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1. Introduction 
 

*Ensemble Kalman filter (EnKF) is an emerging ad-
vanced method that can be applied to storm-scale at-
mospheric data assimilation. Since its rather successful 
use in observation system simulation experiments 
(OSSEs, e.g., Snyder and Zhang 2003; Zhang et al. 
2004; Tong and Xue 2005; Xue et al. 2006) at the con-
vective storm scale, much efforts has been made to ap-
ply it to real cases (Dowell et al. 2004; Dowell and 
Wicker 2004; Wicker and Dowell 2004; Tong 2006; 
Dowell and Wicker 2009). The OSSEs usually assume 
a perfect prediction model and a perfect storm envi-
ronment, when the same model and the same environ-
mental sounding are used for both truth simulation and 
in data assimilation and their results are nearly perfect. 
The results of real data cases are, however, far from 
perfect. In fact, of the storm-scale structures are ana-
lyzed quite well in these cases, but the ensuing forecasts 
deteriorate quickly, within tens of minutes.   

With real data cases, there are of course many more 
sources of error. The prediction model is definitely not 
perfect; in fact, there are a lot of uncertainty with the 
drop-size distribution of the cloud and hydrometeor 
species within microphysics parameterization alone to 
which the storm prediction can be very sensitive (Snook 
and Xue 2008; Tong and Xue 2008a; Dawson et al. 
2009). The storm environment often defined using a 
single sounding or through mesoscale analysis, can also 
contain significant error. In such a case, even if the 
storm itself is analyzed perfectly using EnKF and radar 
data, the prediction can quickly deteriorate because it is 
known that the environmental wind and thermodynamic 
profiles have a strong control on storm dynamics (e.g., 
Weisman and Klemp 1982). Other issues and uncertain-
ties that are difficult to deal with in real data cases in-
clude insufficient data coverage, unknown, uncorrected 
or poorly characterized observation errors, possible 
observation error correlation, and improper tuning of 
the EnKF algorithms (including covariance inflation 
and location) due to the lack of truth information as a 
guide. All these make the real data assimilation and 
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prediction at the storm-scale much more challenging 
than working with OSSEs, where errors in both data 
and model can be well understood, and a complete truth 
is available for verification. 

To improve the EnKF analysis and subsequent fore-
cast for thunderstorms, all of the above issues have to 
be addressed. The model error issue needs to be ad-
dressed by using more accurate model physics and in-
creased resolution (e.g., Dawson et al. 2009), and/or 
through simultaneous state and error estimation (e.g., 
Tong and Xue 2008b), and by adequately accounting 
for remaining model error via ideally adaptive ensemble 
covariance inflation (e.g., Anderson 2008).  The uncer-
tainty of the storm environmental needs to be reduced 
by assimilating all other available observations, includ-
ing those from rawinsonde, wind profiler, aircraft, and 
mesoscale surface networks. The EnKF data assimila-
tion system needs to be improved or fine tuned so that 
the ensemble-derived background error covariance ade-
quate reflects the scale and magnitude of the error. 
Flow-dependent covariance inflation and localization 
(e.g., Anderson 2007) may be necessarily, especially in 
such cases where the scales, magnitudes and growth 
rates in convective and non-convective regions can be 
rather different. Different techniques (e.g., multiplica-
tive, additive, adjustment or model perturbation meth-
ods) and/or their combinations may have to be em-
ployed for optimal covariance inflation, and for specify-
ing the initial ensemble perturbations. 

This paper represents one of our efforts working 
towards improving thunderstorm data assimilation and 
prediction with a real data case via EnKF. More spe-
cifically, the ARPS (Advanced Regional Prediction 
System, Xue et al. 2003) EnKF system (Tong and Xue 
2005; Xue et al. 2006)  is enhanced and applied to the 8 
May 2003 Oklahoma City tornadic supercell storm case, 
for the assimilation of data from WSR-88D radars and 
high-resolution surface networks. The latter include the 
Oklahoma Mesonet with data available every 5 minutes.  

To be able to handle data and flow features at both 
mesoscale and storm scale, two one-way nested ensem-
ble data assimilation systems are used, with a 1 km 
horizontal-resolution system nested inside a larger 3-km 
system. Perturbations representative of mesoscale fore-
cast errors are generated by analyzing perturbed pseudo 
soundings extracted from the first guess using the 
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ARPS 3DVAR. Such perturbed analyses become the 
initial conditions of the 3-km ensemble. A similar pro-
cedure is used to construct perturbed boundary condi-
tions for the 3-km system, which assimilates conven-
tional observations, including surface mesonet data.  

The nested storm-scale EnKF system starts from the 
3-km ensemble at a later time, and assimilates addi-
tional level-II WSR-88D radar data at 5-minute inter-
vals. Storm-scale perturbations are introduced into the 
initial conditions of this ensemble. Various inflation 
techniques are tested on the high-resolution grid. The 
results of both the analyses and subsequent forecasts 
will be presented. The forecasts will be directly verified 
against radar observations.  

The 8 May 8 2003 case is chosen because it is an 
isolated supercell case that produced F-4 intensity tor-
nadoes in Moore, Oklahoma, between Oklahoma City 
(OKC) and Norman, and the storm was well captured 
by the OKC WSR-88D radar (KTLX), as well as the 
OKC airport TDWR and the experimental dual-
polarization WSR-88D radar at Norman (KOUN). The 
storm is also covered by other surrounding WSR-88D 
radars, including that from Frederick in southwest 
Oklahoma (KFRD). Several earlier studies on this case 
already exist, including the rather successful efforts of 
Hu and Xue (2007a; 2007b) that assimilated KTLX 
data using the ARPS 3DVAR and cloud analysis pack-
age using frequent intermittent assimilation cycles.  
Natenberg (2008) and Natenberg and Gao (2008) fur-
ther showed that by using data from all available radars, 
a single-time analysis using the ARPS 3DVAR and 
cloud analysis procedure is able to provide an initial 
condition that results in a reasonable prediction up to 
one hour. Preliminary efforts applying EnKF to this 
case by Dowell and Wicker (2004) and Wicker and 
Dowell (2004) were less that satisfactory with the pre-
diction, while Dowell and Wicker (2009) presents only 
the analysis results, where additive noise is used to im-
prove the EnKF analysis of this storm.  

 In this paper, through multi-scale EnKF analysis 
that includes both radar and high-frequency surface 
observations, and by tuning the EnKF algorithm, storm 
forecasts at 1 km and 500 m horizontal resolutions are 
obtained that are believed to be better than earlier re-
sults. The predicted storm maintains its intensity as well 
as strong low-level rotation characteristics that are con-
sistent with observations for over 1 hour. 

The rest of this paper is organized as follows.  Sec-
tion 2 describes radar data preprocessing procedure, the 
surface observation operator incorporated into the 
EnKF system, the multiscale analysis procedure. Sec-
tion 3 presents the experiment setup and section 4 the 
results. Section 5 draws conclusions and includes some 
further discussions. 
 

2. Multiscale EnKF analysis system   
 

The ARPS EnKF system is used in this study. The 
system can assimilate radar data (radial velocity and 
reflectivity) pre-processed to three different coordinates:  
1) at the model grid points (as in Tong and Xue 2005), 
2) on the radar elevation levels but in the horizontal 
directions on the model Cartesian grid (as in Xue et al. 
2006), and 3) in the original radar coordinates (as in Lei 
et al. 2008). In this study, the second approach is used. 
 
2.1. Radar data preprocessing 
 

In this work, the 88d2arps program is modified to 
put data on the elevation levels and used to preprocess 
the level-II data from KTLX radar for use by ARPS 
EnKF. Quality control, including radial velocity 
dealiasing and despecle for both radial velocity and 
reflectivity are included (for specifics, refer to Brewster 
et al. 2005). Using Cressman objective analysis method, 
raw observations are processed at each elevation level 
to the intersecting points of the tilts with model grid 
columns. A time interpolation is then performed be-
tween the same elevations of two consecutive scan vol-
umes to bring the data to the analysis times that are 5 
min apart. The error standard deviations for the radial 
velocity and reflectivity data are assumed to be 2 m s-1 
and 4 dBZ, respectively, in the data assimilation. 
 
2.2. EnKF analysis of surface observations 
 

The assimilation of frequent surface observations is 
believed to be important for improving the storm envi-
ronment. EnKF assimilation of surface observations for 
mesoscale prediction has been reported in recent studies 
(e.g., Fujita et al. 2007; Stensrud et al. 2008). The as-
similation of hourly routine surface data was found to 
improve subsequent mesoscale forecasts. Dong et al. 
(2007) investigated the impact of simulated high-
resolution surface data at 5 min intervals on the analysis 
and prediction of a supercell storm. It was found that 
the surface data are especially valuable when the radar 
is located at a distance from the storm, so that low-level 
radar data coverage is missing. The quality of analysis 
is found to continue to increase as the network density 
increases. In that OSSE study, the surface observations 
are assumed to be available at the lowest model level so 
that no interpolation is needed in the vertical. Linear 
interpolation is performed in the horizontal to project 
the grid point values to the station locations as part of 
the observation operator.  

Because the first model level is usually not at the 
station level (AGL), and significant vertical gradient 
often exists near the surface, more sophisticated treat-
ment in the observation operators in brining the model 
state to the station level is desirable.  
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In this work, surface observation operator is im-
proved by using interpolation based on the surface layer 
profiles based on Byun (1990). 

For stable conditions, Monin-Obukhov stability pa-
rameter ζ  used in the profiles is given by 
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When the Monin-Obukhov stability parameter ζ  is 
specified, the model version of the 10-m wind and 2-m 
temperature can be determined from the values at the 
lowest model level according to the corresponding simi-
larity functions (Eqs. 10 and 11 in Byun 1990). In this 
work, the lowest grid level for all model variables ex-
cept for vertical velocity is at about 10 m AGL hence 
this procedure is less important for wind than to tem-
perature and moisture. The surface pressure is calcu-
lated from the lowest level above ground according to 
hydrostatic balance. Surface water vapor mixing ratio, 
qv, is calculated by assuming that station dew point 
temperature is equal to that at the lowest model level. A 
similarity-theory based processing is also performed in 
Fujita et al. (2007) in their EnKF assimilation of surface 
data for mesoscale predictions. 
 
2.3. Multiscale EnKF analysis 
 

As in our earlier studies, the sequential ensemble 
square-root filter (EnSRF) algorithm after Whitaker and 
Hamill (2002) is used. As briefly described in Introduc-
tion, we use two one-way nested grids at 3 and 1 km 
horizontal resolutions for the EnKF analysis and fore-
cast.   
 

 

18Z

20Z

A :  9 km 
assimilation
cycles

unperturbed lbcs at 15 min interval 

B: 3 km 
forecast

21Z 22Z 23Z

Mesoscale 
perturbations  

C: 3 km EnKF  using mesonet 
sfc data :    u,v,T

Convective Scale 
P erturbations  on
 3km ensemble 

D: 1 km EnKF using Radar 
data nested in C 

LBC  ensemble 
from C

LBC from C

           

LBC from A

 
Fig. 1 . Diagram for multiscale analysis procedure. 
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Fig. 2. D1 is the domain of horizontal resolution 3 km, 
D2 the domain of 1 km resolution and D3 is the domain 
for forecast at 500 m horizontal resolution. Mesonet 
stations and KTLX and KFDR radars are also labeled. 
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Fig. 3. The ensemble mean analysis of wind vectors 
from 3 km EnKF, at 10 m AGL and 2100 UTC, plotted 
in the 1 km domain. Vectors with circles are Mesonet 
observations, that indicate the match of the analysis to 
observations. 

The 3 km grid provides an ensemble of analyses 
(during its assimilation period) and forecasts that pro-
vides the lateral boundary conditions (LBCs) with 
mesoscale variability for the 1 km grid.  Boundary con-
ditions with dynamically consistent perturbations are 
considered important for properly maintaining spread 
within the nested ensemble (Nutter et al. 2004). The 3 
km system also acts to provide an initial ensemble for 
starting the EnKF cycles on the 1 km grid. The EnKF 
analyses on the outer grid are also expected to bring in 
mesoscale observational information and help improve 
the storm environment on the fine grid. 

Figure 1 shows the schematic of the assimilation 
and forecast configurations for our control experiment. 

Because the main goal of the 3 km grid is mesoscale 
data assimilation and prediction, we do not assimilate 
radar data on this grid. Hourly analyses between 1800 
UTC, 8 May and 0000 UTC 9 May, 2003, obtained 
using the ARPS 3DVAR on a 9 km grid, as described in 
Hu and Xue (2007a), are used to provide unperturbed 
LBCs to the 3 km ensemble. Given that the 3 km grid is 
sufficiently large, the lack of perturbations in the 3 km 
LBCs does not appear to affect our 1 km domain within 
the time range of interest.  

As shown in Fig. 1, a single pre-forecast is first per-
formed on the 3 km grid from 1800 to 2000 UTC, start-
ing from interpolated 9 km analysis at 1800 UTC. The 2 
hour forecast valid at 2000 UTC is used as the back-
ground for a set of 3DVAR analyses on the 3 km grid to 
produce perturbed initial conditions for the 3 km en-
semble.  

To initialize the 3-km ensemble, perturbations 
aimed at sampling mesoscale uncertainty are introduced. 
The approach taken here is a modified perturbed obser-
vation method. At this non-synoptic time for our rela-
tively small grid, the predominant form of observations 
is surface observations, including those from the Okla-
homa Mesonet. As mentioned earlier, radar data are not 
used on this grid. 

To sample mesoscale uncertainties, we extract 10 
pseudo sounding profiles from the analysis background, 
adding to them Gaussian-distributed random perturba-
tions with sizes typical of rawinsonde observation error. 
We further add perturbations to the real surface obser-
vations of sizes typically of surface observation error. 
These perturbed real and pseudo observations are then 
analyzed using the ARPS 3DVAR in two separate 
passes, using horizontal error de-correlation scales 
comparable to the mean network spacing of each type 
of observations. The 3DVAR analysis is performed N 
number of times, where N is the number of ensemble 
members in the follow-on EnKF analysis. N = 40 in our 
case. Different realizations of random perturbations 
were added to the observations used in each analysis. 
Because the 3DVAR background error covariance is 
used in the analysis, the perturbation fields of the result-
ing analyses should have structures reflecting such co-
variance structures. It should be noted that in the ab-
sence of real observations, the pseudo soundings will 
have no effect if no perturbations are added to them, i.e., 
the analysis increments will be zero and all analyses 
will be the same in that case. The noise added to the 
observations introduces perturbations into the analyses 
that are smoothed to the scale of background error co-
variance by the 3DVAR analysis. 

Starting from the set of perturbed initial conditions, 
the first forecast cycles are launched on the 3 km grid. 
Fifteen-minute-long EnKF analysis cycles are per-
formed on this grid through 2300 UTC, analyzing 
Oklahoma Mesonet and other surface observations; this 
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set of ensemble analyses provides LBCs for the EnKF 
analysis and forecast on the nested 1 km grid (Fig. 1). 

To initialize the 1 km EnKF analysis cycles, the 3 
km ensemble analyses are interpolated to the 1 km grid 
at 2100 UTC. Additional storm-scale perturbations are 
then added to these analyses on the 1 km grid, and the 
perturbations are generated by applying a smoothing 
procedure on random perturbations, as described in 
Tong and Xue (2008a). The EnKF analysis cycles are 
then started on the 1 km grid, and radar data are assimi-
lated every 5 minutes. 

In the control experiment to be discussed in this pa-
per, in the 3 km EnKF, only u, v, and T observations of 
Oklahoma Mesonet are analyzed, at 15 min intervals 
from 2015 to 2300 UTC.  The surface observation er-
rors are specified as 1 m s-1 for the wind components 
and 1.11 K for temperature. No covariance inflation is 
applied in the 3 km EnKF. The covariance localization 
radius in the horizontal direction is 50 km and 4 km in 
the vertical direction.  Fig. 3 shows the ensemble mean 
surface wind vectors of the 3 km EnKF analysis at 2100 
UTC, plotted on the 1 km grid. 

A number of experiments have been performed that 
vary in configuration details.  In this paper, we will 
only report on results of the control experiment, in 
which the 1 km EnKF analyses end at 2155 UTC, and 
forecasts starting from the ensemble mean analysis at 
the 1 km grid as well as on an enhanced 500 m grid (see 
Fig. 2) are run up to 2300 UTC. Between 2210 and 
2240 UTC, a tornado of F-4 intensity formed in the real 
storm (Hu and Xue 2007a).  

In the 1 km EnKF analyses, multiplicative inflation 
is applied throughout the domain with a coefficient of 
1.02. The covariance localization radius is 6 km in the 
horizontal and 4 km in the vertical. All reflectivity data 
are used, including those that show no precipitation. For 
radial velocity, only those with reflectivity larger than 
10 dBZ are used.  In the control experiment, data from 
KTLK and KFRD radars are assimilated. 

For both 3 and 1 km grids, the ARPS was config-
ured with 50 vertical levels with a minimum vertical 
grid spacing of 20 m at the surface. Physics options 
including the 1.5-order TKE subgrid-scale turbulence, 
Lin ice microphysics, complete long and short wave 
radiation, and a two-layer soil model predicting the land 
surface conditions (for details see Xue et al. 2001). 
 
3. Results. 
 

For comparison purpose, we first present in Fig. 4 
the KTLX-observed reflectivity, at its lowest elevation 
of 0.48º, at the end time of 1 km EnKF cycles and at 
later forecast times. During this period, a supercell is 
prominent near the center of domain, and at 2155 UTC, 
the southwestern tip of the core reflectivity region is at 

the northwest tip of Cleveland County (the one with 
triangular shape at the domain center). This cell propa-
gated steadily north-northeastward, and developed a 
hook echo pattern by 2210 UTC (Fig. 4c). In fact, this 
is the time the long-track F4-intensity tornado first 
touched down. A hint of hook echo pattern is evident 
throughout this period. 

At 2511 UTC, a weak cell is found in the south-
western part of this domain, and this cell reached it 
maximum echo intensity at around 2220 UTC (Fig. 4d) 
then decayed over the next twenty minutes. 

Fig. 5a shows the final ensemble mean analysis at 
2155 UTC, obtained on the 1 km grid. The model re-
flectivity fields are projected to the same 0.48º eleva-
tion of KTLX radar for direct comparison. It can be 
seen that the general pattern of the analyzed reflectivity 
agrees with that observed, for both the main supercell 
and the small developing cell in the southwest. The 
main discrepancy lies with the reflectivity on the north-
side of the core reflectivity, which is actually associated 
with a cell split from the main one. This part of ana-
lyzed reflectivity is weaker than observed. 

In the ensuing forecast, the predicted main cell 
maintains its intensity and propagates at a similar speed 
and direction as observed, with a slight southward track 
error by the end of the forecast at 2300 UTC (compare 
Fig. 5h with Fig. 4h). The reflectivity associated with 
the main cell has a generally similar pattern to observa-
tions. One obvious problem with the forecast is the con-
tinued growth of the cell to the southwest, which moves 
to the east of Cleveland County by 2300 UTC while in 
reality it has died by this time. It is not clear why this 
storm behaved incorrectly in the model; most likely the 
model predicted storm environment in this region is 
unduly favorable for the continued intensification of 
this cell. Fortunately, this over-grown cell did not sig-
nificantly interfere with the main cell up to the end of 
our forecast. 

From Fig. 5, we can see that during the initial period 
of forecast, the main cell did develop a hook echo struc-
ture. This is evident at 2200, just 5 minutes into the 
forecast (Fig. 5b). By 2210 (Fig. 5c), the hook becomes 
less clear although strong rotation exists as seen from 
zoomed plots (not shown). In the mean time, the rota-
tional characteristics in the reflectivity field do appear 
somewhat weak, and we suspected that this is related to 
the grid resolution. While 1 km horizontal resolution 
can resolve the supercell storm, smaller scale structures, 
including the low-level rotation, can be easily under-
predicted. To test this hypothesis, we interpolated the 
final 1 km EnKF ensemble-mean analysis at 2155 UTC 
to a slightly smaller 500 m resolution grid (see Fig. 1), 
and produced forecast for the same length. The corre-
sponding reflectivity fields are shown in Fig. 6.  
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Fig. 4. Reflectivity observed by KTLX radar at the 0.48º elevation at times indicated in the plots. 
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Fig. 5. Ensemble mean analysis reflectivity (a) and ARPS predicted reflectivity at 2200 UTC through 2300 
UTC at 10 minute intervals, projected to the 0.48º elevation of the KTLK radar. Both forecasts and analyses 
were performed at 1 km horizontal resolution. These are the model counterparts of the observed fields shown 
in Fig. 4. 
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Fig. 6. As Fig. 5 but for forecasts produced at a 500 m horizontal resolution, starting from the 2155 UTC 1 
km ensemble mean analysis interpolated to the 500 m grid. 
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Fig. 7. Forecast reflectivity, wind vector and vertical vorticity at 1 km MSL produced on the 500 m grid, 
valid at 2200, 2210, 2220 and 2230 UTC. Note that the county map in this figure is incorrectly shifted east-

ward by about 9 km. 

 

 
 

Fig. 8. The 1 degree tilt base reflectivity data from 
Oklahoma City KOKC TDWR radar at 2208 UTC, 

8 May 2003. 

On the 500 m grid, the overall storm evolution is 
similar to that on the 1 km grid, but there are also im-
portant differences, especially in the detailed structures 
of storms. At 2200 UTC, only 5 minutes into the fore-
cast (Fig. 6b), there is already more pronounced hook 
echo pattern developing in the model than on the 1 km 
grid, and the reflectivity of the main cell also extends 
further northeast, in better agreement with the observa-
tion (c.f., Fig. 4b). At 2210 UTC, the onset time of the 
F4 tornado, hook echo with a pin-pointed tip is seen in 
Fig. 6c, and this hook pattern is maintained for the rest 
of the forecast.  

To see the flow as well as reflectivity structures in 
the hook echo region more clearly, the 500 m forecast 
fields at 1 km height level (ground elevation is about 
350 m in this area) are plotted in Fig. 7 for the first part 
of the prediction. It is clear that at all the forecast times 
shown, there exists a region of strong low-level rotation 
centering on the northeast side of the reflectivity hook. 
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Associated with it is strong convergence more or less 
directed into the rotation center. Such a structure is fa-
vorable for low-level rotation through vertical stretch-
ing. 

At 2210 UTC (Fig. 7b), the reflectivity field shows 
a narrow ribbon of high reflectivity extending from the 
main rear-flank reflectivity core towards the southwest, 
and at its tip an strong localized vorticity maximum is 
found. Remarkably, very similar structure is found in 
the low-elevation observation of the Oklahoma City 
TDWR radar, which is located closer and has a higher 
sampling resolution that the KTLX observations (Fig. 
8). The agreement between the model prediction and 
the observation down to such fine scale details is ex-
tremely encouraging. 
 
4. Summary 
 

In this paper, the results of control experiment for 
the 8 May 2003 central Oklahoma tornadic supercell 
storm case, in which a multi-scale EnKF analysis pro-
cedure employing two nested grids, are presented. Con-
ventional data, including especially those of Oklahoma 
Mesonet, are analyzed on the 3 km coarser-resolution 
grids. The 3 km grid also provided ensemble perturba-
tions representative of mesoscale uncertainty in the 
storm environment for the nested 1 km storm-sale grid, 
through both initial perturbations and lateral boundary 
conditions. Radar together Mesonet data were assimi-
lated on the storm-sale grid every 5 minutes over a 55 
minute period. Subsequent forecasts were carried out at 
1 km and 500 m horizontal resolutions from the ensem-
ble mean analysis. The forecasts on both grids agree 
rather well with the observations for the main supercell, 
capturing well its intensity evolution and its propaga-
tion speed and direction. The general hook echo pattern 
and low-level rotation features are also well captured, 
with the 500 m solution being even better. In fact, a 
remarkable agreement is found between the 15-minute 
forecast on the 500 m grid with the observation of a 
TDWR radar nearby, down to the fine-scale detail of a 
thin reflectivity appendage. Such forecasting results 
appear to be the best that have been obtained so far for 
a real storm, using EnKF data assimilation method. 

A number of sensitivity experiments have been per-
formed. In general, the proper analysis of the storm 
environment, including the use of mesonet data, is criti-
cal for obtaining good forecasts. Additional results will 
be reported in a full length paper in the future. 
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