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Abstract 32 

An enhanced version of the hybrid ensemble-3DVAR data assimilation system for the 33 

WRF model is applied to the assimilation of radial velocity (Vr) data from two coastal WSR-34 

88D radars for the prediction of Hurricane Ike (2008) before and during its landfall. In this 35 

hybrid system, flow-dependent ensemble covariance is incorporated into the varitional cost 36 

function using the extended control variable method. The analysis ensemble is generated by 37 

updating each forecast ensemble member with perturbed radar observations using the hybrid 38 

scheme itself. The Vr data are assimilated every 30 minutes for 3 hours immediately after Ike 39 

entered the coverage of the two coastal radars.  40 

 The hybrid method produces positive temperature increments indicating a warming of 41 

the inner-core throughout the depth of the hurricane. In contrast, the 3DVAR produces much 42 

weaker and smoother increments with negative values at the vortex center at lower levels.  Wind 43 

forecasts from the hybrid analyses fit the observed radial velocity better than that from 3DVAR, 44 

and the 3-h accumulated precipitation forecasts from the hybrid are also more skillful. The track 45 

forecast is slightly improved by the hybrid method and slightly degraded by the 3DVAR 46 

compared to the forecast from the GFS analysis. All experiments assimilating the radar data 47 

show much improved intensity analyses and forecasts compared to the experiment without 48 

assimilating radar data. The better forecast of the hybrid indicates that the hybrid method 49 

produces dynamically more consistent state estimations. Little benefit of including the tuned 50 

static component of background error covariance in the hybrid is found.                                                                         51 

                                                                                  52 
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1. Introduction 53 

Tropical cyclones (TCs) are among the most costly forms of natural disaster (Pielke et al. 54 

2008). An accurate TC forecast will require not only a numerical model to realistically simulate 55 

both the TC itself and its environment, but also a data assimilation (DA) system that can 56 

effectively use the observations to accurately estimate the initial TC vortex and the environment 57 

where the TC is embedded in.   58 

To address the TC initialization issue, many previous studies adopted the vortex 59 

relocation and/or bogussing (e.g., Liu et al. 2000; Kurihara et al. 1995; Zou and Xiao 2000) 60 

techniques. While such techniques are non-trivial and have been shown to improve the hurricane 61 

forecast, how to maintain the dynamical and thermo-dynamical coherency of the hurricane and 62 

its environment is probably the biggest challenge with such methods.  63 

Recently, several studies have explored the use of ensemble-based DA methods to 64 

initialize hurricane forecasts and have shown great promise (e.g., Torn and Hakim 2009; Zhang 65 

et al. 2009; Li and Liu 2009; Hamill et al. 2011; Wang 2011; Weng et al. 2011; Zhang et al. 2011; 66 

Aksoy et al. 2012; Weng et al. 2012; Dong and Xue 2012). The key with ensemble-based DA is 67 

the use of an ensemble to estimate the forecast error statistics in a flow-dependent manner.  68 

Therefore, the observation information will be properly weighted and spread consistent with the 69 

background hurricane forecasts; and perhaps more importantly, the ensemble covariance can 70 

realistically infer the flow-dependent cross-variable error statistics and therefore update state 71 

variables not directly observed in a dynamically and thermodynamically consistent manner.   72 

One candidate in ensemble-based DA is the hybrid ensemble-variational DA method. It 73 

has been proposed (e.g., Hamill and Snyder 2000; Lorenc 2003; Etherton and Bishop 2004; 74 

Zupanski 2005; Wang et al. 2007b, 2008a; Wang 2010), implemented and tested with numerical 75 
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weather prediction (NWP) models recently (e.g., Buehner 2005; Wang et al. 2008b; Liu et al. 76 

2008, 2009; Buehner et al. 2010a,b; Wang 2011; Wang et al. 2011; Whitaker et al. 2011; Kleist 77 

et al. 2011; Wang et al. 2012). A standard variational method (VAR) typically uses static 78 

background error covariance, but a hybrid ensemble-variational DA system incorporates 79 

ensemble-dervied flow-dependent covariance into the VAR framework. The ensemble can be 80 

generated by an ensemble Kalman filter (EnKF). Recent studies have suggested that hybrid DA 81 

systems may represent the ―best of both worlds‖ by combining the best aspects of the variational 82 

and EnKF systems (e.g., Buehner 2005; Wang et al. 2007a, 2008a,b, 2009; Zhang et al. 2009; 83 

Buehner et al. 2010ab; Wang 2010).  While preliminary tests of the hybrid DA system with real 84 

NWP models and data have shown great potential of the method for non-TC forecasts (e.g., 85 

Wang et al. 2008b; Buehner et al. 2010ab) and for forecasts of TC tracks (e.g., Wang 2011; 86 

Whitaker et al. 2011), and there has been a growing body of literature documenting the success 87 

of using the EnKF to assimilate inner core data for TC initialization at convection-allowing 88 

resolutions (e.g., Zhang et al. 2009, Weng et al. 2011; Zhang et al. 2011; Aksoy et al. 2012; 89 

Weng et al. 2012; Dong and Xue 2012),  to the author‘s best knowledge, to date there is no 90 

published study applying a hybrid DA method to the assimilation of radar data at a convection-91 

allowing resolution for TC predictions. This study serves as a pilot study applying the hybrid 92 

ensemble-3DVAR system developed for the WRF model (Wang et al. 2008a) to explore its 93 

potential for assimilating radar observations for hurricane forecasts. As a first step of such study, 94 

we focus on assimilating radar radial velocity data. Meanwhile, this study also performs detailed 95 

diagnostics to understand the fundamental differences between the roles and effects of flow-96 

dependent and static covariances in the TC analysis and forecast.  97 
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More specifically, this study applies and explores the WRF ensemble-3DVAR hybrid 98 

system to the assimilation of coastal WSR-88D radar radial velocity data for the prediction of 99 

Hurricane Ike (2008) (Fig. 1). Ike is the second costliest tropical cyclones in the recorded history 100 

(1900-2010) over the mainland United States (http://www.nhc.noaa.gov/pdf/nws-nhc-6.pdf). 101 

Previous studies (e.g., Zhao and Xue 2009) have shown significant impact of the radar data for 102 

this case using ARPS 3DVAR/cloud analysis package. The remainder of this paper is organized 103 

as follows: Section 2 presents the methodology and section 3 discusses the experiment design. 104 

The experiment results are discussed in Section 4 while the final section summarizes the main 105 

conclusions of this study. 106 

2. Methodology  107 

a. The hybrid ensemble-3DVAR scheme 108 

A diagram of the hybrid DA system is shown in Fig. 2. Similar to Hamill and Snyder 109 

(2000), the following four steps are repeated for each DA cycle: 1. Perform K (K is the ensemble 110 

size) number of ensemble forecasts to generate background forecast fields at the time of analysis; 111 

2. Calculate ensemble forecast perturbations to be used by the hybrid cost function for flow-112 

dependent covariance by subtracting ensemble mean from each member; 3. Generate K 113 

independent sets of perturbed observations by adding random perturbations to the observations; 4. 114 

Obtain the analysis increment for each ensemble member through minimization of the hybrid 115 

cost function using one set of perturbed observations. Steps 1 through 4 are repeated for each of 116 

the follow-on cycles, with the ensemble analyses providing initial conditions for step 1. In step 3, 117 

the random perturbations added to the observations are drawn from a Gaussian distribution with 118 

a mean of zero and a standard deviation of the observation error. This ‗perturbed observation 119 

method‘ was used in Hamill and Snyder (2000), which corresponds to the classic stochastic 120 
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ensemble Kalman filters (Burgers et al. 1998; Houtekamer and Mitchell 1998; Evensen, 2003). 121 

In the original work of Wang et al. (2008a), the ensemble transform Kalman filter (ETKF) was 122 

used to update forecast perturbations.  123 

A brief review on the extended control variable method for incorporating ensemble 124 

covariance into a WRF 3DVAR framework is given here. For detailed discussions, readers are 125 

referred to Wang et al. (2007b, 2008a).  126 

For state vector x, the analysis increment of the hybrid scheme, x', is the sum of two 127 

terms, 128 
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The first term x1' in Eq. (1) is the increment associated with WRF 3DVAR static background 130 

covariance and the second term is the increment associated with flow-dependent covariance. 131 

Here, the vectors ak, k = 1, …, K, denote extended control variable (Lorenc 2003) for each 132 

ensemble member; and the second term of Eq. (1) represents a local linear combination of 133 

ensemble perturbations. The coefficient ak for each member varies in space as discussed later, 134 

which determines the ensemble covariance localization (see Wang et al. 2008a for further 135 

details). xk
e
 is the k
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 ensemble perturbation state vector. The symbol ‗o‘ denotes the Schur 136 
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Jb is the traditional WRF 3DVAR background term associated with the static covariance B and 141 

Je is the hybrid term associated with flow-dependent covariance. a is defined as 142 
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1 2 K( , , , )a a a a . Jo is the observation term associated with observation error covariance R. 143 

The innovation vector yo
' is defined as, yo

' = yo
 – H(xb

), where yo
 is the observation vector, xb

 is 144 

the background forecast state vector, and H is the linearized observation operator. 145 

            The weights of the static covariance and flow-dependent covariance are determined by 146 

factors β1 and β2 according to relationship  147 

1
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,     (3) 148 

which conserves the total variance.  149 

             As described in Wang et al. (2008a), the ensemble covariance localization, denoted as A, 150 

has horizontal and vertical components. In this study, both the horizontal and vertical 151 

localization are applied. Specifically, the horizontal localization is modeled by a recursive filter 152 

transform as in Wang et al. (2008a). The vertical localization is implemented by transforming the 153 

extended control variable a in Eq. (2) with empirical orthogonal functions (EOFs). The 154 

correlation matrix, denoted as Cov, from which the EOFs is derived, follows 155 

2
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, (4) 156 

where d is the distance between model levels k1 and k2 and L is the vertical localization radius. 157 

Existing EOF codes in the WRF 3DVAR for modeling the vertical static error covariance is used 158 

for the vertical ensemble covariance localization purpose. 159 

3. Experimental design 160 

a. The WRF model configuration 161 

The Advanced Research WRF (ARW) model version 3 (Skamarock et al. 2008) is used 162 

in this study. The model is compressible, three-dimensional, non-hydrostatic, discretized on a 163 
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Arakawa C grid with terrain-following mass-based sigma coordinate levels. In this study, the 164 

WRF model is configured with 401x401 horizontal grid points at 5-km grid spacing (Fig. 1), and 165 

41 vertical levels with the model top at 100 hPa. The WRF single-moment six-class scheme 166 

(Hong et al. 2004) is chosen for the explicit microphysics processes. Since the grid resolution 167 

may not fully resolve the hurricane convective features, the Grell-Devenyi cumulus 168 

parameterization scheme (Grell; Devenyi 2002) is included. Other physics  parameterizations 169 

schemes used include the Yonsei University (YSU) (Noh et al. 2003) scheme for planetary 170 

boundary layer parameterization, the 5-layer thermal diffusion model for land surface processes 171 

(Skamarock et al. 2008), the Rapid Radiative Transfer Model (RRTM) longwave (Mlawer et al. 172 

1997), and the MM5 shortwave (Dudhia 1989) radiation parameterization.  173 

b. The radar data processing 174 

The radial velocity data from coastal WSR-88D radars at Houston, Texas (KHGX) and 175 

Lake Charles, Louisianan (KLCH) are processed using a modified version of the Four 176 

Dimensional Dealiasing Algorithm (James and Houze 2001). The algorithm was originally 177 

designed for Doppler radars in European Alps. The modified algorithm by this study is capable 178 

of reading level-II WSR-88D data and dealiasing the radial velocities.  179 

To dealias radial velocity data, the following steps are performed: First, a wind profile is 180 

created based on model background, rawindsonde, or wind profiler data. The background radial 181 

velocity in radar observation space is calculated from the wind profile, assuming the wind is 182 

horizontally homogeneous. Second, the WSR-88D radial velocity is compared with the 183 

background radial velocity for a gross check. In this step, aliased radial velocity that needs to be 184 

corrected is identified. Third, at each elevation angle, spatial dealiasing is performed. The aliased 185 

velocity Va will be recovered by factored Nyquist velocity Vn,  186 
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Vd = Va + 2NVn  ,  (5) 187 

where N is a positive or negative integer whose sign and value are determined by a gate-to-gate 188 

shear threshold of 0.4Vn (James and Houze 2001). After dealiasing is finished, the radial velocity 189 

interpolated to the Cartesian coordinates is thinned to 10 km spacing horizontally and 500 meter 190 

vertically. 191 

Figure 3 shows the processed radial velocity at 0.5
o
 elevation angle for KHGX (Fig. 3a) 192 

and KLCH (Fig. 3b) at 0000 UTC 13 September 2008. These two radars complement each other 193 

by providing scans that are approximately the right angle at the location of Ike‘s eye. KHGX 194 

covers almost all of Ike‘s eye and eye wall. The outbound radial velocity on the left side of the 195 

eye and inbound radial velocity on the right side of the eye reflect the circulation of the hurricane.  196 

KLCH covers only about half of eye and eye wall. The outbound radial velocity on the front side 197 

of the eye and inbound radial velocity on the back side of the eye also reflect the circulation of 198 

the hurricane. 199 

The observation error standard deviation for the radial velocity is set to 2 m s
-1

 during the 200 

DA. This error value is similar to the values used in (Dowell; Wicker 2009), (Xu; Gong 2003), 201 

and (Xiao et al. 2009). 202 

c. The data assimilation setup 203 

This paper presents five experiments denoted as NoDA, 3DVARa, 3DVARb, HybridF, 204 

and HybridH (Table 1). Experiments differ based on what, if any, assimilation system is used for 205 

radar data. The experiments are designed to examine the difference of using flow-dependent 206 

versus static background covariance when assimilating the radar data and the impact of DA on 207 

the subsequent forecast.  208 
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The NoDA experiment did not assimilate any radar data, instead the WRF model initial 209 

condition at 0300 UTC 13 September 2008 simply comes from the 1ºx1º degree NCEP (National 210 

Centers for Environmental Prediction) operational GFS (Global Forecast System) analysis. The 211 

6-hourly GFS analyses also provide the lateral boundary conditions (LBCs). 212 

The ―3DVARb‖ experiment assimilated the radar data using the traditional 3DVAR 213 

method where the static background covariance is adopted.  The static covariance is generated 214 

and further tuned as followed.  The NMC method (Parrish and Derber 1992) was first employed 215 

to generate the static background covariance statistics based on 12-h and 24-h WRF model 216 

forecasts, starting at 00 UTC and 12 UTC every day, during the period from 01 to 15 September 217 

2008. The experiment using the static covariance generated by the above procedure without 218 

further tuning is denoted as 3DVARa.  Because the default correlation length scales derived from 219 

the NMC method reflects mostly large-scale error structures, their direct use may not be 220 

appropriate for storm-scale radar DA (Liu et al. 2005). The horizontal correlation length scale of 221 

the static covariance is reduced by a factor of 0.3 in experiment 3DVARb and this factor is found 222 

to be optimal through experimentations.  The 3DVAR experiments contains three stages (Fig. 223 

4a): (1) a single 6-h spinup forecast initialized from the GFS analysis at 1800 UTC, September 224 

12, to produce an initial first guess at 0000 UTC, September 13 for radar DA cycles. The spin-up 225 

time of 6 hours is based on past experiences and other published studies (e.g., Zhang et al. 2009, 226 

spin-up time of 9 hours; Aksoy et al. 2012, spin-up time of 6 hours); (2) assimilation of radial 227 

velocity data from KHGX and KLCH radars every 30 minutes for 3 hours; (3) a 21-h 228 

deterministic forecast initialized by the analysis at the end of the assimilation cycles in (2). The 229 

WRF model boundary conditions for all three stages are also provided by the operational GFS 230 
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analyses at 6 hourly intervals. Experiment 3DVARb serves as a base line for evaluating the 231 

performance of the hybrid method. 232 

Experiments HybridF and HybridH are identical except that the different weighting 233 

factors β1 and β2 are used in Eq. (2). For HybridF, the full weight is assigned on the flow-234 

dependent ensemble covariance (using 1/β1 = 1/1001 and 1/β2 = 1/1.001). For HybridH, the static 235 

covariance and the flow-dependent ensemble covariance are equally weighted (1/β1 = 1/2 and 236 

1/β2 = 1/2), i.e., only half of the flow-dependent covariance is used, hence the ‗H‘ in the name. 237 

The horizontal correlation scale of static covariance in HybridH is also reduced by a factor of 0.3 238 

as in 3DVARb. Meanwhile, HybridH uses the same flow dependent covariance localization as 239 

HybridF, which will be discussed in detail in section 4.a. 240 

Each of the hybrid experiments, HybridF and HybridH, has 40 ensemble members. 241 

Similar to the 3DVAR experiments, the hybrid experiments have three stages (Fig. 4b): (1) 6-h 242 

ensemble forecasts to spin up a first guess ensemble and provide flow-dependent covariance at 243 

the beginning of the radar DA cycles. The initial and boundary conditions for each member are 244 

the GFS analysis plus correlated random perturbations following Torn et al. (2006) and Wang et 245 

al. (2008a,b); (2) assimilation of perturbed radial velocity data from KHGX and KLCH radars 246 

every 30 minutes for 3 hours by variationally minimizing the hybrid cost function, according to 247 

the description given in the previous section (see also Fig. 2); (3) a 21-h deterministic forecast 248 

initialized from the ensemble mean analysis at the end of the DA cycles in (2). To generate the 249 

random perturbations in (1), the random-cv facility in the WRF 3DVAR system is employed 250 

(Barker et al. 2004). First, a random control variable vector is created with a normal distribution 251 

having a zero mean and unit standard deviation. Then the perturbation control variable vector is 252 

transformed to the model space to obtain perturbations to the model state variables including the 253 
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horizontal wind components, pressure, potential temperature, and mixing ratio of water vapor. 254 

The perturbation standard deviations are roughly 1.9 m s
-1

 for the horizontal wind components, 255 

0.6 K for temperature, 0.3 hPa for model pressure perturbation, and 0.9 g kg
-1

 for water vapor 256 

mixing ratio and these values are based on the NMC-method-derived background error statistics.    257 

Like other ensemble based data assimilation algorithm, the hybrid ensemble-3DVAR 258 

quickly reduces ensemble spread after assimilating observations. The relaxation method of 259 

Zhang et al. (2004) for ensemble covariance inflation was adopted. Specifically, the inflated 260 

ensemble posterior perturbation x'new is a weighted average of prior perturbation x'f and posterior 261 

perturbation x'a, x'new = (1 – b) x'f + b x'a, the relaxation coefficient, denoted as b, is set to 0.5 in 262 

this study. This formulation retains part of prior perturbation to mitigate quick spread reduction. 263 

4. Results and discussion  264 

The analysis increment of the first DA cycle, the cycling process, the final analysis fields, 265 

and the deterministic forecasting results will be presented and discussed in this section. The 266 

subsection organization roughly follows the experiment flow charts in Fig. 4. 267 

a. Single observation test for vertical localization 268 

Before complete DA experiments are performed, the vertical covariance localization in 269 

the hybrid scheme is tested by assimilating a single radial velocity observation. Figure 5 shows 270 

the wind speed increment produced by HybridF analyzing a single radial velocity observation 271 

located 3176 m above sea level at 0000 UTC 13 September 2008. The innovation (i.e., the 272 

observed radial velocity minus forecast ensemble mean valid at 0000 UTC 13 September) for 273 

this observation is -38.63 m s
-1

. Without the vertical localization, nonzero increment reaches the 274 

top of the model with relatively noisy increments at the upper levels (Fig. 5a). The horizontal and 275 

vertical localization radii of 60 and 3 km, respectively, are used in hybrid experiment HybridF 276 
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(and in HybridH). The localization radii were empirically determined. For example, we tested 20 277 

km, 60km, 200 km, 600 km for horizontal localization and found the 60km showed the most 278 

reasonable increment. The vertical localization was also tested. The radar observation over Ike 279 

inner core area is about 3 km above the surface. With 3 km vertical localization scale, the 280 

influence of radar data could reach the surface. Figure 5b shows that with such localizations, the 281 

analysis increment is more confined around the observation location. This single observation test 282 

shows that our implementation of the vertical localization is taking effect. 283 

b. Wind increments 284 

To see the differences in analyzing the radar data using flow-dependent and static 285 

covariances, the analysis increments from the 3DVAR and hybrid experiments after the first 286 

analysis time are compared. We first look at the wind increments and will look at indirectly 287 

related cross-variable increments in the next subsection. 288 

Figure 6 shows the wind analysis increments at 850 hPa, at 0000 UTC 13 September 289 

2008, the time of first analysis for 3DVARa, 3DVARb, HybridF, and HybridH. The increment in 290 

3DVARa using the default NMC-method-derived static covariance shows cyclonic and anti-291 

cyclonic increment patterns of rather large scales (Fig. 6a); the cyclonic increment circulation is 292 

centered almost 2 degrees off the observation hurricane center to the southsoutheast, while at the 293 

hurricane center location the wind increment is mostly easterly. To the north the increment 294 

circulation shows an anti-cyclonic pattern. Such cyclonic and anti-cyclonic increments are also 295 

found in a previous studies assimilating radar radial velocity data using WRF 3DVAR (e.g., Xiao 296 

et al. 2007), but are clearly unrealistic, and do not reflect the fact that a strong vortex exists 297 

where the background strongly underestimate the strength of the vortex. The default background 298 

error covariance derived from the NMC method is unaware of the hurricane vortex and its spatial 299 
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correlation scales mostly reflect synoptic scale error structures. The net result is the 300 

inappropriately large amount of smoothing of the radar data in the data dense region and 301 

inappropriately large spreading of the information outside the data coverage region. The radar 302 

data, being collected at high spatial resolution, should be analyzed using much smaller spatial 303 

correlation scales. This had been pointed out in Liu et al. (2005). The use of smaller correlation 304 

scales for radar data is a common practice in the ARPS 3DVAR system (e.g., Hu et al. 2006; 305 

Schenkman et al. 2011). Sugimoto et al (2009) also tested the sensitivity of WRF 3DVAR to the 306 

correlation length scale and the variance of the background covariance for radar data assimilation. 307 

In 3DVARb, the default horizontal spatial correlation scale is reduced by a factor of 0.3. 308 

The resulting wind increment now shows a more or less symmetric cyclonic pattern around the 309 

observed center of Ike (Fig. 6b). Compared with 3DVARa, the large increments are more limited 310 

to the region of vortex in 3DVARb, and the increment is consistent with the inbound and 311 

outbound radial velocity couplets associated with the hurricane vortex as observed by KHGX 312 

and KLCH radars (Fig. 3). Such results are more realistic.  313 

In HybridF with full weight given to the flow-dependent covariance, the wind increment 314 

also shows a cyclonic pattern centered around the eye of Ike (Fig. 6c), but the increment 315 

circulation is less axisymmetric, reflecting the contribution of spatially inhomogeneous flow-316 

dependent covariance. When equal weights are placed on the ensemble covariance and static 317 

covariance in HybridH, the wind increments show a pattern that is close to that of 3DVARb, but 318 

the increment magnitude is between those of the HybridF and 3DVARb (Fig. 6d).  319 

c. Temperature increments 320 

Because radar radial velocity is the only data type assimilated in this study, any 321 

increment in temperature is the result of balance relationship applied (if any) and/or due to cross-322 
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covariance in the background error. Figure 7 shows the 850 hPa temperature increments for 323 

3DVARb, HybridF, and HybridH after assimilating radial velocity data for the first cycle. For 324 

3DVARb, negative temperature increments are found in the vortex region, and the magnitude is 325 

largest near the hurricane enter (Fig. 7a). Physically, enhanced hurricane vortex circulation 326 

should be accompanied by warming of the vortex core region, to give a warmer core vortex; 327 

hence the 3DVAR temperature increment is inconsistent with expected hurricane structures. The 328 

negative increment is expected of the 3DVAR, because the increment is obtained through a 329 

balance relationship between temperature and wind and this relationship reflects the thermal 330 

wind relation. More specifically, the ‗balanced temperature‘ increment Tb at a vertical level k, in 331 

WRF 3DVAR is related to the stream function ψ by a regression relation, Tb(k) = Σ1 G(l,k) ψ(l), 332 

where G is the regression coefficient and the summation is over the vertical index l.  Such a 333 

regression relation derived using the NMC-method generally reflects hydrostatic, geostrophic, 334 

and thermal wind relations (Barker et al. 2004). A colder core at 850 hPa is consistent with an 335 

enhanced cyclonic circulation at the 700 hPa seen in Fig. 6. Note that at this distance, the lowest 336 

radar beams do not reach below 850 hPa, hence the enhancement of wind is larger above 850 337 

hPa. Therefore the cyclonic wind increment increases with height in the lower atmosphere. We 338 

note that negative temperature increment is also seen in the low-level eye region of analyzed 339 

hurricanes in previous studies using Airborne Doppler radar data and WRF 3DVAR (e.g., Xiao 340 

et al. 2009)  341 

 Different from 3DVAR, the temperature increment obtained in HybridF shows positive 342 

increments in the eye region (Fig. 7b) and spiral patterns in the eye wall and outer rainband 343 

regions. In this case, the hurricane in the background forecast at 0000 UTC 13 September 2008 344 

is much weaker than the observation (Fig. 8b), which is accompanied by lower temperatures at 345 
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the core of the vortex than observed. When radar observations are assimilated, the background 346 

TC vortex is strengthened and therefore the core temperature is expected to be increased to be 347 

consistent with the warm core structure of TCs. The more realistic increment structures in 348 

HybridF are the result of temperature-wind cross covariances derived from the ensemble, which 349 

have knowledge of the vortex as a tropical cyclone. In addition, the magnitude of the temperature 350 

increments in HybridF is an order of magnitude larger than that of 3DVARb; the temperature 351 

increment in the 3DVAR analysis of Xiao et al. (2009) for Hurricane Jeanne (2004) was also 352 

weak, reflecting the relative weak thermal wind relationship in 3DVAR. 353 

Same as the wind increment, the temperature increment from HybridH is in-between 354 

those of HybridF and 3DVARb (Fig. 7c). The magnitude is about half that of HybridF. The 355 

structure of the increment resembles that of HybridF more but the eye region has negative 356 

instead of positive increments. From this aspect, HybridH is poorer than HybridF. 357 

d. Innovation statistics for Vr and minimum sea level pressure in DA cycles 358 

The behaviors of 3DVARb, HybridH, and HybridF are further compared by examining 359 

the fit of their analyses and forecasts to Vr observations during the DA cycles. The fit is defined 360 

as the root mean square difference (RMSD) between the model state and observations, after the 361 

model state is converted to the observed quantities; and such difference is also called observation 362 

innovation.  Figure 8 shows the RMSDs for Vr and minimum sea level pressure (MSLP) from 363 

HybridH, HybridF and 3DVARb.  Vr data of  both KHGX and KLCH are used in the innovation 364 

calculation and for the hybrid, the ensemble mean is used. In all three experiments, the RMSD 365 

for Vr is reduced significantly by the analysis within each cycle and the largest reduction occurs 366 

in the first analysis cycle at 0000 UTC when the observation innovations are the greatest. In later 367 

cycles, the innovations for the analyses remain roughly between 2.5 and 3.5 m s
-1

, which is 368 
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reasonable given the 2 m s
-1

 expected observation error. The 30-minute forecasts following each 369 

analysis generally increase the Vr innovation by about 2 m s
-1

, reaching 4-5 m s
-1

 levels. In 370 

general, HybridH produces analyses that fit Vr observations tightest while HybridF the least and 371 

3DVARb is in-between. Similar is true of the 30-minute forecasts. Note that although the 372 

analysis increment of HybridH is in general (Fig. 6 and Fig. 7) in-between HybridF and 373 

3DVARb, the root-mean-square Vr fit to observations in HybridH is not necessarily between 374 

HybridF and 3DVARb. The observation innovation statistics can help us to see if the DA system 375 

is doing about the right things, but being ‗verification‘ against the same set of observations that 376 

is also used in the DA, it cannot really tell us the true quality of the analyses. True measures of 377 

the analysis quality require verifications against independent observations or verification of 378 

subsequent forecasts, which will be presented later. 379 

Figure 8b shows the fit of the analysis and forecast MSLPs to the best track data from the 380 

National Hurricane Center. The best track MSLP is more or less constant during this 3 hour 381 

period, being at about 952 hPa. At the beginning of DA cycling (0000 UTC 13 September), the 382 

MSLP is about 23 hPa higher than the best track estimate. Most of the reductions in MSLP in all 383 

cases are actually achieved through adjustment during the forecasting process, with more than 15 384 

hPa reduction achieved during the first analysis cycle between 0000 and 0030 UTC. This is not 385 

surprising because wind is the only parameter directly measured, and pressure analysis 386 

increments are only achieved through balance relationships and/or cross covariance, which are 387 

apparently weak.  388 

We note in general, the MSLP decreases faster in the short forecasts between the analyses 389 

in the hybrid experiments than in 3DVARb. This is consistent with the fact that the hybrid 390 

method tends to build a warmer vortex core, and warmer temperature tends to induce a lower 391 
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surface pressure due to hydrostatic balance. A stronger vortex circulation will also induce lower 392 

central pressure due to cyclostrophic balance. During the final 3 cycles, there is clearly over-393 

deepening of the central pressure in HybridH in the short forecasts, resulting in a fall of MSLP 394 

that is about 5.5 hPa too low compared to best track. The final analyzed MSLP in HybridF is 395 

about 2.0 hPa too low, which should be within the uncertainty range of MSLP best track data. 396 

We also note that in this study, since the dense radar data define the TC center location rather 397 

well (Fig. 3) and are assimilated every 30 minutes, the TC locations in the first guess ensembles 398 

do not diverge too much in the 30-minute forecasts throughout the assimilation cycles. 399 

Overall, errors in the maximum surface wind (MSW) and MSLP are greatly reduced after 400 

assimilating radar data in all DA experiments. At 0300 UTC 13 September, the end of the DA 401 

cycles, the best track MSW and MSLP are 47.5 m s
-1

 and 951 hPa respectively. For 3DVARb, 402 

HybridF, and HybridH, after assimilating radar radial wind, the MSW errors are 1, 0.8, and 2.7 403 

m s
-1

 and the MSLP errors are 0.2, 1.9, and 5.6 hPa, respectively. The larger MSW (which is not 404 

directly observed) error in HybridH suggests that there is over-fitting of the analyzed wind to Vr 405 

observations (Fig. 8a). For NoDA experiment without assimilating radar data, the MSW error is 406 

9 m s
-1

 and MSLP error is 29 hPa.  407 

e. The analyzed hurricane structures 408 

We examine next the structure of the hurricane at the end of the DA cycles by plotting 409 

fields at the surface and in vertical cross sections through the analyzed hurricane center. Figure 9 410 

shows the analyzed mean sea level pressure and surface wind vectors for NoDA, 3DVARb, 411 

HybridF and HybridH. Compared with NoDA (Fig. 9a), the analyzed vortex circulations are 412 

stronger and the minimum sea level pressure is much lower in 3DVARb, HybridF, and HybridH 413 
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(Fig. 9b-d). Such primary hurricane circulations (Willoughby 1990) are captured well by the 414 

assimilation of radar radial velocity data. 415 

Figure 10 shows the vertical cross sections of horizontal wind speed and potential 416 

temperature for all four experiments. The locations of cross sections are through the analyzed 417 

hurricane center and the location of maximum wind speed of each experiment as indicated by the 418 

thick lines in Fig. 9; the locations of MSLP and maximum wind for the four experiments are 419 

slightly different. In NoDA, the hurricane eye is much wider and the intensity is much weaker 420 

than in the three radar DA experiments. Unlike the hybrid experiments, the potential temperature 421 

contours of 3DVARb (Fig. 10b) do not bend downward below ~600 hPa. The downward 422 

extruion of potential temperature contours in HybridF and HybridH indicates a warm core 423 

structure (Fig. 10c, d). In experiment 3DVARb (Fig. 10b), the maximum wind speed at ~850 hPa 424 

on the right side of eye wall is about 10 m s
-1

 larger than those in HybridF and HybridH (Fig. 10c, 425 

d), but this larger wind speed is not accompanied by a warmer core expected of a stronger TC; 426 

this is an indication that the 3DVAR analysis is not dynamically and thermodynamically 427 

balanced.  428 

Given the inner eye pressure deficit, the warm core should extend through the depth of 429 

the troposphere based on the hydrostatic approximation (Haurwitz 1935). The warm core 430 

structure is seen clearly in the vertical cross sections of horizontal temperature anomaly, which is 431 

the deviation from the mean at the pressure levels (Fig. 11). The temperature anomaly in NoDA 432 

is very small (less than 2 K, Fig. 11a) while that in 3DVARb, HybridF and HybridH exceeds 8 K, 433 

with the maximum anomaly found between 300 and 500 hPa levels (Fig. 11b-d).  This result is 434 

consistent with observational studies; the strength of hurricane warm core has been shown to 435 

negatively correlate with MSLP (Halverson et al. 2006; Hawkins and Imbembo 1976). 436 
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The near-zero or negative temperature anomaly below 700 hPa is clear in Fig. 11b for 437 

3DVARb. This is related to the negative 3DVARb temperature increment discussed earlier. It is 438 

worth noting that the 3DVARb analysis does produce a reasonable warm core aloft. In HybridF 439 

and HybridH, the positive anomaly extends to the surface (Fig. 11c and 11d). In the latter two, 440 

the maximum anomaly is found to be at the inner edge of hurricane eye wall at about 400 hPa, 441 

which should be associated with the eye wall warming (LaSeur and Hawkins 1963; Holland 442 

1997).  443 

f. The track and intensity forecasts 444 

To further evaluate the quality of analyses produced by different DA methods, 445 

deterministic forecasts initialized from the (ensemble mean in the hybrid cases) analyses at 0300 446 

UTC 13 September, the end of the DA cycles, are launched.  The track forecasts are compared in 447 

Figure 12a. The center of hurricane is defined as the location of MSLP. The initial track errors at 448 

0300 UTC are less than 20 km for all four experiments. By 0000 UTC 14 September, the track 449 

errors are 98, 117, 84, 64 km for NoDA, 3DVARb, HybridF and HybridH respectively. The 450 

mean track errors based on the hurricane positions at 6-h interval during the period from 0300 451 

UTC 13 to 0000 UTC 14 September are 41, 57, 41, and 34 km for NoDA, 3DVARb, HybridF, 452 

and HybridH respectively. Given that our DA experiments do not include environmental 453 

observations, the main effect on the track should come from the changes to the structure and 454 

intensity of the analyzed hurricane. 455 

Figure 12b shows the intensity forecasts in terms of MSLP, together with the best track 456 

MSLP. At 0300 UTC 13 September, the MSLP errors are 28, 0.2, 2.0, and 5.5 hPa for NoDA, 457 

3DVARb, HybridF and HybridH respectively. NoDA has the largest MSLP error throughout the 458 

forecast. The MSLP error in 3DVARb is smaller at the initial time, but becomes larger than those 459 



21 

 

of HybridF and HybridH at the later forecast times. Overall, the forecast MSLP in the two hybrid 460 

experiments is closer to the best track MSLP than that of 3DVARb. None of the forecasts 461 

capture the slight deepening during the first 3 hours of forecast. 462 

g. Verification of forecasts against Vr observations 463 

The wind forecasts are further verified against observed radar radial velocity data.  Figure 464 

13 shows the root mean squared errors (RMSEs, strictly it is RMSD because observations also 465 

contain error) of forecast against observed Vr for 3DVARb, HybridF and HybridH. Compared to 466 

the best track estimation of wind speed, the radar Vr observations are more reliable. At the initial 467 

time of 0300 UTC, the RMSE of 3.5 m s
-1

 from HybridF is slightly larger than those from 468 

HybridH (2.6 m s
-1

) and 3DVARb (2.8 m s
-1

). After the first hour, the HybridF wind forecast fits 469 

the observed radial wind best, especially after 6 hours of forecast where the error in 3DVARb 470 

grows much faster and reaching 14.8 m s
-1

 compared to the 8-9 m s
-1

 in the hybrid cases. The 471 

much faster error growth in 3DVARb, even though its fit to Vr observations at the start of free 472 

forecast is comparable to that of HybridH and better than HybridF, again suggests that other 473 

model fields in the 3DVARb analysis are dynamically less consistent with the wind field than in 474 

the hybrid cases. As shown in Fig. 7, major differences exist between the 3DVAR and hybrid 475 

methods with the cross variable updating. This is further confirmed with the performance of 476 

HybridH in Fig. 13.  Even though the HybridH analysis is even more over-fitting to observations 477 

than the 3DVAR (Fig. 8a), the forecast of HybridH was better than the 3DVAR due to the use of 478 

ensemble covariance. Interestingly, this over-fitting to conventional temperature and wind 479 

observations in 3DVAR analysis and worse fitting to observations in the forecast, compared with 480 

Hybrid where the forecast ensemble perturbations were used to estimate background error 481 

covariance, is also seen in other studies with quite different application (Fig. 2 of Wang et al. 482 
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2008b). The slight better forecast in HybridF than in HybridH at 6 hours suggests the fully flow-483 

dependent covariance during the assimilation cycles is beneficial.  484 

h. Evaluation of rainfall forecasts 485 

Rainfall forecasts are evaluated by calculating equitable threat scores (ETSs) of 3-h 486 

accumulated precipitation against NCEP Stage IV precipitation analyses (Fig. 14). For the 487 

thresholds of 5, 10, and 25 mm/3 hr and all forecast lead times, the hybrid experiments have 488 

higher ETSs than 3DVARb. Furthermore, the improvement of the hybrid over 3DVARb 489 

increases with precipitation threshold, indicating again the superior quality of the hybrid DA 490 

method. In addition, HybridF has slightly higher ETS scores than HybridH for most times and 491 

thresholds. The ETS of the hybrid experiments is higher than the NoDA for larger threshold and 492 

longer forecast lead times.  By further looking at the precipitation patterns, it is found that the 493 

precipitation forecasts of HybridF more closely match the observed convective spiral band 494 

patterns in the inner core region while 3DVARb produces too much precipitation in the southeast 495 

quadrant in the outer band region (the region is within the reflectivity coverage of coastal radars, 496 

from which the Stage IV precipitation is estimated, c.f. Fig. 1) and the radius of the inner core 497 

eye wall appears larger than observed (Fig. 15). In comparison, the precipitation pattern from 498 

NoDA case is poorer than the DA experiments especially for inner rain bands. We do note that 499 

during the earlier hours and for lower threholds, the ETSs of NoDA are compariable to those of 500 

hybrid schemes and higher than those of 3DVARb. The exact cause is difficult to acertain. 501 

Imblances and adjustments in the 3DVAR analyses with short analysis-forecast cycles might 502 

have been a cause for the poorer performance but this is only a hypothesis.  503 
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5. Summary and conclusions 504 

In this study, the WRF hybrid ensemble-3DVAR data assimilation (DA) system is 505 

applied for the first time to the assimilation of radial velocity data for a landfalling hurricane.  506 

More specifically, radial velocity data from two operational WSR-88D radars along the Gulf of 507 

Mexico coast are assimilated over a three-hour period after  Hurricane Ike (2008) moved into the 508 

coverage of the two radars, using an enhanced version of the WRF hybrid DA system. Instead of 509 

using an ensemble transformation Kalman filter as in an earlier study to generate the analysis 510 

ensemble, we employ in this study the ‗perturbed observation‘ method. Further, we applied 511 

vertical localization based on empirical orthogonal functions while continuing to use recursive 512 

filters for horizontal localization for the flow-dependent ensemble-estimated background error 513 

covariance. The flow-dependent ensemble covariance is incorporated into the 3D variational 514 

framework by using the extended control variable method.  515 

The radial velocity data are assimilated every 30 minutes over a 3 hour period. Results 516 

mainly from five experiments are presented. A forecast experiment without assimilating any 517 

radar data is first carried out to serve as a baseline against which the radar-assimilating 518 

experiments are compared; this forecast experiment (NoDA) started directly from the operational 519 

GFS analysis, which contained too weak a hurricane vortex.  The four radar DA experiments 520 

used the WRF 3DVAR using the static covariance derived from the NMC method (3DVARa), 521 

the WRF 3DVAR using further tuned static covariance (3DVARb), the hybrid DA system with 522 

purely flow-dependent background covariance (HybridF), as well as half static and half flow-523 

dependent covariance (HybridH), respectively. In the tuned 3DVAR experiment (3DVARb) as 524 

well as HybridH, the horizontal spatial correlation scale in the static covariance derived from the 525 

NMC-method is reduced by a factor of 0.3 to produce much more realistic wind increments than 526 
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the default scale (in 3DVARa). The results of analyses and forecasts from the five experiments 527 

are inter-compared and verified against best track data, radar wind measurements, and 528 

precipitation data. The main conclusions are summarized in the following. 529 

(1) HybridF produces the most realistic temperature increments with positive values at 530 

the hurricane center, corresponding to the warm core structure, while 3DVARb produces much 531 

weaker and smoother temperature increments that are negative at the center of hurricane. At the 532 

end of assimilation cycles, negative temperature anomalies are found at lower levels in the eye 533 

region of 3DVARb analysis while the hybrid analyses show deep warm core structures. 534 

(2) All three DA experiments are able to create analyses that fit the Vr data well, and the 535 

error reduction by analysis is the largest in the first analysis cycle. Most of the minimum sea 536 

level pressure (MSLP) reduction is achieved through model adjustment during the forecast step 537 

of the assimilation cycles 538 

(3) The hybrid experiments improve the Ike track forecast slightly, over the track forecast 539 

by NoDA starting from the GFS analysis. 3DVARb slightly degrades the track forecast. All radar 540 

DA experiments produce MSLP forecasts closer to the best track observation than NoDA does.  541 

(4) The fit of forecast radial velocity to radar observations of 3DVARb is much worse 542 

than those of HybridF and HybridH. The forecast results indicate that the overall quality of 543 

hybrid analyses is better than that of 3DVARb, producing more dynamically consistent state 544 

estimations that lead to later slower error growth during forecast.  The forecast error of HybridF 545 

is slightly lower than that of HybridH starting from hour three.  546 

(5) The equitable threat scores (ETSs) for 3-hour accumulated precipitation forecasts in 547 

the hybrid experiments are higher than those of 3DVARb for the thresholds and lead times 548 

considered, and the improvement increases with precipitation threshold, indicating again the 549 
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superior quality of the hybrid DA method.  Among the hybrid experiments, HybridF produced 550 

slightly better ETSs than HybridH at most verification times.   551 

(6) The results of this study also show positive impacts of assimilating radar data for 552 

hurricane initialization, and the hybrid-method-analyzed hurricane has kinematic and 553 

thermodynamic structures that are consistent with tropical cyclone conceptual models. 554 

 Finally a point worth noting:  the inclusion of static background covariance in HybridH 555 

in general did not improve the results over HybridF in this case study; i.e., the use of flow-556 

dependent covariance in full in general gives better results. Earlier studies (Hamill and Snyder 557 

2000; Wang et al. 2007a) suggested that the optimal combination of the static and flow-558 

dependent covariance depends on their relative quality. The results in this case study suggest that 559 

for hurricanes and radar data, there is likely little benefit of including static covariance because if 560 

the static covariance is not capable of appropriately reflecting the mesoscale and convective-561 

scale nature of hurricanes.   562 

We also note that this study represents the first attempt of applying a variational-563 

ensemble hybrid data assimilation method to hurricane and radar data assimilation. While the 564 

results are positive and encouraging, more robust conclusions will need to be drawn by testing 565 

the method on many more cases.   566 
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Figure Captions 757 

Fig. 1. The WRF model domain and National Hurricane Center best track positions for Hurricane 758 

Ike (2008) from 1800 UTC 12 to 0000 UTC 14 September 2008. Also indicated are the 759 

Houston, Texas (KHGX) and Lake Charles, Louisiana (KLCH) WSR-88D radar 760 

locations (asterisks) and maximum range (300 km for radial velocity and 460 km for the 761 

reflectivity) coverage circles.  762 

Fig. 2. Schematic diagram of the hybrid ensemble-3DVAR forecast-analysis cycle for a 763 

hypothetical three-member ensemble. Each member assimilates the observations 764 

containing a different set of perturbations. 765 

Fig. 3.  The radial velocity (interval of 20 m s-1) at 0.5o elevation angle from (a) KHGX and (b) 766 

KLCH WSR-88D radars at 0000 UTC 13 September 2008. Black dot is for NHC best-767 

track position of Hurricane Ike (2008) at this time. Asterisks are for radar locations. 768 

Fig. 4. The flow charts for (a) NoDA experiment, (b) 3DVAR experiments (3DVARa and 769 

3DVARb), and (b) hybrid experiments (HybridF and HybridH). 770 

Fig. 5. The vertical cross section of the wind speed increment (interval of 5 m s-1) using a 771 

single KHGX radar radial velocity data located at (28.4oN, 93.7oW, 3176 m) with an 772 

innovation of -38.63 m s-1 using the configurations of experiment HybridF but (a) 773 

without and (b) with vertical localization at 0000 UTC 13 September 2008. 774 

Fig. 6. The 700 hPa wind analysis increments (m s-1) for (a) 3DVARa, (b) 3DVARb, (c) 775 

HybridF, and (d) HybridH at 0000 UTC 13 September 2008. 776 

Fig. 7. The 850 hPa temperature analysis increments for (a) 3DVARb (at intervals of 0.3 K), 777 

(b) HybridF (at intervals of 0.7 K), and (c) HybridH (at intervals of 0.3 K), at 0000 778 
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UTC 13 September 2008. 779 

Fig. 8. The forecast and analysis (sawtooth pattern during DA cycling) of (a) RMSD of radial 780 

velocity (m s-1), and (b) the minimum sea level pressures (hPa) together with the 781 

NHC best track estimate, for 3DVARb, HybridF, and HybridH from 0000 to 0300 782 

UTC 13 September 2008. 783 

Fig. 9. The analyzed sea level pressure (interval of 5 hPa, solid contours) and the surface 784 

wind vectors (m s-1) for (a) NoDA, (b) 3DVARb, (c) HybridF, and (d) HybridH at 785 

0300 UTC 13 September 2008. The thick solid line indicates the vertical cross section 786 

location in Fig. 10 and Fig. 11. 787 

Fig. 10. Vertical cross sections of analyzed horizontal wind speed (interval of 10 m s-1, 788 

shaded) and potential temperature (interval of 5 K, solid contours) for (a) NoDA, (b) 789 

3DVARb, (c) HybridF, and (d) HybridH, at 0300 UTC 13 September 2008. 790 

Fig. 11. Vertical cross sections of analyzed temperature anomalies (interval of 2 K) for (a) 791 

NoDA, (b) 3DVARb, (c) HybridF, and (d) HybridH, at 0300 UTC 13 September 792 

2008. 793 

Fig. 12. Deterministic forecast hurricane (a) tracks and (b) minimum sea level pressure (hPa) 794 

by NoDA, 3DVARb, HybridF, and HybridH as compared to NHC best track 795 

estimates from 0300 UTC 13 through 0000 UTC 14 September 2008. 796 

Fig. 13. Deterministic forecast RMSEs of Vr (m s-1) by 3DVARb, HybridF, and HybridH 797 

from 0300 to 0900 UTC 13 September 2008. 798 

Fig. 14. The equitable threat scores for 3 h accumulated forecast precipitation by NoDA, 799 

3DVARb, HybridF, and HybridH at thresholds (a) 5 mm, (b) 10 mm, and (c) 25 mm, 800 

verified against NCEP Stage-IV precipitation analyses valid at 0600, 0900, 1200, and 801 
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1500 UTC 13 September 2008. 802 

Fig. 15 Three-hour accumulated precipitation (mm) by (1st column) NCEP Stage-IV 803 

precipitation analyses, (2nd column) NoDA, (3rd column) 3DVARb, and (4th column) 804 

HybridF valid at (top) 0600 and (bottom) 0900 UTC 13 September 2008. 805 

806 
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Table 1. List of experiments 807 

Experiment                               Description 

  NoDA No radar data assimilation. WRF model initial condition interpolated 

from NCEP 1
o
x1

o
 analysis 

             3DVARa Radar DA using WRF 3DVAR with static covariance from NMC 

method 

  3DVARb Same as 3DVARa, except the horizontal spatial correlation in the static 

covariance is multiplied by 0.3. 

  HybridF Radar DA using hybrid method with full weight given to flow 

dependent covariance, with 1/β1 = 1/1001 and 1/β2 = 1/1.001 in Eq. (1) 

  HybridH Hybrid method with equal weight given to static covariance (which is 

the same as 3DVARb) and flow-dependent covariance, with 1/β1 = 1/2 

and 1/β2 = 1/2 in Eq. (1) 
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 826 

 827 

 828 

Fig. 1. The WRF model domain and National Hurricane Center best track positions for 829 

Hurricane Ike (2008) from 1800 UTC 12 to 0000 UTC 14 September 2008. Also 830 

indicated are the Houston, Texas (KHGX) and Lake Charles, Louisiana (KLCH) WSR-831 

88D radar locations (asterisks) and maximum range (300 km for radial velocity and 460 832 

km for the reflectivity) coverage circles.  833 
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 843 

 844 

Fig. 2. Schematic diagram of the hybrid ensemble-3DVAR forecast-analysis cycle for a 845 

hypothetical three-member ensemble. Each member assimilates the observations 846 

containing a different set of perturbations. 847 
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 861 
 862 

 863 

Fig. 3.  The radial velocity (interval of 20 m s
-1

) at 0.5
o
 elevation angle from (a) KHGX and (b) 864 

KLCH WSR-88D radars at 0000 UTC 13 September 2008. Black dot is for NHC best-track 865 

position of Hurricane Ike (2008) at this time. Asterisks are for radar locations. 866 
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 877 

Fig. 4. The flow charts for (a) NoDA experiment, (b) 3DVAR experiments (3DVARa 878 

and 3DVARb), and (b) hybrid experiments (HybridF and HybridH). 879 
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 894 

 895 

Fig. 5. The vertical cross section of the wind speed increment (interval of 5 m s-1) 896 

using a single KHGX radar radial velocity data located at (28.4oN, 93.7oW, 3176 m) 897 

with an innovation of -38.63 m s-1 using the configurations of experiment HybridF but 898 

(a) without and (b) with vertical localization at 0000 UTC 13 September 2008. 899 
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 919 

Fig. 6. The 700 hPa wind analysis increments (m s-1) for (a) 3DVARa, (b) 3DVARb, 920 

(c) HybridF, and (d) HybridH at 0000 UTC 13 September 2008. 921 
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 927 

 928 

Fig. 7. The 850 hPa temperature analysis increments for (a) 3DVARb (at intervals of 929 

0.3 K), (b) HybridF (at intervals of 0.7 K), and (c) HybridH (at intervals of 0.3 K), at 930 

0000 UTC 13 September 2008. 931 
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 952 

Fig. 8. The forecast and analysis (sawtooth pattern during DA cycling) of (a) RMSD 953 

of radial velocity (m s-1), and (b) the minimum sea level pressures (hPa) together with 954 

the NHC best track estimate, for 3DVARb, HybridF, and HybridH from 0000 to 0300 955 

UTC 13 September 2008. 956 
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 973 

 974 

Fig. 9. The analyzed sea level pressure (interval of 5 hPa, solid contours) and the 975 

surface wind vectors (m s-1) for (a) NoDA, (b) 3DVARb, (c) HybridF, and (d) 976 

HybridH at 0300 UTC 13 September 2008. The thick solid line indicates the vertical 977 

cross section location in Fig. 10 and Fig. 11. 978 
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 989 

  990 

Fig. 10. Vertical cross sections of analyzed horizontal wind speed (interval of 10 m s-1, 991 

shaded) and potential temperature (interval of 5 K, solid contours) for (a) NoDA, (b) 992 

3DVARb, (c) HybridF, and (d) HybridH, at 0300 UTC 13 September 2008.  993 
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 1001 

 1002 

Fig. 11. Vertical cross sections of analyzed temperature anomalies (interval of 2 K) 1003 

for (a) NoDA, (b) 3DVARb, (c) HybridF, and (d) HybridH, at 0300 UTC 13 1004 

September 2008. 1005 
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 1011 

Fig. 12. Deterministic forecast hurricane (a) tracks and (b) minimum sea level 1012 

pressure (hPa) by NoDA, 3DVARb, HybridF, and HybridH as compared to NHC best 1013 

track estimates from 0300 UTC 13 through 0000 UTC 14 September 2008. 1014 
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 1018 

Fig. 13. Deterministic forecast RMSEs of Vr (m s-1) by 3DVARb, HybridF, and 1019 

HybridH from 0300 to 0900 UTC 13 September 2008. 1020 
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 1033 

Fig. 14. The equitable threat scores for 3 h accumulated forecast precipitation by 1034 

NoDA, 3DVARb, HybridF, and HybridH at thresholds (a) 5 mm, (b) 10 mm, and (c) 1035 

25 mm, verified against NCEP Stage-IV precipitation analyses valid at 0600, 0900, 1036 

1200, and 1500 UTC 13 September 2008. 1037 
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Fig. 15 Three-hour accumulated precipitation (mm) by (1
st
 column) NCEP Stage-1057 

IV precipitation analyses, (2nd column) NoDA, (3rd column) 3DVARb, and (4th 1058 

column) HybridF valid at (top) 0600 and (bottom) 0900 UTC 13 September 1059 

2008.  1060 
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