional 4DVar because the ensemble

forecasting portion of the system that tends to be most

expensive can be easily parallelized while the time in-

tegrations of the tangent linear and adjoint models in-

volved in the traditional 4DVar have to be performed

sequentially across the minimization iterations. Further

discussions on the advantages and disadvantages of

4DVar and EnKF can be found in Lorenc (2003),

Kalnay et al. (2007a,b), and Gustafsson (2007).

The BEC matrix derived from an ensemble of fore-

casts that is typically much smaller in size compared to

the number of the degrees of freedom of typical NWP

models is severely rank deficient. Techniques, such as

covariance localization, have been proposed to par-

tially alleviate this problem (e.g., Burgers et al. 1998;

Houtekamer and Mitchell 1998; Hamill et al. 2001;

Anderson 2001; Whitaker and Hamill 2002; Evensen

2003). In comparison, the static climatological BEC typ-

ically used by 3DVar is full rank. The static BEC, being

derived from typically much larger samples often con-

tains useful balance information of less transient flows.

From such considerations, the use of ‘‘hybrid’’1 BEC that

linearly combines static and ensemble-derived flow-

dependent BECs had been proposed. The hybrid BEC

can overcome limitations of ensemble BEC that spans

only the space occupied by the ensemble itself.

Hamill and Snyder (2000) were the first to test this idea

within a 3DVar framework, with an algorithm that they

called hybrid EnKF–3DVar scheme. They demonstrated

this method with a low-resolution quasigeostrophic

model and simulated data in a perfect model setting and

found that the static BEC is helpful to the analysis when

flow-dependent BEC is derived from a small ensemble.

For their implementation, the ensemble-derived BEC

was explicitly calculated and stored, and combined with

the static BEC in their 3DVar framework; while this

implementation is attractive for low-dimension problems

because it is simple and straightforward, it would become

prohibitively expensive for a real NWP model when the

ensemble BEC matrix is huge.

Lorenc (2003) proposed a more elegant alternative

hybrid algorithm that utilizes a set of extended control

variables preconditioned by the ensemble perturbations

in the variational cost function. Also, a correlation func-

tion is used to localize the ensemble covariance. Wang

et al. (2007) demonstrated that this extended control

variable formulation is mathematically equivalent to that

of Hamill and Snyder (2000) in the 3D framework.

There are some advantages when utilizing the ensemble-

derived covariance within a variational framework, as in

the aforementioned hybrid algorithms, when compared

to pure EnKF. The variational formulation allows for the

application of BEC localization in the state space rather

than observation space; the latter has problems with

observations whose forward operators are nonlocal

(Campbell et al. 2010). Additional benefits include easier

implementation of equation constraints (Gauthier and

Thépaut 2001) and bias correction in the variational

framework (Dee and Uppala 2009). In general, varia-

tional algorithms that incorporate ensemble-derived

BECs are called ensemble–variational or EnVar algo-

rithms, and the hybrid algorithms of Hamill and Snyder

1 In this study, we use the word ‘‘hybrid’’ to mainly refer to the

use of a combination of the static and ensemble-derived flow-

dependent covariances (i.e., the hybrid covariance). We do not

intend to use ‘‘hybrid’’ to refer to any algorithm, although in the

literature it had sometimes been used to refer to ensemble–

variational algorithms.
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(2000) and Lorenc (2003) are such examples. Ensemble-

derived BECs have been shown to improve DA in

3DVar frameworks for operational global (Buehner

2005; Hamill et al. 2011b; X.Wang et al. 2013; Kleist and

Ide 2015a) and regional (Pan et al. 2014) models.

More recently, EnVar algorithms have been extended

into the fourth time dimension to form 4D EnVar algo-

rithms. There are two basic types of such algorithms. One

is a direct extension of the 3D extended control variable

algorithm of Lorenc (2003) into four dimensions, which

can also be considered as introducing the ensemble BEC

into a standard 4DVar framework using the extended

control variable approach. Being based on the standard

4DVar that involves the integration of tangent linear and

adjoint models, we call this algorithmEn4DVar. Buehner

et al. (2010a,b) applied the extended control variable

approach to a 4DVar framework (denoted 4D-Var-Benkf

in their papers) and tested with real observations in the

Canadian operational global model, and found positive

impact of the ensemble-derived BEC. Very recently, a

hybrid ensemble–4DVar system is implemented for

the Met Office operational global model (Clayton et al.

2013). Zhang and Zhang (2012) also applied the extended

control variable approach to a 4DVar framework of a

regional researchmodel. Kuhl et al. (2013) implemented

En4DVar within the Naval Research Laboratory

Atmospheric Variational Data Assimilation System-

Accelerated Representer (NAVDAS-AR) data assimi-

lation framework. It was found that the forecast error was

significantly reduced by their En4DVar system. These

systems were all built on existing 4DVar capabilities that

already have an adjoint model, and correspond to the

algorithm that we call En4DVar in this paper.

The second type of algorithm formulates a 4D varia-

tional cost function that projects the ensemble pertur-

bations to the observation space so that tangent linear

model and adjoint model can be avoided in the absence

of the static BEC term (Liu et al. 2008). In Liu et al.

(2009), a localized matrix is introduced into the algo-

rithm for ensemble covariance localization and Liu and

Xiao (2013) further applied it to real data problems. This

algorithmwas originally called En4DVar but is renamed

4DEnVar in Liu and Xiao (2013) to better distinguish it

from algorithms that are more closely linked to the tra-

ditional 4DVar and include the integration of an adjoint

model (Lorenc 2013). Following Liu and Xiao (2013),

4DEnVar is also used to refer to this type of algorithms

in this paper while En4DVar is used to refer to algo-

rithms involving the integration of an adjoint model. In

Buehner et al. (2010a,b), a version of the 4DEnVar al-

gorithm of Liu et al. (2008, 2009) was implemented

within a global spectral model (called En-4D-Var in their

papers) and compared with traditional 4DVar, EnKF,

and 4D-Var-Benkf methods. These data assimilation

schemes had a similar performance in the northern extra-

tropics and tropics. In the southern extratropics, En-4D-

Var was slightly better than EnKF but slightly worse than

4D-Var-Benkf. Here we point out that the En-4D-Var

implementation of Buehner et al. (2010a,b) corresponds to

the algorithm thatwewill call 4DEnVar-NPC in this paper.

Buehner et al. (2013) further compared En-4D-Var (cor-

responding to our 4DEnVar-NPC), 3DVar, and 4DVar for

global weather prediction. They found that En-4D-Var is

always better than 3DVar and is either similar or better

than 4DVar in the tropical troposphere and the winter

extratropical regions. Kleist and Ide (2015b) evaluated

hybrid 4DEnVar with various initialization techniques

within the National Centers for Environmental Prediction

GlobalDataAssimilationSystem (GDAS)using simulated

data. They found that the hybrid 4DEnVar can reduce

analysis error for most variables at most levels, especially

in the extratropics, compared to hybrid 3DEnVar.

Despite the successful applications of the various 4D

ensemble–variational approaches, their relationships, as

well as the approximations involved in their im-

plementations, are still unclear. Desroziers et al.

(2014) used a generalized variational formulation in

terms of a 4D state vector to discuss different possible

implementations of 4DEnVar. They proposed two new

preconditioned algorithms and compared 4DEnVar and

4DVar for a Burgers equation model. However, ap-

proximations related to covariance localization in a 4D

space was not discussed in detail in their paper. Fairbairn

et al. (2014) pointed out that no explicit localization of

the correlations in time was included in their experi-

ments, or in most other implementations of 4DEnVar.

Most recently, Lorenc et al. (2015) compared hybrid-

4DVar (which is our hybrid En4DVar) and hybrid-

4DEnVar (which is actually our hybrid 4DEnVar-NPC).

Hybrid-4DVar was found to perform better than hybrid-

4DEnVar in the Met Office global operational system.

They suggested the fact that the hybrid-4DVar evolves the

static background error covariance within the assimilation

window while the hybrid-4DEnVar does not was the main

cause of the differences. It is the purpose of this paper to

clarify the relationships and understand the approxima-

tions involved in the derivations and implementations of

various 4D ensemble–variational algorithms. We present

various derivative algorithms based on the two approaches

in a common framework that can incorporate both static

and ensemble-derived BECs. An understanding is also

sought on the effects of various approximations made in

the algorithms. Furthermore, in order to introduce static

BEC to 4DEnVarwhile still avoiding an adjointmodel, we

propose the use of the first guess at the appropriate time

(FGAT) approximation within the 4D hybrid schemes.
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The organization of the paper is as follows. Four 4D

ensemble–variational algorithms are first derived and

discussed in a common framework in section 2. FGAT

formulations for three hybrid algorithms that avoid adjoint

model are also introduced. Section 3 provides mathemat-

ical proofs of the relationships among En4DVar and

4DEnVar algorithms. Section 4 presents results from

single-observation experiments for a one-dimensional

linear advection model to demonstrate the behaviors and

relationships of the algorithms and illustrate the effects of

covariance localization. A summary and some further

discussion are provided in the conclusions.

2. Four-dimensional ensemble–variational
algorithms

a. Hybrid En4DVar with extended control variable

To efficiently introduce flow-dependent ensemble co-

variance into a variationalDA framework and to allow for

the combined use of static and ensemble BECs, Lorenc

(2003) proposed the so-called extended control variable

method, where the typical transformed control variable

(vector), v, found in traditional incremental variational

cost function (Courtier et al.1994) is extended by an ad-

ditional control variable vector a, which in the most

general case contains N vectors, ai, of dimension n:

a5

2
664
a
1

..

.

a
N

3
775 , (1)

where N is the ensemble size and n is the dimension of

state vector v or x.

The final analysis increment for state vector x at the

beginning of the 4D assimilation window is then given by

dx
0
5 x

0
2 x

b
5b

1
dx

1
1b

2
dx

2
5b

1
dx

1
1b

2
X0
b+A

2
64
1

..

.

1

3
75 ,

(2)

where X0
b is a matrix whose columns hold the ensemble

perturbation vectors x0i 5 xi 2 x normalized by
ffiffiffiffiffiffiffiffiffiffiffiffi
N2 1

p
. In

the equation, the overbar denotes ensemble mean; sub-

scripts 0 and b denote the initial time of the 4D assimilation

window or the analysis time, and the background, re-

spectively; dx1 and dx2 are the analysis increments related

to the static BEC B and the ensemble-derived BEC Pb
e ,

respectively; and b1 and b2 are the weights given to dx1
and dx2 respectively. Both b1 and b2 should have values

between 0 and 1, and satisfy equation b2
1 1b2

2 5 1. When

b1 is 0, the algorithm uses 100% ensemble BEC, and is

called a pure (not hybrid) ensemble–variationalmethod. If

b1 is 1, the algorithm will degenerate to the traditional

variational method using static BEC. Here A is an

N-columnmatrixwhose columns areai and+ denotes the

Schur product. The incremental form cost function for a

hybrid ensemble 4DVar, or En4DVar, can be written as

J(x
1
,a)5

1

2
dxT1B

21dx
1
1

1

2
aT

2
64
C 0

⋱

0 C

3
75
21

a

1
1

2
�
I

t51

[H
t
L
t
dx

0
1 d

t
]TR21[H

t
L
t
dx

0
1 d

t
] . (3)

Here I is the total number of time levels at which obser-

vations are available, Ht is the tangent linear observation

operator at observation time t, Lt is the tangent linear

model for propagating initial perturbation dx0 to time t, R

is the observation error covariance matrix, dt is the ob-

servation innovation vector at time t, andC is a correlation

matrix used to localize the ensemble covariance.

To use the precondition technique in the cost func-

tion, we define matrix U that is related to B by

B5UUT . (4)

Then, the analysis increment is

dx
0
5 x

0
2 x

b
5b

1
Uv1b

2
X0
b+A

2
64
1

..

.

1

3
75 , (5)

and the preconditioned incremental form cost function

for hybrid En4DVar can be written as

J(v,a)5
1

2
vTv1

1

2
aT

2
64
C 0

⋱

0 C

3
75
21

a

1
1

2
�
I

t51

[H
t
L
t
dx

0
1 d

t
]TR21[H

t
L
t
dx

0
1 d

t
] , (6)

where dx0 is a function of v and a. Equation (6) is the

same as Eq. (17) of Lorenc (2003), except for the ex-

tension into 4D where the observation term contains

multiple times when observations are taken within the

4D DA window. Wang et al. (2007) showed, in a 3D

framework, that the extended control variable hybrid

formulation of the above form is mathematically

equivalent to the more straightforward (but computa-

tionally more expensive to use) hybrid algorithm of

Hamill and Snyder (2000) that explicitly uses the

weighted sum of the static and ensemble BECs in the

background term of a variational cost function.
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Like the variable transformation used to precondition

the static background term in a regular variational cost

function [i.e., Eq. (1) above], we define, as first proposed

by Buehner (2005), a new control variable, ~a, related to

a in cost function of Eq. (6) by

a5

2
4C0 0

⋱
0 C0

3
5~a , (7)

or in an expanded form:

2
66664
a

1

a
2

..

.

a
N

3
777755

2
4C0 0

⋱
0 C0

3
5
2
66664

~a
1

~a
2

..

.

~a
N

3
777755

2
66664
C0~a

1

C0~a
2

..

.

C0~a
N

3
77775 .

Here C0 is the decomposed correlation matrix C and

satisfies C5C0C0T. It is, therefore, analogous to the U in

Eq. (1). According to the definition of A,

A5
�
C0~a

1
C0~a

2
⋯ C0~a

N

�
,

therefore,

dx
0
5b

1
Uv1b

2
X0

b+A

2
64
1

..

.

1

3
755b

1
Uv1b

2 �
N

i51

[x0bi+(C
0~a

i
)] .

(8)

With Eqs. (7) and (8), the En4DVar cost function in Eq.

(6) can rewritten in terms of the new extended control

variable ~a as

J(v, ~a)5
1

2
vTv1

1

2
~aT~a

1
1

2
�
I

t51

"
H

t
L
t

(
b
1
Uv1b

2 �
N

i51

[x0bi+(C
0~a

i
)]

)
1 d

t

#T

R21

"
H

t
L
t

(
b
1
Uv1b

2 �
N

i51

[x0bi+(C
0~a

i
)]

)
1 d

t

#
. (9)

In Eq. (9), term C0~ai represents the application of filter

C0 on ~ai, and can be calculated in a similar way as term

Uv using a recursive filter, spectral filter, or wavelet.

Note that the correlation matrix C, or its decomposed

form C0, which is used to localize the ensemble co-

variance is general. For univariate analysis without

cross-variable covariance, C is usually a multidiagonal

matrix; matrix C becomes block multidiagonal in the

presence of cross-variable covariances. Usually, the

spatial localization function for individual variables is

also used between different variables. In other words,

the localization function is only a function of spatial

distance, and is the same whether it is between differ-

ent variables or between the same variable at different

locations. This means that all blocks in multidiagonal

matrix C are the same.

The gradients of the En4DVar cost function with re-

spect to v and ~ai are given by

=
v
J(v)5 v1b

1�
I

t51

UTLT
t H

T
t R

21

"
H

t
L
t

(
b
1
Uv1b

2 �
N

i51

[x0bi+(C
0~a

i
)]

)
1 d

t

#
, (10)

=
~ai
J(~a

i
)5 ~a

i
1b

2�
I

t51

C0Tx0bi+L
T
t H

T
t R

21

"
H

t
L
t

(
b
1
Uv1b

2 �
N

i51

[x0bi+(C
0~a

i
)]

)
1 d

t

#
, (11)

where tangent linear model Lt and adjoint model LT
t are

needed. Equations (10) and (11) make En4DVar more

expensive than the traditional 4DVar because term

LT
t H

T
t R

21[HtLtfb1Uv1b2�N

i51[x
0
bi+(C

0~ai)]g1 dt] includes

additional calculations related to the ensemble pertur-

bations and a system is needed to provide the ensemble

perturbations. As pointed out earlier, this algorithm is

close to the traditional 4DVar in terms of the solution

procedure but utilizes ensemble-derived BEC, therefore,

it is called En4DVar.With the combined use of static and

ensemble-derived BECs, it is called hybrid En4DVar.

When only ensemble BEC is used, the algorithm is called

pure En4DVar, or just En4DVar.

b. 4DEnVar-NPC

To avoid needing the tangent linear and adjoint models

in the ensemble covariance part of theEn4DVar algorithm

presented above, two approximations can be introduced:
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L
t�
N

i51

[x0bi+(C
0~a

i
)]5�

N

i51
L
t
[x0bi+(C

0~a
i
)]’ �

N

i51
(L

t
x0bi)+(C

0~a
i
),

(12)

L
t
x0bi ’M

t
(x

bi
)2M

t
(x

b
)[ [M

t
(x

bi
)]0 , (13)

where Mt is the full nonlinear prediction model to take

the background state xbi to time t. With the approxi-

mation in Eq. (12), the tangent linear model evolves

perturbation states x0bi instead of x0bi+(C
0~ai) to time t.

Equation (7) shows C0~ai is the control variable ai in

En4DVar. Therefore, in Eq. (12) the localized control

variable C0~ai is not temporally evolved or time propa-

gated so we give this algorithm label NPC, meaning no

time propagation of the control variable. Further, with

Eq. (13), the ensemble forecast perturbations [Mt(xbi)]
0

given by the nonlinear model integrations are used to

replace the time propagation of perturbations by the

tangent linear model, Ltx
0
bi, avoiding the need for de-

veloping andmaintaining a tangent linear model and the

cost of corresponding integrations given that the non-

linear ensemble needs to be run any way. The absence of

‘‘allowance for the flow’’ in the localization in 4DEnVar

is also recognized in a very recent paper of Lorenc

et al. (2015).

Substituting Eq. (12) into Eq. (9), and assuming b1 5 0

(i.e., assuming no contribution from the static BEC) the

cost function and its gradient can be written as

J(~a)5
1

2
~aT~a1

1

2
�
I

t51

"
H
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i51

f[M
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=
~ai
J(~a

i
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t51

C0T[M
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)]0T+HT

t R
21

"
H
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N

i51

f[M
t
(x

bi
)]0+(C0~a

i
)g1 d

t

#
. (15)

In Eqs. (14) and (15), adjointmodel and tangent linear

model are avoided.2 With the NPC approximation

mentioned earlier, we name the algorithm more spe-

cifically as 4DEnVar-NPC, which is consistent with

4DEnVar in Lorenc et al. (2015). We label this algo-

rithm 4DEnVar instead of En4DVar because it does not

involve the integration of the tangent linear model or

adjoint, and is closer to EnVar than to 4DVar. When all

observations are taken at the analysis time, no time in-

tegration of the prediction model is involved and the

algorithm becomes 3D and is called 3DEnVar.3 The is-

sue of propagating the control variable also disappears.

If the observation operator is linear and when spatial

localization is configured to be the same, the pure 3DEnVar

is the same as the ensemble mean analysis from an EnKF

using the same set of ensemble perturbations. Note that

even though Eq. (13) is considered an approximation to

Ltx
0
bi, tangent linear model Lt actually arises from the line-

arization of the full nonlinear model M when applying the

cost function in Eq. (6) so the use of Eq. (13) to evolve the

ensemble perturbations may actually be preferred. In fact,

the same practice is donewith EnKF and extendedKalman

filter (Evensen 1992) algorithms when the full nonlinear

model is used to evolve the ensemble perturbations.

c. 4DEnVar

Liu et al. (2008) proposed a 4D ensemble-based var-

iational algorithm [which they originally called En4D-

Var but renamed it 4DEnVar in Liu and Xiao (2013)],

whose cost function without localization is given by

J(w)5
1

2
wTw1

1

2
�
I

t51

[H
t
L
t
X0

bw1 d
t
]TR21[H

t
L
t
X0
bw1 d

t
] ,

(16)

where w is their control variable. The above was ob-

tained by approximating the BEC matrix by Pb
e 5X0

bX
0T
b

and performing variable transform dx5X0
bw starting

from the standard 4DVar cost function. The dimension

of control vector w is N, the ensemble size, and the

minimization of the cost function is in anN dimensional

space. To avoid using the adjoint model in calculating

the gradient of the cost function in Eq. (16), perturba-

tion matrix X0
b is projected to the observation space by

tangent linear model and observation operator:

=
w
J(w)5w1�

I

t51

(H
t
L
t
X0
b)

TR21[(H
t
L
t
X0
b)w1 d

t
] . (17)

The HtLtX
0
b can be approximated by the nonlinear

model:

2 Note that when the static BEC term is included, as in Eqs. (9)

and (10), the tangent linear model and adjoint model will again be

needed even with the approximations.
3 Unlike the 4D case, for a 3D formulation, the inclusion of the

static BEC term in the cost function does not necessitate the use

of a tangent linear model or adjoint model, a 3DEnVar can easily

include the static BEC term to use hybrid covariance. For this

reason, the algorithm can also be called En3DVar.
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or component wise as

H
t
L
t
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t
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(x

bi
)] , (18)

so that the tangent linear can be avoided.

The above formulations do not include covariance

localization, however, which is needed to reduce the

sampling error from small ensembles. Liu et al. (2009)

introduced a localized perturbation matrix:

Z0
b 5 [S0

b1+C
0 S0

b2+C
0 ⋯ S0

bN+C
0 ] , (19)

where S0
bi is a matrix with n columns (n is the state

vector length) and every column is x0bi. Variable C0 here
is actually the same as the C0 used earlier. The cost

function in Eq. (16) can then be written as

J(w)5
1

2
wTw

1
1

2
�
I

t51

[(H
t
L
t
Z0
b)w1 d

t
]TR21[(H

t
L
t
Z0
b)w1d

t
] ,

(20)

and its gradient with respect to control variable w is

=
w
J(w)5w1�

I

t51

f(H
t
L
t
Z0
b)

TR21[(H
t
L
t
Z0
b)w1 d

t
]g. (21)

Because of the use of HtLtZ
0
b in place of matrix HtLtX

0
b,

w now has a length of n 3 N instead of N so the

computational cost would be much increased. After

introducing localized perturbation matrix Z0
b, the

number of columns of perturbations matrix X0
b is

extended to n 3 N, which is equivalent to using a

huge ensemble by Z0
b. Still, the adjoint model is

avoided. It is a 4D variational algorithm using en-

semble derived covariance without involving an ad-

joint model, so it belongs to the class of 4DEnVar

and is called 4DEnVar in Liu and Xiao (2013) [but

initially called En4DVar in Liu et a. (2008; 2009)].

With this formulation, because Z0
b includes not only

perturbations but also the localization matrix, the

localization matrix is propagated by tangent linear

model in LtZ
0
b and the approximation of Eq. (18) is

not applied to Eq. (20).
Similar to the hybrid En4DVar employing the ex-

tended control variable, if the static BEC is also in-

cluded in this algorithm, its cost function and gradient

will be

J(v,w)5
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2
vTv1

1

2
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=
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=
w
J(v,w)5w1�

I

t51

b
2
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L
t
Z0
b)

TR21[b
1
H

t
L
t
Uv1b

2
(H

t
L
t
Z0
b)w1 d

t
] . (24)

This is a hybrid algorithm whose minimization will re-

quire adjoint model LT
t , which appears in Eq. (23). The

analysis increment is

dx
0
5b

1
Uv1b

2
Z0
bw .

The relationship of this solution to the extended con-

trol variable solution will be further discussed in the

next section.

d. 4DEnVar-NPL

Although with Eqs. (20) and (21), the adjoint model is

avoided when calculating the cost function and its

gradient, the computational cost of calculating LtZ
0
b is

still very high. To reduce the cost, we introduce ap-

proximation to LtZ
0
b:

L
t
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b5 [L

t
(S0

b1+C
0) L

t
(S0

b2+C
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(S0
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’ [(M
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)0+C0 (M

t
S
b2
)0+C0 ⋯ (M

t
S
bN
)+C0][T0

t,

(25)

whereSbi is a matrix with n columns (n is the state vector

length) and every column is xbi. Because S0
bi is made up
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of x0bi, LtS
0
bi can be evaluated using the ensemble per-

turbations according to Eq. (13) without separate in-

tegrations of the tangent linear model. With Eq. (25),

Eq. (20) can then be rewritten as

J(w)5
1

2
wTw1

1

2
�
I

t51

[H
t
T
t
0w1 d

t
]TR21[H

t
T
t
0w1 d

t
] .

(26)

In the original 4DEnVar cost function in Eq. (20),

tangent linear model Lt propagates the localized

perturbations, but with approximations made in Eq.

(25), the perturbations are first propagated by the

tangent linear model before being acted upon by lo-

calization matrix C0. This means that C0 or the local-

ization effect is not propagated by the tangent linear

model so we call this algorithm 4DEnVar with no

propagation of localization matrix or 4DEnVar-

NPL. In practice, further computational saving can

be achieved by doing EOF decomposition for the

correlation matrix and retaining a limited number of

modes n0 (Liu et al. 2009). In real NWP data assimi-

lation, n0 is about several hundred (Liu et al. 2009;

Liu and Xiao 2013). Therefore, the control variables

w is reduced to n0 3N from n 3N. Also, Eq. (18) can

be used to propagate the perturbations so that the

tangent linear model can be avoided.

For completeness, the gradient of the cost function in

Eq. (26) with respect to w is provided by

=
w
J(w)5w1 �

I

t51

(H
t
T0
t)
TR21[H

t
T0
tw1 d

t
] . (27)

The relationship of this algorithm with other algorithms

will be discussed later.

We note there that even though the NPL approx-

imation was used in the implementation of Liu et al.

(2009), and Liu and Xiao (2013), who proposed

the original 4DEnVar algorithm, the NPL approxi-

mation and its implications were not explicitly

described there.

e. 4D hybrid schemes with FGAT

Although the 4DEnVar and 4DEnVar-NPC algo-

rithms with ensemble covariance only do not need an

adjoint model, when the static BEC is included, Eq.

(10) has to be used, which does involve adjoint model

LT
t . One way to avoid the adjoint model is to borrow the

idea of ‘‘first guess at appropriate time’’ or FGAT (e.g.,

Massart et al. 2010) that has been used within the

3DVar framework for better utilizing observations

within a time window.

The FGAT formulation effectively neglects tangent

linear model Lt in the standard 4DVar cost function [cf.

Eq. (9)], so that the static BEC portion of the cost

function,

J(v)5
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t51
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]TR21[H

t
L
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(28)

becomes

J(v)5
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�
I

t51
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t
Uv1 d

t
]TR21[H

t
Uv1 d

t
] . (29)

It is also equivalent to assuming Lt is an identity

matrix; therefore, the analysis increment associated

with control variable v is not propagated or changed in

time within the DA window. In other words, while the

observation innovation vectors dt are calculated at

their appropriate times against the background tra-

jectory (or first guess), the update to the background

trajectory is approximated by applying the same

analysis increment obtained at the analysis time,

rather than by those propagated to the right times

using the tangent linear model. This is the essence of

FGAT (e.g., Massart et al. 2010). When the only static

BEC terms are involved in Eq. (29), the algorithm is

more close to 3DVar than to 4DVar so the algorithm

can also be called 3DVar-FGAT, as the FGAT im-

plemented in a 3DVar framework is typically called.

The neglect of Lt in the above also removes the im-

plicit time evolution and therefore flow dependency of

static background error covariance within the time

window.

Using the FGAT treatment as in Eq. (29), static BEC

can be included in the 4DEnVar algorithms without

requiring adjoint model. The cost functions of the FGAT

version of 4DEnVar-NPC, 4DEnVar, and 4DEnVar-

NPL are, respectively,
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, (30)
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We call the corresponding algorithms 4DEnVar-NPC-

FGAT, 4DEnVar-FGAT, and 4DEnVar-NPL-FGAT.

The first and third also avoid the time integration of

tangent linear model, and the minimization of the cost

functions can be performed by providing an ensemble of

nonlinear model background forecasts (in the form of

4D states spanning the time window) and a set of obser-

vations within the time window. No further time in-

tegration of any form is involved.4 4DEnVar-NPC-FGAT

and 4DEnVar-NPL-FGAT are, therefore, practical hy-

brid 4D ensemble–variational algorithms that do not

require an adjoint model.

We note there that the use of the FGAT strategy to

avoid adjoint model in a hybrid 4DEnVar system is

also used in a very recent paper of Lorenc et al. (2015).

Such a choice is perhaps not surprising given that a

key benefit of 4DEnVar compared to 4DVar or

En4DVar is the elimination of the need to develop

and maintain an adjoint of a full NWP model. Such an

idea was also presented in Liu and Xue (2013). Re-

lated to this issue, in the generalized 4D hybrid

framework of Desroziers et al. (2014), it was men-

tioned in passing that the climatological background

error could be static in time (within the assimilation

window). This is equivalent to making the FGAT

approximation but their paper did not directly refer to

the FGAT terminology. In Kleist and Ide (2015b), it

was also pointed that FGAT-like approximation can

be made in an En4DVar system.

f. Temporal localization in 4D ensemble-based
algorithms

One aspect that has not been discussed so far is the

need for ensemble BEC localization in time, which ari-

ses because of the existence of noise in the covariances

calculated between ensemble perturbation states of

different times due to the limited ensemble size. Tem-

poral localization should in general be applied in all 4D

ensemble-based algorithms, and has been used in, for

example, the 4D ensemble square root filter algorithm

of S. Wang et al. (2013). Placing the analysis time at the

middle of assimilationwindow (when the algorithm does

not involve adjoint model integration) can help some-

what, as was done in Liu et al. (2009).

Temporal localization in 4DEnVar and En4DVar al-

gorithms can be achieved bymultiplying the localization

matrix C by temporal localization coefficient rt, as is

effectively done in S. Wang et al. (2013), where rt is a

function of the time separation between the analysis and

observation times. In practice, C0 in Eq. (9) would be

replaced by
ffiffiffiffi
rt

p
C0. When the separation is larger than

the temporal localization radius, the coefficient goes to

zero. We note here that Bishop and Hodyss (2007, 2009)

proposed adaptive covariance localization algorithms

that attempt to address localization issues related to

both spatial and temporal separations. These methods

are so far still too expensive to implement practically,

but do try to address some of the flow-following locali-

zation issues raised in our paper.

3. Equivalence among the ensemble–variational
algorithms

We show in this section that some of the ensemble–

variational algorithms presented above are actually

mathematically equivalent.

a. Equivalence of En4DVar and 4DEnVar

From the hybrid 4DEnVar cost function in Eq. (20),

Z0
bw can be written as

Z0
bw5 (S0

b1+C
0,S0

b2+C
0,⋯,S0

bN+C
0)

2
6666664

w
1

w
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..

.

w
N

3
7777775

5 �
N

i51

(S0
bi+C

0)w
i

5 �
N

i51

x0bi+(C
0w

i
) . (33)

The length of wi is the same as the dimension of each

column of C0. Substituting Eq. (33) into the hybrid

4DEnVar cost function in Eq. (22) gives

4 In principle, one can implement iterative outer loops as with

the regular variational algorithms; in that case, additional non-

linear ensemble integrations will be needed for each outer loop

iteration.
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Therefore, the hybrid 4DEnVar cost function in Eq. (22)

based on the 4DEnVAR originally proposed by Liu et al.

(2009) (but with the addition of the static BEC term) is

mathematically identical to the hybrid En4DVar cost func-

tion in Eq. (9) formulated based on the extended control

variable method proposed by Lorenc (2003) (but extended

to 4D), with w in Eq. (22) being equivalent to ~a in Eq. (9).

Both schemes apply the full covariance localization

without approximation, and the tangent linear model is

required for their full implementation. If the static

background error covariance is not involved, an adjoint

model is not required by 4DEnVar but is still required

by En4DVar. The need for an adjoint model due to the

static BEC terms can be removed by applying the FGAT

approximation, as discussed earlier.

b. Equivalence of 4DEnVar-NPCand 4DEnVar-NPL

In this section, we examine the relationship between

4DEnVar-NPC and 4DEnVar-NPL, which are approx-

imate formulations to En4DVar and 4DEnVar, re-

spectively. From the 4DEnVar-NPC cost function in Eq.

(26), T0
tw can be written as

T0
tw5 [ (M

t
S
b1
)0+C0 (M

t
S
b2
)0+C0 ⋯ (M

t
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bN
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With Eq. (13), substituting Eq. (35) into the 4DEnVar-NPL cost function in Eq. (22), we obtain
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Therefore, the 4DEnVar-NPL cost function in Eq. (26)

and the 4DEnVar-NPC cost function in Eq. (14) are

identical, with w in Eq. (26) being equivalent to ~a in

Eq. (14).

We have therefore proven that 4DEnVar-NPC and

4DEnVar-NPL are mathematically equivalent, and the

approximations made in these algorithms to avoid tan-

gent linear and adjoint models are also effectively the

same; they both sacrifice the time-evolving or flow-

following aspect of the covariance localization.

All algorithms and equivalent proof can be rewritten

in a nonpreconditioning variational format, just like the

formula for the Gridpoint Statistical Interpolation

analysis system (GSI; Wu et al. 2002; Kleist et al. 2009).

The equivalent proofs are still the same, which we will

not address repeatedly here.

4. Single-observation tests with a one-dimensional
linear advection model

The previous section demonstrated through mathe-

matical derivation the equivalence of two groups of

ensemble–variational algorithms with and without co-

variance localization approximations. In this section, we

further demonstrate through simple numerical experi-

ments other such equivalences. For all the experiments,

the static BEC is excluded, and, therefore, we focus on

the treatment of the ensemble covariance and the as-

sociated covariance localization effects. For this reason,

4DEnVar-FGAT is not considered here.

The dynamic system is governed by a one-dimensional

(1D) linear advection equation

›u

›t
1U

›u

›x
5 0,

with periodic boundary conditions. The initial condition

is defined by

u
0
5 sin(x) .

The model domain width is 2p and is discretized uni-

formly at 2p/100 grid spacing. The default advection

speed U is 2p/3 and the time step size is 0.001. We
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integrate from the initial condition for 160 steps (the

ending time) to create a truth simulation. This period is

also our 4D DA window. A single observation is taken

and assimilated in our DA experiments, and is located at

the 50th grid, either at the initial or ending time. The

observation error variance is assumed to be 0.01. The

initial background state is created by adding one sam-

ple of spatially correlated, normally distributed per-

turbations with an error variance of 0.1 to the truth at

the initial time. The observation innovations at the

initial and ending times are 0.1. The initial 50-member

ensemble was created by adding to this background

state 50 realizations of the normally distributed per-

turbations with the spatial correlation structures and an

error variance of 0.1. While the ensemble size of 50 is

typical of ensemble data assimilation with NWPmodels,

in this application, 50 is considered large compared to

the degree of freedom of the current problem, which is

about 50.

The following function is used to construct the spa-

tially correlated random perturbations; it is a compactly

supported second-order autoregressive function (Liu

and Rabier 2003):

r(s)5

8><
>:
�
11
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s
0

�
e2s/s0
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12

s

s
1

�
s# s

1

0 s. s
1

,

where s stands for the distance between two data points,

s0 is the decorrelation scale, and s1 is the localization

radius beyond which the correlation becomes zero.

Here, the localization radius is set to be 1.8 and the

decorrelation scale is 0.6. This same function is also used

for spatial covariance localization.

The observation at the initial or ending time is assim-

ilated by each of the 4D ensemble–variational methods

discussed above. The tangent linear and adjointmodels of

the advection equation needed by the En4DVar are de-

veloped based on the discrete model. For this linear

system, the tangent linear model is the same as the finite-

difference prediction model. Because all algorithms

without localization have the same cost function as in Eq.

(16), a reference analysis without localization (Fig. 1) is

obtained by minimizing Eq. (16). In all cases, analysis at

the initial time (i.e., at the beginning of the DA window)

is sought, just like in a standard 4DVar. When the single

observation is located at the initial time, there is no need

for time integration. Therefore, all algorithms degenerate

to 3D algorithms. In this case, it is easy to find that all cost

functions are the same assuming that the same spatial

localization is applied at the initial time. Figure 1 shows

that there is significant noise at places far from the ob-

servation when no localization is performed because of

the covariance sampling noise. When using a spatial

localization, a clean Guassian-shaped analysis increment

symmetric around the observation point is obtained

(black line in Fig. 1), and the increments obtained by

En4DVar and 4DEnVar are the same; they are in-

distinguishable in Fig. 1.

When the single observation is located at the end of

the DA window, the largest analysis increment at the

initial time should be found at about (160 3 0.001 3
2p/3)/(2p/100) 5 5.33 grid points upstream of the ob-

servation location based on the advection speed. Such a

solution is rather accurately reproduced by the

FIG. 2. Analysis increments at the initial time assimilating a sin-

gle observation located at the 50th grid point at the ending time,

when no localization is used (red line), when using flow-following

localization (black line), and when using non-flow-following lo-

calization (blue line).

FIG. 1. Analysis increment at the initial time when assimilating

a single observation located at gridpoint 50 at the initial time. The

thin dotted line denotes the observation location, the red line in-

dicates the analysis increment without localization, and the black

line is for the analysis increment with localization.
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algorithms employing full flow-following localization

(i.e., En4DVar and 4DEnVar) (black line in Fig. 2); the

analysis increment is very similar to that of initial time

observation except for the upstream displacement.

When no localization is applied, the increment given by

Eq. (16) is again broader and contains significant noise

away from the observation. When a non-flow-following

(or stationary) spatial localization is applied in 4DEnVar-

NPC and 4DEnVar-NPL, whose localization function is

centered at the 50th grid point and has a localization ra-

dius of 1.8, the remote noisy increment is suppressed, but

increment maximum is also reduced because of the

amplitude-reduction effect of localization away from the

center of localization function. Still, because the algo-

rithm is 4D, the peak of the increment is correctly shifted

upstream of the observation location, but by a smaller

distance than the true solution, again due to the locali-

zation effect.

As can be seen, consistent with the mathematical

proofs, the analyses of En4DVar and 4DEnVar are the

same while the analyses of 4DEnVar-NPC and 4DEnVar-

NPL are the same. When the advection speed is lower or

the required spatial localization scale is larger, the effects

of localization approximations would have smaller ef-

fects and vice versa. When the advection speed is dou-

bled in the next set of experiments, the upstream shift of

the correct increment peak is also doubled, as given by

the flow-following algorithms (black line in Fig. 3).

Limited by the non-flow-following localization centered

at the 50th grid point, the analysis increment upstream of

grid point 40 is severely damped. When the spatial lo-

calization scale (as well as the spatial decorrelation scale

used by the initial perturbations in our tests) is halved,

the analysis increment becomes smaller and the negative

effects of the non-flow-following localization become

larger (blue line in Fig. 4). In practice, when no better

solution is available (i.e., when a flow-following locali-

zation algorithm is not available or too expensive to

implement), the optimal radius of non-flow-following

localization used in the approximated 4D algorithms is

expected to be larger than that of the corresponding 3D

algorithm in order to better accommodate the propaga-

tion effects. Flow-following localization in ensemble

data assimilation remains an unsolved problem that re-

quires more research.

5. Summary and discussion

Flow-dependent BECs have been shown to be valuable

for improving the quality of state estimation for atmo-

spheric and oceanic as well as other geophysical flows in

the past decade. Introducing ensemble-derived flow-de-

pendent BEC into 3D and 4D variational DA frame-

works has advantages. Instead of directly calculating the

ensemble covariance matrix and using it inside a varia-

tional framework, which is computationally impractical

for full atmospheric models, Lorenc (2003) proposed an

extended control variable approach that introduces the

ensemble BEC through an additional extended control

variable ‘‘background’’ term in a 3DVar cost function

(named En3DVar or 3DEnVar here). The formulation

can be easily extended into a 4DVar framework (named

En4DVar). The ensemble covariance localization can be

achieved by introducing a correlation matrix that ‘‘pre-

conditions’’ the extended control variable and its effect

can be achieved by applying a recursive filter. The need to

apply tangent linear and adjoint models in En4DVar also

carries high computational costs.

An alternative approach for utilizing ensemble BEC

within a 4D variational framework was proposed by Liu

FIG. 3. As in Fig. 2, but for doubling the advection speed to 4p/3. FIG. 4. As in Fig. 2, but for half of the localized radius and

the error spatial decorrelation scale of the initial ensemble

perturbations.

602 MONTHLY WEATHER REV IEW VOLUME 144



et al. (2008; 2009), which projects the ensemble pertur-

bations to the observation space so that the tangent

linear and adjoint models can be avoided. Their original

formulations (called 4DEnVar here) did not include the

static BEC part in the 4D cost function. Liu et al. (2009)

introduced a large localization matrix to modify the

ensemble perturbations before they are used so as to

achieve ensemble covariance localization, a procedure

that is also computationally very expensive.

In this paper, the Liu et al. (2009) formulation is ex-

tended to include the static BEC to form a hybrid sys-

tem. This observation-space-perturbation 4DEnVar

formulation is compared with the extended control

variable En4DVar formulation. It is shown that before

any approximation is made with the localization treat-

ment, the two formulations are mathematically equiva-

lent. The control variable w introduced by Liu et al.

(2009) is the same as the transformed extended control

variable ~a in the extended control variable formulation.

Approximations are then introduced into the En4D-

Var algorithm based on the extended control variable so

that tangent linear model integrations on the extended

control variable are avoided, and the time evolution

of the ensemble perturbations are provided by the en-

semble forecasts. This approximate formulation is called

4DEnVar-NPC, because there is no propagation of the

extended control variable and the algorithm does not

inherently require an adjoint model (except when static

BEC is included in the hybrid formulation). Approxi-

mations which avoid separate integrations on localized

ensemble perturbations are introduced into the original

4DEnVar algorithm, resulting in the approximate

4DEnVar-NPL formulation, where label NPL indicates

no propagation of the localization matrix in time. This

paper proves that 4DEnVar-NPC and 4DEnVar-NPL

are also mathematically equivalent.

All algorithms can include static BEC to form hybrid

algorithms but this inclusion would make adjoint model

integration necessary. To address this issue, the FGAT

approximation is introduced to the static BECportion of

the hybrid En4DVar and 4DEnVar formulations, in-

cluding the 4DEnVar-NPC, 4DEnVar, and 4DEnVar-

NPL algorithms. This approximation avoids the adjoint

model while still allowing for the use of observations

distributed over a time window in the static portion of

the cost function (they can already be used in the en-

semble BEC portion), although the formulation is no

longer truly 4DVar in the traditional sense. With the

FGAT approximation, the static BEC, unlike in the

traditional 4DVAR, is no longer implicitly evolved in

time or flow following within the assimilation window. A

comparison of the pure 4D ensemble–variational algo-

rithms discussed in this paper is given in Table 1.

Single-observation tests for a one-dimensional lin-

ear advection system are performed to confirm the

mathematical equivalence of the algorithms, and to ex-

amine the effects of the localization approximations.

When the flow speed is low or the desired BEC locali-

zation scale is large, the effects of the non-flow-following

localization approximations are smaller and vice versa.

TABLE 1. A comparison of four-dimensional ensemble–variational algorithms without a static background error term.

En4DVar 4DEnVar-NPC 4DEnVar 4DEnVar-NPL

Derivation of

cost function

formulation

Usinga control variable to introduce ensemble covariance

into the variational cost function

Projecting ensemble perturbations into observation space

to avoid applying an adjoint model to ensemble

perturbations of model state. The control variable w is

effectively the same a control variable.

Covariance

localization

Flow-following, can

use recursive filter

Non-flow-following, can

use recursive filter

Flow-following, use

EOF-decomposed

correlation matrix

Non-flow-following, use

EOF-decomposed

correlation matrix

Adjoint model Needed, integrated

every iteration

Not needed Not needed Not needed

Tangent linear

model

Needed, integrated

every iteration

Not needed, using ensemble

forecast perturbations

Needed Not needed, using

ensemble forecast

perturbations

Computational

cost

Comparable to the

cost of 4DVar,

without counting the

cost of ensemble

forecasting

Larger than the cost of

3DVar-FGAT because the

control variable size is extent

to n 3 N, but far less than

4DVar without counting the

cost of ensemble forecasting

Expensive, with EOF

approximation, control

variables size is n0 3 N

and need n0 3 N ensemble

forecasts without

approximation

Similar 3DVar-FGAT

with the control variable

size n0 3 N, but far less

than 4DVarwithout

counting the cost of

ensemble forecasting

Relationships Mathematically

equivalent to

4DEnVar

Mathematically equivalent to

4DEnVar-NPL

Mathematically equivalent

to En4DVar

Mathematically equivalent

to 4DEnVar-NPC
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Attempts have been made in the literature (e.g.,

Bishop and Hodyss 2007, 2009, 2011) to realize flow-

dependent covariance localization in an ensemble

framework, but all schemes proposed so far are

computationally very expensive. Ota et al. (2013)

estimated observation impact by a flow-following

localization within EnKF framework. However, how

to realize effective and efficient flow-following

covariance localization in a 4D variational DA

framework is still a major and important area for fu-

ture research, and neglecting the following aspect of

covariance localization will remain an important

source of approximations before effective solutions

are found.
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