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ABSTRACT: In an effort to improve radar data assimilation configurations for potential operational implementation, GSI

EnKF data assimilation experiments based on the operational system employed by the Center for Analysis and Prediction of

Storms (CAPS) real-time Spring Forecast Experiments are performed. These experiments are followed by 6-h forecasts for an

MCS on 28–29 May 2017. Configurations examined include data thinning, covariance localization radii and inflation, obser-

vation error settings, anddata assimilation frequency for radar observations. The results showexperiments that assimilate radar

observations more frequently (i.e., 5–10 min) are initially better at suppressing spurious convection. However, assimilating

observations every 5 min causes spurious convection to become more widespread with time, and modestly degrades forecast

skill through the remainder of the forecast window. Ensembles that assimilate more observations with less thinning of data or

use a larger horizontal covariance localization radius for radar data predict fewer spurious storms and better predict the

location of observed storms. Optimized data thinning and horizontal covariance localization radii have positive impacts on

forecast skill during the first forecast hour that are quickly lost due to the growth of forecast error. Forecast skill is less sensitive

to the ensemble spread inflation factors and observation errors tested during this study. These results provide guidance toward

optimizing the configuration of the GSI EnKF system. Among the DA configurations tested, the one employed by the CAPS

Spring Forecast Experiment produces the most skilled forecasts while remaining computationally efficient for real-time use.

SIGNIFICANCESTATEMENT: High-resolution ensemble forecasts that can skillfully predict thunderstorms provide

an opportunity for warning severe weather further in advance. However, forecast accuracy is dependent upon many

factors including the data assimilation system used to create the forecasts. This study optimizes the design of a real-time

ensemble forecast and data assimilation system for a severe weather event where a line of thunderstorms produced hail,

wind, and tornadoes in the southern United States. The 0–6-h forecasts predict the thunderstorms with moderate skill.

Forecast accuracy is most sensitive to how frequently the data assimilation system assimilates radar observations, the

degree to which radar observations are thinned, and the covariance localization radius. Results of this study can be used

to design future real-time forecast systems for severe weather events.

KEYWORDS: Radars/Radar observations; Forecast verification/skill; Short-range prediction; Data assimilation; Model

initialization; Optimization

1. Introduction

Thunderstorms have caused approximately $200 billion (U.S.

dollars) in property damage (NOAA 2019) since the beginning of

themillennium.Most severeweather hazards occur with only tens

of minutes of advance warning (average tornado warning lead

time ’ 17 min) because the National Weather Service issues

warnings based upon the detection of a hazard, either from sur-

face reports, radar detections, or an imminent threat as deter-

mined by the forecaster (Stensrud et al. 2013). Based on the

current warning paradigm (i.e., warn-on-detection), the average

warning lead time for detected tornadoes has remained relatively

constant since 1986 (Stensrud et al. 2013) and is unlikely to sub-

stantially increasewithout degradingwarning skill (e.g., increasing

the number of false alarms) (Brooks 2004). To extend warning

lead time, theNWS is working on adopting theWarn-on-Forecast

paradigm (Stensrud et al. 2009, 2013) where frequently up-

dated, convection-allowing model (CAM) ensemble forecast

guidance is incorporated into the warning process. Due to the

rapid error growth of convective-scale forecasts, in addition to

limiting sources of forecast model error, one key component

of a skilled forecast system is to limit initial condition errors by

developing a skilled data assimilation (DA) system.

Various Warn-on-Forecast prototype systems (e.g., Yussouf

et al. 2013; Wheatley et al. 2015; Jones et al. 2016; Snook et al.

2016; Lawson et al. 2018; Labriola et al. 2019; Stratman et al. 2020)

use an ensemble Kalman filter (EnKF; Evensen 1994, 2003) to

assimilate observations and initialize 0–6-h CAM forecasts. An

EnKF is aMonteCarlo implementation ofKalmanfilter (Kalman

1960), which is itself based on optimal estimation theory. EnKFs

derive forecast background error covariance statistics from an

ensemble of short-term forecasts instead of trying to evolve it in

time using expensive prediction equations (Evensen 1994, 2003).
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This technique is particularly attractive when compared to static

covariance models, which often assume the background error

covariance is spatially homogenous and isotropic (Parrish and

Derber 1992; Purser et al. 2003). Error covariances at the con-

vective scale are inhomogenous and anisotropic, and are thus

better represented by flow-dependent covariances derived from

the forecast ensemble. The filter can update unobserved model

state variables using often a limited number of observed param-

eters. This is the case with radar observations where radar re-

flectivity Z and radial velocity Vr are primarily available at the

convective scale. Many observation system simulation experi-

ments (OSSEs) and real-data experiments have demonstrated

that assimilating Z and Vr observations improves estimated

thermodynamic, dynamic, and microphysical state variables (e.g.,

Snyder and Zhang 2003; Zhang et al. 2004; Dowell et al. 2004;

Caya et al. 2005; Tong and Xue 2005; Xue et al. 2010; Dawson

et al. 2012; Jung et al. 2012; Johnson et al. 2015; Snook et al. 2015;

Supinie et al. 2016; Wang and Wang 2017; Tong et al. 2020).

Assimilating other convective-scale observations such as polari-

metric radar observations and satellite radiances may also de-

crease initial conditions errors (Jung et al. 2008; Jones et al. 2018b;

Zhang et al. 2019; Putnam et al. 2019). While EnKF systems have

demonstrated their potential to assimilate radar observations,

performance of theDA system and skill of subsequent forecasts is

contingent upon the optimization of the DA configurations. Each

DA system contains many tuning parameters and further, the

optimization is sensitive to the model configurations and obser-

vations assimilated (e.g., Dowell et al. 2004; Tong and Xue 2005;

Sobash and Stensrud 2013; Johnson and Wang 2017).

Previous studies (e.g., Zhang et al. 2004; Dowell and Wicker

2009; Johnson and Wang 2017) have found DA system config-

urations can have a substantial impact on the subsequent fore-

cast skill. For example, EnKF experiments employ covariance

inflation and localization to mitigate poor estimates of the

background error statistics. Additional considerations when as-

similating radar observations include observation error specifi-

cation, data thinning interval, and assimilation frequency. The

remainder of this introduction discusses these commonly used

techniques used to improve EnKF initial condition estimates.

EnKF systems are often underdispersive due to the limited

ensemble size and unaccountedmodel errors (e.g., Houtekamer

and Mitchell 1998; Romine et al. 2014), which makes the model

overconfident and reduces the influence of observations.

Repeated assimilation of dense observations can reduce ensemble

spread somuch that theEnKF can no longer effectively assimilate

observations because it becomes overconfident about the en-

semble forecast, leading to filter divergence (Jazwinski 1970;

Anderson and Anderson 1999). Spread maintenance algorithms

artificially increase ensemble variance to better represent the true

uncertainty of the atmospheric state during DA (Anderson 2001;

Hamill et al. 2001). Some spread inflation algorithms add noise to

the posterior ensemble (e.g.,Dowell andWicker 2009; Sobash and

Wicker 2015) while some, such as the relaxation-to-prior-spread

(RTPS) algorithm (Whitaker and Hamill 2012), increase the

spread of posterior ensemble to a fraction of the spread of the

prior ensemble. All methods are met with varying degrees of

success between experiments, and often a combination of these

methods is used to optimizeEnKFperformance (Jung et al. 2012).

The quality of background error covariance is often poor

because it is computed from an insufficient number of en-

semble members (e.g., Houtekamer and Mitchell 1998; Hamill

et al. 2001). Such sampling errors cause grid points to become

spuriously correlated with distant observations, and conse-

quently the filter erroneously updates the background fore-

casts far from the assimilated observation. A distance-based

Gaussian weighting function (Gaspari and Cohn 1999) is often

used to localize the influence of observations; the optimal

cutoff radius is contingent upon many factors including en-

semble size, observation type, density, location, computational

cost, model resolution, and correlation length scale frommodel

dynamics (Sobash and Stensrud 2013; Ying et al. 2018). Most

studies (e.g., Snyder and Zhang 2003; Zhang et al. 2004; Dowell

et al. 2004; Caya et al. 2005; Tong and Xue 2005; Aksoy et al.

2009; Jung et al. 2012; Sobash and Stensrud 2013; Johnson et al.

2015; Wheatley et al. 2015) use a small cutoff radius for radar

observations (4–18 km horizontal, 4–8 km vertical) because

they are dense and the convective-scale flows have small spatial

correlation length scales.

Radar data require preprocessing prior to assimilation be-

cause observations are provided on radar polar coordinates at

resolutions finer than most forecast models. Most EnKF ex-

periments assimilate coarsened radar data that are interpo-

lated to a regular grid or the model grid itself. For example,

Xue et al. (2006) assimilates radar observations that are in-

terpolated to the horizontal model grid but kept on the radar

elevation levels in the vertical. After interpolation, some ex-

periments assimilate a fraction of the available radar obser-

vations to decrease the computational expense (Gao and Xue

2008) or mitigate the effects of spatially correlated observation

errors by removing neighboring observations (Chang et al.

2014). Thinning assimilated observations can also decrease the

ensemble spread reduction during EnKFDA, though this does

not necessarily improve forecast skill (Aksoy et al. 2012).

Radar data are most commonly thinned at regular user-

specified intervals throughout the model domain. Despite po-

tential benefits, thinning observations can remove important

in-storm observational information during DA and limit the

analysis skill.

Modeling errors on the convective scale in particular are

poorly understood and thus represent a challenge when as-

similating radar observations. While unrealistic, most EnKF-

based studies assume radar observation errors are Gaussian in

nature, constant in standard deviation, and spatially uncorre-

lated. Well-calibrated WSR-88D radars have observational

errors of approximately 1 dBZ (Z) and 1 m s21 (Vr) (Doviak

and Zrnić 1993; Ryzhkov et al. 2005), but DA experiments

typically assume larger errors to account for representativeness

errors and other uncertainties (such as those with observation

operators). Increasing observation errors also alleviates en-

semble underdispersion by decreasing spread reduction during

DA and is shown to improve performance of ensemble ana-

lyses (e.g., Dowell et al. 2004; Snook et al. 2013).

To obtain accurate initial conditions for convective storms,

radar observations are often assimilated at high frequencies.

Real-time systems often assimilate radar observations ev-

ery 15 min (e.g., Wheatley et al. 2015; Johnson et al. 2017;
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Snook et al. 2019), although improvements to computational

infrastructure and newweather radar technology such as phased-

array radars (Weber et al. 2007; Zrnic et al. 2007; Heinselman

and Torres 2011; Curtis and Torres 2011) provide the oppor-

tunity to assimilate observations more frequently in the future.

OSSEs that assimilate rapid-scanning radar information note a

decrease in the spinup time for convection and a reduction in

errors in both observed and unobserved variables (Zhang et al.

2004; Xue et al. 2006; Yussouf and Stensrud 2010). Real-data

cases have successfully assimilated radar information at rela-

tively high frequencies (#5 min) (Snook et al. 2011, 2016; Jung

et al. 2012; Supinie et al. 2017; Labriola et al. 2017; Stratman

et al. 2020); however, rapid updates can introduce imbalances

that are unable to adjust to the model before the next DA cycle

and can degrade both analysis and forecast skill (Wang et al.

2013; Johnson and Wang 2017) unless extra care is taken.

Most studies designed within the Warn-on-Forecast frame-

work evaluate forecast and analysis sensitivity to a limited

number of EnKF parameters for radar DA including covari-

ance inflation (Dowell and Wicker 2009), covariance localiza-

tion (Sobash and Stensrud 2013), observation data thinning

(Gao and Xue 2008), DA frequency (Yussouf and Stensrud

2010; Stratman et al. 2020), and prescribed observation errors

(Gao and Xue 2008; Dowell et al. 2011; Snook et al. 2013).

Evaluating only a few parameters allows these studies to ana-

lyze forecast sensitivities in greater detail; however, the fore-

cast skill remains suboptimal given the other parameters are

untuned. Further, these experiments do not consider the com-

putational limitations when running a real-time CAM forecast

system over a large-area domain such as the contiguous United

States (CONUS). This is the first study to tune the EnKF radar

DA parameters for a real-time short-termCAM forecast system

that can be deployed over the full CONUS domain. Comparing

forecasts initialized using many different EnKF configurations

demonstrates how each parameter impacts forecast skill, and

which configuration optimizes forecast skill.

This study evaluates short-term (0–6 h) forecasts for a meso-

scale convective system (MCS) event on 28–29May 2017 that are

initialized using anEnKF systembased on theNCEPoperational

Gridpoint Statistical Interpolation (GSI) framework, using a

forecast ensemble that is based upon the Center for Analysis and

Prediction of Storms (CAPS) Storm Scale Ensemble Forecast

(SSEF) run during the 2017 Hazardous Weather Testbed Spring

Forecast Experiment (CAPS 2017). The rest of the paper is or-

ganized as follows: section 2 provides a brief overview of the case

study, a description of the experiments, and verification proce-

dures. The control experiment results including objective and

subjective forecast evaluations are discussed in section 3, while

section 4 discusses the radar DA parameter sensitivity experi-

ment results. Section 5 summarizes the results of this study

and discusses potential future directions for research.

2. Event overview, experiment configuration, and
verification methodology

a. Case overview

The focus of this study is to forecast the evolution of anMCS

and nearby isolated convective storms that produced strong

winds, hail, and tornadoes in Texas, Louisiana, and Mississippi

on 28–29 May 2017 (Fig. 1). Upper-level wind patterns were

favorable for convective development during this event; a

trough was located over the central United States, and Texas

was to the right of a jet entrance region. At approximately

2000 UTC 28 May multiple thunderstorms initiated along a

frontal boundary extending from Arkansas toward the Texas–

Mexico border. Thunderstorms that initiated over eastern

Texas quickly grew in scale between 2200 and 0000 UTC as

they ingested unstable air (CAPE . 2200 J kg21). The storms

eventually merged to form a squall line that impacted

Louisiana andMississippi between 0000 and 0600UTC 29May

(Fig. 2). Storms embedded within the line produced several

weak tornadoes and multiple wind reports extending from

Shreveport to Jackson (Fig. 1). Between 0000 and 0200 UTC

isolated thunderstorms in Texas (Figs. 2a,b) produced multiple

hail and wind reports (Fig. 1), but by 0300 UTC (Fig. 2c) many

of these storms weakened and formed a large region of mostly

stratiform precipitation. With the exception of convection near

Houston and the MCS located east of Jackson, precipitation

remains stratiform through 0600 UTC (Fig. 2d).

The presence of active MCS convection within the DA pe-

riod before the forecast initial condition time, and during

several hours of forecast make this case suitable for investi-

gating the impact of DA and its configurations on subsequent

storm forecasts. Forecasts focus on the Texas, Louisiana, and

Mississippi regions. Experiment conclusions are limited be-

cause this is a single cast study; however, analyzing a single case

allows this study to test multiple EnKF parameters and de-

termine an optimal radar DA configuration that can be

employed in the future.

b. Control experiment DA system settings

This subsection describes the control experiment (hereafter

referred to at CTRL) DA configuration (Table 1), modified

DA configuration parameters are discussed in section 2d. This

study uses the GSI EnKF system for DA. The GSI system

performs observation quality control (QC) and applies forward

FIG. 1. A diagram of the 28–29 May 2017 forecast domain, states

and countries are labeled in bold. A legend for hail, wind, and

tornado SPC storm reports is provided in the upper-left-hand

corner. Cities referred to during the study are marked with a

fuchsia ‘‘X.’’
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observation operators to the model background to generate

observation priors. A version of the ensemble square root filter

(Whitaker and Hamill 2002) that precalculates observation

priors then updates them together with the state variables

within the filter (Anderson and Collins 2007) is used. Recently,

the GSI EnKF system was updated to assimilate radar obser-

vations; radar forward operators were added to the GSI suite

and the EnKF system was given the capability to update hy-

drometeor variables (e.g., Johnson et al. 2015; Jones et al.

2018a; Tong et al. 2020). CAPS recently added radar re-

flectivity forward operator consistent with the Thompson mi-

crophysics scheme. The new operator follows Jung et al.

(2008), which uses the T-matrix method (Vivekanandan et al.

1991; Bringi and Chandrasekar 2001) for raindrops and

Rayleigh scattering approximation for ice hydrometeor species

(i.e., snow, hail, graupel) to calculate scattering amplitudes. In

this study, radar observations undergo automatic QC including

velocity dealiasing, using a procedure developed by CAPS

(Brewster et al. 2005). These enhancements allow the GSI

EnKF system to be used in several storm-scale modeling

studies (e.g., Johnson et al. 2015; Johnson and Wang 2017;

Johnson et al. 2017; Jones et al. 2018b; Jung et al. 2018a,b;

Chipilski et al. 2020).

CTRL follows the 2017 CAPS storm-scale ensemble con-

figuration (CAPS 2017), except the DA parameters (Table 1),

which are inherited from the GSI EnKF system used to gen-

erate the 2019 CAPS storm-scale ensemble initial conditions

(Clark et al. 2019). CTRL is initialized from the 1800 UTC

North American Mesoscale (NAM) analysis plus perturba-

tions derived from 3-h forecasts of the 1500 UTC cycle Short-

Range Ensemble Forecast (SREF) (Table 1). Perturbations

are constructed by taking the difference between two selected

members among the 24 SREF members. The differences and

their negative counterparts, which are the same in magnitude

but opposite in direction, are added to the NAM analysis to

produce two perturbed members. This is repeated to create 39

perturbed members, the first ensemble member remains un-

perturbed. SREF andNAM forecasts provide lateral boundary

FIG. 2. MRMS observed columnmaximumZ valid at (a) 0015, (b) 0100, (c) 0300, and (d) 0600UTC. Cities referred

to during the study are marked with a fuchsia ‘‘X’’ and are the same as in Fig. 1.

TABLE 1. CTRL experiment configuration.

Initial conditions 1800 UTC NAM analysis with 1500 UTC SREF perturbations

Assimilation frequency 60 min 1800–2300 UTC (conventional only); 15 min 2300–0000 UTC

(radar and conventional when available)

Covariance localization radii—radar observations

(horizontal, vertical)

12 km, 0.7 scale height

Covariance localization radii—conventional observations

(horizontal, vertical)

300 km, 0.7 scale height

Observation errors (reflectivity, radial velocity) 6 dBZ, 3 m s21

Ensemble spread inflation 99% RTPS

Radar data thinning interval (horizontal, vertical in-storm,

vertical clear air)

6 km, 1 km, 2 km
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condition information. For more details on the initial and lat-

eral boundary conditions [see Table 3 of the ‘‘CAPS Spring

Forecast Experiment Program Plan’’ (CAPS 2017)].

Conventional observations (e.g., surface stations, buoys,

soundings) are assimilated hourly between 1900 and 0000 UTC,

and radar (Z and Vr) observations are assimilated every

15 min in the last hour. A schematic on the setup of DA cycles

is shown in Fig. 3. Covariance localization uses the Gaspari

and Cohn (1999) weighting function with user-specified cutoff

radii. In this study the horizontal cutoff radius is 300 km for

conventional observations and 12 km for radar observations.

The vertical cutoff radius for all observations is 0.7 scale

height (natural log of pressure). The RTPS covariance infla-

tion algorithm is used to restore the spread of the analysis to

99% of the background spread. At 0000 UTC an ensemble of

10 free forecasts are initialized from the final analyses and run

to 0600 UTC. The ensemble members are initialized follow-

ing the same procedure as the CAPS real-time system; eight

forecasts are initialized from the ensemble member analyses

selected considering physics and graupel density diversity and

two are initialized from the ensemble mean analysis [see

Table 4 of CAPS (2017)]. The 0000 UTC NAM forecast and

2100 UTC SREF forecasts provide lateral boundary condi-

tions. Ensemble members selected to initialize forecasts

employ a diverse suite of model physics options, and are

chosen to enhance forecast diversity. The forecast configu-

ration is discussed in the following subsection.

For radar DA, Z observations are from the Multi-Radar

Multi-Sensor (MRMS; Smith et al. 2016) products. TheMRMS

system performs QC on 140 WSR-88D radars and gener-

ates a mosaic of the observations on a three-dimensional

grid with a horizontal resolution of 0.018 latitude 3
0.018 longitude and 33 vertical levels. Radial velocity Vr

observations are processed using CAPS’s software package

that includes QC. The data are interpolated to the model grid

horizontally and kept on radar elevation levels in the ver-

tical for each radar site (Xue et al. 2006). The Z and Vr

observations are thinned horizontally to every 6 km during

assimilation. Reflectivity Z observations are also thinned

vertically to every 1 km in radar echoes (Z.290 dBZ) and

to every 2 km in clear air regions (Z , 290 dBZ). Such

thinning is done to fit the GSI EnKF analyses into available

computer memory, which is necessary when a large continent-

size domain is used during, e.g., the CLUE experiment (the

GSI memory usage is inefficient). The Vr and Z observation

errors are assumed to be 3 m s21 and 6 dBZ, respectively,

during DA.

c. Prediction model settings

Aside from the smaller forecast domain focused on theMCS

impacted region, the grid specifications and model physics

largely follow the CAPSGSI EnKF-initialized ensemble (Jung

et al. 2018b) that is part of the CLUE (Clark et al. 2018).

Forecasts are run using the Advanced Research version of

theWeather Research and Forecast Model (WRF-ARW;

Skamarock et al. 2008) version 3.8.1. The forecast domain

spans much of Texas, Louisiana, and Mississippi (Fig. 1) with

4333 241 grid points in the horizontal and 51 vertical levels in

sigma-pressure coordinates. The horizontal grid spacing is

3 km. The vertical grid follows the 2017 CLUE configuration

where the finest vertical grid spacing is located near the sur-

face. All ensemble members use the Rapid Radiative Transfer

Model (RRTM; Mlawer et al. 1997) for general circulation

model (RRTMG: Iacono et al. 2008) to represent short- and

longwave radiation. During DA (1800–0000 UTC), forecasts

are runwith the aerosol aware Thompsonmicrophysics scheme

(Thompson et al. 2008; Thompson and Eidhammer 2014) but

with varying graupel density across the members. The

0000 UTC EnKF-initialized forecasts vary microphysics

schemes (Thompson; Thompson et al. 2008), Morrison

(Morrison and Grabowski 2008), Milbrandt and Yau (MY;

Milbrandt and Yau 2005), National Severe Storms Laboratory

(NSSL; Mansell et al. 2010), and Predicted Particle Properties

(P3; Morrison and Milbrandt 2015) between ensemble mem-

bers. Ensemble members also employ different planetary

boundary layer physics parameterizations (Mellor–Yamada–

Janjić (MYJ; Janjić 1990, 1996, 2001), Yonsei University (YSU;

Hong et al. 2006), and Mellor–Yamada–Nakanishi–Niino

(MYNN;Nakanishi andNiino 2009) and theNoah land surface

model (Chen and Dudhia 2001) both during the DA and

FIG. 3. Flow diagram detailing the CTRL DA experiment configuration. A bold vertical

line at 1800 UTC marks when the ensemble of forecasts is first initialized. The ‘‘X’’ symbols

mark when surface observations are assimilated, and the downward pointing arrows mark

when radar observations are assimilated. The final free forecasts start at 0000 UTC, after

6 h of DA cycles.
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forecast periods. An in-depth overview of ensemble member

physics options is provided in CAPS (2017).

d. DA configuration experiments

Sensitivity experiments are designed to evaluate the impact

of EnKF DA configurations on the forecast skill. Each ex-

periment repeats the CTRL DA procedure (Table 1) except

one aspect of the DA configuration is modified when assimi-

lating radar observations. Experiment results analyze forecast

sensitivity to data thinning, covariance localization, covariance

inflation, observation errors, and assimilation frequency for

radar observations. These parameters are tested over a range

of values employed by previous studies (e.g., Gao and Xue

2008; Dowell et al. 2011; Sobash and Stensrud 2013; Snook

et al. 2013; Wheatley et al. 2015; Supinie et al. 2017; Stratman

et al. 2020). The remainder of the subsection defines the range

of tested parameter values.

Data thinning experiments assimilate radar observations

thinned over increasingly large intervals either horizon-

tally (3, 6, 9 km) or vertically (500 m, 1 km, 2 km) and are

labeled by the direction observations are thinned both

horizontally and vertically (ThinH3V1, ThinH6V1, ThinH9V1,

ThinH3V0.5, ThinH3V2). Following CTRL, all experiments

thin Z observations over twice as large of a vertical interval in

clear air regions. Radial velocity Vr observations are not fur-

ther thinned during this study because the data are preserved

on about a dozen radar elevations and thus already sparser

than MRMS Z. The covariance localization experiments vary

the localization radius for radar observations either horizon-

tally (6, 12, 18 km) or vertically (0.4, 0.7, 1.0 scale height)

during DA and are referred to by the length of the applied

radius in the horizontal and vertical directions (CovH6V0.7,

CovH12V0.7, CovH18V0.7, CovH12V0.4, CovH18V1.0). The

covariance inflation experiments vary the percentage (80%,

90%, 99%, 110%) that posterior ensemble spread is relaxed to

that of the prior ensemble via the RTPS algorithm when radar

observations are assimilated (2300–0000 UTC). Experiments

are referred to by the inflation factor applied (Inf80, Inf90,

Inf99, Inf110). Observation error experiments vary observa-

tion errors forVr (3, 6 m s21) andZ (6, 9 dBZ) and are referred

to by the assumed errors (3ms6dBZ, 6ms9dBZ).

Experiments that assimilate radar data at higher fre-

quencies have demonstrated mixed success in previous

studies. Stratman et al. (2020) suggest that assimilating ob-

served Zmore frequently can cause predicted storms to spin

up more quickly and better suppress spurious convection.

Frequently assimilating observations can also introduce

imbalances into the ensemble that propagate with time to

degrade forecast skill (Hu and Xue 2007; Johnson andWang

2017). To determine the impact of radar DA frequency, Z

and Vr observations are assimilated at 5-, 10-, and 15-min

intervals during the final hour of DA (2300–0000 UTC).

These intervals roughly correspond to the frequency that

WSR-88D radars sample the atmosphere (;5 min) and the

frequency some current real-time systems assimilate radar

observations (e.g., Wheatley et al. 2015; Jung et al. 2018a).

DA frequency experiments are referred to by how fre-

quently observations are assimilated (5, 10, 15 min).

e. Forecast evaluation

The 0000–0600 UTC forecast Z is subjectively and objec-

tively verified against observations to evaluate the predicted

evolution of storm structure. This forecast evaluation period

corresponds to when the impact of assimilated radar observa-

tions is most prominent (Kain et al. 2010), and when theWarn-

on-Forecast paradigm is expected to offer the most benefit to

operational forecasters (e.g., Stensrud et al. 2009).

During forecast evaluation small errors in storm placement

can substantially degrade objective performance by double

penalizing a forecast i.e., adjoining grid points may receive a

false negative and false positive. This problem is exacerbated

when verifying localized events (e.g., convective storms) but

can be ameliorated by verifying the occurrence of an event

within a prescribed radius. The neighborhood maximum en-

semble probability (NMEP; Schwartz et al. 2010; Schwartz and

Sobash 2017) method is used to generate probabilistic fore-

casts. This study verifies the probability ofZ exceeding 40 dBZ

[P(Z . 40 dBZ)] within a 12-km neighborhood. This neigh-

borhood radius reduces the impact of small forecast displace-

ment errors but ensures the short-term forecast remains

precise enough to detect storm structures related to localized

severe weather impacts. A Gaussian filter with a smoothing

length scale of 12 km is applied to the output to smooth

probabilistic forecasts. It is noted that this study verifies a

relatively largeZ threshold; this is done to verify the location of

predicted storm cores and to eliminate regions of stratiform

precipitation from the statistics.

Probabilistic forecast skill is objectively evaluated using the

Brier skill score (BSS; Brier 1950), which can be decomposed

into three distinct components (Murphy 1973): reliability,

resolution, and uncertainty (Table 2). Reliability is the differ-

ence between predicted probability and observed frequency,

forecast skill improves when this difference is minimized.

Resolution, which should be maximized to improve ensemble

performance, is the difference between the climatological

probability and the observed relative frequency for a given

probability threshold. Unlike the other two components,

forecast uncertainty cannot be changed through calibration

and is a function of the climatological probability. Reliability

diagrams provide a visual representation of the BSS by plotting

forecast probability against observed frequency over increas-

ingly large thresholds. Forecast probability is equal to observed

TABLE 2. Scores used to evaluate forecasts in the study. The

number of forecasts is N, the number of forecasts for a given k

probability threshold is nk, o is the observed climatology, ok is the

observed relative frequency, and pk is the forecast probability.

Metric Formula

Reliability 1

N
�
K

k21

nk(pk 2ok)
2

Resolution 1

N
�
K

k21

nk(ok 2o)2

Uncertainty o(12o)

Brier skill score resolution2 reliability

uncertainity
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frequency in an unbiased system, and the reliability curve falls

along the one-to-one line. If forecast probability is larger

(smaller) than observed frequency then the curve falls below

(above) the one-to-one line and the forecast is high (low) bi-

ased. Reliability diagrams also provide the frequency occur-

rence of each probability to evaluate forecast sharpness.

3. CTRL results

Shortly after the start of the forecast at 0015 UTC (Fig. 4a)

CTRL predicts the P(Z . 40 dBZ) to be relatively high

(.0.90) within the confines of observed storms including the

MCS located near Shreveport, Louisiana. Although CTRL

predicts the P(Z . 40 dBZ) to exceed 0.7 for isolated storms

located along theMexico–Texas border at 0015 UTC (Fig. 4a),

probabilities diminish by 0100 UTC (Fig. 4b). This region is

cooler and drier than locations near the coast, suggesting that

the environment is less conducive for convective development.

Several forecasts in the CTRL ensemble (Fig. 4a) also predict

spurious storms to initiate to the north and east of SanAntonio.

Reliability diagrams show probabilistic 0015 UTC forecasts

exhibit a slight overprediction bias for both low and moderate

probability threshold events [P(Z . 40 dBZ) , 0.6] (Fig. 5)

primarily due to the spurious convection in Texas. Despite this

bias, the BSS at 0015 UTC (0.52) is relatively high compared to

later forecast times because CTRL is unbiased for high-

probability events [P(Z . 40 dBZ) . 0.8].

As the MCS moves eastward through Louisiana (0100–

0300 UTC), CTRL predicts the P(Z . 40 dBZ) to remain

relatively high (.0.7) near the observed storms (Figs. 4b,c).

SomeCTRLmembers predict the isolated convection near San

Antonio to grow in scale and form a line of storms that in-

creases moderate forecast probabilities [P(Z. 40 dBZ). 0.4]

in Central Texas by 0100 UTC (Fig. 4b). This line of storms is

spurious; the observed storms south and west of Houston at

0100 UTC are isolated (Fig. 2b) and the observed MCS is

farther east. By 0300 UTC, most of the observed storms in

Central Texas weaken (Fig. 2c) and leave behind a large swath

of stratiform precipitation and some weak storms. CTRL also

predicts the storms in Central Texas to weaken around

0300 UTC, which causes forecast probabilities near San

Antonio to decrease (Fig. 4c). The BSS at 0100 UTC is lower

than at 0300 UTC (Fig. 5) because more spurious storms are

predicted at the earlier time. Spurious storms also cause the

0100 UTC reliability curve (Fig. 5) to become high-biased for

FIG. 4. The P(Z. 40 dBZ) predicted by CTRL valid at the labeled times. Thick black contours represent locations

where observed Z . 40 dBZ. Background maps are as in Fig. 2.

FIG. 5. Reliability diagrams for the CTRL probabilistic forecasts

shown in Fig. 4. Line colors correspond to when the forecasts are

valid, and the BSS for each forecast time is included in the legend.
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moderate and high probability events [P(Z . 40 dBZ) . 0.4].

By 0300 UTC, when the spurious storms begin to weaken, the

reliability curve (Fig. 5) becomes less biased and more closely

follows the one-to-one line.

CTRL predicts storms tomove too quickly, and by 0600UTC

the predicted MCS (Fig. 4d) is east of the observed storms.

Storm motion biases, such as this, are commonly observed

in CAM forecasts and are often a consequence of model

errors (e.g., Yussouf et al. 2016). Displacement errors cause the

BSS at 0600 UTC to become negative and the reliability curve

to become high-biased (Fig. 5), suggesting CTRL exhibits no

objective skill at this time. It is noted that the P(Z . 40 dBZ)

exceeds 0.7 on the southern edge of the observed MCS

(Fig. 4d). Increasing the neighborhood radius when calculating

the NMEP could improve forecast performance but would

make forecasts less precise, thus this is not performed. Despite

displacement errors, CTRL demonstrates some qualitative

skill and predicts the MCS to become less organized between

0500 and 0600 UTC, which is approximately the same time as

observations (Fig. 2d).

4. Radar DA parameter results

Many studies show radar observations provide important

storm-scale information, and when assimilated by an optimally

configured EnKF, improve analyzed storm structure (e.g.,

Snyder and Zhang 2003; Dowell et al. 2004; Tong and Xue

2005) and subsequent forecasts (e.g., Snook et al. 2012, 2015).

Modifying parameters directly related to radar DA, including

data thinning, covariance localization radius and inflation,

observation errors, and assimilation frequency initially impacts

storm structure and the near-storm environment. With the

exception of the DA frequency experiments (Fig. 6g), which

impact Z forecast skill several hours after DA, the differences

between experiments are most prominent during the first

forecast hour because large- and small-scale errors grow

quickly (e.g., Melhauser and Zhang 2012) and degrade the

initial benefits of radar DA. At 0015 UTC reliability curves

(and BSSs) are already similar between all experiments

(Fig. 6). Despite considerable overlap between the reli-

ability curves, experiments that assimilate more radar ob-

servations (i.e., smaller data thinning intervals; Figs. 6a,b)

or employ a larger horizontal covariance localization radius

(Fig. 6c) are more skilled. Impacts of radar DA are localized

and not readily obvious in objective verification metrics that

consider the full model domain and multiple storm systems.

Subjective forecast evaluations performed in the remainder

of this section show these DA parameters impactZ forecasts

for individual storm systems (i.e., isolated convection and

the MCS).

a. Data thinning

Thinning radar observations potentially removes important

finescale details of the storms. For small storms, such as those

near San Antonio, thinning radar observations removes many

if not all available in-storm observations. ThinH3V1 (Fig. 7b)

predicts the P(Z . 40 dBZ) to be larger than ThinH9V1

(Fig. 7c), particularly for small storms located near Mexico,

because the experiment assimilates more in-storm observa-

tions. Assimilating clear air observations also improves fore-

cast skill by suppressing spurious convection. ThinH6V2,

which assimilates few clear air observations (every 4 km ver-

tically), predicts more spurious convection, causing the P(Z .
40 dBZ) to exceed 0.7 outside of an observed Z core near San

Antonio (Fig. 7e). These spurious storms contribute to a

modest overprediction bias observed in the ThinH6V2 reli-

ability curve for moderate to high probability thresholds

[P(Z . 40 dBZ) . 0.6] (Fig. 6b).

BSSs are calculated over forecast subdomains that encom-

pass either the isolated convection in Texas (black square,

Fig. 7) or the MCS (red square, Fig. 7) to determine how the Z

forecast skill varies between the storm regions (Table 3). The

15-min forecasts predict the MCS with more skill (BSS$ 0.51)

than the isolated convection (BSS $ 0.35). Enhanced Z fore-

cast skill is in part because the MCS is mature throughout the

radar DA period (Fig. 8), while some isolated storms, partic-

ularly those northeast of San Antonio, rapidly grow and merge

during the final 15 min of the DA window (Figs. 8d,e). Studies

often assimilate observations of mature storms over many DA

cycles to reduce initial conditions errors and improve forecast

skill (e.g., Snyder and Zhang 2003; Dawson et al. 2012;

Stratman et al. 2020). Thus, isolated convection BSSs are lower

in part because fewer DA cycles capture the evolution of

storms. The MCS forecasts are also less sensitive to the data

thinning experiments (Fig. 7), MCS BSSs decrease less

(Table 3) when experiments assimilate fewer radar obser-

vations (i.e., ThinH9V1,ThinH6V2).

b. Covariance localization

Increasing the horizontal covariance localization radius for

radar observations causes ensembles to become more confi-

dent in high Z values located near observed storms for short-

term forecasts. CovH6V0.7 (Fig. 9b) predicts the P(Z .
40 dBZ) to be smaller than either CovH12V0.7 (Fig. 9a) or

CovH18V0.7 (Fig. 9c) for the isolated storms located near the

Mexico-Texas border. CovH18V0.7 also predicts fewer spuri-

ous storms to be located between San Antonio and Houston

(Fig. 9c), which decreases the P(Z . 40 dBZ) outside of ob-

served storm cores. Because CovH18V0.7 and CovH12V0.7

predict fewer spurious storms in Texas and have improved

resolution, the ensembles score a larger BSS than COVH6V0.7

at 0015 UTC (Fig. 6c). Increasing vertical localization radii

modestly increases the BSS (Fig. 6d) but probabilistic forecasts

appear to be insensitive to this EnKF parameter (Figs. 9d,e).

Although Z forecast skill is relatively insensitive to the vertical

covariance localization radius in this study, Sobash and

Stensrud (2013) suggest ensembles that employ a smaller

vertical localization radius produce analyses with smaller

root-mean-square errors. Result differences are due to

many factors such as changes in the vertical distribution of

radar observations, how the vertical covariance localization

radii are applied, and that the referred study is an OSSE that

assumes perfect-model conditions.

CovH6V0.7 predicts more spurious convection to develop

because the ensemble is initialized at 0000 UTC (Fig. 10a) with

more spurious radar echoes than CovH12V0.7 (Fig. 10b) or
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FIG. 6. Reliability diagrams for the forecast P(Z. 40 dBZ) valid at 0015 UTC for the labeled experiments

including (a),(b) radar data thinning; (c),(d) covariance localization radius; (e) covariance inflation;

(f) observation errors; and (g) DA frequency. Experiments correspond to different colors, and the BSS for

each experiment is included in the legend.
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CovH18V0.7 (Fig. 10c). The smaller localization radius em-

ployed by COVH6V0.7 reduces the number of surrounding

grid points updated by an observation and causes the EnKF to

remove less precipitation from clear air regions. Regions of

spurious precipitation intensify to form new convection, thus

degrading COVH6V0.7 skill during the first forecast hour rela-

tive to the other covariance localization experiments (Fig. 6c).

Modifying horizontal covariance localization radii also al-

ters the near-surface environment, which can have a detri-

mental impact on the predicted thunderstorm evolution. The

CovH6V0.7 ensemble mean analysis (Fig. 11a) predicts storms

to produce warmer cold pools than CovH12V0.7 (Fig. 11b) or

CovH18V0.7 (Fig. 11c). Since cold pools alter the evolution of

convection (e.g., Droegemeier andWilhelmson 1985; Rotunno

et al. 1988), changes in the near-surface environment impact

the forecasts. The 30-min forecasts initialized from the en-

semble mean analysis (Figs. 11d–f) show CovH12V0.7

(Fig. 11e) and CovH18V0.7 (Fig. 11f) predict storm updrafts to

form along the cold pool boundaries. CovH6V0.7 predicts

storm updrafts to be smaller in area and more fragmented

(Fig. 11d) in part because of the initially weak cold pool

(Fig. 11a). Although the impacts on Z forecast skill are rela-

tively small for this case study, altering the near-storm envi-

ronment, such as cold pool intensity, can potentially degrade

forecast skill for other cases.

Improved initial condition estimates cause CovH12v0.7 and

CovH18v0.7 to predict the P(Z. 40 dBZ) with more skill than

FIG. 7. The P(Z . 40 dBZ) predicted by (a) CTRL and the (b),(c) horizontal and (d),(e) vertical radar data

thinning experiments valid at 0015 UTC. Thick black contours represent locations where observed Z . 40 dBZ.

Dashed black and red squares mark the verification subdomains discussed in Table 3. Background maps are as

in Fig. 2.

TABLE 3. Data thinning experiment BSSs at 0015 UTC verifying

the P(Z . 40 dBZ). Skill scores are computed over subdomains

(Fig. 7) that encompass either the isolated convection (black

square) or the MCS (red square).

Isolated convection MCS

ThinH6V1 0.45 0.57

ThinH3V1 0.45 0.55

ThinH9V1 0.40 0.53

ThinH6V0.5 0.45 0.56

ThinH6V2 0.35 0.51
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CovH6v0.7 during the first forecast hour (Fig. 6c). These hor-

izontal covariance localization radii are similar to the optimal

radius determined by Sobash and Stensrud (2013) (18 km) but

larger than what was used in Tong and Xue (2005) (6 km). The

optimal localization radius employed by Tong and Xue (2005)

is smaller in part because the experiment assimilates radar

observations at every model grid point. Localization radii are

sensitive to observation density (e.g., Gao and Xue 2008), and

thus can change with the number of assimilated observations.

c. Covariance inflation

Although BSSs do not substantially change between the

covariance inflation experiments conducted (Fig. 6e), increas-

ing the RTPS inflation factor causes the reliability curves to

have an increased high bias. When the RTPS inflation factor

increases the areal coverage of low and moderate forecast

probabilities [P(Z. 40 dBZ)# 0.5] increases modestly within

the vicinity of observed convection (Fig. 12). Experiments run

with the three smallest inflation factors (i.e., Inf80, Inf90, Inf99)

do not substantially alter Z forecast performance (Fig. 6e);

however, the Inf110 reliability curve has the largest over-

prediction bias and lowest BSS. This is because Inf110 predicts

the P(Z . 40 dBZ) to increase most ahead of observed con-

vection near San Antonio (Fig. 12d). Results suggest no fore-

cast skill is gainedwhen inflating the posterior ensemble spread

beyond that of the prior ensemble for this case study. Although

Z forecast skill is relatively insensitive to the RTPS inflation

factor, it remains important to perform ensemble covariance

inflation to prevent collapse of ensemble spread and po-

tential filter divergence when assimilating a dense network

of observations.

d. Observation errors

With some minor differences, 3ms6dBZ and 6ms9dBZ re-

liability curves are quite similar at 0015 UTC (Fig. 6f) and

consequently both ensembles have similar BSSs. Because there

are only minor differences between probabilistic forecasts (not

pictured), both sets of experiments are not further discussed.

e. DA frequency

Reflectivity Z forecast skill is moderately sensitive to how

frequently radar observations are assimilated by the GSI

EnKF system. The 5Min (Fig. 13a) and 10Min forecasts

(Fig. 13b) predict fewer spurious storms than 15Min (Fig. 13c),

which decreases forecast probabilities outside of the observed

storm cores. Assimilating radar observations more frequently

suppresses the coverage of spurious convection (Stratman et al.

2020); however, the benefit of more frequent DA cycling is

short lived. The 5Min forecasts at 0015 UTC predict the P(Z.
40 dBZ) to increase outside of the observed storm cores

(Fig. 13d) because spurious convection becomes more wide-

spread in coverage.

Experiments that assimilate observations less frequently

(e.g., 10Min, 15Min) exhibit the most skill throughout the re-

mainder of the forecast period. Z forecasts differ the most for

the Texas-based convection, but are relatively similar for the

MCS. All DA frequency experiments predict forecast proba-

bilities in eastern Texas to be high [P(Z . 40 dBZ) . 0.7] at

0300 UTC (Figs. 13g–i); however, 5Min (Fig. 13g) predicts the

largest probabilities to be displaced from the observed storm

cores. 5Min also predicts low and moderate forecast proba-

bilities [P(Z . 40 dBZ) , 0.5] to be more widespread in cov-

erage throughout the domain because the ensemble predicts

more storms to occur. Errors in storm placement and the

enhanced coverage of spurious storms modestly reduces the

5Min BSS throughout much of the forecast period.

Experiments that assimilate observations more frequently

(i.e., 5Min, 10Min) are the most skilled at 0005 UTC (BSS $

0.57) because the forecasts predict fewer spurious storms. This

causes subsequent reliability curves to have a smaller high bias

(Fig. 14a). Reliability curves for all DA frequency experiments

become more similar by 0015 UTC (Fig. 6g) because spurious

FIG. 8. MRMS observed column maximum Z between 2300 and 0000 UTC, when radar observations are assimilated. Background maps

are as in Fig. 2.
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convection is predicted to grow in coverage. 10Min is most

skilled at 0015 UTC (BSS5 0.56) because the reliability curve

is closest to the one-to-one line for most moderate probability

thresholds [0.3 , P(Z . 40 dBZ) , 0.7]. After 0100 UTC, the

5Min BSS is modestly lower than the other DA frequency

experiments. For example, the 5Min 0300 UTC reliability

curve (Fig. 14b) exhibits an increased high bias and a decreased

BSS because the predicted storms are displaced from regions

of high observedZ, and because the ensemble predicts low and

moderate forecast probabilities to be more widespread in

coverage (Fig. 13g).While 10Min and 15Min predict theP(Z.
40 dBZ) with more skill at 0300 UTC (BSS $ 0.28), both re-

liability curves (Fig. 14b) have a similar, albeit a modestly

smaller, high bias.

Despite assimilating more radar observations, 5Min predicts

the P(Z . 40 dBZ) with similar or less skill than experiments

that assimilate observations less frequently. To determine why

Z forecast skill does not improve with increasedDA frequency,

the balance of model states for each DA frequency experiment

is evaluated using the absolute mean surface pressure tendency

N (Lynch and Huang 1992; Hu and Xue 2007; Pan and Wang

2019). Here, N, which is averaged over the domain and en-

semble members, is defined by
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where nx and ny are the dimensions of the domain, nmem is the

number of ensemble members, and j›ps/›tj is the absolute

change in air pressure at the lowest grid point above the sur-

face. The N values are calculated every 5 min during the 6-h

forecast period. For all experiments,N values are initially large

(;40–50 Pa min21) but decrease with time to approximately

5 Pa min21 as the model adjusts to any imbalances that origi-

nate from DA (Fig. 15). To a large extent this is done through

acoustic waves and hydrostatic adjustment. Many of the storms

also weaken during the forecast period, further minimizing

changes in pressure. The 5Min forecast produces the largest N

values throughout the forecast period (Fig. 15), while 10Min

and 15MinN values are smaller andmore similar inmagnitude.

Large pressure tendencies suggest that the more frequent

DA cycling causes 5Min forecasts to become less balanced.

FIG. 9. The P(Z . 40 dBZ) predicted by (a) CTRL and the (b),(c) horizontal and (d),(e) vertical covariance

localization experiments valid at 0015 UTC. Thick black contours represent locations where observedZ. 40 dBZ.

Dashed squares in (a)–(c) mark the boundaries of the Fig. 11 domain. Background maps are as in Fig. 2.
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Since 10Min and 15Min N values are more similar in mag-

nitude, small increases in the DA frequency (i.e., 10Min) do

not appear to cause the ensemble to become as unbalanced

and can improve forecast skill.

Results of the DA frequency experiments concur with pre-

vious studies (e.g., Wang et al. 2013; Johnson et al. 2017; Pan

and Wang 2019). Johnson and Wang (2017) hypothesize that

imbalances introduced during DA do not have enough time to

adjust to the model before the next assimilation cycle. It is

noted that many other studies (e.g., Aksoy et al. 2009; Jung

et al. 2012; Dawson et al. 2012) have successfully assimilated

radar observations much more frequently (#5-min intervals).

Stratman et al. (2020), who assimilates phased array radar

observations every minute, suggests frequent DA cycling can

quickly spin up thunderstorms and suppress spurious convec-

tion. Given that most of the adjustment occurs within the first

few forecast minutes so that all experiments have similar levels

of surface pressure noise after 5 min (Fig. 15), the negative

impact of assimilating 5-min data is likely insignificant given

the potential benefit quickly spinning up observed storms

within the model and suppressing spurious convection. It is

likely 5Min skill can be further improved by more thoroughly

tuning theGSIEnKF system. For real-time forecasting systems

where computational cost is a significant issue, the fact that

assimilating radar observations at 10–15-min intervals yields

good results is encouraging.

5. Summary and discussion

This study evaluates short-term (0–6 h) convection-allowing

model (CAM) forecasts initialized using the GSI EnKF system

enhanced with radar data assimilation (DA) capabilities.

Forecasts are run for a mesoscale convective system (MCS)

event that occurred in the Southern United States on 28–

29 May 2017 and produced tornadoes, strong wind gusts, and

hail. The control configuration of the GSI EnKF system re-

sembles the Center for the Analysis and Prediction of Storms

(CAPS) storm-scale ensemble forecast run during the

Hazardous Weather Testbed Spring Forecast Experiment as

part of the CLUE. In addition to verifying forecasts run using

this configuration, sensitivity experiments are run to evaluate

the impact of GSI EnKF configurations for assimilating radar

observations including data thinning, covariance localization

and inflation, observation error specification, and DA fre-

quency. The 10-member multiphysics ensemble forecasts and

deterministic forecasts from the final EnKF ensemble and

mean analyses, respectively, are run for the assessment of DA

impacts on forecasts.

The CTRL DA configuration creates the most skilled fore-

casts in this study while remaining computationally efficient for

real-time use. The initial ensemble of CTRL is centered on the

1800 UTC NAM analysis with perturbations derived from 3-h

SREF forecasts. The DA system assimilates thinned radar

observations (6 km horizontally, 1 km vertically for in-storm

regions, and 2 km vertically for clear air regions) every

15min to remain computationally efficient for experiments run

over the CONUS domain. Although forecast skill can be fur-

ther improved when assimilating more observations (i.e., less

data thinning, increased DA frequency) the experiments re-

quire additional computing resources and become impractical

for real-time use over a large domain such as the CONUS. The

covariance localization radius forZ andVr is set to 12 km in the

horizontal and 0.7 scalar height in the vertical to update un-

observed regions. CTRL skillfully predicts the evolution of the

MCS during the first three forecast hours; however, the pre-

dicted storm becomes displaced from observations at later

times because it moves too quickly. Despite displacement er-

rors that limit objective forecast skill, CTRL predicts the MCS

to weaken during the final forecast hour, which is approxi-

mately the same time as observations. CTRL predicts isolated

convection with less skill. The ensemble predicts small storms

located near the domain boundary with less confidence and

predicts nearby spurious convection.

Modifying radar DA parameters, including data thinning,

covariance localization radii and inflation impacts forecast skill

most during the first forecast hour; large- and small-scale errors

grow rapidly to degrade the benefits of radar DA that mainly

improve storm-scale structures. Results show increasing the

FIG. 10. The 0000 UTC ensemble mean analysis simulated Z at

3 km above ground level (AGL). Thick black contours mark where

the observed Z at 3 km AGL exceeds 5 dBZ, and the background

maps are as in Fig. 2.
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horizontal covariance localization radius and assimilating

more radar observations (i.e., less data thinning) increases

forecast confidence in high reflectivity values near observed

storms and also decreases the coverage of spurious convection.

Small, isolated convection is most sensitive to changes in these

parameters. In contrast, the predicted MCS is less sensitive to

the covariance localization radius or data thinning because the

storm system is mature throughout the radar DA window and

because the MCS is larger in scale so many more in-storm

observations are available for assimilation. Changing the as-

sumed radial velocity and reflectivity observation errors (3–

6 m s21 and 6–9 dBZ, respectively) does not substantially impact

forecast skill in this study. Covariance inflation is an important

aspect of EnKF DA and prevents the collapse of ensemble

FIG. 11. Air temperature T at the lowest model level above the surface for the horizontal covariance localization radius experiments. Thick

black contours mark where the predicted updrafts exceed 1 m s21, and the fuschia ‘‘X’’ marks the locations of San Antonio and Houston.

FIG. 12. The P(Z . 40 dBZ) predicted by the covariance inflation experiments valid at 0015 UTC. Thick black

contours represent locations where observed Z . 40 dBZ. Background maps are as in Fig. 2.
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spread when assimilating a dense network of observations

(e.g., radar observations). Forecast skill is relatively insensitive

to the range of relaxation-to-prior-spread inflation factors

(80%–110%) employed in this study; however, when the pos-

terior ensemble spread is inflated beyond that of the prior

ensemble (i.e., 110% RTPS) forecast skill decreases because

the ensemble overpredicts storm coverage.

DA frequency experiments demonstrate that assimilating

radar observations more frequently (i.e., every 5 min) initially

improves forecast skill by suppressing spurious storms; how-

ever, after 15 min forecasts predict spurious convection to

initiate and forecast skill decreases. The enhanced coverage of

spurious convection and storm position errors cause the ex-

periment that assimilates radar observations every 5 min to

have modestly less skill than experiments that assimilate ob-

servations less frequently (i.e., 10, 15 min) throughout much of

the forecast period. Results of this study concur with Johnson

and Wang (2017), which hypothesizes assimilating observa-

tions too frequently degrades forecast skill because the DA-

induced imbalances are unable to adjust to the model before

the next cycle. Although assimilating observations every

10 min improves objective forecast skill in this study, Stratman

et al. (2020) note that evenmore frequentDA cycling can reduce

the spinup time for storms and suppress spurious convection.

FIG. 13. The P(Z. 40 dBZ) predicted by (a),(d),(g) 5Min; (b),(e),(h) 10Min; and (c),(f),(i) 15Min valid at the labeled times. Thick black

contours represent locations where observed Z . 40 dBZ. Background maps are as in Fig. 2.

FIG. 14. Reliability diagrams for the probabilistic forecasts shown in (a) Figs. 13a–c and (b) Figs. 13g–i. DA fre-

quency experiments correspond to different colors, and the BSS for each experiment is included in the legend.
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Although this study evaluates several key aspects of the ex-

perimental design, many other factors that impact forecast per-

formance should be investigated. For example, future studies

should compare forecast differences between mixed physics and

single physics ensembles. CTRL is amixed physics ensemble that

can enhance forecast diversity (Snook et al. 2012; Johnson and

Wang 2017) but can also introduce more systematic biases into

the forecast system than a single physics ensemble (e.g., Romine

et al. 2013). Future studies should also evaluate forecast sensi-

tivity to conventional observation (ground-based observations,

soundings) DA parameters because these observations modify

atmospheric environmental conditions and can substantially im-

pact storm evolution (e.g., Sobash and Stensrud 2015; Snook et al.

2015). It is noted that the conclusions of this work are limited to a

single case study, and that results are sensitive to many factors

(e.g., storm morphology, environment, ensemble and domain

configuration, observation availability, DA system). Additional

experiments are required to ensure results are robust for a variety

of cases. Even with these limitations, results provide an initial

EnKF configuration that can be deployed in future studies, and

the insights gained from this work contribute to the development

of future ensemble DA systems.
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