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ABSTRACT

An enhanced version of the hybrid ensemble–three-dimensional variational data assimilation (3DVAR)

system for the Weather Research and Forecasting Model (WRF) is applied to the assimilation of radial

velocity (Vr) data from two coastal Weather Surveillance Radar-1988 Doppler (WSR-88D) radars for the

prediction of Hurricane Ike (2008) before and during its landfall. In this hybrid system, flow-dependent en-

semble covariance is incorporated into the variational cost function using the extended control variable

method. The analysis ensemble is generated by updating each forecast ensemble member with perturbed

radar observations using the hybrid scheme itself. The Vr data are assimilated every 30 min for 3 h imme-

diately after Ike entered the coverage of the two coastal radars.

The hybrid method produces positive temperature increments indicating a warming of the inner core

throughout the depth of the hurricane. In contrast, the 3DVAR produces much weaker and smoother in-

crements with negative values at the vortex center at lower levels. Wind forecasts from the hybrid analyses fit

the observed radial velocity better than that from 3DVAR, and the 3-h accumulated precipitation forecasts

from the hybrid are also more skillful. The track forecast is slightly improved by the hybrid method and

slightly degraded by the 3DVAR compared to the forecast from the Global Forecast System (GFS) analysis.

All experiments assimilating the radar data show much improved intensity analyses and forecasts compared

to the experiment without assimilating radar data. The better forecast of the hybrid indicates that the hybrid

method produces dynamically more consistent state estimations. Little benefit of including the tuned static

component of background error covariance in the hybrid is found.

1. Introduction

Tropical cyclones (TCs) are among the most costly

forms of natural disaster (Pielke et al. 2008). An accu-

rate TC forecast will require not only a numerical model

to realistically simulate both the TC itself and its envi-

ronment, but also a data assimilation (DA) system that

can effectively use the observations to accurately esti-

mate the initial TC vortex and the environment where

the TC is embedded.

To address the TC initialization issue, many previous

studies adopted the vortex relocation and/or bogussing

(e.g., Liu et al. 2000; Kurihara et al. 1995; Zou and Xiao

2000) techniques. While such techniques are nontrivial

and have been shown to improve the hurricane forecast,

how to maintain the dynamical and thermodynamical

coherency of the hurricane and its environment is

probably the biggest challenge with such methods.

Recently, several studies have explored the use of

ensemble-based DA methods to initialize hurricane

forecasts and have shown great promise (e.g., Torn and

Hakim 2009; Zhang et al. 2009a; Li and Liu 2009; Hamill

et al. 2011; Wang 2011; Weng et al. 2011; Zhang et al.

2011; Aksoy et al. 2012; Weng and Zhang 2012; Dong

and Xue 2012). The key with ensemble-based DA is the

use of an ensemble to estimate the forecast error statistics

in a flow-dependent manner. Therefore, the observa-

tion information will be properly weighted and spread

consistent with the background hurricane forecasts; and

perhaps more importantly, the ensemble covariance can

realistically infer the flow-dependent cross-variable er-

ror statistics and therefore update state variables not

directly observed in a dynamically and thermodynami-

cally consistent manner.

One candidate in ensemble-based DA is the hybrid

ensemble-variational DAmethod. It has been proposed

(e.g., Hamill and Snyder 2000; Lorenc 2003; Etherton

Corresponding author address: Yongzuo Li, Center for Analysis

and Prediction of Storms, University of Oklahoma, 120 David

L. Boren Blvd., Norman, OK 73072.

E-mail: yongzuo.li@ou.edu

NOVEMBER 2012 L I E T AL . 3507

DOI: 10.1175/MWR-D-12-00043.1

� 2012 American Meteorological Society



and Bishop 2004; Zupanski 2005; Wang et al. 2007b,

2008a; Wang 2010), implemented, and tested with nu-

merical weather prediction (NWP) models recently

(e.g., Buehner 2005; Wang et al. 2008b; Liu et al. 2008,

2009; Buehner et al. 2010a,b; Wang 2011; Wang et al.

2011; Whitaker et al. 2011; Kleist et al. 2011; Wang et al.

2012, manuscript submitted to Mon. Wea. Rev.). A stan-

dard variational method (VAR) typically uses static

background error covariance, but a hybrid ensemble-

variational DA system incorporates ensemble-derived

flow-dependent covariance into the VAR framework.

The ensemble can be generated by an ensemble Kal-

man filter (EnKF). Recent studies have suggested that

hybrid DA systems may represent the ‘‘best of both

worlds’’ by combining the best aspects of the variational

and EnKF systems (e.g., Buehner 2005; Wang et al.

2007a, 2008a,b, 2009; Zhang et al. 2009b; Buehner et al.

2010a,b; Wang 2010). While preliminary tests of the hy-

brid DA system with real NWP models and data have

shown great potential of the method for non-TC fore-

casts (e.g., Wang et al. 2008b; Buehner et al. 2010a,b)

and for forecasts of TC tracks (e.g., Wang 2011;

Whitaker et al. 2011), and there has been a growing

body of literature documenting the success of using the

EnKF to assimilate inner-core data for TC initializa-

tion at convection-allowing resolutions (e.g., Zhang

et al. 2009a; Weng et al. 2011; Zhang et al. 2011; Aksoy

et al. 2012; Weng and Zhang 2012; Dong and Xue

2012), to the authors’ best knowledge, to date there is

no published study applying a hybrid DA method to

the assimilation of radar data at a convection-allowing

resolution for TC predictions. This study serves as

a pilot study applying the hybrid ensemble–three-

dimensional variational data assimilation (3DVAR)

system developed for the Weather Research and

Forecasting Model (WRF) (Wang et al. 2008a) to ex-

plore its potential for assimilating radar observations

for hurricane forecasts. As a first step of such a study,

we focus on assimilating radar radial velocity data.

Meanwhile, this study also performs detailed diagnostics

to understand the fundamental differences between

the roles and effects of flow-dependent and static co-

variances in the TC analysis and forecast.

More specifically, this study applies and explores

the WRF ensemble–3DVAR hybrid system to the as-

similation of coastal Weather Surveillance Radar-1988

Doppler (WSR-88D) radar radial velocity data for the

prediction of Hurricane Ike (2008) (Fig. 1). Ike is the

second costliest tropical cyclones in the recorded his-

tory (1900–2010) over themainlandUnited States (Blake

et al. 2011). Previous studies (e.g., Zhao and Xue 2009)

have shown significant impact of the radar data for this

case using the Advanced Regional Prediction System

(ARPS) 3DVAR/cloud analysis package. The re-

mainder of this paper is organized as follows: section 2

presents the methodology and section 3 discusses the

experiment design. The experiment results are discussed

in section 4, while the final section summarizes the main

conclusions of this study.

2. Methodology

The hybrid ensemble–3DVAR scheme

A diagram of the hybrid DA system is shown in Fig. 2.

Similar to Hamill and Snyder (2000), the following four

steps are repeated for each DA cycle: 1) Perform K (K

is the ensemble size) number of ensemble forecasts to

generate background forecast fields at the time of

analysis. 2) Calculate ensemble forecast perturbations to

be used by the hybrid cost function for flow-dependent

covariance by subtracting ensemble mean from each

member. 3) Generate K independent sets of perturbed

observations by adding random perturbations to the

observations. 4) Obtain the analysis increment for each

ensemble member through minimization of the hybrid

cost function using one set of perturbed observations.

Steps 1 through 4 are repeated for each of the follow-on

cycles, with the ensemble analyses providing initial

conditions for step 1. In step 3, the randomperturbations

added to the observations are drawn from a Gaussian

FIG. 1. The WRF domain and National Hurricane Center best-

track positions for Hurricane Ike (2008) from 1800 UTC 12 Sep to

0000 UTC 14 Sep 2008. Also indicated are the Houston, Texas

(KHGX), and Lake Charles, Louisiana (KLCH), WSR-88D radar

locations (asterisks) and maximum range (300 km for the radial

velocity and 460 km for the reflectivity) coverage circles.
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distribution with a mean of zero and a standard deviation

of the observation error. This ‘‘perturbed observation

method’’ was used in Hamill and Snyder (2000), which

corresponds to the classic stochastic ensemble Kalman

filters (Burgers et al. 1998; Houtekamer and Mitchell

1998; Evensen 2003). In the original work of Wang et al.

(2008a), the ensemble transform Kalman filter (ETKF)

was used to update forecast perturbations.

A brief review on the extended control variable

method for incorporating ensemble covariance into

a WRF 3DVAR framework is given here. For detailed

discussions, readers are referred to Wang et al. (2007b,

2008a).

For state vector x, the analysis increment of the hybrid

scheme x9 is the sum of two terms:

x95 x911 �
K

k51

(ak+ xek) . (1)

The first term x91 in Eq. (1) is the increment associated

with WRF 3DVAR static background covariance and

the second term is the increment associated with flow-

dependent covariance. Here, the vectors ak, k 5 1, . . . ,

K, denote extended control variable (Lorenc 2003) for

each ensemble member, and the second term of Eq. (1)

represents a local linear combination of ensemble per-

turbations. The coefficient ak for each member varies in

space as discussed later, which determines the ensemble

covariance localization (seeWang et al. 2008a for further

details). The variable xek is the kth ensemble perturbation

state vector. The symbol ‘‘+’’ denotes the Schur product

(element by element product) of the vectors ak and xek.

The cost function forWRFhybrid ensemble–3DVAR is

J(x91, a)5b1Jb 1b2Je 1 Jo ,

5b1

1

2
(x91)

TB21(x91)1b2

1

2
(a)TA21(a)

1
1

2
(y9o2Hx9)TR21(y9o 2Hx9) , (2)

where Jb is the traditional WRF 3DVAR background

term associated with the static covarianceB and Je is the

hybrid term associated with flow-dependent covariance;

a is defined as aT 5 (aT1 , a
T
2 , . . . , a

T
K); and Jo is the obser-

vation term associated with observation error covariance

R. The innovation vector y9o is defined as, y9o 5 yo 2
H(xb), where yo is the observation vector, xb is the

background forecast state vector, and H is the linearized

observation operator.

Theweights of the static covariance and flow-dependent

covariance are determined by factors b1 and b2 according

to the following relationship:

1

b1

1
1

b2

5 1, (3)

which conserves the total variance.

As described in Wang et al. (2008a), the ensemble

covariance localization, denoted as A, has horizontal

and vertical components. In this study, both the hori-

zontal and vertical localization are applied. Specifically,

the horizontal localization is modeled by a recursive

filter transform as in Wang et al. (2008a). The vertical

localization is implemented by transforming the ex-

tended control variable a in Eq. (2) with empirical or-

thogonal functions (EOFs). The correlation matrix,

denoted as Cov, from which the EOFs are derived,

follows:

Cov(k1, k2)5 exp

�
2
d2

L2

�
, (4)

where d is the distance between model levels k1 and k2
and L is the vertical localization radius. Existing EOF

codes in the WRF 3DVAR for modeling the vertical

static error covariance are used for the vertical ensemble

covariance localization purpose.

3. Experimental design

a. The WRF model configuration

The Advanced Research WRF (ARW) version 3

(Skamarock et al. 2008) is used in this study. The model

FIG. 2. Schematic diagram of the hybrid ensemble–3DVAR

forecast-analysis cycle for a hypothetical three-member ensemble.

Each member assimilates the observations containing a different

set of perturbations.
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is compressible, three-dimensional, nonhydrostatic,

discretized on an Arakawa C grid with terrain-following

mass-based sigma coordinate levels. In this study, the

WRF is configured with 4013 401 horizontal grid points

at 5-km grid spacing (Fig. 1), and 41 vertical levels with

the model top at 100 hPa. The WRF Single-Moment 6-

Class Microphysics scheme (WSM6; Hong et al. 2004)

is chosen for the explicit microphysics processes. Since

the grid resolution may not fully resolve the hurricane

convective features, the Grell–Devenyi cumulus pa-

rameterization scheme (Grell and Devenyi 2002) is in-

cluded. Other physics parameterizations schemes used

include the Yonsei University (YSU; Noh et al. 2003)

scheme for planetary boundary layer parameterization,

the five-layer thermal diffusion model for land surface

processes (Skamarock et al. 2008), the Rapid Radiative

Transfer Model (RRTM) longwave (Mlawer et al. 1997),

and the fifth-generation Pennsylvania State University–

National Center for Atmospheric Research (PSU–

NCAR) Mesoscale Model (MM5) shortwave (Dudhia

1989) radiation parameterization.

b. The radar data processing

The radial velocity data from coastal WSR-88D ra-

dars at Houston, Texas (KHGX), and Lake Charles,

Louisiana (KLCH), are processed using a modified

version of the four dimensional dealiasing algorithm

(FDDA; James and Houze 2001). The algorithm was

originally designed for Doppler radars in the European

Alps. Themodified algorithm by this study is capable of

reading level-II WSR-88D data and dealiasing the ra-

dial velocities.

To dealias radial velocity data, the following steps are

performed: first, a wind profile is created based onmodel

background, rawindsonde, or wind profiler data. The

background radial velocity in radar observation space is

calculated from the wind profile, assuming the wind is

horizontally homogeneous. Second, the WSR-88D ra-

dial velocity is compared with the background radial

velocity for a gross check. In this step, aliased radial

velocity that needs to be corrected is identified. Third, at

each elevation angle, spatial dealiasing is performed.

The aliased velocity Va will be recovered by factored

Nyquist velocity Vn:

Vd 5Va 1 2NVn , (5)

whereN is a positive or negative integer whose sign and

value are determined by a gate-to-gate shear threshold

of 0.4Vn (James and Houze 2001). After dealiasing is

finished, the radial velocity interpolated to the Cartesian

coordinates is thinned to 10-km spacing horizontally and

500 m vertically.

Figure 3 shows the processed radial velocity at 0.58
elevation angle for KHGX (Fig. 3a) andKLCH (Fig. 3b)

at 0000 UTC 13 September 2008. These two radars

complement each other by providing scans that are ap-

proximately the right angle at the location of Ike’s eye.

KHGX covers almost all of Ike’s eye and eyewall. The

outbound radial velocity on the left side of the eye and

inbound radial velocity on the right side of the eye re-

flect the circulation of the hurricane. KLCH covers only

about half of the eye and eyewall. The outbound radial

velocity on the front side of the eye and inbound radial

velocity on the back side of the eye also reflect the cir-

culation of the hurricane.

The observation error standard deviation for the ra-

dial velocity is set to 2 m s21 during the DA. This error

FIG. 3. The radial velocity (interval of 20 m s21) at 0.58 elevation angle from (a) KHGX and (b) KLCHWSR-88D

radars at 0000 UTC 13 Sep 2008. The black dot is for NHC best-track position of Hurricane Ike (2008) at this time.

Asterisks are for radar locations.
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value is similar to the values used in Dowell and Wicker

(2009), Xu and Gong (2003), and Xiao et al. (2009).

c. The data assimilation setup

This paper presents five experiments denoted as

NoDA, 3DVARa, 3DVARb, HybridF, and HybridH

(see definitions in Table 1). Experiments differ based on

what, if any, assimilation system is used for radar data.

The experiments are designed to examine the difference

of using flow-dependent versus static background co-

variance when assimilating the radar data and the im-

pact of DA on the subsequent forecast.

The NoDA experiment did not assimilate any radar

data, instead the WRF initial condition at 0300 UTC

13 September 2008 simply comes from the 18 3 18 Na-

tional Centers for Environmental Prediction (NCEP)

operational Global Forecast System (GFS) analysis. The

6-hourly GFS analyses also provide the lateral boundary

conditions (LBCs).

The ‘‘3DVARb’’ experiment assimilated the radar

data using the traditional 3DVAR method where the

static background covariance is adopted. The static co-

variance is generated and further tuned as followed. The

National Meteorological Center (NMC, now known as

NCEP) method (Parrish and Derber 1992) was first

employed to generate the static background covariance

statistics based on 12- and 24-h WRF forecasts, starting

at 0000 and 1200 UTC every day, during the period from

1 to 15 September 2008. The experiment using the static

covariance generated by the above procedure without

further tuning is denoted as 3DVARa. Because the de-

fault correlation length scales derived from the NMC

method reflects mostly large-scale error structures, their

direct use may not be appropriate for storm-scale radar

DA (Liu et al. 2005). The horizontal correlation length

scale of the static covariance is reduced by a factor of 0.3

in experiment 3DVARb and this factor is found to be

optimal through experimentations. The 3DVAR ex-

periments contain three stages (Fig. 4a). 1) A single 6-h

spinup forecast initialized from the GFS analysis at

1800 UTC 12 September to produce an initial first guess

at 0000 UTC 13 September for radar DA cycles. The

spinup time of 6 h is based on past experiences and other

published studies (e.g., Zhang et al. 2009a, spinup time

of 9 h; Aksoy et al. 2012, spinup time of 6 h). 2) As-

similation of radial velocity data from KHGX and

KLCH radars every 30 min for 3 h. 3) A 21-h de-

terministic forecast initialized by the analysis at the end

of the assimilation cycles in step 2. TheWRF boundary

conditions for all three stages are also provided by the

operational GFS analyses at 6-hourly intervals. Ex-

periment 3DVARb serves as a base line for evaluating

the performance of the hybrid method.

Experiments HybridF and HybridH are identical

except that the different weighting factors b1 and b2

are used in Eq. (2). For HybridF, the full weight is

assigned on the flow-dependent ensemble covariance

(using 1/b15 1/1001 and 1/b25 1/1.001). For HybridH,

the static covariance and the flow-dependent ensemble

covariance are equally weighted (1/b15½ and 1/b25½)

(i.e., only half of the flow-dependent covariance is used,

hence, the ‘‘H’’ in the name). The horizontal correlation

scale of static covariance in HybridH is also reduced by

a factor of 0.3 as in 3DVARb. Meanwhile, HybridH

uses the same flow-dependent covariance localization as

HybridF, which will be discussed in detail in section 4a.

Each of the hybrid experiments, HybridF and HybridH,

has 40 ensemble members. Similar to the 3DVAR ex-

periments, the hybrid experiments have three stages

(Fig. 4b). 1) 6-h ensemble forecasts to spin up a first-guess

TABLE 1. List of experiments.

Expt Description

NoDA No radar data assimilation. WRF initial condition

interpolated from NCEP 18 3 18 analysis
3DVARa Radar DA using WRF 3DVAR with static

covariance from NMC method

3DVARb Same as 3DVARa, except the horizontal spatial

correlation in the static covariance is

multiplied by 0.3

HybridF Radar DA using hybrid method with full weight

given to flow-dependent covariance, with

1/b1 5 1/1001 and 1/b2 5 1/1.001 in Eq. (1)

HybridH Hybrid method with equal weight given to static

covariance (which is the same as 3DVARb)

and flow-dependent covariance, with 1/b1 5 1/2

and 1/b2 5 1/2 in Eq. (1)

FIG. 4. The flow charts for (a) NoDA experiment, (b) 3DVAR

experiments (3DVARa and 3DVARb), and (c) hybrid experi-

ments (HybridF and HybridH).
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ensemble and provide flow-dependent covariance at

the beginning of the radar DA cycles. The initial and

boundary conditions for each member are the GFS

analysis plus correlated random perturbations fol-

lowing Torn et al. (2006) and Wang et al. (2008a,b).

2) Assimilation of perturbed radial velocity data from

KHGX and KLCH radars every 30 min for 3 h by

variationally minimizing the hybrid cost function, ac-

cording to the description given in the previous section

(see also Fig. 2). 3) A 21-h deterministic forecast ini-

tialized from the ensemble mean analysis at the end of

the DA cycles in step 2. To generate the random per-

turbations in step 1, the random-cv facility in the WRF

3DVAR system is employed (Barker et al. 2004). First,

a random control variable vector is created with a nor-

mal distribution having a zero mean and unit standard

deviation. Then the perturbation control variable vec-

tor is transformed to the model space to obtain per-

turbations to the model state variables including the

horizontal wind components, pressure, potential tem-

perature, and mixing ratio of water vapor. The per-

turbation standard deviations are roughly 1.9 m s21 for

the horizontal wind components, 0.6 K for tempera-

ture, 0.3 hPa for model pressure perturbation, and

0.9 g kg21 for water vapor mixing ratio and these val-

ues are based on the NMC-method-derived back-

ground error statistics.

Like other ensemble-based data assimilation algo-

rithm, the hybrid ensemble–3DVAR quickly reduces

ensemble spread after assimilating observations. The re-

laxation method of Zhang et al. (2004) for ensemble co-

variance inflation was adopted. Specifically, the inflated

ensemble posterior perturbation x9new is a weighted av-

erage of prior perturbation x9f and posterior perturbation

x9a, x9new 5 (1 2 b)x9f 1 bx9a, the relaxation coefficient,

denoted as b, is set to 0.5 in this study. This formulation

retains part of prior perturbation tomitigate quick spread

reduction.

4. Results and discussion

The analysis increment of the first DA cycle, the

cycling process, the final analysis fields, and the de-

terministic forecasting results will be presented and

discussed in this section. The subsection organization

roughly follows the experiment flow charts in Fig. 4.

a. Single observation test for vertical localization

Before complete DA experiments are performed, the

vertical covariance localization in the hybrid scheme is

tested by assimilating a single radial velocity observa-

tion. Figure 5 shows the wind speed increment produced

by HybridF analyzing a single radial velocity obser-

vation located 3176 m above sea level at 0000 UTC

13 September 2008. The innovation (i.e., the observed

radial velocity minus forecast ensemble mean valid

at 0000 UTC 13 September) for this observation is

238.63 m s21. Without the vertical localization, non-

zero increment reaches the top of the model with rela-

tively noisy increments at the upper levels (Fig. 5a). The

horizontal and vertical localization radii of 60 and 3 km,

respectively, are used in hybrid experimentHybridF (and

in HybridH). The localization radii were empirically de-

termined. For example, we tested 20, 60, 200, and 600 km

FIG. 5. The vertical cross section of the wind speed increment (interval of 5 m s21) using a single KHGX radar

radial velocity data located at (28.48N, 93.78W; 3176 m) with an innovation of238.63 m s21 using the configurations

of experiment HybridF but (a) without and (b) with vertical localization at 0000 UTC 13 Sep 2008.
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for horizontal localization and found the 60 km showed

the most reasonable increment. The vertical localization

was also tested. The radar observation over Ike’s inner-

core area is about 3 km above the surface. With 3-km

vertical localization scale, the influence of radar data

could reach the surface. Figure 5b shows that with such

localizations, the analysis increment is more confined

around the observation location. This single observation

test shows that our implementation of the vertical lo-

calization is taking effect.

b. Wind increments

To see the differences in analyzing the radar data

using flow-dependent and static covariances, the analy-

sis increments from the 3DVAR and hybrid experi-

ments after the first analysis time are compared.We first

look at the wind increments and will look at indirectly

related cross-variable increments in the next subsection.

Figure 6 shows the wind analysis increments at

850 hPa, at 0000 UTC 13 September 2008, the time of

first analysis for 3DVARa, 3DVARb, HybridF, and

HybridH. The increment in 3DVARa using the default

NMC-method-derived static covariance shows cyclonic

and anticyclonic increment patterns of rather large scales

(Fig. 6a); the cyclonic increment circulation is centered

almost 28 off the observation hurricane center to the

south-southeast, while at the hurricane center location

the wind increment is mostly easterly. To the north the

increment circulation shows an anticyclonic pattern.

Such cyclonic and anticyclonic increments are also found

in a previous studies assimilating radar radial velocity

data usingWRF 3DVAR (e.g., Xiao and Sun 2007), but

FIG. 6. The 700-hPa wind analysis increments (m s21) for (a) 3DVARa, (b) 3DVARb, (c) HybridF, and (d) HybridH

at 0000 UTC 13 Sep 2008.
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are clearly unrealistic, and do not reflect the fact that

a strong vortex exists where the background strongly

underestimate the strength of the vortex. The default

background error covariance derived from the NMC

method is unaware of the hurricane vortex and its

spatial correlation scales mostly reflect synoptic-scale

error structures. The net result is the inappropriately

large amount of smoothing of the radar data in the

data-dense region and inappropriately large spreading

of the information outside the data coverage region.

The radar data, being collected at high spatial resolu-

tion, should be analyzed using much smaller spatial

correlation scales. This had been pointed out in Liu

et al. (2005). The use of smaller correlation scales for

radar data is a common practice in the ARPS 3DVAR

system (e.g., Hu et al. 2006; Schenkman et al. 2011).

Sugimoto et al. (2009) also tested the sensitivity of

WRF 3DVAR to the correlation length scale and the

variance of the background covariance for radar data

assimilation.

In 3DVARb, the default horizontal spatial correlation

scale is reduced by a factor of 0.3. The resulting wind

increment now shows a more or less symmetric cyclonic

pattern around the observed center of Ike (Fig. 6b).

Compared with 3DVARa, the large increments are

more limited to the region of vortex in 3DVARb, and

the increment is consistent with the inbound and out-

bound radial velocity couplets associated with the hur-

ricane vortex as observed by KHGX and KLCH radars

(Fig. 3). Such results are more realistic.

In HybridF with full weight given to the flow-dependent

covariance, the wind increment also shows a cyclonic

pattern centered around the eye of Ike (Fig. 6c), but the

increment circulation is less axisymmetric, reflecting

the contribution of spatially inhomogeneous flow-

dependent covariance. When equal weights are placed

on the ensemble covariance and static covariance in

HybridH, the wind increments show a pattern that is

close to that of 3DVARb, but the incrementmagnitude is

between those of the HybridF and 3DVARb (Fig. 6d).

c. Temperature increments

Because radar radial velocity is the only data type

assimilated in this study, any increment in temperature

is the result of balance relationship applied (if any) and/

or due to cross covariance in the background error.

Figure 7 shows the 850-hPa temperature increments for

3DVARb, HybridF, and HybridH after assimilating

radial velocity data for the first cycle. For 3DVARb,

negative temperature increments are found in the vortex

region, and the magnitude is largest near the hurricane

enter (Fig. 7a). Physically, the enhanced hurricane vor-

tex circulation should be accompanied by warming of

the vortex core region, to give a warmer core vortex;

hence, the 3DVAR temperature increment is incon-

sistent with expected hurricane structures. The negative

increment is expected of the 3DVAR, because the in-

crement is obtained through a balance relationship

between temperature and wind and this relationship

reflects the thermal wind relation. More specifically, the

‘‘balanced temperature’’ increment Tb at a vertical level

k, inWRF 3DVAR is related to the streamfunction c by

a regression relation, Tb(k)5 S1G(l, k) c(l), whereG is

the regression coefficient and the summation is over

the vertical index l. Such a regression relation derived

using the NMC method generally reflects hydrostatic,

FIG. 7. The 850-hPa temperature analysis increments for (a) 3DVARb (at intervals of 0.3 K), (b) HybridF (at intervals of 0.7 K), and

(c) HybridH (at intervals of 0.3 K), at 0000 UTC 13 Sep 2008.
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geostrophic, and thermal wind relations (Barker et al.

2004). A colder core at 850 hPa is consistent with an

enhanced cyclonic circulation at 700 hPa seen in Fig. 6.

Note that at this distance, the lowest radar beams do

not reach below 850 hPa; hence, the enhancement of

wind is larger above 850 hPa. Therefore the cyclonic

wind increment increases with height in the lower at-

mosphere. We note that negative temperature increment

is also seen in the low-level eye region of analyzed hur-

ricanes in previous studies using Airborne Doppler radar

data and WRF 3DVAR (e.g., Xiao et al. 2009).

Different from 3DVAR, the temperature increment

obtained in HybridF shows positive increments in the

eye region (Fig. 7b) and spiral patterns in the eyewall

and outer rainband regions. In this case, the hurricane

in the background forecast at 0000 UTC 13 September

2008 is much weaker than the observation (Fig. 8b),

which is accompanied by lower temperatures at the

core of the vortex than observed. When radar obser-

vations are assimilated, the background TC vortex is

strengthened and therefore the core temperature is

expected to be increased to be consistent with the warm

core structure of TCs. The more realistic increment

structures in HybridF are the result of temperature–

wind cross covariances derived from the ensemble,

which have knowledge of the vortex as a tropical cy-

clone. In addition, the magnitude of the temperature

increments in HybridF is an order of magnitude larger

than that of 3DVARb; the temperature increment in

the 3DVAR analysis of Xiao et al. (2009) for Hurricane

Jeanne (2004) was also weak, reflecting the relative

weak thermal wind relationship in 3DVAR.

Same as the wind increment, the temperature in-

crement from HybridH is in between those of HybridF

and 3DVARb (Fig. 7c). Themagnitude is about half that

of HybridF. The structure of the increment resembles

that of HybridF more, but the eye region has negative

instead of positive increments. From this aspect, HybridH

is poorer than HybridF.

d. Innovation statistics for Vr and minimum sea level
pressure in DA cycles

The behaviors of 3DVARb, HybridH, and HybridF

are further compared by examining the fit of their

analyses and forecasts to Vr observations during theDA

cycles. The fit is defined as the root-mean-square differ-

ence (RMSD) between themodel state and observations,

after the model state is converted to the observed quan-

tities; and such difference is also called observation

innovation. Figure 8 shows the RMSDs for Vr and

minimum sea level pressure (MSLP) from HybridH,

HybridF, and 3DVARb. The Vr data of both KHGX

and KLCH are used in the innovation calculation and

for the hybrid, the ensemble mean is used. In all three

experiments, the RMSD for Vr is reduced significantly

by the analysis within each cycle and the largest re-

duction occurs in the first analysis cycle at 0000 UTC

when the observation innovations are the greatest. In

later cycles, the innovations for the analyses remain

roughly between 2.5 and 3.5 m s21, which is reasonable

given the 2 m s21 expected observation error. The

30-min forecasts following each analysis generally in-

crease the Vr innovation by about 2 m s21, reaching

4–5 m s21 levels. In general, HybridH produces analyses

FIG. 8. The forecast and analysis (sawtooth pattern duringDA cycling) of (a) RMSDof radial velocity (m s21), and

(b) the minimum sea level pressures (hPa) together with the NHC best-track estimate, for 3DVARb, HybridF, and

HybridH from 0000 to 0300 UTC 13 Sep 2008.
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that fit Vr observations tightest, whileHybridF is the least

and 3DVARb is in between. The same is true of the 30-

min forecasts. Note that although the analysis increment

of HybridH is in general (Figs. 6 and 7) in between

HybridF and 3DVARb, the root-mean-square Vr fit to

observations in HybridH is not necessarily between

HybridF and 3DVARb. The observation innovation

statistics can help us to see if the DA system is doing

about the right things, but being ‘‘verification’’ against

the same set of observations that is also used in the DA,

it cannot really tell us the true quality of the analyses.

True measures of the analysis quality require verifica-

tions against independent observations or verification

of subsequent forecasts, which will be presented later.

Figure 8b shows the fit of the analysis and forecast

MSLPs to the best-track data from the National Hurri-

cane Center. The best-track MSLP is more or less con-

stant during this 3-h period, being at about 952 hPa. At

the beginning of DA cycling (0000 UTC 13 September),

the MSLP is about 23 hPa higher than the best-track

estimate.Most of the reductions inMSLP in all cases are

actually achieved through adjustment during the fore-

casting process, with more than 15-hPa reduction ach-

ieved during the first analysis cycle between 0000 and

0030UTC. This is not surprising because wind is the only

parameter directly measured, and pressure analysis in-

crements are only achieved through balance relationships

and/or cross covariance, which are apparently weak.

We note in general, the MSLP decreases faster in the

short forecasts between the analyses in the hybrid ex-

periments than in 3DVARb. This is consistent with the

fact that the hybrid method tends to build a warmer

vortex core, and warmer temperature tends to induce

a lower surface pressure due to hydrostatic balance. A

stronger vortex circulation will also induce lower central

pressure due to cyclostrophic balance. During the final

three cycles, there is clearly overdeepening of the cen-

tral pressure in HybridH in the short forecasts, resulting

in a fall ofMSLP that is about 5.5 hPa too low compared

to best track. The final analyzed MSLP in HybridF is

about 2.0 hPa too low, which should be within the un-

certainty range of MSLP best-track data. We also note

that in this study, since the dense radar data define the

TC center location rather well (Fig. 3) and are assimi-

lated every 30 min, the TC locations in the first-guess

ensembles do not diverge too much in the 30-min fore-

casts throughout the assimilation cycles.

Overall, errors in the maximum surface wind (MSW)

and MSLP are greatly reduced after assimilating radar

data in all DA experiments. At 0300UTC 13 September,

the end of the DA cycles, the best-track MSW and

MSLP are 47.5 m s21 and 951 hPa, respectively. For

3DVARb, HybridF, and HybridH, after assimilating

radar radial wind, the MSW errors are 1, 0.8, and

2.7 m s21 and the MSLP errors are 0.2, 1.9, and 5.6 hPa,

respectively. The larger MSW (which is not directly

observed) error in HybridH suggests that there is over-

fitting of the analyzed wind to Vr observations (Fig. 8a).

For the NoDA experiment without assimilating radar

data, theMSWerror is 9 m s21 andMSLP error is 29 hPa.

e. The analyzed hurricane structures

We examine next the structure of the hurricane at the

end of the DA cycles by plotting fields at the surface and

in vertical cross sections through the analyzed hurricane

center. Figure 9 shows the analyzed mean sea level pres-

sure and surface wind vectors for NoDA, 3DVARb,

HybridF, and HybridH. Compared with NoDA (Fig. 9a),

the analyzed vortex circulations are stronger and the

minimum sea level pressure is much lower in 3DVARb,

HybridF, and HybridH (Figs. 9b–d). Such primary hur-

ricane circulations (Willoughby 1990) are captured well

by the assimilation of radar radial velocity data.

Figure 10 shows the vertical cross sections of hori-

zontal wind speed and potential temperature for all four

experiments. The locations of cross sections, which are

through the analyzed hurricane center and the location

of maximum wind speed of each experiment, are in-

dicated by the thick lines in Fig. 9; the locations ofMSLP

andmaximumwind for the four experiments are slightly

different. InNoDA, the hurricane eye is muchwider and

the intensity is much weaker than in the three radar DA

experiments. Unlike the hybrid experiments, the po-

tential temperature contours of 3DVARb (Fig. 10b) do

not bend downward below ;600 hPa. The downward

extrusion of potential temperature contours in HybridF

andHybridH indicates a warm core structure (Figs. 10c,d).

In experiment 3DVARb (Fig. 10b), the maximum wind

speed at ;850 hPa on the right side of eyewall is about

10 m s21 larger than those in HybridF and HybridH

(Figs. 10c,d), but this larger wind speed is not accompa-

nied by a warmer core expected of a stronger TC; this is

an indication that the 3DVAR analysis is not dynamically

and thermodynamically balanced.

Given the inner eye pressure deficit, the warm core

should extend through the depth of the troposphere

based on the hydrostatic approximation (Haurwitz 1935).

The warm core structure is seen clearly in the vertical

cross sections of horizontal temperature anomaly, which

is the deviation from the mean at the pressure levels

(Fig. 11). The temperature anomaly in NoDA is very

small (less than 2 K; Fig. 11a) while that in 3DVARb,

HybridF, and HybridH exceeds 8 K, with the maxi-

mum anomaly found between 300- and 500-hPa levels

(Figs. 11b–d). This result is consistent with observa-

tional studies; the strength of the hurricane warm core
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has been shown to negatively correlate with MSLP

(Halverson et al. 2006; Hawkins and Imbembo 1976).

The near-zero or negative temperature anomaly be-

low 700 hPa is clear in Fig. 11b for 3DVARb. This is

related to the negative 3DVARb temperature in-

crement discussed earlier. It is worth noting that the

3DVARb analysis does produce a reasonable warm

core aloft. In HybridF and HybridH, the positive

anomaly extends to the surface (Figs. 11c,d). In the

latter two, the maximum anomaly is found to be at the

inner edge of hurricane eyewall at about 400 hPa,

which should be associated with the eyewall warming

(LaSeur and Hawkins 1963; Holland 1997).

f. The track and intensity forecasts

To further evaluate the quality of analyses produced by

different DA methods, deterministic forecasts initialized

from the (ensemble mean in the hybrid cases) analyses

at 0300 UTC 13 September, the end of the DA cycles,

are launched. The track forecasts are compared in

Fig. 12a. The center of the hurricane is defined as the

location of MSLP. The initial track errors at 0300 UTC

are less than 20 km for all four experiments. By

0000 UTC 14 September, the track errors are 98, 117,

84, and 64 km for NoDA, 3DVARb, HybridF, and

HybridH, respectively. The mean track errors based

on the hurricane positions at 6-h interval during the

period from 0300 UTC 13 September to 0000 UTC

14 September are 41, 57, 41, and 34 km for NoDA,

3DVARb, HybridF, and HybridH, respectively. Given

that our DA experiments do not include environmental

observations, the main effect on the track should come

from the changes to the structure and intensity of the

analyzed hurricane.

FIG. 9. The analyzed sea level pressure (interval of 5 hPa, solid contours) and the surface wind vectors (m s21) for

(a) NoDA, (b) 3DVARb, (c) HybridF, and (d) HybridH at 0300 UTC 13 Sep 2008. The thick solid line indicates the

vertical cross-sectional location in Figs. 10 and 11.
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Figure 12b shows the intensity forecasts in terms of

MSLP, together with the best-trackMSLP. At 0300 UTC

13 September, the MSLP errors are 28, 0.2, 2.0, and

5.5 hPa for NoDA, 3DVARb, HybridF, and HybridH,

respectively. NoDA has the largest MSLP error

throughout the forecast. The MSLP error in 3DVARb is

smaller at the initial time, but becomes larger than those

of HybridF and HybridH at the later forecast times.

Overall, the forecast MSLP in the two hybrid experi-

ments is closer to the best-track MSLP than that of

3DVARb. None of the forecasts capture the slight deep-

ening during the first 3 h of forecast.

g. Verification of forecasts against Vr observations

The wind forecasts are further verified against ob-

served radar radial velocity data. Figure 13 shows the

root-mean-square errors (RMSEs, strictly it is RMSD

because observations also contain error) of forecast

against observedVr for 3DVARb,HybridF, andHybridH.

Compared to the best-track estimation of wind speed,

the radar Vr observations are more reliable. At the

initial time of 0300 UTC, the RMSE of 3.5 m s21 from

HybridF is slightly larger than those from HybridH

(2.6 m s21) and 3DVARb (2.8 m s21). After the first

FIG. 10. Vertical cross sections of analyzed horizontal wind speed (interval of 10 m s21, shaded) and potential temperature

(interval of 5 K, solid contours) for (a) NoDA, (b) 3DVARb, (c) HybridF, and (d) HybridH at 0300 UTC 13 Sep 2008.
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hour, the HybridF wind forecast fits the observed ra-

dial wind best, especially after 6 h of forecast where

the error in 3DVARb grows much faster reaching

14.8 m s21 compared to 8–9 m s21 in the hybrid cases.

The much faster error growth in 3DVARb, even though

its fit to Vr observations at the start of free forecast

is comparable to that of HybridH and better than

HybridF, again suggests that other model fields in

the 3DVARb analysis are dynamically less consistent

with the wind field than in the hybrid cases. As shown

in Fig. 7, major differences exist between the 3DVAR

and hybrid methods with the cross variable updating.

This is further confirmed with the performance of

HybridH in Fig. 13. Even though the HybridH analysis

is even more overfitting to observations than the

3DVAR (Fig. 8a), the forecast of HybridH was bet-

ter than the 3DVAR because of the use of ensemble

covariance. Interestingly, this overfitting to conven-

tional temperature and wind observations in 3DVAR

analysis and worse fitting to observations in the fore-

cast, compared with hybrid where the forecast en-

semble perturbations were used to estimate background

error covariance, is also seen in other studies with

quite different application (Fig. 2 of Wang et al.

2008b). The slightly better forecast in HybridF than

in HybridH at 6 h suggests that the fully flow-

dependent covariance during the assimilation cycles

is beneficial.

FIG. 11. Vertical cross sections of analyzed temperature anomalies (interval of 2 K) for (a) NoDA, (b) 3DVARb,

(c) HybridF, and (d) HybridH at 0300 UTC 13 Sep 2008.
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h. Evaluation of rainfall forecasts

Rainfall forecasts are evaluated by calculating equi-

table threat scores (ETSs) of 3-h accumulated pre-

cipitation against NCEP Stage-IV precipitation analyses

(Fig. 14). For the thresholds of 5, 10, and 25 mm (3 h)21

and all forecast lead times, the hybrid experiments

have higher ETSs than 3DVARb. Furthermore, the

improvement of the hybrid over 3DVARb increases

with precipitation threshold, indicating again the superior

quality of the hybrid DA method. In addition, HybridF

has slightly higher ETS scores than HybridH for most

times and thresholds. The ETS of the hybrid experi-

ments is higher than the NoDA for larger threshold

and longer forecast lead times. By further looking at

the precipitation patterns, it is found that the pre-

cipitation forecasts of HybridF more closely match the

observed convective spiral band patterns in the inner-

core region while 3DVARb produces too much pre-

cipitation in the southeast quadrant in the outer-band

region (the region is within the reflectivity coverage of

coastal radars, from which the Stage-IV precipitation is

estimated; cf. Fig. 1) and the radius of the inner-core

eyewall appears larger than observed (Fig. 15). In

comparison, the precipitation pattern from the NoDA

case is poorer than the DA experiments especially for

inner rainbands. We do note that during the earlier

hours and for lower thresholds, the ETSs of NoDA are

comparable to those of hybrid schemes and higher than

those of 3DVARb. The exact cause is difficult to as-

certain. Imbalances and adjustments in the 3DVAR

analyses with short analysis-forecast cycles might have

been a cause for the poorer performance, but this is

only a hypothesis.

5. Summary and conclusions

In this study, the WRF hybrid ensemble–3DVAR

data assimilation (DA) system is applied for the first

time to the assimilation of radial velocity data for a

FIG. 12. Deterministic forecast hurricane (a) tracks and (b) minimum sea level pressure (hPa) by NoDA,

3DVARb,HybridF, andHybridHas compared toNHCbest-track estimates from0300UTC13 Sep through 0000UTC

14 Sep 2008.

FIG. 13. Deterministic forecast RMSEs of Vr (m s21) by 3DVARb,

HybridF, and HybridH from 0300 to 0900 UTC 13 Sep 2008.
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landfalling hurricane. More specifically, radial velocity

data from two operational WSR-88D radars along the

Gulf of Mexico coast are assimilated over a 3-h period

after Hurricane Ike (2008) moved into the coverage of

the two radars, using an enhanced version of the WRF

hybrid DA system. Instead of using an ensemble

transformation Kalman filter as in an earlier study to

generate the analysis ensemble, we employ in this study

the ‘‘perturbed observation’’ method. Further, we ap-

plied vertical localization based on empirical orthogo-

nal functions while continuing to use recursive filters

for horizontal localization for the flow-dependent

ensemble-estimated background error covariance. The

flow-dependent ensemble covariance is incorporated

FIG. 14. ETSs for 3-h accumulated forecast precipitation by NoDA, 3DVARb, HybridF, and HybridH at thresholds (a) 5, (b) 10, and

(c) 25 mm verified against NCEP Stage-IV precipitation analyses valid at 0600, 0900, 1200, and 1500 UTC 13 Sep 2008.

FIG. 15. The 3-h accumulated precipitation (mm) by (from left to right) NCEP Stage-IV precipitation analyses, NoDA, 3DVARb, and

HybridF valid at (top) 0600 and (bottom) 0900 UTC 13 Sep 2008.
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into the 3D variational framework by using the ex-

tended control variable method.

The radial velocity data are assimilated every 30 min

over a 3-h period. Results mainly from five experiments

are presented. A forecast experiment without assimi-

lating any radar data is first carried out to serve as a

baseline against which the radar-assimilating experi-

ments are compared; this forecast experiment (NoDA)

started directly from the operational GFS analysis,

which contained too weak a hurricane vortex. The four

radar DA experiments used the WRF 3DVAR using

the static covariance derived from the NMC method

(3DVARa), the WRF 3DVAR using further tuned

static covariance (3DVARb), the hybrid DA system

with purely flow-dependent background covariance

(HybridF), as well as half static and half flow-dependent

covariance (HybridH), respectively. In the tuned 3DVAR

experiment (3DVARb) as well asHybridH, the horizontal

spatial correlation scale in the static covariance derived

from the NMC method is reduced by a factor of 0.3 to

produce much more realistic wind increments than the

default scale (in 3DVARa). The results of analyses and

forecasts from the five experiments are intercompared and

verified against best-track data, radar windmeasurements,

and precipitation data. The main conclusions are summa-

rized in the following:

1) HybridF produces the most realistic temperature

increments with positive values at the hurricane cen-

ter, corresponding to the warm core structure, while

3DVARb produces much weaker and smoother tem-

perature increments that are negative at the center of

hurricane. At the end of assimilation cycles, negative

temperature anomalies are found at lower levels in the

eye region of 3DVARb analysis, while the hybrid

analyses show deep warm core structures.

2) All three DA experiments are able to create analyses

that fit the Vr data well, and the error reduction by

analysis is the largest in the first analysis cycle. Most

of the minimum sea level pressure (MSLP) reduction

is achieved through model adjustment during the

forecast step of the assimilation cycles

3) The hybrid experiments improve the Ike track

forecast slightly, over the track forecast by NoDA

starting from the GFS analysis. 3DVARb slightly

degrades the track forecast. All radar DA experi-

ments produce MSLP forecasts closer to the best-

track observation than NoDA does.

4) The fit of forecast radial velocity to radar observa-

tions of 3DVARb is much worse than those of

HybridF and HybridH. The forecast results indicate

that the overall quality of hybrid analyses is better

than that of 3DVARb, producing more dynamically

consistent state estimations that lead to later slower

error growth during forecast. The forecast error of

HybridF is slightly lower than that of HybridH start-

ing from hour three.

5) The equitable threat scores (ETSs) for 3-h accumu-

lated precipitation forecasts in the hybrid experi-

ments are higher than those of 3DVARb for the

thresholds and lead times considered, and the im-

provement increases with precipitation threshold,

indicating again the superior quality of the hybrid

DAmethod. Among the hybrid experiments, HybridF

produced slightly better ETSs than HybridH at most

verification times.

6) The results of this study also show positive impacts of

assimilating radar data for hurricane initialization,

and the hybrid-method-analyzed hurricane has kine-

matic and thermodynamic structures that are consis-

tent with tropical cyclone conceptual models.

Finally a point worth noting: the inclusion of static

background covariance in HybridH in general did

not improve the results over HybridF in this case study

(i.e., the use of flow-dependent covariance in full in

general gives better results). Earlier studies (Hamill

and Snyder 2000;Wang et al. 2007a) suggested that the

optimal combination of the static and flow-dependent

covariance depends on their relative quality. The re-

sults in this case study suggest that for hurricanes and

radar data, there is likely little benefit of including

static covariance because the static covariance is not

capable of appropriately reflecting the mesoscale and

convective-scale nature of hurricanes.

We also note that this study represents the first at-

tempt of applying a variational-ensemble hybrid data

assimilation method to hurricane and radar data as-

similation. While the results are positive and encour-

aging, more robust conclusions will need to be drawn

by testing the method on many more cases.
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