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Abstract Proper dynamic equation constraints in data assimilation (DA) systems can help improve
balance of analyzed atmospheric state. The formulation of ensemble-variational DA algorithms allows for
easy incorporation of such constraints, but their impacts within such DA systems have been little studied.
A dynamic constraint based on the steady momentum equations is incorporated into the WRF (Weather
Research and Forecasting) hybrid ensemble-three-dimensional variational (3DVar) (En3DVar) DA system as a
weak constraint. The constraint aims at improving the coupling and balance among wind and thermodynamic
state variables, especially when few state variables are directly observed. The scheme is applied to the
assimilation of radar T-TREC (Typhoon-Tracking Radar Echo by Correlation) winds at a convection-allowing
resolution, for landfalling typhoon, Chanthu (2010), when it was within the range of a coastal radar. Parallel
experiments using the 3DVar and En3DVar with and without the dynamic constraint are run to examine the
impact of the constraint. The flow-dependent ensemble covariance used in En3DVar helps to update unobserved
pressure and temperature fields in a dynamically more consistent way compared to the static covariance; the
added dynamic constraint produces more accurate pressure within the typhoon. The pressure field improved by
the dynamic constraint also leads to better temperature andmoisture analyses within the variational minimization
through flow-dependent cross covariance. En3DVar analysis with the dynamic constraint produces the best
intensity forecast for the typhoon, in terms of the minimum sea level pressure andmaximum surface wind speed.
Additional sensitivity experiments examine the impact of the weight of the dynamic constraint.

1. Introduction

Tropical cyclones (TCs) are among the most disastrous natural hazards for coastal countries. Accurate
prediction of TC track and intensity is crucial for the protection of lives and properties. In addition to
accurate prediction models, accurate initial conditions are also a very important factor for the prediction of
TCs, which requires well-performed data assimilation (DA) systems.

Many efforts have been made to improve the TC initial condition through DA. Within a three-dimensional
variational (3DVar) [Sasaki, 1970a, 1970b; Talagrand and Courtier, 1987; Parrish and Derber, 1992] framework,
Xiao et al. [2000] developed a so-called bogus data assimilation based on the use of synthetic vortex with
presumed estimated parameters of TC size and intensity. Efforts have also been made to directly assimilate,
using 3DVar methods, TC inner core observations such as those from Doppler weather radar [e.g., Xiao et al.,
2005; Zhao and Xue, 2009; Pu et al., 2009], in order to initialize the three-dimensional TC structures. The
3DVar method is widely used and computationally efficient, but its typically used climatological static
background error covariance usually has no specific knowledge about the presence of TC.

An alternative to the variational (VAR) method is the ensemble-based DA method. Evensen [1994] firstly
proposed the ensemble Kalman filter (EnKF) for an oceanographic application; since then EnKF has been
applied to numerous atmospheric problems. The performance of EnKF has been demonstrated for TC DA
and prediction in a number of studies [e.g., Chen and Snyder, 2007; Zhang et al., 2009; Schwartz et al., 2012;
Liu et al., 2012; Weng and Zhang, 2012; Dong and Xue, 2013]. Zhang et al. [2009] demonstrated the better
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performance of EnKF over 3DVar in track and intensity forecasts of Hurricane Humberto (2007) when
assimilating coastal radar data; the EnKF case benefited from the flow-dependent background error
covariance derived from the ensemble. Although the ensemble-derived covariance is superior to the static
one used in VAR method because it contains flow-dependent information, it does contain significant
sampling error due to the typically rather small ensemble sizes which are limited by the high
computational costs.

A hybrid ensemble-variational scheme has been proposed [Hamill and Snyder, 2000; Lorenc, 2003; Buehner,
2005] to help alleviate the sampling error problem. A hybrid method combines the ensemble and static
covariances within a VAR framework. A hybrid scheme can be especially beneficial when ensemble size is
small and/or when model error is large [Wang et al., 2008b]. Furthermore, the variational framework
provides a straightforward way for implementing dynamic constraints.

Lorenc [2003] proposed a so-called extended control variable method for easily incorporating ensemble
covariances in a VAR framework. Wang et al. [2008a, 2008b] describe the implementation of this method
within the WRF-3DVar framework to establish a WRF [Skamarock et al., 2008] hybrid ensemble-3DVar
(En3DVar) DA system. With this WRF En3DVar system, Wang [2011] explored the impact of flow-dependent
ensemble covariance on the assimilation of conventional observations for hurricanes compared to static
covariance in standard 3DVar. The locations of TCs are systematically adjusted during the assimilation
using flow-dependent covariance, and improved track forecasts are also obtained. Schwartz et al. [2013]
also compared the performance of the WRF En3DVar hybrid system coupled with an ensemble adjustment
Kalman filter [Anderson, 2001] with that of WRF 3DVar for TC initializations and found better predictions of
TC tracks when using the hybrid; mean track errors for 72 h forecasts launched every 6 h from continuously
cycled analyses over a 3.5 week period were examined. Wang [2011] examined two individual hurricane
cases, and the WRF En3DVar was coupled with the ensemble transform Kalman filter [Bishop et al., 2001].
Wang [2011] and Schwartz et al. [2013] used 30 and 45 km grid spacings, respectively, and both focused
on track forecasting. Li et al. [2012] examined the impacts of assimilating radar radial velocity (Vr) data on
a landfalling hurricane using the WRF En3DVar hybrid and 3DVar at a 5 km grid spacing, and found that
the hybrid scheme improved the analysis of the inner core structures of the hurricane as well the
forecasting of the hurricane track and intensity. Despite these encouraging results, applications of the
hybrid method to TC assimilation and prediction remain very limited.

For landfalling TCs, data from coastal Doppler radars have been demonstrated effective for the initialization of
TC inner core structures and for improving the resulting forecasts [e.g., Zhao and Xue, 2009; Pu et al., 2009; Zhao
et al., 2012a, 2012b]. However, studies have also shown challenges in analyzing the pressure field consistently
when only radar wind is assimilated. Wang et al. [2014] discussed this issue and showed that most of the
pressure adjustment toward gradient balance was achieved through model adjustment during the forecast
step, and it takes a number of assimilation cycles to establish such balance. Dong and Xue [2013] also noted
this problem when assimilating coastal radar data using EnKF for a hurricane, and Xue and Dong [2013]
improved the pressure analysis by assimilating best track minimum sea level pressure (MSLP) data.

A hybrid ensemble-variational framework provides an opportunity for combining flow-dependent covariance
and equation constraints. Equations that can help enforce quasi-gradient balance for analyzed TCs can
potentially improve the analysis of pressure fields when assimilating radar winds. In this study, we explore
the use of such equation constraints. The steady state horizontal momentum equations are introduced into
the WRF En3DVar cost function as a weak constraint [Sasaki, 1970c; Gao et al., 1999; Liang et al., 2007; Ge
et al., 2012], with its relative importance in the cost function determined by the weight of the constraint term.

In Li et al. [2013] and Wang et al. [2014], the assimilation of the T-TREC (Typhoon-Tracking Radar Echo by
Correlation) winds retrieved from radar reflectivity and radial velocity data [Wang et al., 2011], using 3DVar
and EnKF, respectively, was shown to perform better than the direct assimilation of Vr for TC analysis and
forecast, due to the larger spatial coverage of reflectivity data and the more complete TC circulations thus
derived. Based on these advantages, this study also assimilates the T-TREC-retrieved winds and explores for
the first time their assimilation with a hybrid En3DVar method. The T-TREC technique [Wang et al., 2011]
extends the traditional TREC (Tracking Radar Echo by Correlation) method [Tuttle and Gall, 1999; Harasti
et al., 2004] and retrieves horizontal circulations within TCs from radar reflectivity data, with
supplementary use of Vr information.
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The hybrid WRF En3DVar with the dynamic constraints is applied to the assimilation of radar T-TREC winds for
Typhoon Chanthu (2010) which made landfall in Guangdong Province of China. As a pilot study, and to focus
on the impacts of introducing the dynamic equation constraints with and without flow-dependent ensemble
covariance, a single-time analysis is performed to initialize Typhoon Chanthu in this study. The results from
3DVar/En3DVar (En3DVar with pure static covariance is effectively 3DVar) with dynamic constraint are
compared to those from traditional 3DVar/En3DVar without the constraint.

The rest of this paper is organized as follows. Section 2 describes the theory of hybrid En3DVar scheme with
dynamic constraint. The overview of T-TREC wind data for Typhoon Chanthu (2010), the description of
forecasting model, and experimental configurations are explained in section 3. Section 4 examines the
results of initialization and deterministic forecasting for Chanthu (2010). Sensitivity experiments
considering the choice of dynamic weight in the cost function are discussed in section 5. Summary and
conclusions are presented in section 6.

2. Methodology
2.1. WRF Hybrid En3DVAR System

In this section, we first briefly describe the framework of current WRF hybrid En3DVar system [Wang et al.,
2008a, 2008b]. The analysis field is obtained via minimizing the cost function as

J ¼ Jo þ β1Jb þ β2Je

¼ 1
2

d� Hx′
� �T

O�1 d� Hx′
� �þ β1

1
2

x1 ′
� �T

B�1 x1 ′
� �þ β2

1
2

að ÞTA�1 að Þ: (1)

The first two terms on the right-hand side (RHS) of equation (1) are the traditional 3DVar terms. Jo is the
observation term, O is the observation error covariance matrix; the innovation vector d is defined as
d= yo�H(xb), where yo is the observation vector, xb the background state vector, H the nonlinear
observation operator. H is the linearization of H. Jb is the background term associated with static
background covariance B derived using the NMC (National Meteorological Center) method [Parrish and
Derber, 1992]; x1′ stands for the static analysis increment. The “cv5” option [Skamarock et al., 2008] of
static covariance B used in this study includes the control variables of stream function ψ, unbalanced
velocity potential χu, unbalanced temperature Tu, unbalanced surface pressure Psu, and “pseudo” relative
humidity rh. The third term on the RHS of Je represents the background term associated with ensemble
covariance. The terms with static covariance and ensemble covariance can be weighted by the tunable
parameter β1 and β2 during the minimization process. For the conservation of the total background
error covariance, 1

β1
þ 1

β2
¼ 1. When 1

β1
¼ 1, the analysis reverts back to the traditional 3DVar; when 1

β2
¼ 1,

full weight is assigned to the flow-dependent covariance. The ensemble covariance is incorporated into
the VAR framework through an extended control variable a.The full analysis increment x′ is the sum of
traditional 3DVar increment x1′ and the increment associated with the ensemble covariance

x′ ¼ x1 ′þ
XK

k¼1

ak∘ xek: (2)

Here ak denotes the extended control variable [Lorenc, 2003] and xek is the kth ensemble perturbation

normalized by
ffiffiffiffiffiffiffiffiffiffiffiffi
K � 1

p
where K is the ensemble size. The symbol ∘ denotes the Schur product (element by

element product).

As described inWang et al. [2008a], A in Je is the ensemble covariance localizationmatrix. Both horizontal and
vertical localizations are applied in this study. The horizontal localization is modeled by the recursive filter
transform. For vertical localization, the physical distance-dependent vertical correlation is used based on
the empirical orthogonal functions, following Li et al. [2012].

2.2. The Hybrid En3DVar Scheme With Dynamic Constraint

Based on the existing WRF hybrid En3DVar system, a weak penalty constraint term Jc is added into the cost
function in this study. The total cost function therefore is defined as

J ¼ Jo þ β1Jb þ β2Je þ Jc: (3)
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The fourth term on the RHS of equation (3) includes the dynamic constraint defined as the following:

Jc ¼ 1
2
G xð ÞTΓ�1G xð Þ; (4)

where G(x) represents the imposed dynamic equation and Γ� 1 is the dynamic weight. For the purpose of TC
assimilation, the momentum equations with steady assumption are used which constrain the mass field and
the momentum field. The nonlinear operator G which represents the dynamic equation of WRF sigma
coordinate is given by

G ¼ V
⇀ �∇σ V

⇀þf � k⇀� V
⇀þ∇σϕ þ 1

ρ
∇σp; (5)

where V
⇀

is the vector of horizontal velocity (wind components u and v), f the Coriolis coefficient, ϕ the
geopotential height, ρ the density, and p the pressure.

Through the minimizing iteration, the gradient item of Jc with respect to x′ is

∇Jc ¼ GTΓ�1 Gx′ þ G xbð Þ� �
; (6)

where x′ stands for the increment, xb is the background state, and dynamicweightmatrixΓ� 1 is a diagonalmatrix
with the same values for the diagonal elements. After linearizing equation (5), the tangent linear operator G is

G ¼ ¯V⇀�∇σV
⇀
′ þ V

⇀
′�∇σ
¯
V
⇀ þ f � k⇀�V

⇀
′ þ ∇σϕ ′ þ 1

ρ̄
∇σp

′; (7)

where the overbar denotes the background state while the prime denotes the increment.

During each iteration step, the geopotential height and pressure increments,ϕ′ and p′, need to be diagnosed
for the dynamic constraint, apart from the increments of five direct analyzed variables (wind u and v,
temperature t, mixing ratio q, and surface pressure ps). The pressure increment p′ is related to the
increment of dry surface pressure μd′ and the increment of mixing ratio q′ [Skamarock et al., 2008].

dp′ ¼ μd
′ 1þ qð Þdηþ q′ μ̄ddη (8)

The three-dimensional pressure increment p′ is obtained by vertically integrating the linear equation (8) from
the top level to the bottom level. The term μd′ is calculated by removing the moisture contribution from the
increment of surface pressure ps′ as follows

μd ′ ¼
ps ′ � μd ∫

1
0q

′dη

∫10 1þ qð Þdη : (9)

For the increment of geopotential heightϕ′, hydrostatic relation is used with the dry surface pressure μd′ and
the increment of dry inverse density αd′ [Skamarock et al., 2008]

dϕ ′ ¼ �μdαd′ � αdμd ′ð Þdη (10)

The three-dimensional increment of geopotential height ϕ′ can be obtained by vertically integrating
equation (10) from the bottom level up to the top level.

The linear operator G is discretized, and its adjoint code GT is developed accordingly within the existing WRF
hybrid En3DVar system. The correctness of the gradient of cost function (equation (6)) after adding the
constraint item should be verified to make sure minimization works successfully. Similar to the previous
studies [e.g., Courtier and Talagrand, 1987; Sun et al., 1991; Ge et al., 2012; Wang et al., 2013], we expand
the cost function J(x) at the direction ∇xJ using the Taylor series, let

Φ αð Þ ≡ J x þ α∇xJð Þ � J xð Þ
α∇xJ � ∇xJ

¼ 1:0þ O αjj∇xJð jjÞ: (11)

For the values of α which are small but not too close to zero, Φ(α) should be close to 1 if the gradient is
computed correctly. The updated hybrid En3DVar system with dynamic constraint has been checked using
this method. The value of Φ(α) is shown in Figure 1a when α takes the values from 10�3 to 10�16. Between
10�5 and 10�15, the value of 1 is obtained for Φ(α), suggesting that the gradient calculation is correct.
Besides, Figure 1b shows the degree of approximation based on how Φ(α) is close to 1.
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To further verify that theminimization process works well after including the dynamic constraint, the behaviors
of the total cost function and the observation and constraint terms as well as their gradient norms are examined
in Figure 2 with 1 outer loop and 100 inner loop minimization iterations, similar to that in Gao et al. [2001]. It is
verified that the total cost function and the two individual terms all decrease steadily in the minimization
process (Figure 2a), as do their corresponding gradient norms in general (Figure 2b).

3. Experimental Design
3.1. T-TREC-Retrieved Wind Data and the Description of Typhoon Case

In this study, T-TREC-retrieved winds are used as the radar wind data. T-TREC technique retrieves the
horizontal winds of TCs from Doppler radar reflectivity and radial velocity data. Here the reflectivity and
radial velocity data are primarily used as tracers for retrieving the wind field; the T-TREC winds are
therefore quite different from the radial velocity observations. Specifically, quality controlled radar data are
first interpolated to constant altitudes and then mapped onto polar coordinates centered at the TC. As an
enhancement to the original TREC method [Tuttle and Gall, 1999; Harasti et al., 2004], Doppler radial
velocity is used to provide a constraint on the searching range for spatial correlation. Along with the
reflectivity correlation coefficient calculated from two consecutive scan times, the velocity correlation
coefficient is created from the radial velocity and the total correlation coefficient is used to determine the
target cell [Wang et al., 2011]. The wind vector is then estimated by the arc length between the initial and
target cells and their time interval. The estimated winds are interpolated back onto the Cartesian grid in
the end. In this study, radar data from two consecutive times at an interval of 6 min are used. For more
details of T-TREC retrieval, please refer to Wang et al. [2011] and Li et al. [2013]. The final resolution of
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Figure 1. Verifications of the gradient calculation: (a) variation of Φ with respect to log α and (b) variation of log(Φ� 1) with
respect to log α.
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Figure 2. The (a) scaled total cost function and (b) its norm of gradient as a function of the iteration numbers, and the
corresponding contributions from observation term (Jo) and constraint term (Jc).
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T-TREC winds are 10 km horizontally and 1 km vertically. The typhoon case in this paper and its related
T-TREC retrieved winds are summarized as follows.

Typhoon Chanthu (2010) formed as a tropical depression on the South China Sea on 18 July 2010 and
intensified to a tropical storm by 1200 UTC, 19 July. The storm turned northwestward and strengthened to
typhoon intensity by 1800 UTC, 21 July. The assimilation time is chosen at 1800 UTC, 21 July, when
Chanthu moved into the full coverage of Haikou radar (HKRD) and the T-TREC winds retrieved from HKRD
could provide the complete TC circulations (Figure 3a). For the S band radar used, the maximum coverage
of reflectivity is 460 km which is much larger than the coverage of radial velocity, which is 230 km. Thus,
the T-TREC-retrieved winds have a larger coverage than radial velocity from HKRD. The T-TREC winds at 3
km height are projected onto the HKRD radial direction (Figure 3c) and compared with the observed Vr
(Figure 3d). Within the coverage of Vr (Figure 3d), the projected T-TREC winds show similar pattern with
the observed Vr, suggesting the good quality of retrieval. The root-mean-square difference is only
2.7m s�1 (Figure 3b). Besides, the projected T-TREC winds show more complete velocity dipole pattern
than Vr due to its larger coverage [Wang et al., 2011, 2014; Li et al., 2013]. At 0600 UTC, 22 July, Chanthu
finally made landfall at the city of Wuchuan, Guangdong province. The maximum surface wind (MSW) and
MSLP before landfall reached 41m s�1 and 963 hPa, respectively, according to Joint Typhoon Warning

Figure 3. The T-TREC-retrieved winds at 3 km height at 1800 UTC, 21 July. (a) T-TREC-retrieved wind vectors overlaid with the reflectivity (shaded, dBZ) and the JTWC
best track locations of Typhoon Chanthu (2010) marked with 6 h interval from 0600 UTC, 21 July to 1800 UTC, 22 July, 2010. (b) Percent cumulative histogram of the
difference between measured Doppler radial velocity and the retrieved radial component of T-TREC winds. N represents the total number of available radial
velocities. R and E represent the correlation coefficient and the mean difference, respectively. (c) Retrieved radial component of T-TREC-retrieved winds; and (d) the
measured radial velocity from HKRD. “Plus” in Figures 3c and 3d denote the center of typhoon.
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Center (JTWC) best track data. After bringing heavy rainfall to Guangdong and Guangxi provinces, the storm
weakened to tropical depression on 23 July.

3.2. The WRF Model Configuration

The Advanced Research WRF model [Skamarock et al., 2008] with full physics is used in this study. The
forecasting domain is configured with 463 × 463 horizontal grid points with a 4 km grid spacing, and 35
levels in the vertical direction from the surface to 50 hPa. The physics options include the Purdue Lin
scheme for microphysics processes, Monin-Obukhov surface layer, Noah land surface, Yonsei University
planetary boundary layer, Rapid Radiative Transfer Model longwave radiation, and Dudhia shortwave
radiation schemes [Skamarock et al., 2008].

3.3. The Data Assimilation Setup

The National Centers for Environmental Prediction operational GFS (Global Forecast System) analyses with
0.5° spacings are used to provide the unperturbed initial condition and the lateral boundary conditions. To
examine the impact of the dynamic constraint within the 3DVar and En3DVar frameworks, five basic
experiments, namely NoDA, 3DVAR, 3DVAR-DC, En3DVAR, and En3DVAR-DC, are designed (Table 1).
Reference experiment, NoDA, does not assimilate any additional data. Experiments 3DVAR and En3DVAR
use the standard WRF 3DVar and En3DVar hybrid formulations, both assimilating radar T-TREC data. In
experiment En3DVAR, ensemble covariance is used at 100% without any static covariance. Experiment
3DVAR uses only static covariance. In addition, we also conducted an experiment that used a 50%
weighting for both ensemble and static error covariances. The analysis increments, the resulting track, and
intensity forecasts of this experiment are closer to those of 3DVAR, similar to the finding of Li et al. [2012].
Li et al. [2012] also found that the use of 100% ensemble covariance gave best results. Therefore, we focus
on the comparison of the results with 100% ensemble covariance with those of 3DVAR with pure static
covariance in this paper. Experiments 3DVAR-DC and En3DVAR-DC are the same as experiments 3DVAR
and En3DVAR, respectively, except for the inclusion of the additional dynamic constraint.

In all of our DA experiments, radar data are assimilated at a single time, and 40 members of 12 h ensemble
forecasts are initialized 12 h prior to the analysis time. Ensemble members between 30 and 50 are most
commonly used in EnKF and ensemble-hybrid data assimilation studied [e.g., Li et al., 2012; Zhu et al.,
2013; Pan et al., 2014]. Forty members were used in all of these three referenced studies and represent a
good compromise between costs and accuracy. Besides, the length of the preensemble forecasts should
be chosen so that the forecast is not too long for the forecast errors to become too large, but not so short
that flow-dependent error structures had no time to develop. Under such constraints, we choose to use 12
h for the ensemble forecast spin-up. Similar choices had been used in similar previous studies [e.g., Zhang
et al., 2009; Weng and Zhang, 2012]. In the En3DVar experiments, the ensemble flow-dependent
covariance is derived from these ensemble forecasts, while the analysis background is provided by the
forecast ensemble mean. For consistency, the 3DVar experiments use the same analysis background. A 24
h deterministic forecast is launched from each of the analyses, while the forecast in NoDA continues from
the analysis time without assimilating any data.

Table 1. Description of Experiments

Experiments Description Background Covariance Dynamic Constraint Dynamic Weight Analyzed MSLP

NoDA No radar data assimilation
3DVAR Assimilating T-TREC-retrieved

winds at 1800 UTC, 21 July
Static None None 994 hPa

3DVAR-DC Assimilating T-TREC-retrieved
winds at 1800 UTC, 21 July

Static Included Default value of 103 992 hPa

En3DVAR Assimilating T-TREC-retrieved
winds at 1800 UTC, 21 July

Ensemble flow dependent None None 988 hPa

En3DVAR-DC Assimilating T-TREC-retrieved
winds at 1800 UTC, 21, July

Ensemble flow dependent Included Default value of 103 983 hPa

En3DVAR-DCd4 Similar with En3DVAR-DC Decreased by 4 985 hPa
En3DVAR-DCd16 Similar with En3DVAR-DC Decreased by 16 987 hPa
En3DVAR-DCi4 Similar with En3DVAR-DC Increased by 4 984 hPa
En3DVAR-DCi16 Similar with En3DVAR-DC Increased by 16 986 hPa
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The initial conditions of the ensemble forecasts at 0600UTC, 21 July are generated by adding correlated random
perturbations to the GFS analysis. The random cv [Barker, 2005] facility (option cv5) in the WRF-3DVar system is
used to create the perturbations following Torn et al. [2006],Wang et al. [2008a, 2008b], and Zhang et al. [2009],
and similar perturbations are also added to the boundary conditions. Based on the NMC-derived background
error statistics, the perturbations have standard deviations of 1.5m s�1 for the horizontal wind components,
0.7 K for temperature, 0.3hPa for pressure perturbation, and 0.8 g kg�1 for water vapor mixing ratio.

Within the assimilation process for all DA experiments, the standard deviations of the observational errors for
T-TREC winds are prescribed to be 4m s�1, according to the statistics of data samples [Wang et al., 2011]. For
3DVAR/3DVAR-DC, similar to that used in Li et al. [2012] or Li et al. [2013], the spatial correlation length scale of
static covariance is reduced by a factor of 0.25, in order to reflect the reasonable TC circulation increment. Li
et al. [2012] showed that for the analysis of radar data for a TC, the use of the default spatial correlation scale
given by the NMCmethod-derived static covariance in WRF 3DVar produces spurious circulation increments.
For En3DVAR/En3DVAR-DC which uses ensemble covariance, the localization radius of 50 km in horizontal
and 4 km in vertical is used, respectively. These choices are similar to those of Li et al. [2012] and Wang
et al. [2014] and had been found to produce the best results for similar applications. Results using
horizontal localization radius ranging from 20 to 200 km with the current application were reported in Li
[2014]; 50 km was found to be the best choice.

In addition, due to the nonlinearity of the added dynamic constraint, the outer loop [Courtier et al., 1994;
Veerse and Thepaut 1998] procedure in assimilation is necessary in 3DVAR-DC/En3DVAR-DC. The outer loop
updates the first guesses of each loop so that better initial state is provided for linearization minimization
(inner loop), and thus benefit the quality of analysis. The number of outer loop is typically 2 to 6 [Massart
et al., 2010; Hsiao et al., 2012; Sun and Wang, 2013]. In this study, we use five outer loops in our experiments.

Dimensional analysis is used to help determine the dynamic weight. In the dynamic equation G(x), the
advection and pressure gradient terms are dominant. For TC systems, the horizontal characteristic scale is
L~105 m, the square of wind speed is U2~103m2 s�2, and the pressure gradient is Δp ~103 Pa. Thus, the
magnitude of G(x) is 10�2. That is, if the dynamic weight Γ� 1 is set to 104, the dynamic constraint term
will have a similar order of magnitude as the observation term. For the basic DA experiments 3DVAR-DC
and En3DVAR-DC, we choose a dynamic weight of 103 so that the constraint term plays an important but
not dominant role. Figure 2 shows that after 30 or so iterations, the observation and constraint terms are

Figure 4. The background field at 1800 UTC, 21 July, for DA experiments: (a) the horizontal wind vectors and speed (color shaded, m s�1) at 3 km height;
(b) southwest-northeast vertical sections of potential temperature (solid contours) and horizontal wind speed (color shaded, m s�1). The thick solid line
in Figure 4a indicates the vertical cross section for Figure 4b.
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indeed of a similar order of magnitude. In two additional sets of sensitivity experiment, this weight is
increased or decreased by a factor of 4 or 16, corresponding to En3DVAR-DCi4, En3DVAR-DCi16, and
En3DVAR-DCd4 and En3DVAR-DCd16, respectively.

4. Results

In this section, the results of initialization and subsequent forecasts for Typhoon Chanthu (2010) from
experiments NoDA, 3DVAR, 3DVAR-DC, En3DVAR, and En3DVAR-DC are evaluated. The differences in the
analyzed TC structures among different assimilation experiments are discussed in section 4.1, while the
results of subsequent deterministic forecasts are examined in section 4.2.

4.1. Results of Analysis From Assimilation Experiments

In Figure 4, we first present the background field at 1800 UTC, 21 July, which is provided by the mean of 12 h
ensemble forecasts. It reveals that the background vortex circulation at the 3 km height is weak with a broad

Figure 5. Analysis increments of horizontal wind vectors (vectors) and wind speed (shaded, m s�1) at 3 km height for (a) 3DVAR, (b) 3DVAR-DC, (c) En3DVAR, and
(d) En3DVAR-DC at 1800 UTC, 21 July. The small circles in Figure 5a represent the observation locations for T-TREC-retrieved winds. The black dot labeled “obs”
indicates the JTWC best track TC center position at this time.
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eye (Figure 4a), and no obviouswarm core is found in the southwest-northeast vertical cross section of horizontal
wind speed and potential temperature (Figure 4b). Besides, the MSLP from ensemble mean is only 994 hPa.

Figure 5 shows the increments of horizontal winds at 3 km height after analyzing T-TREC winds at 1800 UTC
for experiments 3DVAR, 3DVAR-DC, En3DVAR, and En3DVAR-DC. It is shown that, within the T-TREC wind
coverage, the single-time assimilation produces clear cyclonic incremental circulations around the
observed typhoon center, resulting in a much stronger vortex with a maximum wind speed increment
exceeding 25m s�1 in all of the DA experiments (Figures 5a–5d). We note here that the DA impact may be
larger than typical given that the TC in the ensemble mean background is relatively weak. The increments
from the En3DVar experiments are mostly found in or near the areas of data coverage. Clearly noticeable
anticyclonic incremental circulation is, however, also found in the 3DVar experiments (Figures 5a and 5b)
in the northwest quadrant of the TC, with the circulation being weaker in the experiment that includes the
dynamic constraint (Figure 5b). Such structures are common in WRF-3DVar analyses of TCs when
assimilating radar wind observations [e.g., Figure 6 of Li et al., 2012] and are unphysical. As suggested by
Xie and MacDonald [2012] and Sun and Wang [2013], this behavior is related to the use of stream function

Figure 6. Analysis increments of sea level pressure (shaded, hPa) for (a) 3DVAR, (b) 3DVAR-DC, (c) En3DVAR, and (d) En3DVAR-DC at 1800 UTC, 21 July. The black dot
labeled obs indicates the JTWC best track TC center position at this time.
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and velocity potential (ψ and χ, which are associated with the nondivergent rotational flow and divergent
flow, respectively) as the control variables for the horizontal flows in the 3DVar and the assumption that
the flow is dominated by the nondivergent, stream function component of flow, as reflected in the
background error statistics obtained from the NMC method; the background error standard deviation of
stream function ψ is generally much larger than that of velocity potential χ. With the flow-dependent
ensemble covariance used in the En3DVar experiments, no prior assumption is made about the error
variances associated with rotation and divergence flow components. In fact, in 3DVar systems that employ
the Cartesian wind components (u, v) as the control variables, including the Advanced Regional Prediction
System (ARPS) 3DVar system [Gao et al., 2004], no similar problem occurs. This can be seen from Figure 4
of Zhao et al. [2012a, 2012b] that assimilated radar data for TCs using the ARPS 3DVar system; no
anticyclonic analysis increments were found.

Since the assimilated radar data provide direct information on the wind field only, the pressure field is
adjusted through cross covariance between wind and pressure and/or the linkage provided by the
included dynamic constraint. Figure 6 shows the sea level pressure (SLP) increments from the four basic

Figure 7. The analyzed sea level pressure (shaded, hPa) and the surface wind vectors for (a) 3DVAR, (b) 3DVAR-DC, (c) En3DVAR, and (d) En3DVAR-DC at 1800 UTC, 21
July. Minimum SLP is shown at the lower corner of each figure. The black dot labeled obs indicates the JTWC best track TC center position at this time.
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DA experiments. The smallest SLP increment of less than �2 hPa is found in experiment 3DVAR (Figure 6a).
The smallness of the increment is attributed to the weak multivariate correlation between wind and
surface pressure in the static covariance which only reflects the approximate geostrophic wind balance.
Although 3DVAR-DC has a larger SLP increment of about �4 hPa (Figure 6b) which benefited from the
dynamic constraint reflecting approximate gradient wind balance, it is still too small (the MSLP is more
than 20 hPa too high in the background). In both 3DVAR and 3DVAR-DC cases, the pressure increments are
rather broad. In comparison, the negative increments produced by En3DVAR and En3DVAR-DC are much
more concentrated near the typhoon center (Figures 6c and 6d), and are �8 and �13 hPa, respectively.
There is also some increase in pressure surrounding this core of negative pressure increment.

The pressure increments of both larger and smaller scales in the En3DVar experiments indicate a better
representation of the flow-dependent background error covariance, especially the cross covariance
between wind and surface pressure, associated with the typhoon, as estimated from the ensemble
forecasts. The even larger increment in En3DVAR-DC reflects the stronger linkage between the wind and
pressure fields in the inner core region through the equation constraint, and it matches the strong

Figure 8. Southwest-northeast vertical cross sections of analyzed horizontal wind speed (shaded, m s�1) and potential temperature (solid contours, K, intervals: 5 K)
through the TC center for (a) 3DVAR, (b) 3DVAR-DC, (c) En3DVAR, and (d) En3DVAR-DC at 1800 UTC, 21 July.
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cyclonic wind increments found in the experiment (Figure 5d). The combination of dynamic constraint and
flow-dependent cross-variable covariance linking the observed wind and unobserved pressure produces
more dynamically consistent analysis fields.

After examining the increment fields, we now show in Figure 7 the total analyzed SLP and surface wind fields.
By a single-time analysis, the MSLP in 3DVAR is 994 hPa (Figure 7a), which is much higher than the best track
data of 970 hPa. The surface circulation center is slightly displaced from the observed typhoon center but the
center of minimum pressure is further displaced from the circulation center, creating a mismatch between
the pressure and wind patterns (Figure 7a). Including the dynamic constraint, the vortex circulation is
better matched with the pressure pattern in 3DVAR-DC (Figure 7b), while the MSLP is 2 hPa lower than in
3DVAR. The pressure pattern also matches that of wind well in both En3DVAR and En3DVAR-DC, indicating
the dynamically consistent cross covariance between wind and pressure used in the two cases, and the
further positive help from the dynamic constraint in En3DVAR-DC (Figures 7c and 7d). The MSLP in
En3DVAR-DC reaches 983 hPa (Figure 7d), which has the smallest MSLP error verified against the best track
data. Meanwhile, the tightest surface vortex circulation is found in En3DVAR-DC, among all the DA
experiments. The results again show the benefit of flow-dependent background error covariance and the
dynamic constraint when assimilating radar wind measurements.

To compare the vertical structures of the analyzed TC, a southwest-northeast vertical cross section of
horizontal wind speed and potential temperature through the analyzed TC center at the surface is plotted
in Figure 8 for each experiment. Compared to the background (Figure 4b), the vortex circulations in all DA
experiments are much stronger and clearly show the eyewall structures extending from surface to about
10 km height. The surface winds in 3DVAR and 3DVAR-DC are not as much influenced by radar winds at
higher levels (radar data do not reach the surface due to the nonzero elevation of the lowest scan) owing
to limited vertical spatial correlation in the static covariance, which is a major reason for the rather small
SLP increment in 3DVAR-DC (Figure 6b), even with the use of the dynamic constraint. For the En3DVar
experiments, the analyzed winds show more asymmetric structures than those in 3DVar experiments,
because the flow-dependent covariance contains spatially inhomogeneous information. Note that in
experiments 3DVAR and En3DVAR (Figures 8a and 8c) which exclude the dynamic constraint, the
magnitudes of winds are somewhat larger than those in 3DVAR-DC and En3DVAR-DC (Figures 8b and 8d),
respectively. However, the relatively larger wind speeds in 3DVAR/En3DVAR are not accompanied by lower
minimum pressure expected (Figures 7a and 8c) compared to those in 3DVAR-DC/En3DVAR-DC (Figures 7b
and 7d). These results again suggest that the analysis fields are more dynamically balanced when the
constraint is included due to the mutual adjustment between wind and pressure.

The downward bending of isentropes in En3DVAR and En3DVAR-DC indicates warm core structures within
the TC throughout the troposphere. The maximum of the warm core structure is found near 10 km height,
consistent with the rapid decrease of wind speed above 10 km (Figures 8c and 8d) according to thermal

Figure 9. The differences of analyzed fields between En3DVAR-DC and En3DVAR (En3DVAR-DC minus En3DVAR) in the southwest-northeast vertical cross section
through the TC center: (a) pressure (hPa), (b) potential temperature (K), and (c) water vapor mixing ratio (g kg�1).
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wind balance. However, in 3DVAR and 3DVAR-DC, weak warm core structure is only found above 11 km
height, the potential temperature contours are nearly straight in the lower levels. The results indicate that
the temperature field is also better analyzed in En3DVar and En3DVAR-DC experiments, and the analyzed
TC is dynamically and thermodynamically more balanced.

To better illustrate the additional benefit of including the dynamic constraint in En3DVAR-DC, we show in
Figure 9 the differences in the analyzed pressure, potential temperature, and water vapor mixing ratio
fields of En3DVAR-DC from those of En3DVAR, which are not directly observed. In the southwest-northeast
vertical cross section shown, the additional pressure reduction in En3DVAR-DC extends throughout the
troposphere but decreases with height (Figure 9a). Consistently, the potential temperature in the vortex
center is increased especially at the lower levels (Figure 9b) where the pressure increment is the largest.
The moisture field is also generally increased near the vortex center throughout the troposphere
(Figure 9c), with the largest increment at the surface. Besides, for En3DVAR-DC itself, generally the
negative pressure increments are found physically consistent with the wind increments through the
vertical cross section (not shown). All of these show a positive impact of including the dynamic constraint
on the analysis of the TC structures.

4.2. Impact of Data Assimilation on TC Forecast

The impacts of assimilating the radar wind data using different DA schemes are further evaluated by
examining the subsequent deterministic forecasts launched from the analyses. The predicted typhoon
tracks, track errors, MSLPs, and MSWs of 24 h forecasts from the four DA experiments as well as
experiment NoDA are plotted in Figure 10, as verified against the Joint Typhoon Warning Center (JTWC)
best track data. Without radar assimilation, NoDA has an initial track error of about 65 km (Figure 10b). In

Figure 10. The 24 h predicted (a) tracks, (b) track errors (km), (c) MSLP (hPa), and (d) MSW (m s�1) for Typhoon Chanthu
(2010), from 1800 UTC, 21 July to 1800 UTC, 22 July 2010. The numbers in Figures 10b–10d represent the mean track
errors, MSLP errors, and MSW errors, respectively, over the 24 h period. JTWC best track data are shown in black in
Figures 10a, 10c, and 10d, and the dots on the plotted tracks in Figure 10a are 3 h apart.
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comparison, all DA experiments are able to reduce the initial track errors, indicating the ability of radar DA in
correcting the initial TC position error. Experiment 3DVAR has a relative higher initial track error among the
four DA experiments of about 55 km since the SLP only has limited adjustment (Figure 6a) and the MSLP
center is not relocated much by the analysis (Figure 7a) (in this study, we determine the TC track based on
the MSLP location). Among all, En3DVAR-DC gives the smallest initial track error of about 10 km, which can
also been seen from Figure 7. During the forecasting period, Chanthu maintained a northwest track before
and after landfall. In NoDA, the predicted storm first took a more northward track in the first 6 h. The
northward bias results in its landfall at 0000 UTC, 22 July further eastward along the southern coast, earlier
than the observed landfall time of 0600 UTC. After that, the storm moves northwestward until 0900 UTC and
then turns further southwestward, resulting in a 24 h mean track error of 80 km (Figure 10b). For the four DA
experiments, generally, the predicted tracks show mostly northwestward trend. However, the tracks in 3DVAR
and 3DVAR-DC show much more northward biases between 6 and 12 h, resulting in 24 h mean errors of 75
km and 68 km, respectively. The too much northward component can be attributed to the believed-to-be
spurious south wind increments in the northwest part of the storm analyzed by the 3DVar (Figures 5a and
5b). This is a common problem with the WRF 3DVAR when analyzing radar winds, as was discussed earlier.
We also tried one additional experiment in which the negative incremental structure around the edge of
radar data coverage region in experiment 3DVAR is artificially eliminated, the predicted typhoon track shows
more correct trends (not shown). In comparison, En3DVAR and En3DVAR-DC show better predicted tracks
that are closer to the best track, with the mean errors being 31 km and 33 km, respectively. The similarity in
the track errors of En3DVAR and En3DVAR-DC suggests that the added dynamic constraint has more impact
on the analyzed intensity and structures of the typhoon than on track forecast. The better horizontal
circulation structures obtained in the En3DVar experiments seem to have larger impacts on the track forecast.

The observed typhoon starts from about 970 hPa of MSLP and 36m s�1 of MSW with the intensity increasing
to 963 hPa and 41m s�1 until 0000 UTC, 22 July and then weakens due to landfall (Figures 10c and 10d).

Figure 11. Azimuthalmean tangential wind speed (shaded,m s�1) and temperature deviation fromhorizontal mean (solid contours, K) of the 9 h forecast valid at 0300 UTC,
22 July for experiments (a) NoDA, (b) 3DVAR, (c) 3DVAR-DC, (d) En3DVAR, and (e) En3DVAR-DC, as compared with the (f) GBVTD-derived azimuthal mean tangential wind.
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NoDA underestimates the intensity during the forecasting period in both MSLP and MSW, owing to the too
weak initial vortex (Figure 4). All DA experiments show improvement over NoDA with intensity trends more
similar to those of best track (Figures 10c and 10d). For 3DVAR and 3DVAR-DC, the MSLPs start from 994 and
992 hPa, respectively, and deepen to 980 and 979 hPa before landfall at 0300 UTC, 22 July. On average, the
predicted MSLPs are higher than the best track, leading to mean MSLP errors of 11.2 hPa and 9.8 hPa,
respectively. The mean errors of predicted MSWs for 3DVAR and 3DVAR-DC are 4.8m s�1 and 4.5m s�1,
respectively. The predicted MSLP and MSW undergo marked adjustment during the first hour in 3DVAR
and 3DVAR-DC, with rapid decrease in MSLP and rapid increase in MSW, indicating large initial imbalance
the analyzed wind and pressure. For En3DVAR and En3DVAR-DC, the mean MSLP (MSW) errors are 8.3 hPa
(4.4m s�1) and 6.9 hPa (4.1m s�1), respectively, clearly better than corresponding 3DVar experiments.
Initial adjustments are also found in the first hour, but they are much smaller than those in the 3DVar
experiments. The predicted MSLPs in the two experiments reach the minimum values of 976 hPa and 974
hPa before landfall, respectively. This is consistent with the fact that the En3DVar experiments are able to
better build up the warm core structure (Figures 8c and 8d) which can induce lower central pressure in the
forecasts. Besides, the predicted MSLPs in En3DVAR-DC are lower than those in En3DVAR throughout the
forecasting period. En3DVAR and En3DVAR-DC also forecast higher MSWs than 3DVAR and 3DVAR-DC,
especially in the first 6 h before landfall, with those of En3DVAR-DC being closest to the best track.

Because the MSW is sensitive to local wind speed variations, we further plot the azimuthal mean tangential
winds for all experiments at 0300 UTC, 22 July (9 h forecasting time) plotted in Figures 11a–11e, together with
the azimuthal mean temperature deviations from the horizontal mean. For comparison, retrieved tangential
winds from radar radial velocity observations of HKRD using the GBVTD technique [Lee et al., 1999] are
displayed in Figure 11f. Improving over NoDA (Figure 11a), all DA experiments produce much better
defined eyewall structures. The GBVTD retrievals show that the maximum winds are located at a radius of
about 40 km. The En3DVar experiments (Figure 11d and 11e) show more compact circulations with smaller
radius of maximum wind of 40 km, better than those of 3DVar experiments (Figures 11b and 11c). Among
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Figure 12. Composite reflectivity (color shaded) and wind vectors at 3 km height predicted by experiments (a) NoDA, (b) 3DVAR, (c) 3DVAR-DC, (d) En3DVAR, and
(e) En3DVAR-DC as compared to (f) observed composite reflectivity at 0000 UTC, 22 July.
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all, En3DVAR-DC exhibits the most intense eyewall structures with a maximummean wind speed of 37m s�1

around 1 km height which is comparable to the 39m s�1 of GBVTD retrieval. Along with the strongest vortex
circulation, the maximum temperature anomaly exceeding 8 K at about 7 km height in En3DVAR-DC is larger
than those of other experiments. An inadequate aspect is that the predicted storms in all DA experiments
tend to underestimate the wind speed above 2 km height.

We next evaluate the predicted reflectivity structures. Figures 12 and 13 show the predicted column-maximum
radar reflectivity and horizontal wind vectors at the 3 km height from NoDA, 3DVAR, 3DVAR-DC, En3DVAR, and
En3DVAR-DC, together with the observed composite reflectivity at 0000 UTC, 22 July (6 h of forecast time and
before landfall) and 0600 UTC, 22 July (at landfall), respectively. At 0000 UTC, Typhoon Chanthu was located on
the east side of Leizhou Peninsula and Hainan Island (Figure 12f). In NoDA, the vortex is weak and the predicted
reflectivity eyewall around the inner core is mostly missed (Figure 12a). 3DVAR and 3DVAR-DC (Figure 12b and
12c) show better organized vortices, but the eyes are still broader than observed. In comparison, En3DVARand
En3DVAR-DC produce tighter vortices and better-defined eyewalls with strong echoes located in the southeast
quadrant as observed (Figures 12d and 12e). The smallest weak reflectivity hole at the typhoon center is found
in En3DVAR-DC, close to the observed eye. However, the predicted typhoon location has some northward bias
(Figure 12e). The main imperfect aspect of all DA experiments is that the observed outer rainbands located on
the northeast side of the typhoon are mostly missing or are located too far out.

At the landfall time of 0600 UTC, 22 July, the observed precipitation pattern becomes more asymmetric. The
northern half of the storm is less fueled by moist air due to landfall and the strong echoes are found only on
the south side near Leizhou Peninsula (Figure 13f). All the DA experiments again show better predicted
reflectivity with better organized eyewall structures than NoDA (Figure 13a). 3DVAR and 3DVAR-DC
produce more symmetric eyewalls with broader eyes than observed, and the predicted typhoon has much
eastward bias (Figures 13b and 13c). In contrast, En3DVAR and En3DVAR-DC compare more favorably with
radar observations with better TC position and tighter vortex circulation (Figures 13d and 13e). The highly
asymmetric eyewall structure is captured well to some extent, together with a small weak reflectivity hole
in En3DVAR-DC (Figure 13e).

NoDA

111 E

20 N

En3DVAR

111 E

20 N

En3DVAR−DC

111 E

20 N

OBS

111 E

20 N

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75(f)

(a)

(d) (e)

3DVAR

111 E

20 N

(b)
3DVAR−DC

111 E

20 N

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75(c)

dBZ

dBZ

Figure 13. Same as Figure 12 but for the time of 0600 UTC, 22 July.
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Overall, the En3DVar experiments produce better predicted reflectivity pattern than those of NoDA,
3DVAR, and 3DVAR-DC. Although the differences in the predicted structures between En3DVAR and
En3DVAR-DC are small, En3DVAR-DC actually produces a more compact storm with a tighter eye, closer
to radar observations. It is also worth pointing out that all the experiments tend to overpredict the
reflectivity as compared to the observation. This is most likely due to deficiencies in the microphysics
parameterization. As mentioned in Rogers et al. [2007], the magnitude of peak reflectivity is often
higher in numerical simulations than observations by 10–15 dBZ. Similar overprediction of reflectivity is
also found in Zhang et al. [2009] and Ming et al. [2012] for TCs, and the solution to this problem is
beyond the scope of this study.

Figure 14 shows the 24 h accumulated precipitation and the corresponding equitable threat scores (ETS) for
all experiments along with the high-resolution automatic weather station rainfall measurements. A total of
1625 automatic weather stations are used, and their spatial distributions are presented in Figure 14f. The
observed heavy rainfall is mostly distributed at the southwest corner of Guangdong Province and the
north part of Leizhou Peninsula. The maximum center is located near Zhanjiang City (see Figure 3a for
locations), and the 24 h precipitation exceeds 300 mm (Figure 14f). NoDA clearly misses the intense
observed precipitation areas and clearly overpredicts the rainfall in Guangxi Province (Figure 14a), which is
attributed to its poor track forecast after landfall (Figure 10a). The areas of heaviest rainfall in 3DVAR and
3DVAR-DC are located too far east (Figures 14b and 14c), mainly owing to their eastward track biases. As a
result, the ETS scores for 3DVAR are only 0.18, 0.13, and 0.02 for the 80 mm, 120 mm, and 160 mm
thresholds, respectively. The 3DVAR-DC is slightly better, with the ETS scores being 0.26, 0.15, and 0.02 for
the 80 mm, 120 mm, and 160 mm thresholds. In comparison, experiments En3DVAR and En3DVAR-DC
show much better intensity and coverage in precipitation forecasts. Heavy precipitation in northern
Leizhou Peninsula is well captured although there is a somewhat westward bias over the continent, and
more so for En3DVAR (Figure 14d). The ETS of En3DVAR are 0.48, 0.33, and 0.17 for the three thresholds,
respectively, while En3DVAR-DC gets higher ETS scores of 0.51, 0.32, and 0.23. Overall, although all DA
experiments tend to underpredict the magnitudes of precipitation at the observed maximum regions,
En3DVAR-DC generally produces the best precipitation forecast according to the ETS scores, which
benefited from its improved track, intensity, and structure forecasting of the landfalling typhoon.

Figure 14. Twenty-four hour accumulated precipitation (mm) valid at 1800 UTC, 22 July and the corresponding equitable threat scores for the thresholds of 80 mm,
120 mm, and 160 mm, respectively, from (a) NoDA, (b) 3DVAR, (c) 3DVAR-DC, (d) En3DVAR, and (e) En3DVAR-DC, along with (f) automatic weather station observations.
The symbols “cross” in Figure 14f represent the locations for automatic weather stations.
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5. Sensitivity Experiments

The above experiments have shown positive impacts of including the dynamic constraint in the En3DVar
scheme. In this section, we want to see whether the behaviors depend on the choice of the weight for the
dynamic constraint term because its choice is empirical. Sensitivity experiments are performed to

Figure 15. The analyzed sea level pressure (shaded, hPa) and the surface wind vectors for (a) En3DVAR-DCd16 and (b) En3DVAR-DCi16 with the minimum SLP shown
at the lower corner of each figure, and the southwest-northeast vertical cross sections of analyzed horizontal wind speed (shaded, m s�1) and potential temperature
(solid contour, K, intervals: 5 K) for (c) En3DVAR-DCd16 and (d) En3DVAR-DCi16 at 1800 UTC, 21 July.
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investigate this issue, as described in section 3. For brevity, we only present the analyzed fields for En3DVAR-
DCi16/En3DVAR-DCd16 (Figure 15) which increases/decreases the default value of the dynamic weight by a
factor of 16, while the predicted track and intensity results from all sensitivity experiments (Table. 1) are
shown in Figure 16.

Figure 15 shows the analyzed TC structures of En3DVAR-DCi16 and En3DVAR-DCd16 at 1800 UTC, 21 July. The
analyzedMSLP in En3DVAR-DCi16 and En3DVAR-DCd16 is about 986 hPa and 987 hPa, respectively. The value
of 987 hPa in En3DVAR-DCd16 is between those of 988 hPa and 983 hPa in En3DVAR and En3DVAR-DC. It
suggests that the decreased dynamic weight results in less impact of the constraint term, which is not
surprising. It is, however, somewhat surprising that the MSLP value of 986 hPa in En3DVAR-DCi16 is not as
low as that of 983 hPa in En3DVAR-DC. The stronger dynamic constraint in En3DVAR-DCi16 is expected to
cause more adjustment in pressure than in En3DVAR-DC. To understand this behavior, southwest-
northeast vertical cross sections of horizontal wind speeds through the TC center are plotted in
Figures 15c and 15d for En3DVAR-DCi16 and En3DVAR-DCd16, respectively. The cross section plotted is the
same with those in Figure 8. The analyzed horizontal wind speeds at all levels in En3DVAR-DCi16 are
obviously smaller than those in En3DVAR-DC. It is attributed to the fact that the higher value of dynamic
weight plays a role in assigning relatively more weight to the constraint term than the observation term.
The reduced relative impact of the observation term leads to smaller wind increments from the radar T-
TREC wind data. The weaker analyzed vortex circulations in En3DVAR-DCi16 result in a higher MSLP than in
En3DVAR-DC. In En3DVAR-DCd16, the magnitude of horizontal wind speeds is closer to that of En3DVAR,
than that of En3DVAR-DC, because of the weaker constraint. These sensitivity experiments indicate that
there are optimal values for the weight where the constraint term has the largest impacts.

Figure 16. The 24 h predicted (a) tracks, (b) track errors (km), (c) MSLP errors (hPa), and (d) MSW errors (m s�1), for experiments
En3DVAR-DCd4, En3DVAR-DCd16, En3DVAR-DCi4, and En3DVAR-DCi16, along with En3DVAR and En3DVAR-DC from 1800 UTC,
21 July to 1800 UTC, 22 July 2010. The numbers in Figures 16b, 16c, and 16d represent the mean track errors, MSLP errors, and
MSW errors, respectively, over the 24 h period. JTWC best track data are shown in black and 3 h apart in Figure 16a.
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Figure 16 shows the predicted track, track errors, MSLP errors, and MSW errors for all four sensitivity
experiments, as well as for En3DVAR and En3DVAR-DC. Generally, for track and intensity forecasting,
increasing the dynamic weight relative to the control value has larger negative impacts than decreasing
the weight. When the weight is increased by a factor of 16, the MSLP and MSW errors are much larger
(Figures 16c and 16d). It indicates that one should be cautious in choosing very large values for the
dynamic weight, which can degrade the analysis and subsequent intensity forecast. Generally, within a
reasonable range, the dynamic constraint is effective in adjusting the pressure field toward the wind field
constrained by the radar wind observations. The results also suggest that the value of 103 used in the
basic experiments specified with the help of dimensional analysis is close to optimal in our case.

6. Summary and Conclusions

In this study, a dynamic equation constraint based on the steady momentum equations is incorporated into
the WRF hybrid ensemble-3DVar (En3DVar) DA system as a weak constraint in the cost function. The
constraint aims at improving the coupling and balance among wind and other state variables, especially
when few state variables are directly observed. Such a constraint can be especially helpful when analyzing
for tropical cyclones where the wind and pressure fields in the inner core region are in approximate
gradient balance.

The scheme is applied to the assimilation of radar T-TREC (Typhoon-Tracking Radar Echo by Correlation)
winds at a convection allowing 4 km grid spacing, for landfalling typhoon, Chanthu (2010), when it was
within the range of a coastal operational radar. The impact of the equation constraint on the analysis and
forecast of Chanthu is evaluated first through a set of four basic DA experiments where the hybrid DA
system either used pure static 3DVar background error covariance (with experiments named 3DVAR and
3DVAR-DC, where DC denotes dynamic constraint) or pure ensemble-derived flow-dependent error
covariance (experiments En3DVAR and En3DVAR-DC). The T-TREC wind data are assimilated at a single
time to highlight the direct effects of DA. Dimensional analysis is used to help determine the suitable
values for the weight of the dynamic constraint term. The results of analyses and subsequent forecasts
from the DA experiments, and an experiment where no radar data are assimilated (NoDA), are verified
against available radar observations and best track data.

The single-time assimilation of T-TREC-retrieved winds results in enhanced vortex circulations in all DA cases.
The wind increments in the En3DVar cases are mostly concentrated in the core regions of the vortex giving
better analyzed vortex center locations, and the wind increments decrease away from the vortex core where
radar data coverage also disappears. However, unrealistic generally anticyclonic wind increments are found
away from the core region, outside the radar coverage areas when the scheme becomes the standard 3DVar
with pure static covariance. Overall, En3DVar with the dynamic constraint gives the best analysis of center
location and vortex intensity in terms of both minimum sea level pressure and maximum surface wind.

From the vertical cross sections, more asymmetric structures are obtained in the analysis in the En3DVar
experiments with ensemble-derived covariance. The dynamic constraint is much more effective in
En3DVAR-DC where radar measured wind information is better propagated to the surface due to better
vertical spatial covariance, producing larger surface wind as well as pressure increments. The better
analyzed pressure field is also accompanied by better temperature and moisture analyses in En3DVar-DC,
which is more due to the flow-dependent cross covariances, resulting in more dynamically and
thermodynamically balanced analysis fields.

For the subsequent forecasts, all four DA experiments improve the intensity (MSLP and MSW) forecasts
considerably compared to NoDA experiment. Among all the experiments, the En3DVar scheme with
dynamic constraint shows the best intensity forecast, especially in terms of MSLP, consistent with the best
analysis of MSLP. The En3DVar experiments with flow-dependent covariance (En3DVAR and En3DVAR-DC)
yield better track forecasts compared to 3DVar experiments 3DVAR and 3DVAR-DC. Besides, the En3DVar
experiments, especially En3DVAR-DC, tend to predict more compact vortices with a tighter eye that is
closer to observed. For 24 h accumulated precipitation, En3DVAR-DC also produces the best forecast when
verified against automatic weather station rainfall measurements, in terms of both visual pattern and
ETS scores.
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Additional En3DVar sensitivity experiments were performed in which the weight for the dynamic constraint is
increased or decreased by a factor of 4 or 16, relative to theweight used in En3DVAR-DC. The decreasedweights
lead to slightly higher analyzed MSLP values due to the weaker coupling between wind and pressure. Further
increasing the dynamic weight actually has larger negative impact on the analyzed MSLP, and this is apparently
due to the reduced relative weight of the observation term and reducedwind increments. As a result, the vortex
is weaker in terms of both wind circulation and pressure pattern. The default value of 103 for the weight of the
constraint used in control experiment En3DVAR-DC appears optimal, and the results are not very sensitive to the
weight as long as the value is not too far from the optimal value.

This study mainly serves the purpose of testing and evaluating a dynamic equation constraint newly
implemented within the WRF En3DVar hybrid DA system based on the steady state momentum equations,
and to see how the constraint helps improve the analysis of landfalling TCs when the available data are
from a coastal Doppler radar, in particular for the analysis of the pressure field. Although the results are
clearly encouraging, the system should be evaluated with more TC cases for more robust conclusions.
Future, the inclusion of additional radar DA cycles should help further improving the analysis of the TCs.
The system should also benefit from better background forecasts that may be obtained through cycled
ensemble Kalman filter data assimilation during the preforecast period (before the T-TREC wind data are
available). These are topics for further studies. Further, we note that the equation constraint implemented
in this study should be generally applicable to problems where the wind and pressure fields are more or less
in balance, such as in mesoscale scale convective vortex or other mesoscale connective systems, although its
effectiveness for such systems will require further studies. Since the equations are implemented as weak
constraints in the cost function, its weight can be further tuned for optimal results for general, potentially
operational applications.
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