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ABSTRACT

Despite the well-known importance of background error covariance in data assimilation, not much study

has been focused on its impact on the assimilation of radar reflectivity within a three-dimensional variational

(3DVar) framework. In this study, it is shown that unphysical analysis increments of hydrometeors are

produced when using vertically homogeneous background error variance. This issue cannot be fully solved

by using the so-called hydrometeor classification in the reflectivity observation operator. Alternatively,

temperature-dependent background error profiles for hydrometeor control variables are proposed. With

such a treatment, the vertical background error profiles are specified to be temperature dependent, allowing

for more physical partitioning of radar-observed precipitation information among the liquid and ice hydro-

meteors. The 3DVar analyses using our treatment are compared with those using constant background error

or ‘‘hydrometeor classification’’ through observing system simulation experiments with a simulated supercell

storm. Results show that 1) 3DVar with constant hydrometeor background errors produces unphysical

rainwater at the high levels and unphysical snow at the low levels; 2) the hydrometeor classification approach

reduces unphysical rainwater and snow at those levels, but the analysis increments are still unphysically

spread in the vertical by the background error covariance when the vertically invariant background errors are

used; and 3) the temperature-dependent background error profiles enable physically more reasonable ana-

lyses of liquid and ice hydrometeors from reflectivity assimilation.

1. Introduction

Although much progress has been made in the area of

convective-scale data assimilation (DA) and numerical

weather prediction (NWP), obtaining accurate initial

conditions for convective-scale NWP remains a major

challenge. A major issue for convective-scale DA is the

lack of sufficient and direct observations within thunder-

storms and their environment. Radar reflectivity data,

which have higher spatial and temporal resolutions than

conventional observations and contain hydrometeor in-

formation, are the most important data for convective-

scale DA. Complex cloud analysis (Hu et al. 2006),

ensemble Kalman filter (EnKF) (e.g., Tong andXue 2005),

and 3D variational (3DVar) (Gao and Stensrud 2012)

DAmethods are currently the three main types of methods

for assimilating radar reflectivity for convective-scale

models that contain ice microphysics, while 4D variational

(4DVar) method has mainly be used with the assumptions

of warm rain microphysics (e.g., Sun and Crook 1997).

Complex cloud analysis schemes adjust thermody-

namic and hydrometeor variables based on radar

reflectivity data, satellite, and surface observations, etc.

(Albers et al. 1996). Cloud analysis is generally com-

putationally fast and relatively easy to implement, and

has been shown to enable the buildup of reasonable 3D

cloud structures and precipitation fields and quite ef-

fectively alleviate the precipitation spinup problem (Hu

et al. 2006; Kain et al. 2010; Sun et al. 2014; Xue et al.

2003). However, cloud analysis algorithms typically relyCorresponding author: Ming Xue, mxue@ou.edu
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on empirical relationships that have many uncertainties.

Moreover, such methods do not utilize background and

observation error information, and hence cannot obtain

statistically optimal estimations.

Variational methods can also be used to assimilate

reflectivity data; optimal analyses are obtained by mini-

mizing a cost function in which the contributions of the

background and observations are weighted by their re-

spective error covariances. Four-dimensional variational

(4DVar) method uses the forecast model as a strong con-

straint in the cost function so that the analysis can be con-

sistentwith the forecastmodel. For the convective scale, the

microphysical processes are important and complex ice

microphysics schemes are highly nonlinear, which creates

many practical issues that are difficult to overcome (Xu

1996), like nonlinearity associatedwith the highly nonlinear

physics. For this reason, existing 4DVar systems that as-

similate radar reflectivity data generally assume warm rain

microphysics and convert reflectivity to rainwater mixing

ratio before assimilation (Sun and Crook 1997; Wang

et al. 2013b).

EnKF uses an ensemble of forecasts to estimate the

background error covariances. Not requiring tangent lin-

ear or adjoint models of the observation operators, EnKF

can more easily use nonlinear observation operators (e.g.,

of radar reflectivity) and models with complex ice mi-

crophysics. The ability of EnKF to assimilate radar data

has been shown by many studies (Aksoy et al. 2009, 2010;

Jung et al. 2008a,b; Tong and Xue 2005; Xue et al. 2006).

While EnKF can estimate a flow-dependent background

error covariance, the estimated covariance matrix is often

severely affected by the sampling and model errors

(Houtekamer andMitchell 1998;Houtekamer et al. 2009).

The hybrid method, which combines the use of ensemble-

derived flow-dependent background error covariance

with static covariance within a variational framework,

requires the capability of variationally assimilating re-

flectivity data (Hamill and Snyder 2000; Kong et al. 2018).

Apart from being needed for constructing a hybrid

DA system, using 3DVar to assimilate radar data is also

more practical because of its relatively low computa-

tional cost. In the MM5 and later WRF 3DVar systems,

Xiao et al. (2007) proposed a procedure to directly as-

similate reflectivity although only the liquid phase of

hydrometeors was considered, to simplify the problem.

The more recent implementation of reflectivity assimi-

lation within WRF variational DA systems retrieves

hydrometeor mixing ratios prior to assimilation (Wang

et al. 2013a).

When considering ice microphysics in the absence of

model constraint (either in the form of a strong con-

straint as in 4DVar or in the form of ensemble error

covariances), 3DVar usually has difficulties in properly

partitioning radar-observed precipitation information

among multiple hydrometeors, and often produces

unphysical analyses of hydrometeors. For example, rain-

water can be placed way above the freezing level even

without strong updraft while snow may be erroneously

analyzed way below the melting level. One approach to

avoid this problem is to modify the reflectivity observation

operator so that it is temperature dependent. In Gao and

Stensrud (2012), reflectivity is made to be a function of

rainwater only below the 58C level, and a function of snow

and hail only above the 258C level. Between these two

levels, the equivalent reflectivity is made to be a weighted

average of the contributions from liquid and ice hydro-

meteor species, with the weights being linearly dependent

on temperature. This approach is called ‘‘hydrometeor

classification’’ by Gao and Stensrud (2012).

One of the problems with the hydrometeor classifica-

tion approach is the effective disallowance of hail at levels

below 58C. On the other hand, when the background

error variances of the hydrometeors are assumed to be

vertically invariant, as is the case in Gao and Stensrud

(2012), unphysical analysis increments of hydrometeors

can be produced by their vertical spreading through

background error covariance. In addition, with the for-

mula used by Gao and Stensrud (2012), at 08C tempera-

ture, the contributions of liquid and ice hydrometeors to

the equivalent reflectivity are unphysically halved.

In ensemble-based DA system, because of the use of

flow-dependent background error covariance, the hy-

drometeors analyses will be physically consistent with the

forecast model, and the hydrometeor classification ap-

proach would not be necessary. When the 3DVar

framework is used to construct an ensemble–variational

hybrid system (Kong et al. 2018), it is also preferred that

the reflectivity operator used in the hybrid system is the

same as that used in the coupling EnKF system; in other

words, ad hoc modification to the observational operator

in the hydrometeor classification approach is undesirable.

In this study, we propose an alternative approach to

deal with the 3DVar reflectivity assimilation problem

discussed above. As opposed to using spatially uniform

errors as in Gao and Stensrud (2012), our new approach

introduces additional information or constraint to the

analysis system by defining temperature-dependent

background error covariances for the hydrometeor

variables. The impact of the temperature-dependent

error profiles on the 3DVar analyses of a supercell

storm is examined through observing system simulation

experiments (OSSEs), by comparing the results with

those using the constant error profiles with or without

the hydrometeor classification treatment.

This paper is organized as follows: in section 2, the

proposed temperature-dependent background error
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profiles for the hydrometeor variables are described. The

design of three 3DVar experiments, which use, re-

spectively, the proposed background error profiles, con-

stant error profiles with and without the hydrometeor

classification, is presented in section 3. In section 4, we

compare the OSSE results from the three experiments.

Conclusions are given in section 5.

2. Temperature-dependent background error
profiles

In the Advance Regional Prediction System (ARPS)

3DVar system (Gao et al. 2004; Xue et al. 2003), the

default background error variances for hydrometeor

mixing ratios are assumed to be homogeneous. With

such error variances, unphysical analysis increments,

such as rainwater at the upper levels and snow far below

the freezing level, can be produced. To avoid the un-

physical hydrometeor analysis increments, the so-called

hydrometeor classification algorithm was proposed in

Gao and Stensrud (2012), in which the original re-

flectivity observation operator based on Lin et al. (1983)

was modified to be temperature dependent.

The reflectivity factor Z can be simulated based on

model mixing ratios of rainwater qr, snow qs, and hail qh,

following Tong and Xue (2005):
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where Zer, Zes, and Zeh are the contributions to equiv-

alent reflectivity Ze by rainwater, snow, and hail,

respectively.

The equivalent reflectivity factors contributed by

rainwater is calculated, based on Smith et al. (1975),

from
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where rr 5 1000kgm23 is the density of rainwater and

r (in kgm23) is the density of air; andNr 5 8:03 106 m24

is the intercept parameter in the assumed Marshall–

Palmer exponential raindrop size distribution.

If the temperature is less than 08C, the component of

reflectivity for dry snow is

Z
es
5

1018 3 720K2
i r

0:25
s (rq

s
)1:75

p1:75K2
r N

0:75
s r2i

5 9:803 108 3 (rq
s
)1:75.

(4)

Here rs 5 1000kgm23 is the density of snow and ri 5
917 kgm23 is the density of ice,Ns 5 3:03 106 m24 is the

intercept parameter for snow, and K2
i 5 0:176 is the di-

electric factor for ice while K2
r 5 0:93 is the same for

water. Wet snow, which occurs at temperatures higher

than 08C, is treated in a similar way as rainwater, and the

equivalent reflectivity factor-mixing ratio relation is

Z
es
5

1018 3 720(rq
s
)1:75

p1:75N0:75
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5 4:263 1011 3 (rq
s
)1:75. (5)

For hail, the wet hail formulation of Smith et al. (1975)

is used:

Z
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where rh 5 913 kgm23 is the density of hail. The hail

intercept parameter ofNh 5 4:03 104 m24 is used, which

is slightly larger than that used in Smith et al. (1975),

implying more occurrences of hail at smaller sizes.

Based on the consideration that rainwater should

generally exist below the freezing level, and snow and

hail should generally exist above the freezing level, the

reflectivity operator is modified to the following form in

Gao and Stensrud (2012):
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(7)

where Tb is the background temperature in Celsius, and

weighting coefficient a varies linearly between 0 and 1

as a function of temperature ranging between 258 and
58C. With this modified reflectivity observation opera-

tor, the sensitivity of reflectivity to snow and hail below

the 58C level, and that to rainwater above the258C level

are disallowed. As a result, in the absence of background

error correlation, the assimilation of reflectivity will not

generate rainwater above the 258C level, or snow and

hail below the 58C level. If homogeneous background

error covariance is used, however, as in the default

scheme of ARPS 3DVar, undesirable hydrometers at
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these levels will appear. Moreover, the above treatment

does not consider the situation of hail falling below the

freezing level.

Another problem using the modified observation op-

erator with the homogenous background error co-

variance is that the reflectivity data assimilation will be

unable to remove spurious rainwater in the background

at the upper levels, and more importantly unable to

remove spurious snow and hail at the lower levels when

assimilating reflectivity data because the 3DVar system

cannot detect such spurious hydrometeors since they do

not appear in the reflectivity observation operator. As

pointed out earlier, in the transition zone between 258

and 58C, the equivalent reflectivity contributions from

coexisting liquid and ice phases are excessively reduced,

and in fact, to half of the correct values at 08C.
Our proposed solution to the problem is, as men-

tioned earlier, to define temperature-dependent back-

ground error profiles for the hydrometeor variables. For

each of the profiles, the errors are defined separately in

three vertical sections divided by temperature thresh-

olds. The error values in the top and bottom sections are

still constant but in different magnitudes. The value in

the middle sections increases or decreases from the

bottom-section value to the top-section value based on a

hyperbolic tangent function, according to

E5
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where E is the background error magnitude and T the

temperature. The variables Eh and El are constant errors

for the high and low levels with temperature smaller than

Th and greater than Tl, respectively. Here i is the tem-

perature of certain level in the transition zone and n is the

temperature difference between the high level and low

level. The variable ‘‘a’’ is equal to (11 n)/2 and a is a

tuning parameter that can be a value between 0.2 and 5.0,

and is set as 1.0 in this paper. In real data assimilation

experiments, the background error profiles can be de-

termined statistically using data from precipitating col-

umns (e.g., with a form of the NMC method; Parrish and

Derber 1992). In our idealized experiments presented in

this paper, the errormagnitudes at the high and low levels

are estimated by the root-mean-square errors (RMSEs)

with themean calculated over all the cycles in theOSSEs.

For rainwater, Th and Tl, are set as 258 and 58C, re-
spectively, while for snow and hail, they are set as 2308
and 58C, respectively. The lower temperature of the up-

per threshold helps prevent discontinuity that can appear

in the analysis increments of snow and hail. The param-

eters in Eq. (8) used in this study are given in Table 1 and

the error profiles are shown in Fig. 1.

3. Experimental design

In this study, a classic supercell storm that occurred on

20 May 1977 in Del City, Oklahoma, is simulated using

the ARPS model (Xue et al. 2001) to serve as a truth

simulation of the OSSEs. The domain size is 35 3 35 3
35, with 2km horizontal and 0.5km vertical grid spacings.

The environment of the supercell is defined by amodified

real sounding while the truth storm simulation is initial-

ized by a thermal bubble. More information about the

truth simulation can be found in Tong and Xue (2005).

The simulated radial velocity Vr and reflectivity Z are

produced by a pseudoradar located at the southwest

corner of the model domain. The radial velocity opera-

tor based on the model velocity is written as

V
r
5 u sinf cosm1 y cosf cosm1w sinm , (9)

where m and f are the elevation and azimuth angles of

radar beams, respectively; and u, y, and w are the model-

simulated velocities interpolated to the scalar grid points.

Random noise is added to the simulated Vr and Z

observations given by Eqs. (9) and (1), respectively. The

noise is sampled from Gaussian distributions with zero

mean and standard deviations of 1m s21 for Vr and

3dBZ for Z. Both radial velocity and reflectivity ob-

servations are assimilated by the ARPS 3DVar at 5-min

intervals in the 1-h DA window. The first analysis is

performed at 25min of the truth simulation. Similar to

Kong et al. (2018), the initial background is the ensem-

ble mean of the 5-min ensemble forecasts initiated from

the ensemble perturbations valid at the 20-min of the

truth simulation. The background error decorrelation

scales are 3.5 km in the horizontal and 1.1 km in the

vertical for all analysis variables, based on the optimal

scales obtained in Kong et al. (2018) for similarly con-

figured 3DVar OSSEs. To help suppress spurious re-

flectivity in the background, clear-air reflectivity is also

assimilated (Tong and Xue 2005).
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Three experiments are conducted using 3DVar with

1) the invariant background error profiles (CTRL), 2) the

invariant background error profiles and hydrometeor

classification in the reflectivity observation operator

(3DVarHC), and 3) the new temperature-dependent

background error profile (3DVarTD). Another experi-

ment, 3DVarHCS, which is the same as 3DVarHC,

except that a much smaller vertical background error

decorrelation scale (100m) is used. The experiment re-

sults are presented in the next section.

4. Experimental results

a. Results of the first analysis

1) COMPARISON OF TOTAL REFLECTIVITY

ANALYSES

Figure 2 shows the reflectivity and wind vector fields in

an east–west vertical cross section through the maximum

vertical velocity of the simulated truth storm at the time

of first analysis (25min), from the truth simulation,

background, and three DA experiments. Compared with

the simulated truth, the reflectivity in the background is

weak and has a wide horizontal coverage unlike that of a

deep convective cell. Also, there is some spurious re-

flectivity away from the main storm. After the first as-

similation of radar data, the analyzed reflectivity fields in

CTRL, 3DVarHC, and 3DVarTD are much closer to the

truth, and the spurious reflectivity in the east of the main

storm is partly suppressed. However, the intensity of the

reflectivity core is more underestimated in all three ana-

lyses, and the vertical motion in the main storm region is

still mostly downward. Some new spurious reflectivity is

also produced in supposedly clear air regions. It is a

known problem of direct variational assimilation of re-

flectivity that large gradients of cost function can be

produced in areas of small background hydrometeor

mixing ratios, which prevents efficient minimization

convergence (Sun and Crook 1997). Figure 2 also shows

that the vertical velocity is not properly analyzed within

the updraft region. In the ARPS 3DVAR system whose

static background error does not contain cross covariance

between wind and hydrometeor fields, the wind field can

only be updated by the radial velocity data.Wehave found

that when using hydrometeor mixing ratios as the control

variables and when analyzing reflectivity and radial ve-

locity data simultaneously, the assimilation of radial ve-

locity data is ineffective, and special treatments are needed

to circumvent this problem, which will be discussed in a

separate paper. Because of the focus on reflectivity as-

similation in this paper, this issue is unimportant for this

study. Through the assimilation cycles, rather accurate

vertical velocity does develop later on (not shown).

Figure 2 also indicates that the reflectivity analyses

from CTRL, 3DVarHC, and 3DVarTD are generally

similar. Since both the hydrometeor classification and

temperature-dependent background error profiles aim

to better partition the radar-observed precipitation in-

formation among the hydrometeors, and the cost function

minimization tries to minimize the simulated reflectivity

from observed values, the analyzed reflectivity is ex-

pected to be relatively close to the observed reflectivity

values. The key is in the accuracy of the analyzed hy-

drometeor fields, which are not directly observed.

2) COMPARISON OF ANALYZED HYDROMETEOR

FIELDS

When multiple hydrometeors species contribute to

the reflectivity, and only reflectivity is observed, the

problem of directly assimilating reflectivity data for the

purpose of determining several hydrometeor variables

is underdetermined. Therefore, even if the analyzed

total reflectivity fits well to its observations, the indi-

vidual hydrometeor fields may not be correctly ana-

lyzed. The hydrometeor classification treatment of

Gao and Stensrud (2012), and our use of temperature-

dependent background errors both try to introduce ad-

ditional constraints into the 3DVar system. To evaluate

TABLE 1. The parameters in the background error profiles for

rainwater, snow, and hail mixing ratios.

qr qs qh

Th (8C) 25 230 230

Tl (8C) 5 5 5

Eh (g kg
21) 0 1.2 0.6

El (g kg
21) 0.8 0 0.3

FIG. 1. The temperature-dependent background error profiles of

the mixing ratio of rainwater (black), snow (blue), and hail (red).
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the true quality of analyses, the analyzed rainwater,

snow, and hailmixing ratio fields, and their corresponding

contributions to reflectivity (in dBZ) are shown in Fig. 3.

The contributions of rainwaterZr, snowZs, or hailZh are

defined as the logarithmic equivalent reflectivity from the

individual hydrometeors [e.g., Zr 5 log10(Zer)].

In the truth simulation, nonzero rainwater (snow)

mixing ratiomainly exists below (above) the melting level

(which is roughly at a 4-km height), as shown in Figs. 3a

and 3b. For hail (Fig. 3c), there are significant hailstones

blow 5km and the magnitude of low-level Zh is over

65dBZ because hailstones can reach the ground before

fully melted. While hail below the 58C level is ignored

by the hydrometeor classification scheme according to

Eq. (7), it is allowed when using the temperature-

dependent background error profiles defined in Eq. (8).

In the forecast background (Figs. 3d–f), because the

storm is much weaker than the truth, the hydrometeor

mixing ratios are also much less. In the background,

little hail is shown below the freezing level (Fig. 3f),

while rainwater (snow) exists only below (above) the

freezing level (Figs. 3d and 3e).

(i) Analyzed hydrometeor fields from CTRL

With the assimilation of radar data (mainly of reflec-

tivity data that have direct impact on the hydrometeor

fields in the first analysis, while the effects of Vr data

assimilation have to be accumulated through 3DVar

DA cycles), the analyzed hydrometeor distributions in

CTRL become narrower than in the background, and

closer to the truth (Figs. 3g–i); the magnitudes are also

much increased. However, the partitioning of reflectivity

observation information across the hydrometeors is not

quite right. In Fig. 3h, snow mixing ratio and corre-

sponding reflectivity below the melting level are much

larger than those above the melting level, which is ob-

viously unphysical. The values at the lower levels are

apparently large because the coefficient of the equiva-

lent reflectivity equation for wet snow [4:263 1011 in the

Eq. (5)] is much larger than that for dry snow [9:803 108

in the Eq. (4)]. The larger the coefficient in the Ze

equation is, themore sensitiveZe is to the corresponding

hydrometeor mixing ratio, where the adjoint sensitivity

is the gradient of Ze with respect to the mixing ratio.

Because variational minimization tends to adjust most

FIG. 2. The reflectivity (shading) and wind vectors in a vertical cross section through the maximum vertical velocity of simulated truth

storm at the time of first analysis (25min), for (a) the truth simulation, (b) the background, (c) the CTRL, (d) 3DVarHC, and

(e) 3DVarTD experiments.
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FIG. 3. The (left) rainwater, (middle) snow, and (right) hail mixing ratios (contours starting at

0.5 g kg21 and at intervals of 0.5 g kg21) and corresponding reflectivity (shading) in a vertical

cross section through the maximum vertical velocity of simulated truth storm at the first analysis

time for the (a)–(c) truth simulation, (d)–(f) background, (g)–(i) CTRL, (j)–(l) 3DVarHC,

(m)–(o) 3DVarHCS, and (p)–(r) 3DVarTD.
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sensitive variables the most (e.g., using algorithms hav-

ing properties of steepest descent), the adjustment to

snow mixing ratio below the freezing level (where snow

is expected to be wet) will be much larger than to

snow above the freezing level, leading to much more

snow mixing ratio at the lower levels (Fig. 3h).

Since the same background error of 0.6 g kg21 is used

for all hydrometeor mixing ratios in CTRL, the partition

of the reflectivity observation information is almost ex-

clusively controlled by the sensitivity to (gradient with

respect to) the hydrometeors in the reflectivity obser-

vation operator. Below the melting level, because the

reflectivity in the operator is most sensitive to wet snow,

the analyzed reflectivity component from snow is the

largest in CTRL (Fig. 3h); however, such large values

below the freezing level do not exist in the true simu-

lation at all (Fig. 3b). Above the melting level, some

unphysical analysis increments of rainwater are also

found (Fig. 3g). In Fig. 3i, some hail analysis increments

are found at the low levels but the values in the truth

simulation are much larger; this is because most of the

adjustment had been made to snow at the lower level,

resulting in too small adjustments to hail mixing ratio.

(ii) Analyzed hydrometeor fields from 3DVarHC

In the hydrometeor classification version of the

reflectivity observation operator, contributions of ice

hydrometeors below the 58C level and rainwater above

the 258C level are excluded, so that they cannot be di-

rectly produced by the reflectivity observation within

the 3DVar analysis. Compared with the CTRL analysis

below the melting level (Fig. 3g), rainwater mixing ratio

from 3DVarHC is much larger (Fig. 3j) because only

rainwater is included in the reflectivity operator at those

levels. Similarly, the snow analysis increment at the

upper levels is increased more than in CTRL because of

the absence of competition from rainwater (Fig. 3k).

Figure 3k also shows that the large unphysical snow in-

crements at the low levels in CTRL are greatly sup-

pressed because of the lack of a direct link to snow in the

reflectivity operator at those levels, but snow below

the melting level is still significantly overestimated. The

unphysical rainwater increment at the high levels in

CTRL is correctly suppressed (Fig. 3j).

However, if we compare the analyzed rainwater and

snow fields in 3DVarHC with the truth fields in more

details, we still notice unphysical spreading of rainwater

above the freezing level (Fig. 3j), and unphysical

spreading of snow below the freezing level, some of

which even reaches the ground (Fig. 3k). Another issue

with hydrometeor classification is the exclusion of hail

below the 58C level, which results in a small analysis

increment at the low levels for hail produced only by the

vertical spreading via the background error correlation

(Fig. 3l).

One way to reduce the unphysical vertical spreading

of hydrometeor analysis increments is to adjust the

vertical background error decorrelation scale. This is

done in experiment 3DVarHCS where the vertical scale

is reduced from 1.1 km to 100m. The 100m is smaller

than the vertical grid spacing of 500m in our experiment;

therefore, vertical spreading should be virtually elimi-

nated. This choice of a very small decorrelation scale is

mainly for the purpose of illustrating the effects of ver-

tical increment spreading.

With the 100-m vertical decorrelation scale, the

unphysical vertical spreading of analysis increments is

much reduced; for example, there is no wet snow below

2km in 3DVarHCS (Fig. 3n). However, within regions

of storms, there should be vertical error correlations

where updrafts and downdrafts are deep and strong (see,

e.g., Tong and Xue 2005). Kong et al. (2018) found via

OSSEs that the optimal vertical decorrelation scale for

3DVar for this case should be about 1 km. The vertical

decorrelation scale of 100m in this experiment is obvi-

ously too short to obtain optimal analyses. Moreover,

the issue of significantly overestimating snow in the

melting layer still exists in 3DVarHCS (Fig. 3n) be-

cause of very large sensitivity to wet snow in the

melting layer; the hydrometeor classification treat-

ment dose not eliminate this issue.

(iii) Analyzed hydrometeor fields from 3DVarTD

In the temperature-dependent background error

profiles, the background error of snow below the 58C
level and of rainwater above the 258C level are set to

zero, which means that the analysis system will very

much trust the background. This is obviously based on

physical conditions. When error statistics are obtained

from model-predicted fields, similar temperature de-

pendences are expected, although the actual statistical

distribution is left for future studies. With this setting of

3DVarTD, nonphysical analysis increments of snow

(rainwater) below (above) the melting level are no

longer produced (Figs. 3q and 3p). Because the physical

constraint is considered via background error co-

variance profiles, proper vertical spreading of hydro-

meteor analysis increments can be taken into account

via vertical variations of the error magnitudes.

In CTRL, 3DVarHC, and 3DVarHCS, wet snow is

significantly overestimated below the melting level

(Figs. 3h, 3k, and 3n) because the cost function sensi-

tivity to snow is large where the snow is expected to be

wet. In contrast, the background error variance of snow

is much smaller below the melting level in 3DVarTD

(see Fig. 1) so that the analysis increment of wet snow is
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much smaller (Fig. 3q), alleviating the overestimation

problem.

For hail, significant magnitudes of analysis increments

are found below the melting level (Fig. 3r), much closer

to the truth than in other experiments; this is attributed

to the fact that hail and its error variance is considered in

the background error profile of hail (Fig. 1).

Overall, the spatial patterns and magnitudes of the

analyzed rainwater, snow, and hail mixing ratios and

corresponding reflectivity fields are much better repro-

duced by the single-time 3DVar analysis using our

proposed background error profiles than those using a

homogeneous error covariance. While the analyses us-

ing the hydrometeor classification observation operator

are improved over CTRL, some issues are still shown.

Given that only a single time analysis is performed, the

analyzed hydrometeor fields are generally weaker than

the truth, which is expected.

b. Results of cycled analyses

The previous section presents the results from the first

data assimilation cycle. What we also want to know is

the quality of the analyses and forecasts through the rest

of the DA cycles when the storm structures are more

accurately established. For this purpose, we examine the

errors of the analysis and forecast hydrometeor fields in

all DA cycles, and the fields at the end of the cycles.

The RMSEs of the wind components and hydrome-

teor mixing ratios are calculated in regions where

reflectivity exceeds 10 dBZ in the true simulation. As

shown in Fig. 4, the RMSEs of all experiments generally

decrease with the forecast–analysis cycle. In addition,

the RMSEs from the three experiments are very close

except for the snow mixing ratio. The RMSEs of snow

mixing ratio from 3DVarTD are lower than those of

CTRL and 3DVarHC. Moreover, the analysis RMSEs

of CTRL and 3DVarHC at the first analysis time are

actually increased by the data assimilation, mainly be-

cause unphysical snow increments are created at the

lower levels as discussed earlier and shown in Figs. 3h

and 3k.

To further examine the differences in the analyzed hy-

drometeor fields from CTRL, 3DVarHC, and 3DVarTD

after 1 h of DA cycles, the rainwater, snow, and hail

mixing ratios and the corresponding reflectivity com-

ponents at the last cycle are shown in Fig. 5 in a vertical

cross section through the maximum vertical velocity of

the truth simulation. Like the first time analyses dis-

cussed in section 4a, the unphysical snow mixing ratio at

the low levels and the unphysical rainwater mixing ratio

at the high levels are still shown in the analyses of CTRL

and 3DVarHC after 1 h of DA cycles.

Figure 5a shows that the rainwater in the truth simu-

lation can reach above 7 km because of the strong up-

draft in the storm. The rainwater analyses in both CTRL

and 3DVarTD are much weaker than that of truth

simulation while 3DVarHC has better rainwater in-

tensity analysis since snow and hail are excluded in the

FIG. 4. TheRMSEs of analyses and forecasts during theDA cycles for CTRL (black), 3DVarHC (blue), and 3DVarTD (red), for different

state variables as labeled.
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FIG. 5. The (left) rainwater, (middle) snow, and (right) hail mixing ratios (contours starting at 0.5 g kg21 and at intervals of 0.5 g kg21)

and the corresponding reflectivity (shading) in a vertical cross section through the maximum vertical velocity of the simulated truth storm

at the end of DA cycles (from top to bottom) for the (a)–(c) truth simulation, (d)–(f) CTRL, (g)–(i) 3DVarHC, and (j)–(l) 3DVarTD.
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reflectivity operator at the lower levels (Figs. 5d, 5g, and

5j). Because the background error of rainwater above

the freezing level is set to zero, no rainwater analysis

increment above the freezing level can be directly pro-

duced in 3DVarTD. Further tuning to the rainwater

error profile can be made, by allowing some rainwater

error above the freezing level. The presence of super-

cooled liquid water does depend on the updraft in-

tensity, which could be accounted for by flow-dependent

background error covariance from ensemble forecasts

in a hybrid system developed recently for ARPS 3DVar

(Kong et al. 2018). The snow analysis at the high levels

of CTRL is clearly underestimated (Fig. 5e) while the

unphysical wet snow at the low levels of 3DVarHC

(Fig. 5h) becomes more prominent than that of the first

analysis. For 3DVarTD, the snow analysis at the high

levels (Fig. 5k) is slightly underestimated but no un-

physical wet snow at the low levels is produced. For hail

analysis in 3DVarHC (Fig. 5i), there are spurious hail

below the overhanging reflectivity anvil at the low levels,

which is apparently due to inappropriate analysis in-

crement spreading associated with the constant back-

ground error variance and vertical spatial correlation. It

is noted that the reflectivity core at the low levels in

3DVarTD is still underestimated even after DA cycling.

We have found that this is because the gradient of the

cost function is much smaller (larger) where background

reflectivity is large (small) so that the hydrometeors near

the reflectivity core are not sufficiently adjusted by ob-

servations, especially when clear-air reflectivity is as-

similated. This issue is related to the nonlinearity of the

reflectivity operator, and separate treatments to allevi-

ate this problem will be the topic of a separate paper.

Overall, the analyzed hydrometeor fields at the end of

the 1-h radar DA cycles remain the most accurate and

physical in the experiment that uses our proposed

temperature-dependent background error profiles for

the hydrometeors. Issues found in the first 3DVar

analysis with the hydrometeor classification treatment

and with the constant background errors remain at the

end of the 1-h DA cycles.

5. Summary and conclusions

To effectively and directly assimilate radar data, es-

pecially radar reflectivity data, using ARPS 3DVar,

temperature-dependent background error profiles are

proposed for the hydrometeor state variables associated

with liquid- and ice-phasemicrophysics to better partition

radar-observed precipitation information among hydro-

meteors. The proposed method is compared via OSSEs

with another approach proposed by Gao and Stensrud

(2012) that modifies the reflectivity observation operator

so that the involvement of the hydrometeor state vari-

ables in the operator is temperature dependent, a treat-

ment that they refer to as ‘‘hydrometeor classification.’’

Simulated radial velocity and reflectivity observations

are assimilated every 5min over a 60-min period for a

simulated classic supercell storm. Three DA experiments

are performed using 3DVar with invariant hydrometeor

background error profiles (CTRL), with an additional

hydrometeor classification treatment in the reflectivity

observation operator (3DVarHC), and with the new

temperature-dependent background error profiles and

the original reflectivity operator (3DVarTD). The ana-

lyzed fields after the first 3DVar analysis and at the end of

1-hDA cycles are examined, together with theRMSEs of

model state variables through the DA cycles. Major

conclusions are summarized as follows:

1) All experiments are able to produce total reflectivity

analyses that fit the truth reflectivity reasonably well.

This is not surprising since reflectivity is observed

and directly assimilated by the 3DVar. In contrast,

significant differences are found with the analyzed

hydrometeor fields.

2) When using constant background errors for the

hydrometeors in CTRL, unphysical hydrometeor

analyses are produced, including the presence of

snow at the ground level for this summer storm.

Wet snow below the freezing level is seriously over-

estimated because of its larger backscattering co-

efficient than rainwater and hail in the reflectivity

observation operator. Dry snow at the high levels

is seriously underestimated because of its smaller

backscattering coefficient and the analysis of rain-

water at the high levels.

3) In 3DVarHC, by employing temperature depen-

dence of the reflectivity operator, unphysical analysis

increment of rainwater above the 258C level and of

snow below the 58C level cannot be directly pro-

duced from the reflectivity observation. However,

because of the homogeneous vertical background

error correlation used, the analysis increment of the

rainwater is unphysically spread to the high levels

and the analysis increment of snow is unphysically

spread to the low levels. In addition, the exclusion of

hail in the observation operator below the 58C level

leads to underestimated hail at the low levels.

4) When using the newly introduced temperature-

dependent background error profiles, unphysical

hydrometeor increments produced from reflectivity

observations and unphysical vertical spreading when

using homogenous background errors are much re-

duced. The analysis of snow mixing ratio is improved

most over both CTRL and 3DVarHC.
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Further improvement may be possible when the back-

ground error profiles of the hydrometeors are obtained

statistically, from for example convective-scale model

forecasts using a procedure similar to the NMC method.

The error statistics should be calculated using data from

precipitation regions only, and the statistics should be

stratified according to temperature, and may need to

consider other factors such as precipitation cycles. This

can be a topic for future study.We also note that evenwith

the procedure proposed in this study, the 3DVar system

used in this study for hydrometeor analysis is univariate

for the hydrometeors and does not fully utilize model

equation constraints. Significant improvement is expected

when ensemble-derived flow-dependent multivariate en-

semble covariances are introduced into the variational

framework, to formulate a hybrid ensemble–variational

system. However, even in such a system, a proper and best

possible treatment of the static background error covariance

is still desirable. In fact, the proposed temperature-

dependent error profiles are used in a recent 3DVar,

En3DVar (ensemble 3DVar), and EnKF intercomparison

study reported in Kong et al. (2018).
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