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ABSTRACT: The assimilation of reflectivity (Z) within 3DVar or hybrid ensemble-3DVar (En3DVar) requires the adjoint
of the Z observation operator. With the 3DVar or En3DVar method, previous studies often use Z operators consistent with
a single-moment microphysics scheme even when the forecast model uses a double-moment scheme. As such, only the mixing
ratios of hydrometeors are directly updated by the data assimilation (DA) system, leading to inconsistency between the ana-
lyzed microphysics state variables and the microphysics scheme in the prediction model. In this study, we formulated a Z
operator consistent with the double-moment Thompson microphysics used in the numerical integrations; in the operator the
snow and graupel reflectivity components are simplified using functions fitted to T-matrix simulation results. This operator
and its adjoint are implemented within the GSI hybrid En3DVar DA system to enable direct assimilation of Z with a consis-
tent operator. The impacts of this new operator on convective storm analysis through DA cycles, and on the ensuing 3-h fore-
casts are first examined in detail for a tornado outbreak case of 16 May 2017 in Texas and Oklahoma, and then for five
additional thunderstorm cases. Forecast reflectivity, hourly precipitation, and updraft helicity tracks are subjectively evalu-
ated, while neighborhood ETSs and performance diagrams are examined for reflectivity and/or precipitation. Compared to
experiments using a Z operator consistent with a single-moment microphysics scheme, the Z operator consistent with double-
moment Thompson microphysics used in the forecast model produces better forecasts of reflectivity, hourly precipitation,
and updraft helicity tracks with smaller biases, and the improvement is somewhat larger for a higher Z threshold.
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1. Introduction

Successful numerical prediction of convective-scale weather
requires accurate initial conditions and a prediction model
with microphysical (MP) processes capable of accurately sim-
ulating deep moist convection. Bulk microphysics (BMP) is
an approach that parameterizes cloud and precipitation pro-
cesses by assuming semiempirical functions of the particle size
distributions (PSDs), such as the Marshall–Palmer (Marshall
and Palmer 1948) or gamma distribution (Ulbrich 1983) that
contain two and three free parameters, respectively. With the
assumptions of the functional forms of PSDs that have a lim-
ited number of free parameters, typically only a few prognos-
tic equations are needed to uniquely determine each PSD.
The kth moment of the PSD is defined as

Mk �
�‘

0
N D( )Dk dD, (1)

where N(D) represents the number concentration with diam-
eters in the size range D to D 1 dD. As the equation shows,
the zeroth momentM0 of the PSD is the particle total number

concentration, the third moment M3, being the third power of
diameter D, is proportional to the total mass content (e.g., the
mixing ratios), and the sixth moment is linked to radar reflec-
tivity factor. It is usually the moments of the PSDs or directly
related quantities that are predicted and the number of
moments that are predicted is used to name such schemes.

Single-moment (SM) BMP schemes typically predict the
hydrometeor mixing ratios (e.g., Kessler 1995; Lin et al. 1983)
while double-moment (DM) BMP schemes typically predict
the total number concentrations of all or some of the hydro-
meteors in addition to the mixing ratios (e.g., Milbrandt and
Yau 2005a; Thompson et al. 2004). To fully prognose all three
free parameters in the gamma PSD, we need to predict three
moments of the PSD, leading to three-moment or triple-
moment BMP schemes where the sixth moment of PSD or
radar reflectivity factor is predicted as well (e.g., Milbrandt
and Yau 2005b).

Due to their relatively low cost, SM MP schemes (e.g.,
Hong and Lim 2006; Kessler 1995; Lin et al. 1983) have been
in common use for a long time in both research and realtime
forecasting applications (e.g., Kain et al. 2006; Liu and Xue
2008; Tallapragada et al. 2014). Such schemes typically
assume fixed values of the intercept parameters and zero
value for the shape parameter, leading to large sensitivity of
simulation and prediction results to the assumed parameter
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values (e.g., Gilmore et al. 2004; Snook et al. 2008). By inde-
pendently predicting the mixing ratios and total number con-
centrations of hydrometeors, DMMP schemes allow for more
flexibility with the MP processes, such as changing the num-
ber concentration during aggregation or breakup while keep-
ing the mixing ratios constant. In addition, the DM MP
scheme is capable of simulating hydrometeor size sorting,
which results in a more realistic hydrometeor size vertical dis-
tribution (Dawson et al. 2010; Luo et al. 2017; Luo 2018). A
number of recent studies (e.g., Dawson et al. 2010; Johnson
et al. 2016; Jung et al. 2010, 2012; Labriola et al. 2017; Luo
et al. 2017; Luo 2018; Putnam et al. 2014) have shown that
DM MP can produce more realistic convective storm struc-
ture and evolution, such as hydrometeor size sorting, polari-
metric signatures and hail prediction. The Thompson MP
scheme (Thompson et al. 2008) is a partially DM MP scheme,
which predicts two moments to rain and cloud ice but predicts
a single moment for other hydrometeor species. Within the
United States, the Thompson MP scheme is used in the 13 km
Rapid Refresh (RAP; Benjamin et al. 2016) and 3 km High-
Resolution Rapid Refresh (HRRR; Alexander et al. 2020;
Jankov et al. 2019; Smith et al. 2008) operational numerical
weather prediction (NWP) systems.

In addition to MP parameterization, radar data assimilation
(DA) is another key component in a successful convective-
scale NWP system because radar data can provide three-
dimensional observations of the internal structures of storms
at high spatial and temporal resolutions and hence enable
proper initialization of convective storms. Numerous studies
have found that radar DA can benefit convective-scale storm
analyses and forecasts (e.g., Carley 2012; Duda et al. 2019;
Gao and Stensrud 2012b; Hu et al. 2006; Kong et al. 2018; Liu
et al. 2020; Sun and Crook 1997; Tong and Xue 2005; Wang
and Wang 2017; Xue et al. 2003; Yussouf et al. 2013). Radar
reflectivity (Z) DA is more challenging than radial velocity
(Vr) due to the high nonlinearity of the Z observation opera-
tor and the direct linkage of the Z measurement to precipitat-
ing hydrometeors and the associated MP processes.

To initialize a forecast using a DM MP scheme, some stud-
ies used the ensemble Kalman filter (EnKF, Evensen 2003)
with a DM-based Z operator to update both hydrometeor
mixing ratios and total number concentrations when assimilat-
ing radar Z. Xue et al. (2010) was among the first to estimate
all state variables associated with the DMMP scheme (Milbrandt
and Yau 2005a) using EnKF from Z and Vr observations in
Observation System Simulation Experiments. Jung et al. (2012)
found for a real supercell case that EnKF combined with a
DM scheme is able to produce simulated polarimetric radar
signatures that match real radar observations while with a
SM scheme, the system is fundamentally incapable of simu-
lating such signatures.

The U.S. operational forecast systems currently use the
Gridpoint Statistical Interpolation (GSI; Kleist et al. 2009)
DA framework which contains both EnKF and hybrid ensem-
ble-variational (EnVar) DA capabilities. While the regional
models including the North American Mesoscale (NAM)
model (Wu et al. 2016) and RAP (Hu et al. 2017) are using
the EnVar method, they are not yet directly assimilating radar

Z data within EnVar, but employ a cloud analysis procedure
to assimilate Z (Benjamin et al. 2016).

Without involving the adjoint of observation operator (i.e.,
the transpose of linearized observation operator matrix), the
assimilation of Z data using EnKF is more straightforward;
past studies assimilating Z data using EnKF have usually used
Z operators consistent with the MP scheme used in the fore-
cast model, and in the case of DM MP scheme, number con-
centration beyond the mixing ratios are updated by the EnKF
algorithm (e.g., Jung et al. 2012; Labriola et al. 2020; Xue et al.
2010).

A version of the Z observation operator consistent with the
Thompson MP scheme was added to the GSI EnKF DA sys-
tem recently. The operator follows Jung et al. (2008) where
the T-matrix method is used for the scattering calculation of
raindrops, and the Rayleigh scattering approximation is
applied to snow and hail particles. This EnKF system has
been tested with a number of convective storm cases com-
bined with either the Weather Research and Forecasting
(WRF; Skamarock et al. 2005) or Finite-Volume Cubed-
Sphere Dynamical Core (FV3; Putman and Lin 2007) model
run at convection-allowing resolutions (e.g., Labriola et al.
2021; Tong et al. 2020).

Compared to the EnKF method, the hybrid EnVar method
that combines static and flow-dependent ensemble back-
ground error covariance offers additional flexibilities and
advantages and is used at NCEP for both global and regional
operational NWP systems. Recently, hybrid EnVar capabili-
ties have been applied to convective-scale radar DA within
research systems (e.g., Gao 2014; Kong et al. 2018; Wang et al.
2019), and within GSI (Tong et al. 2020). These implementa-
tions used Z operators that are consistent with SM MP
schemes, however, and as such the Z operator itself is not
directly linked to additional state variables such as the total
number concentrations when a DM MP scheme is used. In
such systems, usually only the hydrometeor mixing ratios are
updated even though total number concentration also directly
affects Z. In Tong et al. (2020), due to the unavailability of a
Z operator consistent with the Thompson MP scheme in GSI
EnVar, a Lin-type SM MP Z operator is used in GSI EnVar
while the Z operator based on the Thompson MP scheme is
used in GSI EnKF so that this inconsistency introduces addi-
tional error. Given that the operational RAP and HRRR and
their future successors, as well as the experimental Warn-on-
Forecast System (WoFS; Wheatley et al. 2015) all use DM
MP schemes, Z operators consistent with the DM MP
schemes used should be developed and tested within the GSI
EnVar system.

The primary goal of this study is to develop a radar Z oper-
ator consistent with the Thompson microphysics scheme
implemented within GSI hybrid En3DVar, and test and eval-
uate it for directly assimilating Z data. We first develop an
approximate Thompson microphysics Z operator, in which
the ice phase reflectivity components are simplified using fit
functions. The impacts of using the DM Thompson-type Z
operator versus the SM Lin-type operator on the analysis and
prediction of storms are examined through experiments with
six convective storm cases over the United States in May 2017.
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A tornadic supercell case that occurred in Texas, Oklahoma,
and Kansas on 16–17 May 2017 is examined in greater detail
in terms of DA and forecast performance.

The rest of this paper is organized as follows. In section 2,
the Z observation operators consistent with the Lin and
Thompson MP schemes are introduced. Section 3 provides a
brief overview of the 16–17 May 2017 storm case, and a
description of DA experiments. Experiment results including
objective and subjective forecast evaluations are discussed in
section 4. Section 5 summarizes the results and discusses
potential future work.

2. Reflectivity observation operators

a. Reflectivity observation operator for SM Lin-type
microphysics scheme

The Lin et al. (1983) three-ice microphysics scheme is a pop-
ular SM scheme whose variants have been used in many stud-
ies and modeling systems (e.g., Hong and Lim 2006; Tao et al.
2003; Xue et al. 2001). The Lin MP scheme contains three pre-
cipitating hydrometeor categories, i.e., rainwater (qr), snow
(qs), and hail (qh). Exponential PSDs are assumed for them,
which is the gamma distribution with the shape parameter
assumed to be zero. The mixing ratios of the hydrometeors are
predicted while intercept parameters are specified as constant
values. The storm simulations are often sensitive to the choice
of intercept parameter values (e.g., Snook and Xue 2008) and
some studies have tried to estimate these parameters in the
DA process (e.g., Tong and Xue 2008).

Based on the assumptions of the PSD and other properties
including density, the radar reflectivity factors from each of
the precipitating hydrometeors can be calculated. A set of
such equations are given in Tong and Xue (2005), mostly
based on Smith et al. (1975), and used to assimilate Z data
using EnKF together with a Lin microphysics scheme. Similar
formulations are also used in Dowell et al. (2011) for Z assim-
ilation in another EnKF system. More recently, variants of
such formulations are used in variational DA systems for Z
assimilation (e.g., Gao and Stensrud 2012a; Kong et al. 2018;
Liu et al. 2020) and implemented in GSI EnVar. In general,
the reflectivity observation operator can be written as

Z � 10 log10 Ze( ), (2)

where Ze is the equivalent reflectivity factor that contains con-
tributions from various hydrometeor species; it is defined as

Ze � l4h

p5 Kw| |2 , (3)

where l is the wavelength, and h is the total backscatter cross
section of all scatterers per unit volume, and |Kw|

2 is the
dielectric factor for water. With the SM Lin-type scheme, the
operator for equivalent reflectivity (Ze) contains contributions
from rainwater, snow, and hail, and each is the function of the
corresponding mixing ratio:

Ze � Zer qr( ) 1 Zes qs( ) 1 Zeh qh( ): (4)

Based on the default values of the intercept parameters of
hydrometeor PSDs and the default snow and hail densities of
the Lin scheme, the equivalent reflectivity factors contributed
from rainwater, snow, and hail are respectively,

Zer � 3:63 3 109 3 rqr( )1:75, (5)

Zes �
9:80 3 108 3 rqs( )1:75 T # 08C

4:26 3 1011 3 rqs( )1:75 T . 08C
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (6)

Zeh � 4:33 3 1010 3 rqh( )1:75, (7)

where T is the air temperature (8C) and r is the air density.
The default parameter values are used here for expression
simplicity, but in practice, the parameter values can be set by
the user. The general formulations can be found in Tong and
Xue (2005) and some special treatments using these formulas
for Z assimilation within a variational framework (e.g., adding
a lower limit on the hydrometeor mixing ratios and assimilat-
ing radar radial wind data in a separate pass) are discussed in
Liu et al. (2020).

b. Reflectivity observation operator for DM
Thompson scheme

The Thompson scheme takes a DM parameterization
approach for rain and cloud ice while the snow and hail/grau-
pel processes are still parameterized using a SM approach.
Now that both rainwater mixing ratio (qr) and total number
concentration (Ntr) are predicted, the rain component of
equivalent reflectivity factor is given by

Zer � 1018 3 720 rqr( )2
p2r2rNtr

, (8)

where rr is the rainwater density.
In the Thompson scheme, the snow PSD assumes a com-

bination of the exponential and gamma distributions and
the snow density is a function of the particle diameter. To
simplify the snow reflectivity formula for the tangent linear
and adjoint models, we fit simulated snow reflectivity to a
power-law form of snow mixing ratio. Therefore, the rela-
tion between the snow mixing ratio (qs) and snow reflectiv-
ity (Zs) is derived from the model output using a curve
fitting (Fig. 1a), as

Zs � 16:02qs0:56: (9)

In the Thompson scheme, graupel rather than hail is
included. Even though it only predicts the mixing ratio of
graupel with a SM approach, the graupel intercept parameter
is diagnosed as a function of graupel mixing ratio (Thompson
et al. 2008). In the later implementation (the version 4.0 of
WRF Model), it is modified to be a function of supercooled
rainwater and graupel mixing ratio. Due to the complexity
of the later relationship, we adopted the relationship in
Thompson et al. (2008) and tuned two coefficients to fit the
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simulated equivalent reflectivity (Fig. 1b). The resultant
equivalent reflectivity factor for graupel is given by

Zeg � 1015 3 720r1:75qg2:5

p1:75rg
1:9 , (10)

where rg is the graupel density.

3. Overview of 16–17 May 2017 case and experiment
configurations

The DA and forecast experiments using SM Lin and DM
Thompson microphysics Z operators (hereafter LMP and
TMP, respectively) are run for six thunderstorm cases that
occurred in May 2017 over the continental United States (see
list in Table 1). Overall statistical verifications are performed
for these six cases. Among those cases, a tornadic supercell
case that occurred over Texas, Oklahoma, and Kansas
16–17 May 2017 (Fig. 2) is selected to compare LMP and
TMP in greater depth, which is a high impact and classic
supercell case studied by several published papers (e.g., Chen
et al. 2021; Wang et al. 2019). At approximately 1800 UTC
16 May, multiple thunderstorms were initiated along a dryline
in the Texas Panhandle and moved northeastward, producing
at least two weak tornados. At approximately 2100 UTC, two
intense supercells were initiated and moving from near Carson
County, Texas, to near Beckham County, Oklahoma. An EF-2
tornado struck Elk City, Oklahoma, around 0035 UTC, result-
ing in 1 fatality, 10 injuries to persons, and numerous damages
to structures.

In this study, the numerical model domain has 250 3 250
grid points in the horizontal and 50 vertical levels and is cen-
tered on the severe weather event location for each case, fol-
lowing the configuration of the NSSL Experimental WoFS
(Wheatley et al. 2015). The horizontal grid spacing is at 3 km.
Forecasts are run using the version 3.8.1 of WRF Model. The
following physics schemes are used in the experiments: the
Thompson microphysics, Yonsei University (YSU) planetary
boundary layer (Hong et al. 2006), RRTMG shortwave and
longwave schemes (Iacono et al. 2008), and the unified Noah
land surface model (Chen and Dudhia 2001). It should be
noted that the Thompson MP scheme is used for all the model
forecasts, i.e., during the forward integration of both the
cycled DA and the free forecast.

The cycled DA and forecast experiments are described as
follows (see also Fig. 3). GSI EnKF and hybrid En3DVar DA
cycles are performed in a one-way coupling mode, where
ensemble perturbations provided to the hybrid En3DVar are
updated by EnKF but the deterministic En3DVar analysis is
not used to re-center the ensemble mean EnKF analysis. For
relatively short DA periods, the EnKF and En3DVar in one-
way coupled mode usually do not diverge significantly, and
one-way coupling ensures that the ensemble perturbations
used in all En3DVar experiments are the same, and are not
affected by the particular Z operator used in the En3DVar
experiments (Kong et al. 2018). Following the NSSL WoFS
(Skinner et al. 2018), the ensemble initial conditions of the
EnKF system are taken from the 1-h High-Resolution Rapid
Refresh Ensemble (HRRRE; Dowell et al. 2016) forecasts
(valid at 1800 UTC) initialized at 1700 UTC. The boundary

FIG. 1. Curve fitting between reflectivity and (a) snow mixing ratio and (b) graupel mixing ratio based on Thompson
scheme simulation output.

TABLE 1. List of selected cases. Primary states affected and brief descriptions of convective mode are also provided.

Date Primary states affected Event description

9 May NM, TX Supercell outbreak
16 May KS, OK, TX Discrete tornadic supercells
17 May IA, IL, MN, WI Mixed clusters of cells and lines
18 May KS, OK, TX Tornadic supercells
23 May TX High wind producing mixed-mode convection
27 May AR, MO, OK Mixed-mode convection
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conditions are taken from HRRRE forecasts issued at 1500
UTC. The deterministic initial and boundary conditions for
hybrid En3DVar are taken from the ensemble mean of EnKF
initial conditions and boundary conditions, respectively. In all
EnKF experiments, the Z operator consistent with Thompson
microphysics is used, while in the En3DVar experiments,
Z operators consistent with Lin and Thompson microphysics
are used in two sets of experiments for comparison purposes.

The DA window is from 1800 to 2100 UTC (Fig. 3b). Con-
ventional data (e.g., surface stations, buoys, soundings), radar
Z and radial velocity observations are assimilated. Radar Z
observations are interpolated from the grid Multi-Radar
Multi-Sensor (MRMS; Smith et al. 2016) dataset to the loca-
tions of the model grid columns horizontally but remain on
the 33 MRMS vertical levels. Radial velocity Vr observations
are processed from the WSR-88D Level-2 data using a quality
control and processing procedure from the Advanced
Regional Prediction System (Brewster et al. 2005). The Vr

data are interpolated to the model grid column locations hori-
zontally but kept on the radar elevation levels in the vertical
for each radar site. No further data thinning on the model

grid is employed here. Radar Z and radial velocity observa-
tions are assimilated every 15 min and conventional observa-
tions are assimilated hourly (see Fig. 3b). Free forecasts
initialized from the final analyses at 2100 UTC are run for 3 h.
The 3-h forecasts are performed because the motivation of
the WoFS is improving short-term (0–3 h) forecasts for
severe thunderstorms and their hazards (Stensrud et al.
2009; Wheatley et al. 2015).

To help alleviate problems associated with the highly non-
linear Z operator, following Chen et al. (2021), a nonlinear
power transform is applied to hydrometeor mixing ratios with
the power parameter p set to 0.4 in all hybrid En3DVar
experiments. A 20% static background error covariance is
used for hybrid En3DVar following Chen et al. (2022). In var-
iational algorithms, nonlinear observation operators are usu-
ally linearized and an outer-loop procedure is used to reduce
the impact of linearization approximation (Courtier et al.
1994). Four outer loops are used with up to one hundred iter-
ations for the inner loop of the cost function minimization.
The convergence criterion is set as 10210 for the norm of the
cost function gradient.

4. Results of experiments

a. Evaluations with the 16 May 2017 case

1) RESULTS OF SINGLE-TIME ANALYSES FOR THE

16 MAY 2017 CASE

To clearly show the direct impact of DA using Lin- and
Thompson-based Z operators, we perform single-time hybrid
En3DVar analyses at 2000 UTC using the same background
from a 30-min forecast from TMP cycled DA with 30-min
radar DA intervals (Fig. 3a). Specifically, during the cycled
DA procedure to generate the background, the Thompson-
based Z operator is used in analysis process and the Thomp-
son MP scheme is used for the forward integration. This
analysis time (2000 UTC) is chosen because several well-

FIG. 2. (a) Storm reports for 16 May 2017 extracted from Storm Prediction Center (SPC). (b) Composite reflectivity
at 2000 UTC 16 May 2017. The dashed black rectangle encloses the area shown in Fig. 6.

1800

Conv
+Rad

Rad Rad

1900

RadConv
+Rad

3-h forecast

Rad Rad

2000

RadConv
+Rad

Rad Rad

2100

RadConv
+Rad

1800

Conv
+Rad

Rad

1900

Conv
+Rad

Rad

2000

Conv
+Rad

single-time analyses(a)

(b)

FIG. 3. The flowchart of (a) the single-time analyses and (b) the
cycled data assimilation and 3-h forecast experiments.
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developed storms were observed but the model predicted
much weaker storms at that time, which is a suitable situa-
tion for the comparison of the analyzed reflectivity using the
Lin- and Thompson-based Z operators.

To compare the convergence rates of LMP and TMP
experiments, cost function values as a function of the number
of iterations accumulated in the four outer loops are plotted
in Fig. 4. With the Lin-based Z operator, the cost function is
reduced rather quickly within the first 25 iterations within
each outer iteration but there is a major jump in the cost func-
tion value at the beginning of the outer loops. This should be
related to the fact that with the LMP operator, Ntr is not
updated by the analysis, resulting in inconsistency between
the mixing ratio and number concentration when the operator
is relinearized around an updated state at the beginning of
outer loops. Also, the cost function in LMP does not decrease
much further in the later outer iterations (Fig. 4). With the
Thompson-based Z operator, the cost function does not
decrease as fast with inner-loop iterations, especially within
the first outer loop but the reduction remains large and fast
near the beginning of the second outer loop, and the reduc-
tion continues through the fourth outer loop; at the end of all
iterations, the cost function in TMP is about half that of LMP.
The slower initial reduction should be due to the need to
adjust both mixing ratio and total number concentration but
the end result is more consistent with MP states.

The root-mean-square innovations (RMSIs) of the back-
ground and analyzed reflectivity from LMP and TMP experi-
ments are calculated using the Thompson Z operator for all
grid points where the observed or analyzed reflectivity is
greater than 15 dBZ (Fig. 5). For LMP experiment, the back-
ground and analyzed reflectivity are calculated by the Lin Z
operator. We also calculate the background reflectivity and

LMP-analyzed reflectivity using the TMP Z operator (labeled
LMP_TMP in Figs. 5–8). The analysis RMSIs of LMP and
TMP are very similar (∼12 dBZ) and much smaller than that
of background (∼26 dBZ), indicating that both LMP and
TMP are able to achieve a good fit of the analyzed reflectivity
to observations, as long as the same operator is used within
the cost function and for RMSI calculations. However, the
mismatch between the operator within the DA cost function
and the microphysics used means, to say the least, significant
adjustment between the rainwater mixing ratio and number
concentration once the forecast starts. In fact, when the
Thompson Z operator is used to calculate the RMSI of LMP
analysis, the RMSI of LMP_TMP is much higher at ∼21 dBZ,
even though it is lower than the background value of ∼26 dBZ.

The composite reflectivity at 2000 UTC from the back-
ground and the single-time analyses of LMP and TMP are
compared against observations in Fig. 6 within the dashed box
domain in Fig. 2b, which is the most active convective area at
that time. The observed composite reflectivity (Fig. 6a) shows
that multiple supercells are well developed while the back-
ground Z calculated using the Lin and Thompson Z operators
is clearly much weaker (Figs. 6b,c). As described at the begin-
ning of this section, the background is from the 30-min fore-
cast (Fig. 3a), during which these storms develop slowly in the
model. Both of LMP and TMP experiments produce analyzed
composite Z (Figs. 6e,f) very similar to observed Z (Fig. 6a)
except that the intensity of the reflectivity cores is somewhat
weaker. However, when calculating Z from the LMP-ana-
lyzed MP state using the Thompson Z operator (LMP_TMP),
the analyzed Z generally appears much weaker than the
observations, except that at the strongest reflectivity core
(Fig. 6d). In a sense, this reflectivity (Fig. 6d) is what the
WRF model would output at the initial time.

Cross sections taken through the vertical velocity core and
extending northwestward into weaker observed reflectivity
region (dashed line in Fig. 6) are analyzed to examine the
impact of Z assimilation in LMP and TMP (Fig. 7). The

P
P

FIG. 4. Cost function with respect to number of iterations accu-
mulated in four outer loops for the one-time analysis experiments
with TMP and LMP operators at 2000 UTC 16 May 2017.

P P P P

FIG. 5. Radar reflectivity RMSI (dBZ) of the background and
the analysis of LMP and TMP experiments. Label “LMP_TMP”
indicates that the reflectivity is calculated using the TMP Z
operator.
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background Z calculated using Lin or Thompson Z operator
(Figs. 7b,c) has smaller spatial coverage than observations
(Fig. 7a) and the echo top is ∼8 km lower than the observed
(Fig. 7a). Contrasting background Z intensities are found
below and above the melting level (∼4 km) with the two cal-
culations (Figs. 7b,c), which will be further investigated and
discussed later by examining the contributions to reflectivity
by different hydrometeors. The analyzed Z of LMP and TMP
(Figs. 7e,f) is greatly improved over the background in both
cases even though the reflectivity cores are weaker than the
observed as seen in composite Z. The Z calculated using the
Thompson Z operator from the LMP-analyzed state (Fig. 7d)
is much weaker, again as seen before in composite Z, but the
calculated Z near the surface is actually higher than that cal-
culated using Lin Z operator (Fig. 7e).

Figure 8 shows the hydrometeor mixing ratios and Ntr of
background and single-time analyses at 2000 UTC, and the
corresponding contributions to reflectivity. The contributions
of rainwater (Zr), snow (Zs), and graupel (Zg) are defined as
the logarithmic reflectivity from the individual hydrometeors
in dBZ, e.g., Zr = 10log10(Zer). For the background, the
Thompson Z operator produces higher Zr but lower Zs and
Zg than the Lin Z operator. The same is seen with the analysis
of LMP experiment; when the TMP operator is applied to the
LMP analysis, higher Zr but lower Zs and Zg are produced.
This indicates that the use of the Lin Z operator in the DA
system would tend to produce more (overestimated)

rainwater and less (underestimated) snow and hail/graupel in
the analyses than when the Thompson Z operator is used.
This explains the overestimated reflectivity near the surface in
Fig. 7d when TMP operator is used to calculate Z from the
LMP analysis.

Figure 8 also shows that the LMP experiment does not
change Ntr in the background (Figs. 8a–d) while the TMP
experiment does (Fig. 8e); the Ntr is increased in the TMP
experiment within the convective region (Fig. 8e) since Ntr is
a control variable which is the variable that directly appears
in the cost function and is adjusted (controlled) by variational
minimization. Both Zr and qr in TMP are enhanced at the
high levels while the low-level spurious Zr existing in LMP
(Fig. 8c) is greatly reduced in TMP. In both LMP and TMP
experiments, graupel contributes most to the analyzed Z, and
the analyzed Zg intensities in the two experiments are similar
(Figs. 8i,j) and much stronger than the background Zg. How-
ever, LMP apparently produces much lower qg than TMP;
this is again because the TMP operator produces much
weaker Zg than the LMP operator from the same state
(Fig. 8h). This is directly related to the fact that qg has a
smaller exponent in the LMP operator [Eq. (7)], than in the
TMP operator [Eq. (10)]. For snow, TMP produces higher qs
values, mostly at the high levels (Fig. 8o) although the differ-
ence is much smaller than for graupel.

Since En3DVar can update nonhydrometeor variables
through ensemble-based cross-covariance when assimilating

(a) Observation (b) Background_LMP (c) Background_TMP

(f) Analysis_TMP(e) Analysis_LMP(d) Analysis_LMP_TMP

(dBZ)

FIG. 6. Composite reflectivity (dBZ) at 2000 UTC from observations, background, and analyses of LMP_TMP, LMP, and TMP. The black
dashed line in each panel indicates the location of vertical cross sections shown in Figs. 7 and 8.
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radar reflectivity, the impacts of DA using LMP and TMP Z
operators on the analysis of kinematic and thermodynamic
characteristics are examined. Figure 9 shows the analyzed
near-surface potential temperature increment and maximum
vertical velocity fields from the two experiments. Compared
to the LMP experiment, the TMP experiment produces larger
negative potential temperature increments underneath the
main storm and stronger storm updrafts, which apparently
help sustain the analyzed storms in the model forecast.

In summary, when the Lin Z operator is used in the varia-
tional DA, qr and qg tend to be overestimated and underesti-
mated, respectively, compared to the consistent Thompson Z
operator is used, while the background Ntr cannot be directly
updated by variational DA through the observation operator.

2) RESULTS OF 3-H CYCLED ANALYSES AND 3-H
FORECASTS FOR THE 16 MAY 2017 CASE

In this subsection, we examine the final analyses using the
two operators for 15-min assimilation cycles during the 3-h
assimilation period from 1800 to 2100 UTC, followed by a 3-h
free forecast period, as depicted in Fig. 3b. At the end of DA
cycles at 2100 UTC, the observed reflectivity objects (compos-
ite Z . 45 dBZ) are captured quite well by both LMP and
TMP experiments (Figs. 10b,c). However, the reflectivity
cores are somewhat overestimated and the stratiform reflec-
tivity is substantially underestimated in the LMP experiment

(Fig. 10b). The intensity and coverage of analyzed Z in the
TMP experiment (Fig. 10c) are closer to observations espe-
cially with the weak echo regions, except for some spurious
echoes in the Texas Panhandle. For the 3-h forecast, LMP
fails to predict the tornadic supercell near Elk City, Oklahoma,
and has eastward and southeastward displacement errors for
northernmost and southernmost supercell in Oklahoma, respec-
tively (Fig. 10e). TMP also has similar displacement errors but
more successfully predicts the tornadic supercell near Elk City
even though with eastward displacement errors (Fig. 10f). In
Kansas, LMP produces more scattered, spurious storm cells
than TMP.

To quantitatively compare forecasts of the two experiments,
neighborhood equitable threat scores (NETS, Clark et al.
2010) for low (20 dBZ) and high (45 dBZ) thresholds are
shown in Figs. 11a,b, respectively. The neighborhood radius is
set to 40 km, following Skinner et al. (2018) who used it for
verification of convective scale forecasts of the WoF system.
For the 20-dBZ threshold, TMP has better skill in the first
90 min because the low reflectivity is substantially underesti-
mated in the LMP analysis (Fig. 10b). TMP is overtaken some-
what by LMP from 90 to 135 min and the scores become
similar in the last 45 min. For the 45-dBZ threshold, TMP is
superior during almost the entire forecast period except for
the first 30 min when its score is slightly lower, possibly due to
its having more spurious.45-dBZ echoes (Fig. 10c).

°W °W °W °W °W °W °W °W °W °W °W °W 

(a) Observation (c) Background_TMP(b) Background_LMP

(d) Analysis_LMP_TMP (e) Analysis_LMP (f) Analysis_TMP

(dBZ)

FIG. 7. Vertical cross sections along the line given in Fig. 6 of reflectivity from observations, background, and analyses of LMP_TMP,
LMP, and TMP.
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Contingency table based verification indices including bias,
probability of detection (POD), false alarm ratio (FAR), and
critical success index (CSI) of composite reflectivity forecasts
for the same two thresholds are presented in performance dia-
grams (Roebber 2009, Figs. 11c,d). For the 20 dBZ threshold,
TMP has moderately higher PODs and less bias in the 1- and
3-h forecasts but lower POD and larger low-bias in 2-h fore-
cast compared to LMP experiment. For the 45-dBZ threshold,
TMP has much higher CSIs than LMP but similar biases for
the 1- and 2-h forecasts while for the 2-h forecasts the differ-
ence is smaller and the bias of TMP is slightly larger. Overall,
in terms of the NETS and performance diagram, TMP has
better (comparable) performance for the high (low) reflectiv-
ity forecasts than LMP.

Radar data assimilation mainly affects the analysis of storm
interior structure and tends to make little direct impact on the
storm environment. In this study, we found that the biggest
differences between LMP and TMP experiments are at the
low levels associated with the cold pool. This is not surprising
given that cold pool is sensitive to microphysics processes
through, e.g., evaporative cooling and water loading, while
the reflectivity operators affects analyzed hydrometeors
directly. The cold pool strength affects the gust front conver-
gence lifting thereby storm evolution. The analyzed potential

temperature at the lowest model level and maximum vertical
velocity at the end of the DA cycles (i.e., 2100 UTC) are com-
pared in Fig. 12. The cold pool and the updraft near area “A”

are notably stronger in the TMP experiment than that in the
LMP experiment; which appears to have led to the stronger
predicted storms in Kansas (Fig. 10f). In area “B,” even
though a clear cold pool is not produced in either experiment,
the updraft in the LMP experiment is much weaker than in
the TMP experiment, so that the southernmost storm dies out
around 2345 UTC, resulting in the unsuccessful prediction of
the Elk City supercell (Fig. 10e).

The predicted hourly precipitation for the first (2100–2200
UTC 16 May) and last (2300 UTC 16 May–0000 UTC
17 May) forecast hour verified against observations derived
from MRMS are shown in Fig. 13. In the first forecast hour,
LMP fails to predict the northernmost rainband 1 and exhibits
westward bias for the rainband 2 near the Oklahoma–Kansas
border (Fig. 13b). TMP more accurately predicts the locations
of both rainbands but the rainband intensities are underesti-
mated (Fig. 13c). Both experiments successfully predict the
northern precipitation center 3 in Texas Panhandle but under-
predict the southern precipitation center 4 with southeastward
displacement. In the last forecast hour, LMP fails to predict
the two main areas of precipitation (5 and 6) in Kansas

(a) (b) (c) (d) (e)

(dBZ)

°W °W °W °W °W °W °W °W °W °W °W °W °W °W °W °W 

(f) (g) (h) (i) (j) 

(k) (l) (m) (n) (o) 

Background_LMP Background_TMP Analysis_LMP_TMP Analysis_LMP Analysis_TMP
Zr

Zg
Zs

°W °W °W °W 

FIG. 8. Vertical cross sections along the line given in Fig. 6 of reflectivity components (shading) from different hydrometeors and corre-
sponding mixing ratios and Ntr (contours) at 2000 UTC from background [using (a),(f),(k) LMP operator and (b),(g),(l) TMP operator]
and analyses (together with Z components from LMP and TMP experiments. LMP_TMP calculates Z components using TMP operator).
(top) Rainwater mixing ratio (contoured in black starting at 0.01 g kg21 at intervals of 0.5 g kg21) and total number concentration
[magenta contours of log10(Ntr) starting at 1 m23 at intervals of 0.5 m23]; (middle) graupel mixing ratio (contoured starting at 0.01 g kg21

at intervals of 0.5 g kg21); and (bottom) snow mixing ratio (contoured starting at 0.01 g kg21 at intervals of 0.5 g kg21).
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(Fig. 13e) while TMP captures the southern one (6) much bet-
ter (Fig. 13f). For the three precipitation bands in western
Oklahoma, both experiments capture the northernmost one
(7) with somewhat northeastward bias. LMP mostly misses
the two southern bands (8 and 9) while TMP produces one
band that is displaced to the southeast of the middle band 8
(Fig. 13f).

The NETS and performance diagram of hourly precipita-
tion at the threshold of 10 mm of the two experiments are
plotted in Fig. 14. The NETS of LMP of the first hour is much
lower than that of TMP and remains lower in the second and
third hour of forecast, and such differences are much larger
than those of forecast reflectivity shown in Fig. 11, indicating
the benefit of using the TMP Z operator goes beyond simply
improving the microphysical states. The NETS difference
between LMP and TMP becomes smaller with longer forecast
time as the impact of initial conditions tend to decrease with
forecast time when the underlying forecast model is the same.
The grouping of CSI within the performance diagram gener-
ally matches the NETS results, indicating again the TMP per-
forms much better than LMP for precipitation prediction at
the first hour. In terms of bias scores, underprediction is seen
for both experiments but the bias of TMP is smaller, espe-
cially for the first and second hour.

Updraft helicity (UH) (Kain et al. 2008) can be used to
detect mesocyclones in convection-allowing model forecasts,
and serve as a surrogate predictor of severe weather including
tornados (e.g., Clark et al. 2012). To examine the impact of
LMP and TMP operators on tornadic storm forecasts, the
instantaneous UH in the 2–5-km layers AGL based on the
0–3-h forecast output every 5 min is evaluated. The UH tracks
aggregated over the 3 h are overlaid with Storm Prediction
Center (SPC) tornado reports in Fig. 15. Compared to LMP,

the northernmost UH track predicted by TMP in Kansas is
more consistent with tornado reports. Both experiments
successfully predict the northern UH track over the Texas–
Oklahoma border. LMP does not predict the southernmost
UH track associated with the Elk City tornado as it fails to
predict the tornadic supercell near Elk City (Fig. 10e) whereas
TMP predicts a very week UH track with a southward
displacement.

b. Quantitative verifications for six cases

To quantitatively evaluate the LMP and TMP performance
for multiple severe thunderstorm cases briefly described in
section 3, the RMSIs of LMP and TMP for 3-h forecast reflec-
tivity for all the six cases are compared in Fig. 16. Overall,
there is consistent improvement across all the cases. Specifi-
cally, except for the 9 and 23 May cases, the RMSIs of TMP
are lower than those of LMP during the entire 3-h forecast for
the other cases (Figs. 16b,c,d, and f). As for the 9 and 23 May
cases, the differences in the RMSIs between TMP and LMP
are small (Figs. 16a,e). The RMSIs of TMP averaged over six
cases are about 0.5 dBZ lower than those of LMP during the
entire 3-h forecast (Fig. 16g).

NETS and performance diagram of LMP and TMP at
thresholds of 20 and 45 dBZ are compared in Fig. 17. For the
20-dBZ threshold, the NETS of TMP is 0.08 higher than that
of LMP for 15-min forecast, and then their difference gradu-
ally decreases with forecast time but remains at about 0.03 at
3 h of forecast (Fig. 17a). For the 45-dBZ threshold
(Fig. 17b), the NETS of TMP is generally ∼0.05 higher than
that of LMP at most forecast times but the difference is
increased to 0.09 (0.75 for TMP and 0.66 for LMP) at 3 h of
forecast, suggesting that the benefit of using the TMP Z oper-
ator consistent with the Thompson MP scheme in the forecast

(b) Analysis_TMP(a) Analysis_LMP

(K)

FIG. 9. Potential temperature increments (shading, K) at the lowest model level and maximum vertical velocity
(contoured starting at 1 m s21 at intervals of 5 m s21) at 2000 UTC from the analyses of (a) LMP and (b) TMP
experiments.
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model can be sustained for 3 h of forecast, and more so for
the higher Z threshold corresponding to more intense convec-
tion. Given that the NETS scores in Fig. 17 are averaged over
six cases, the conclusions are more robust than those for a sin-
gle case presented earlier; for the 16 May case, the improve-
ment in NETS with TMP is not seen at all forecast times and
for both thresholds but it is true for the six-case average. The
statistical significance of the scores are also examined using a
bootstrap resampling method with replacement to generate
1000 realizations. The scores from the six cases are randomly
selected 1000 times, and for these samples, the average and
two-tailed 90% confidence interval are calculated (Hamill
et al. 2011; Xue et al. 2013; Pan et al. 2014). The same tech-
nique is also applied to the differences in the scores between
the LMP and TMP experiments to determine whether the
improvement of the TMP operator over the LMP operator is
statistically significant. At most forecast lead times, the 90%
confidence intervals of the NETSs of the LMP and TMP
experiments overlap (Figs. 17a,b), and the confidence inter-
vals of the differences (TMP-LMP) include zero except for
15 min for the 20-dBZ threshold (Fig. 17c) and 180 min for
the 45-dBZ threshold (Fig. 17d), indicating that the improve-
ment is statistically insignificant. However, it should be noted
that while producing statistically significant improvement is

desirable, the difference is not expected to be as large as, e.g.,
assimilating radar data or not, and even if statistically insignif-
icant improvement still supports the TMP operator as the pre-
ferred choice.

Seen from the performance diagrams, the Z forecasts of
both LMP and TMP are nearly unbiased for the 20-dBZ
threshold (Fig. 17e) but there are overprediction biases of
1.1–1.2 for the 45-dBZ threshold (Fig. 17f), likely the results
of spurious cells of significant intensity in the prediction. The
CSIs of TMP are only slightly higher than those of LMP for
the 20-dBZ threshold (Fig. 17e) but the superiority is larger
for the 45-dBZ threshold (0.76–0.81 versus 0.65 and 0.78),
consistent with the NETSs. The performance diagrams indi-
cate that the better NETSs of TMP experiment are not due to
higher biases; in fact, TMP yields slightly smaller positive
biases.

5. Summary and conclusions

Within the variational DA framework, the assimilation of
radar reflectivity Z requires the implementation of the reflec-
tivity observation operator and its adjoint within the cost
function. Z operators consistent with SM MP schemes (e.g.,
Lin microphysics) are typically used in earlier studies even

(a) (b) (c)

(d) (e) (f)

(dBZ)

Observation  TMP LMP
A

na
ly

si
s 

(v
al

id
: 2

10
0_

16
 M

ay
)

3-
h 

fo
re

ca
st

 (v
al

id
: 0

00
0_

17
 M

ay
)

FIG. 10. Composite reflectivity (dBZ) at (top) 2100 UTC 16 May and (bottom) 0000 UTC 17 May from (a),(d) observations; (b),(e)
LMP; and (c),(f) TMP experiments. Note that (b) and (c) are analyses and (e) and (f) are forecasts. The observed 45-dBZ contours are
overlaid in the experimental analyses and forecasts.
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when the forecast model uses a DM MP scheme, such as the
Thompson MP scheme that is employed within the opera-
tional HRRR. Because SM schemes predict only hydrome-
teor mixing ratios, the variational DA system using the SM Z
operator usually only updates the mixing ratios without the
total number concentrations that are also predicted by a DM
MP scheme, resulting in inadequate initialization of the MP
state variables that can degrade the subsequent forecast. In
this study, we implement a Z operator consistent with the
Thompson microphysics together with its adjoint within the
hybrid GSI En3DVar system for direct assimilation of Z.
The performance of the TMP operator is compared with an
operator consistent with the SM Lin MP scheme.

DA and forecast experiments using LMP and TMP opera-
tors are first compared in greater detail for a tornadic super-
cell case that occurred in Texas, Oklahoma, and Kansas on
16–17 May 2017. With the mismatch between the Thompson

MP in the forecast model and the LMP operator, the varia-
tional DA using LMP operator produces overestimated
rainwater mixing ratio and underestimated snow and hail
mixing ratios. In addition, the background rainwater total
number concentration (Ntr) cannot be updated with the
LMP operator. This mismatch problem in the LMP experi-
ment leads to worse performance in early hour forecast of
reflectivity and precipitation than the TMP experiment.
Furthermore, the fatal tornadic supercell near Elk City,
Oklahoma, is not successfully initiated in the LMP experi-
ment; the improper analyses of hydrometeors and Ntr

appear to be the reason. In the TMP experiment, this torna-
dic supercell is more successfully predicted even though
with eastward displacement errors.

The hybrid DA system based on the LMP and TMP opera-
tors are further applied to five additional cases from May
2017, using the same 3-h cycled DA procedure. Reflectivity

FIG. 11. (a),(b) NETS and (c),(d) performance diagram for composite reflectivity forecasts of LMP (green) and
TMP (blue) experiments with thresholds of (left) 20 and (right) 45 dBZ. Diagonal and curved lines in (c) and (d) rep-
resent lines of constant BIAS and CSI, respectively. Dot, triangle, and rectangle marks in (c) and (d) represent 1-, 2-,
and 3-h forecasts, respectively.
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forecasts up to 3 h are quantitatively evaluated in terms of the
RMSI, NETS and performance diagram. Compared to LMP,
the RMSI of TMP is about 0.5 dBZ lower through the 3 h of
forecast. In terms of NETS and performance diagram at
thresholds of 20 and 45 dBZ, TMP produces better reflectivity

forecast than LMP, especially for reflectivity over 45 dBZ,
suggesting that using a radar Z operator consistent with the
MP scheme of the forecast model is more important for more
intense convection. While some potential benefits provided
by the TMP operator are indicated in this study, evaluations
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FIG. 12. Potential temperature (shading, K) at the lowest model level and maximum vertical velocity (contoured
starting at 1 m s21 at intervals of 5 m s21) at 2100 UTC 16 May from the (a) LMP and (b) TMP experiments. Letters
“A” and “B” label the convective areas mentioned in the text. (c),(d) The enlarged images of the dashed white rec-
tangles enclosing “A” in (a) and (b), respectively. (e),(f) The enlarged images of the dashed white rectangles enclos-
ing “B” in (a) and (b), respectively.

L I U E T A L . 919APRIL 2022

Unauthenticated | Downloaded 01/04/23 07:46 PM UTC



with more cases will give more robust results in terms of the
improvement due to the use of reflectivity operator consistent
with the Thompson microphysics. It should be noted that
even if the impact on forecasting is relatively small, the use of

an operator that is consistent with the microphysics scheme
used within the prediction model is always desirable, and at
the minimum doing so will ensure that the analyzed reflectiv-
ity at the initial time of forecast is continuous in time and
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FIG. 13. Hourly precipitation (shading, mm) ending at (top) 2200 UTC 16 May and (bottom) 0000 UTC 17 May from (left) observations,
and forecasts of (middle) LMP and (right) TMP experiments. The number labels the precipitation areas mentioned in the text. Observed
precipitation exceeding 10 mm is contoured in black in the forecast fields.

FIG. 14. (a) NETS and (b) performance diagram for hourly precipitation forecasts of LMP (green) and TMP (blue) experi-
ments with thresholds of 10 mm. Dot, triangle, and rectangle marks in (b) represent 1-, 2-, and 3-h forecasts, respectively.
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consistent with modeling reflectivity output right after the ini-
tial time.

As shown in this study, TMP needs more outer-loop itera-
tions for minimization convergence than LMP because of the
inclusion of Ntr as an additional control variable within the
cost function, although the final cost function of TMP is actu-
ally smaller than that of LMP for the example examined. Ntr

can vary by several orders of magnitude and the relationship
between reflectivity and Ntr is highly nonlinear. Following

Chen et al. (2021), in this study, we applied a general nonlin-
ear power transform function to the hydrometeor mixing
ratios and used the transformed mixing ratios as control varia-
bles which has been shown to significantly accelerate the cost
function minimization when assimilating Z data. In a separate
study, we will apply the same transform function to Ntr and
hope to achieve more efficient assimilation of radar reflectiv-
ity in the variational framework. Then, this newly developed
TMP Z operator will be a promising candidate for direct

(m2 s-2) 

(a) LMP (b) TMP

FIG. 15. The maximum 2–5-km updraft helicity tracks (shading, m2 s22) for 0–3-h forecasts starting at 2100 UTC from
the (a) LMP and (b) TMP experiments. The triangles represent tornado reports for the same period.

(a) 09 (b) 16 (c) 17

P

P

(d) 18

(e) 23 (f) 27 (g) Average

FIG. 16. RMSIs for reflectivity forecasts of LMP (green) and TMP (blue) experiments for the (a) 9, (b) 16, (c) 17, (d) 18, (e) 23, and
(f) 27 May cases, and (g) the RMSIs averaged over the six cases fromMay 2017.
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FIG. 17. (a),(b) NETS for composite reflectivity forecasts of LMP (green) and TMP (blue) experiments averaged
over six cases with thresholds of (left) 20 and (right) 45 dBZ. Error bars represent the 90% confidence interval using
the bootstrap resampling method. (c),(d) The 90% confidence interval of the NETS difference (TMP minus LMP).
(e),(f) As in Figs. 11c and 11d, but for scores aggregated across six cases.
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assimilation of radar Z with the EnVar method in the opera-
tional forecasting systems. Although the impacts of assimilat-
ing radar Z using the TMP operator on the analysis and
prediction of thunderstorms over the United States are dis-
cussed in the present study, the use of the TMP Z operator
for direct assimilation of radar Z can also apply to improving
the forecasts for other weather systems over other regions.
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