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ABSTRACT

EnsembleKalman filter (EnKF) analyses of the storms associatedwith the 8May 2017 Colorado severe hail

event using either theMilbrandt andYau (MY) or theNSSLdouble-moment bulkmicrophysics scheme in the

forecast model are evaluated. With each scheme, two experiments are conducted in which the reflectivity (Z)

observations update in addition to dynamic and thermodynamic variables: 1) only the hydrometeor mixing

ratios or 2) all microphysical variables. With fewer microphysical variables directly constrained by the Z

observations, only updating hydrometeor mixing ratios causes the forecast error covariance structure to

become unreliable, and results in larger errors in the analysis. Experiments that update all microphysical

variables produce analyses with the lowest Z root-mean-square innovations; however, comparing the esti-

mated hail size against hydrometeor classification algorithm output suggests that further constraint from

observations is needed to more accurately estimate surface hail size. Ensemble correlation analyses are

performed to determine the impact of hail growth assumptions in the MY and NSSL schemes on the forecast

error covariance between microphysical and thermodynamic variables. In the MY scheme, Z is negatively

correlated with updraft intensity because the strong updrafts produce abundant small hail aloft. The NSSL

scheme predicts the growth of large hail aloft; consequently, Z is positively correlated with storm updraft

intensity and hail state variables. Hail production processes are also shown to alter the background error

covariance for liquid and frozen hydrometeor species. Results in this study suggest that EnKF analyses are

sensitive to the choice of MP scheme (e.g., the treatment of hail growth processes).

1. Introduction

Hail causes significant damage to both crops and

personal property in the United States—often ex-

ceeding $1 billion (U.S. dollars) in damage annually

(Changnon 2009). Damage from hail is particularly

costly when urban areas are affected. Just since the late

1990s, multiple major metropolitan areas have sus-

tained more than $1 billion in damage from a single hail

event, including Dallas/Fort Worth, Texas; Denver,

Colorado; Kansas City, and St. Louis, Missouri; and

greaterChicago (Edwards andThompson 1998; Changnon

and Burroughs 2003; Changnon et al. 2009; NOAA

National Centers for Environmental Information 2018).

The continued expansion of these metropolitan areas is

expected to further increase hail damage in the future

(Rosencrants and Ashley 2015).

Increasing the warning lead time of severe hail events

can potentially mitigate damage by allowing more time

for preparation. Current warning lead times for severe

hail are limited because the National Weather Service

(NWS) issues warnings based upon the detection of

severe hail (diameter . 1.0 in.). Generally, hail detec-

tions are based upon either surface-based reports or

radar signatures that are indicative of severe hail. To

extend severe hail warning lead times the NWS isCorresponding author: Jonathan Labriola, j.labriola@ou.edu
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investigating a warn-on-forecast framework (Stensrud

et al. 2009, 2013), where instead of issuing warnings

based upon the detection of severe hail, the NWS will

issue warnings based upon high-resolution, frequently

updated numerical weather prediction (NWP) model

guidance. While convection-allowing forecasts can

skillfully predict convective hazards (e.g., Kain et al.

2008, 2010; Clark et al. 2012; Dawson et al. 2012;

Snook et al. 2016, 2019; Yussouf et al. 2015; Yussouf

and Knopfmeier 2019; Johnson et al. 2015; Johnson

and Wang 2017; Schwartz et al. 2015; Skinner et al.

2018; Dawson et al. 2017; Labriola et al. 2017, 2019a;

Jones et al. 2016, 2019; Supinie et al. 2016, 2017; Gallo

et al. 2019; Stratman et al. 2020), forecast skill is highly

dependent upon errors introduced by the initial con-

ditions and model physics.

Previous studies have shown, either through observ-

ing system simulation experiments (OSSEs) or real-data

experiments (e.g., Snyder and Zhang 2003; Zhang et al.

2004, 2006; Dowell et al. 2004; Tong and Xue 2005; Caya

et al. 2005; Xue et al. 2006; Snook et al. 2011; Dawson

et al. 2012; Romine et al. 2013; Schwartz et al. 2015;

Johnson and Wang 2017; Lawson et al. 2018; Stratman

et al. 2020) that an ensemble Kalman filter (EnKF;

Evensen 1994, 2003) can be successfully applied to

convection-resolving forecasts. EnKF methods employ

an ensemble of forecasts to sample error covariance.

Flow-dependent error covariances derived from en-

semble forecasts are used to correct errors in unob-

served variables during data assimilation (DA) that

strongly influence convective-scale dynamics such as

updraft speed, in-cloud temperature, and microphysical

properties (Tong and Xue 2005, hereafter TX05; Tong

and Xue 2008a). This feature of EnKF is particularly

useful when assimilating radar data (e.g., Snyder and

Zhang 2003; Zhang et al. 2004; Dowell et al. 2004; Tong

andXue 2005; Caya et al. 2005; Dowell andWicker 2009;

Aksoy et al. 2009), which provide indirect but high

spatial and temporal resolution observations.

Even when forecasts are initialized from relatively

accurate initial conditions, forecast error will con-

tinue to increase with time due to model errors in-

cluding those associated with subgrid-scale processes

(Zhu and Navon 1999; Houtekamer et al. 2005; Zhang

et al. 2006; Hawblitzel et al. 2007; Melhauser and

Zhang 2012; Zhang et al. 2015). For convective-scale

simulations, one of the largest sources of model error

are microphysical parameterizations. These parame-

terizations represent fine, subgrid-scale processes that

undergo rapid, nonlinear transformations at convec-

tive scales and often rely upon ad hoc procedures

due to the limited understanding of microphysical

processes.

Bulk microphysics schemes (referred to as MP

schemes) are the most commonly used type of micro-

physical parameterization in convective modeling stud-

ies. MP schemes predict the evolution of an assumed

hydrometeor particle size distribution (PSD) that typi-

cally follows a gamma distribution (Ulbrich 1983):

N(D)5N
0x
Dax e2lxD , (1)

where D is the particle diameter, N0x is the intercept

parameter, lx is the slope parameter, and ax is the shape

parameter for hydrometeor species x. To diagnose the

PSD, MP schemes predict certain p moments of the

distribution:
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where G(n) is a gamma function. The zeroth, third, and

sixth moments of a PSD are most commonly predicted

by MP schemes and are proportional to hydrometeor

number concentration (Ntx), mixing ratio (qx), and re-

flectivity (Zx), respectively. The number of predicted

moments corresponds to the number of diagnosed PSD

parameters. All undiagnosed parameters are typically

assumed to be constant.

While single-moment MP schemes (e.g., Lin et al.

1983) are generally computationally efficient because

they predict only hydrometeor mixing ratio, they are

unable to accurately represent microphysical processes

such as selective melting/evaporation and size sorting.

Multimoment MP schemes (e.g., Ferrier 1994; Milbrandt

and Yau 2005a; Morrison et al. 2005; Morrison and

Grabowski 2008; Thompson et al. 2008; Mansell et al.

2010; Milbrandt and Morrison 2013; Morrison and

Milbrandt 2015; Milbrandt and Morrison 2016; Lim

and Hong 2010) can replicate these microphysical

processes and improve the representation of storm

structure. Double-moment schemes that predict both

qx and Ntx (diagnose N0x, lx), can reproduce observed

polarimetric radar signatures (Jung et al. 2012; Johnson

et al. 2016; Putnam et al. 2014, 2017a,b); however, mul-

tiple studies (e.g., Milbrandt and Yau 2005b; Dawson

et al. 2014; Johnson et al. 2016; Morrison et al. 2015)

note these schemes suffer from excessive size sorting.

Excessive size sorting can be mitigated using a cor-

rection mechanism (Thompson et al. 2008; Mansell

2010), a diagnostic shape parameter, or by using a

triple-moment scheme (Milbrandt and Yau 2005b).

In some newer MP schemes, instead of predicting

many static hydrometeor categories (e.g., Straka and

Mansell 2005), the scheme predicts the evolution of

particle characteristics such as density (Mansell et al.

2010; Milbrandt and Morrison 2013; Morrison and
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Milbrandt 2015; Morrison et al. 2015; Milbrandt and

Morrison 2016). MP schemes generally predict the

density of rimed ice; this is because ice particle density

can vary substantially, and because ice particles can

undergo large fluctuations in density during the riming

process. Prognostic density equations allow the MP

scheme to update rimed ice fall speeds and improve the

representation of hail production processes (Labriola

et al. 2019a).

Predicted microphysical variables can be used to di-

agnose surface hail size in a NWP forecast, either via

simulated radar-derived hail products (e.g., Snook et al.

2016; Luo et al. 2017, 2018; Labriola et al. 2017) such as

the maximum estimated size of hail (MESH; Witt et al.

1998a), or by using hail PSDs to diagnose the largest

observable hail size (e.g., Snook et al. 2016; Labriola

et al. 2017, 2019a,b; Luo et al. 2018; Gagne et al. 2019).

Hail size forecasts not only provide useful information

for forecasters but are also useful in evaluating MP

scheme treatment of hail growth and decay processes.

Due to the limited coverage and biased nature of surface

hail reports (e.g., Sammler 1993; Witt et al. 1998b;

Doswell et al. 2005), most hail size forecasts are evalu-

ated against radar-derived hail products that serve as a

proxy for hail size such as MESH or output from a hy-

drometeor classification algorithm (HCA; Heinselman

and Ryzhkov 2006; Park et al. 2009; Ryzhkov et al. 2013;

Ortega et al. 2016).

Over the continentalUnited States, theNextGeneration

Weather Radar (NEXRAD; Crum et al. 1993) network

provides full volumetric scans at a temporal resolution

sufficient to observe the rapid evolution of convective

storms. Reflectivity (Z) is proportional to the sixth mo-

ment of a hydrometeor PSD and is strongly influenced by

larger particles within a radar volume. After a recent

polarimetric upgrade to the NEXRAD system, radars

now emit both horizontally and vertically polarized sig-

nals. Dual-polarization variables such as differential re-

flectivity (Zdr), copolar cross-correlation coefficient (rhv),

and specific differential phase (Kdp), which in addition to

single-polarization products, Z and radial velocity (Vr),

provide information about hydrometeor size, orientation,

phase, and shape (Doviak et al. 2000; Kumjian and

Ryzhkov 2008). Due to the large amount of hydrometeor

information that can be inferred from polarimetric radar

products, several recent studies have used simulated or

observed polarimetric variables (e.g., Jung et al. 2010a,

2012; Ryzhkov et al. 2011; Kumjian et al. 2014; Dawson

et al. 2014; Putnam et al. 2014, 2017a,b, 2019; Johnson

et al. 2016, 2018, 2019; Snook et al. 2016; Snyder et al.

2017a,b) to evaluate microphysical parameterizations.

Generally, Z is the primary observation of micro-

physical relevance assimilated during DA. Despite a

limited number of observations, OSSEs have shown that

an EnKF system can reasonably update single-moment

MP scheme variables when assimilating Z and Vr (TX05).

Multimoment schemes, which predict approximately twice

as many microphysical variables as a single-moment

scheme, are even more underconstrained by observa-

tions. Although Xue et al. (2010) (hereafter XJZ10)

obtained a reasonably good analysis using a double-

moment scheme in an OSSE, it was noted that Z alone

may be insufficient to constrain the increased number of

variables in multimoment schemes because many differ-

ent microphysical configurations can correspond to the

same Z. Additionally, the large number of predicted

variables introduces error into the analysis because in-

creasing the number of error-containing parameters de-

creases the accuracy of the estimation (Aksoy et al. 2006;

Tong and Xue 2008b; Jung et al. 2010b).

Relatively few studies have considered developing an

optimal EnKF-based framework for updating multi-

momentMP scheme variables duringDA. Previously, to

improve constraint of microphysical variables, XJZ10

assimilated both radar Z and Vr, and Labriola et al.

(2019a) used an EnKF system to update only hydro-

meteor mixing ratio; however, both studies conclude

that there is a need to further analyze the ability of an

EnKF system to update multimoment scheme variables.

This study evaluates EnKF analysis sensitivity to selective

state variable updating and the microphysical assump-

tions made within two double-moment MP schemes used

in the prediction model. Knowledge gained through this

study provides information that can be used to optimize

EnKF configurations when using such multimoment MP

schemes. To this end, EnKF analyses are evaluated for

the 8 May 2017 Colorado severe hail event. The rest of

the paper is organized as follows: in section 2a brief

overview of the 8 May 2017 Colorado severe hail event is

provided along with the experimental design, including

the EnKF and prediction model settings. Verification

statistics and ensemble correlation analyses are provided

in section 3. Finally, section 4 contains a summary and

discussion of the results.

2. Methods

a. Case overview

On 8May 2017, multiple hail producing thunderstorms

occurred over north-central Colorado. According to

surface-based hail reports received by the StormPrediction

Center (SPC), these storms produced severe (diameter .
25mm) and significant severe (diameter . 50mm) hail

starting at approximately 2000 UTC. One storm that im-

pacted downtown Denver (Fig. 1) caused a particularly

large amount of damage; due to heavy traffic volume
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during evening rush hour, a large number of cars sustained

major hail damage during the storm (Fritz 2017).As of the

date of this writing, an estimated $2.3 billion in insurance

claims (NOAA National Centers for Environmental

Information 2018) have been filed in Colorado for hail

damage sustained during this severe weather event.

Forcing for large-scale ascent was moderate during

this severe weather event. Atmospheric conditions were

conducive for the development of supercell thunder-

storms with moderate shear [0–6 km shear: 30–40kt

(1kt ’ 0.51ms21)] and instability (mixed-layer CAPE:

1000–1500Jkg21) (Marsh 2017).On 8May2017,Colorado

was located downstream of a trough associated with an

upper-level low pressure system stationed over Baja

California. Cyclonic vorticity advection from the trough

paired with low-level convergence along a weak frontal

boundary initiated multicellular storms to the south and

east of Denver at approximately 1930 UTC. Additional,

more isolated storms initiated along the front range of the

Rocky Mountains via upslope flow, one of these storms

later produced significant severe hail overDenver (Fig. 1c).

For additional information regarding this severe weather

event we refer the reader to Labriola et al. (2019b).

b. Prediction model settings

All experiments use theAdvancedRegional Prediction

System (ARPS; Xue et al. 2000, 2001) NWP model on a

domain of 483 3 443 3 53 grid points with a horizontal

grid spacing of 500m. The model grid is stretched in the

vertical, with a minimum grid spacing of 50m at the

surface and an average vertical grid spacing of 425m.

Model physics include NASA Goddard Space Flight

Center short- and longwave radiation parameterization;

surface fluxes calculated from surface drag coefficients,

surface temperature, and volumetricwater; a two-layer soil

model; and a 1.5-order turbulent mixing and planetary

boundary layer parameterization (Xue et al. 2000, 2001).

Ensemble forecasts are run using either the Milbrandt

and Yau (2005a) double-moment (MY) MP scheme or

the NSSL double-moment variable density rimed ice MP

scheme (Mansell et al. 2010). These MP schemes were se-

lected for this study because they are commonly used

multimoment MP schemes that have been used in several

previous experiments to produce explicit hail forecasts

(Milbrandt andYau2006; Snooket al. 2016; Luoet al. 2017,

2018; Labriola et al. 2017, 2019a,b). Following Labriola

et al. (2019a), the minimum hydrometeor number con-

centration threshold is set to 1028m23 for both schemes to

avoid excessive removal of hail near the surface, which can

result when using the MY default setting (1023m23).

Initial and boundary conditions are interpolated from

the Center for Analysis and Prediction of Storms (CAPS)

EnKF storm-scale ensemble forecast (SSEF; Jung et al.

2018)—a 40-member ensemble of forecasts run using the

Advanced Research version of theWeather Research and

Forecasting Model (WRF-ARW; Skamarock et al. 2008).

The SSEF uses 3-km horizontal grid spacing, and its

model domain spans the contiguous United States. The

SSEF was initialized via EnKF at 1800 UTC 8 May 2017

from the North American Mesoscale Forecast System

FIG. 1. (a) An areal map of the Denver region. (b) Observed Z from the lowest radar tilt (0.58) of KFTG (Denver) at 2040 UTC.

(c) Merged HCA output between 2000 and 2040 UTC. The HCA is applied to the lowest radar tilts (0.58) of the two closest radars: KFTG

(Denver) and KCYS (Cheyenne). Purple contours represent urban boundaries, thin black lines represent major highways. All regions of

the domain that are more than 2.5 km above mean sea level are shaded gray.
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(NAM; Environmental Modeling Center 2017) analy-

sis, with initial perturbations introduced by the Short-

Range Ensemble Forecast (SREF; Du et al. 2015). The

SSEF is run until 0000 UTC 9 May 2017. At 1903 UTC

the 500-m domain is interpolated from the SSEF, with

boundary conditions obtained from the SSEF every

9min; these times were selected because the SSEF

outputs model data every 9min. No microphysical in-

formation is provided along domain boundaries to

avoid development of spurious convection. For addi-

tional information regarding the 2017 CAPS SSEF,

we refer the reader to CAPS (2017).

c. DA and observation operator settings

After initialization, the 500-m ensemble forecasts

undergo a;60-min spinup period until 2000 UTC, when

DA cycling begins (Fig. 2). The CAPS EnKF system

(Xue et al. 2006; Tong and Xue 2008b), which is based

upon the Whitaker and Hamill (2002) ensemble square-

root filter (EnSRF) algorithm, assimilates all avail-

able observations every 5min between 2000 and

2040 UTC (Fig. 2).

Surface (ASOS and AWOS) observations and data

from the Denver NEXRAD radar (KFTG) are assimi-

lated during the experiment. Observation error settings

follow Snook et al. (2016). For surface observations,

errors are assumed to be 1.5m s21 for horizontal wind

components u and y, 2.0K for potential temperature u,

and 2.0K for dewpoint temperature Td. The covariance

localization radius is set to 300 km in the horizontal and

6km in the vertical. Surface observations update only

select model state variables (i.e., u, y, u, qy), as was done

in Labriola et al. (2019a) because unreliable covariances

led to the intensification of spurious updrafts during DA.

KFTG observation errors are assumed to be 4.0ms21 for

Vr and 6.0dBZ forZ. These values are larger than typical

instrument errors associated with NEXRAD radars (e,g.,

Doviak and Zrnić 1993; Ryzhkov et al. 2005), but for data

assimilation purposes, the errors also include represen-

tative errors and other sources of uncertainties. Also,

specifying relatively large observation errors can help

alleviate underdispersion problems of the EnKF en-

semble and past sensitivity studies have shown better

performance of the ensemble analyses and subsequent

ensemble forecasts (e.g., Dowell et al. 2004; Snook

et al. 2013). The Gaspari and Cohn (1999) covariance

localization cutoff radius is set to 3 km in both the

horizontal and vertical. KFTG data are interpolated

horizontally to the model domain, but the height of the

radar beam is preserved in the vertical (Xue et al.

2006); Z and Vr observations are preprocessed in the

horizontal directions to 1 km grid spacing in regions of

precipitation (Z . 5 dBZ) and to 2 km spacings in re-

gions of clear air (Z , 5 dBZ). Given that the radar

observations have average resolution of about 1 km,

such observation density preserves most useful infor-

mation in the observations. The relaxation-to-prior

spread (Whitaker and Hamill 2012) algorithm is used

to inflate the posterior ensemble spread to 95% of the

prior spread for all thermodynamic variables (i.e., u, y,

w, u, p) and hydrometeor mixing ratio qx. Inflating all

hydrometeor state variables (i.e., qx, Ntx, and yx) can

potentially cause PSDs to become unbalanced, and

cause hydrometeor properties to become unrealistic

(e.g., hail is too dense). Following Labriola et al.

(2019a), Ntx and yx are updated during inflation to

preserve EnKF estimated mean mass diameter and

density, respectively.

The radar observation operator used during this ex-

periment, which is a variant of the Jung et al. (2010a)

T-matrix method, uses lookup tables based upon PSD

parameters to calculate the hydrometeor scattering am-

plitude; an in-depth discussion of this observation oper-

ator is provided in Putnam et al. (2019). Generally, MP

FIG. 2. The experiment configuration for ensembles MY-Q, MY-ALL, NSSL-Q, and NSSL-

ALL. The blue region represents the approximate 1-h spinup period and the orange region

represents the 40-min period when 5-min DA cycling occurs. Downward pointing arrows in-

dicate where assimilation occurs.
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schemes do not track meltwater, instead the water frac-

tion is diagnosed in the observation operator. The Jung

et al. (2008a)meltingmodel is used to create an ice–water

hybrid mixture for both hail and graupel in the observa-

tion operator. The mixing ratio of the ice–water hybrid

category is determined via a ratio between ice and rain-

water mixing ratios, the number concentration is updated

to preserve particle mean mass diameter and prevent the

excessive accumulation of rainwater on the surface of ice

particles (Labriola et al. 2019a).

A total of four experiments are conducted during this

study; ensembles run using either the MY or NSSL

schemes will assimilate observations where either Z

updates: 1) hydrometeor mixing ratios only or 2) all

microphysical state variables (qx, Ntx, yx); in addition to

dynamic and thermodynamic variables (u, y,w, u, qy). To

determine the impact of assimilating Z observations, no

other observations update microphysical state variables.

Experiments are named after the MP scheme used and

the microphysical variables that are updated (i.e., MY-Q,

MY-ALL, NSSL-Q, NSSL-ALL). In addition to assimi-

lating Z, Vr is used in all experiments to update u, y, and

w, along with water vapor mixing ratio (qy). The Vr for-

ward observation operator does not consider hydrome-

teor terminal velocities due to the large uncertainties in

hydrometeor size distribution and fall speed assumptions

and small elevation angles of radar beams.

Analyses and forecasts during the DA period (2000–

2040 UTC) are objectively and subjectively evaluated to

determine which experiment produces the most accurate

initial state estimate. This time period was selected for

evaluation because radar derived hail products (i.e., HCA

output) indicate that multiple thunderstorms were pro-

ducing significant severe surface hail, the largest HCA hail

size bin. While storms caused more substantial damage

after 2040 UTC when they impacted downtown Denver,

they produced similarly large hailstones both during and

after theDAperiod. Forecast evaluation after 2040UTC is

beyond the scope of this study, instead we refer the reader

to previous studies (e.g., Snook et al. 2016; Luo et al. 2018)

that evaluate surface hail size forecasts.

d. Analysis evaluation procedure

Due to the nature of this severe weather event, esti-

mated surface hail size is verified against radar-based

hail size estimates. Surface-based hail reports are gen-

erally too sparse and unreliable to be used for verifica-

tion; severe hail occurrences are underreported in rural

areas and away from highways, as well as when a more

severe weather event, such as a tornado, occurs nearby

(Doswell et al. 2005;Witt et al. 1998b; Allen and Tippett

2015). For example, there are only 4 hail reports recorded

by the SPC during the DA period (2000–2040 UTC)

and all reports are in Denver. Radar observations during

the same period (Fig. 1c) indicatemultiple hail producing

storms were present in the experiment domain. Further,

hail sizes that correspond with familiar circular objects

(e.g., quarters, golfballs) are overreported by the public

(Sammler 1993), skewing reported hail sizes. Radar de-

rived hail products such as MESH (Witt et al. 1998a) and

HCA output (Heinselman and Ryzhkov 2006; Park et al.

2009; Ryzhkov et al. 2013; Ortega et al. 2016; Putnam

et al. 2017b) have been shown to be superior to surface-

based reports for hail size verification because they have a

high spatial resolution and fewer systematic biases

(Cintineo et al. 2012).

When working with unbiased observations, HCA

output is shown to better discriminate hail size than the

MESH algorithm (Ortega et al. 2016). Subjective com-

parisons also demonstrate the HCA output closely re-

sembles surface-based hail reports (when available)

both in terms of hail size and the location of the report.

The Ortega et al. (2016) HCA applies a fuzzy logic al-

gorithm to both single- (Z) and dual-polarization (Z,

Zdr, rhv) radar observations along with environmental

information (i.e., temperature) to classify the dominant

hail size for a grid point as either: nonsevere ($5mm),

severe ($25mm), or significant severe ($50mm).

Output from the Ortega et al. (2016) HCA (Fig. 1c)

along with radar observed Z (Fig. 1b) is used to

evaluate ensemble analyses and forecasts during the

DA period.

In this study, the HCA is applied to NEXRAD radar

observations from both Denver (KFTG) and Cheyenne

(KCYS); these are the two closest radars to the hail

producing storms. Radar observations are interpolated

to the 500-m model grid for verification, with a 9-point

smoother applied to Zdr and rhv to reduce noise.

Environmental information is obtained from the en-

semble forecasts. HCA output is considered within a

120 km radius of a given radar, this is the maximum

distance Ortega et al. (2016) uses to diagnose surface

hail size. HCA output from KFTG and KCYS is

merged by taking the maximum detected hail size at

each grid point and applying a smoothing filter that

decreases hail size detections by one size bin (e.g.,

significant severe to severe) when the majority of grid

points within a 1 km radius are smaller than the given

HCA detection (Labriola et al. 2019a).

NWP models do not explicitly predict surface hail

size, instead hail PSDs are frequently used to diagnose

the maximum observable hail size at a grid point (e.g.,

Snook et al. 2016; Labriola et al. 2017, 2019a,b; Luo et al.

2018; Gagne et al. 2019). This study uses the Snook et al.

(2016) maximum hail size algorithm, which defines the

maximum hail size (Dmax) as the largest diameter for
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which the PSD predicts at least 1 hailstone in a 100m3
100m box located in the lowest meter of the atmosphere

(Ntmin5 1024m24). This criterion is similar to minimum

number concentration thresholds defined for hail in

previous studies (e.g., Milbrandt and Yau 2006; Gagne

et al. 2019). Although the minimum number concen-

tration threshold can be modified, the average Dmax

value does not substantially change (approximately

1–2mm) when the threshold is increased or decreased

by an order of magnitude. The spatial coverage of

analysis estimated Dmax at the lowest model height

(;25m AGL) is compared subjectively and objec-

tively to the HCA output (Fig. 1c).

3. Results

a. Evaluating ensemble forecast and analysis
innovations

The root-mean-square innovation (RMSI) and en-

semble spread of Z and Vr (Fig. 3) quantitatively

evaluate EnKF analyses and forecasts. The RMSI is

defined as

RMSI5
ffiffiffiffiffiffiffiffiffi
hd2i

p
, (3)

where hd2i is the mean squared innovation or difference

between the observation and model mapped to obser-

vation space; d is defined as

d5 yo 2H(x) , (4)

where yo is the observation, H is the forward operator

that maps the model state vector to observation space,

and x is either themodel state forecast or analysis vector,

respectively. Innovations are averaged over the KFTG

volume in regions where either the observed or ensem-

ble mean simulated Z exceeds 15 dBZ. This criterion

includes both observed precipitation and spurious ech-

oes, but eliminates potentially large regions of clear air

and light precipitation from the statistics (Snook et al.

2011; Jung et al. 2012).

FIG. 3. The ensemble RMSI (solid lines) and spread (dotted lines) for (a),(b) Z and (c),(d) Vr. The performance

of ensembles (a),(c) MY-Q and (b),(d) NSSL-Q are marked with red lines, and (a),(c) MY-ALL and (b),(d) NSSL-

ALL are marked with black lines. Statistics are calculated over the experiment domain from 2000 to 2040 UTC,

calculations are limited to locations where the observed and/or model (ensemble mean) Z exceeds 15 dBZ.
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Although innovations are relatively similar between

NSSL-Q and NSSL-ALL (Figs. 3b,d), RMSIs differ

substantially between MY-Q and MY-ALL for Z

(Fig. 3a). The MY-Q and MY-ALL RMSIs for Vr are

relatively similar (Fig. 3c); this is partly because only

winds in the precipitation regions are included in the

statistics while differences in the outflow regions are

not included. MY-Q RMSIs for Z exhibit only a small

reduction during DA cycling, suggesting updating

only one PSD parameter for multimoment schemes

may lead to an unreasonable PSD in MY-Q (Fig. 3a).

RMSIs for MY-Q and MY-ALL Vr are more similar

than RMSIs for Z. Wind speed is indirectly influenced

by microphysical state variables through thermody-

namic feedbacks, and therefore unlike Z, is less affected

by updates to total number concentrations during as-

similation. When only parts of PSD variables are up-

dated, the RMSI for MY-Q Vr does not change much

with cycles (Fig. 3c). This behavior is not observed in

NSSL-Q for reasons that will be discussed later in this

section.

Analysis mean simulated Z (Fig. 4) and KFTG ob-

servations (Fig. 1b) are subjectively compared at the

time of the final DA cycle (2040 UTC) to identify why

the RMSI for MY-Q Z (Fig. 3a) is larger than any other

ensemble (Figs. 3a,b). Although there are slight varia-

tions in simulated Z intensity, MY-ALL (Fig. 4b),

NSSL-Q (Fig. 4c), and NSSL-ALL (Fig. 4d) analyses

closely match observed Z (Fig. 1b). MY-Q (Fig. 4a) Z is

somewhat different from observations (Fig. 1b); storm

FIG. 4. Ensemble mean simulatedZ interpolated to the lowest tilt (0.58) of KFTG at the time of the final analysis

(2040UTC) for ensembles (a)MY-Q, (b)MY-ALL, (c)NSSL-Q, and (d)NSSL-ALL.A black square in each figure

marks the subdomain analyzed in Fig. 6, the background map is the same as Fig. 1.
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structure is less organized, and the MY-Q analysis fre-

quently underestimates Z. Additionally, MY-Q predicts

reflectivity to be spuriously intense in regions of rela-

tively little observed precipitation, such as to the east of

Denver (Fig. 4a). Poor MY-Q Z estimates that increase

the RMSI for MY-Q Z (Fig. 3a), are due in part to un-

reliable error covariances that develop as a consequence

of unbalanced updates of hydrometeor mixing ratios

and number concentrations.

Despite predicting weaker Z values in the convective

core of the observed storms, MY-Q predicts the total

mass and number of rain (Figs. 5a,c) and hail (Figs. 5b,d)

to be larger thanMY-ALL. This is partly becauseMY-Q

predicts more spurious Z throughout the domain during

DA (Fig. 4a); however, the ensemble also predicts ob-

served storms to produce more precipitation. NSSL-Q

(Fig. 4c) and NSSL-ALL (Fig. 4d) predict more intense

Z than either MY ensemble (Figs. 4a,b) despite both

experiments predicting substantially less hail in terms

of both mass and number (Figs. 5b,d). This is because

although the NSSL scheme predicts storms to produce

relatively large hail aloft that contributes to high

Z values. Results agree with previous studies (e.g.,

Johnson et al. 2016, 2019), which note the MY scheme

predicts storms to produce a large number of small

hailstones aloft while the NSSL scheme predicts storms

to produce fewer but larger hailstones. Differences in

simulatedZ between the experiments demonstrate that

Z is not a monotonic function of hydrometeor mixing

ratio but is sensitive to changes in the hydrometeor

particle size distribution.

For an EnKF system to accurately estimate model

state variables that are not directly observed, the filter

must develop reliable multivariate covariances during

the assimilation period. The cross covariance between

state variables and observation priors is used to re-

trieve unobserved variables and modify storm struc-

ture. Previous studies, such as TX05 and XJZ10,

analyzed forecast cross correlations between model

state variables and an observation prior at an assumed

observation location. Such correlation analyses dem-

onstrate the expected impact of assimilating that ob-

servation on analyzed model state variables; a positive

(negative) correlation between state variables and

FIG. 5. Ensemblemean (forecast and analysis) (a),(b) totalmass and (c),(d) number of (a),(c) rain and (b),(d) hail

between 2000 and 2040 UTC. Hydrometeor concentrations are summed over a volume that spans the experiment

subdomain.
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observation prior suggests the EnKF will adjust both

variables in the same (opposite) direction. For in-

stance, if the Z observation prior and vertical velocity

are positively correlated the EnKF will strengthen the

storm updraft (i.e., intensify the storm) when the Z

prior is adjusted upward toward the observed Z value

by the filter. Figure 1 of Snyder and Zhang (2003) il-

lustrates this idea for a radial velocity observation and

vertical velocity.

Examples of an ensemble correlation analysis are

provided in Figs. 6a–h. The ensemble correlation anal-

ysis is performed over a subdomain containing spuri-

ously strong Z values in MY-Q, highlighted in Fig. 4.

The assumed Z observation prior (sampled at the loca-

tion of the white star) and hydrometeormixing ratios are

interpolated to the lowest radar tilt of KFTG (0.58) from
the closest model grid points both above and below the

radar beam prior to calculating correlation; this allows

for comparison between simulated (Figs. 6j–m) and

observed Z (Fig. 6i). In previous OSSEs (e.g., Zhang

et al. 2004; Caya et al. 2005; TX05), analyzed state var-

iable estimates are often poor during the first several

DA cycles because the error covariance between model

state variables and observation priors is unreliable.

Ensemble covariances are typically examined when the

state estimation and ensemble covariance become

reasonably reliable in later cycles (e.g., TX05). In this

study, correlation analyses are performed on the en-

semble forecasts prior to the final DA at 2040 UTC

when multivariate ensemble covariances can be rea-

sonably good (Fig. 2).

MY-Q predicts high Z values where no organized

convection is observed (Fig. 4a); such spurious precipi-

tation develops within the model during the DA cycles

near 2030 UTC and is not effectively suppressed by the

filter in this case. A correlation analysis is conducted to

understand why the MY-Q EnKF intensifies Z in a

spurious storm to the east of Denver. Although MY-Q

analyses predict the storm to produce large Z values,

the updraft is weak and disorganized, which remains

FIG. 6. Forecast error correlations for ensembles (a),(e)MY-Q, (b),(f)MY-ALL, (c),(g) NSSL-Q, and (d),(h) NSSL-ALL. The location

of the subdomain is shown in Fig. 4. Correlations are calculated between the (a)–(d) mass of rain qr or (e)–(h) mass of hail qh and an

assumedZ observation (white star) interpolated to the lowest tilt of (0.58) KFTGprior to the final assimilation cycle at 2040UTC. Positive

correlations (solid lines) and negative correlations (dashed lines) are plotted in increments of 0.15 between 20.3 and 0.3. Stronger

correlations (0.3 and 20.3) are contoured with a thick black line, weaker correlations (0.15, 20.15) are contoured with a thin black line.

To reduce noise, the correlation field is smoothed using a 9-point filter. Color shading represents ensemble forecast mean (a)–(d) qr or

(e)–(h) qh. Observed (i) Z and ensemble analysis mean Z for ensembles (j) MY-Q, (k) MY-ALL, (l) NSSL-Q, and (m) NSSL-ALL are

provided at the same time and location.
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unchanged during DA. In the vicinity of the spurious

storm, Z and qr in MY-Q are relatively uncorrelated

(Fig. 6a), consequently the EnKF is unable to de-

crease qr in the spurious storm when assimilating Z

observations. In the same location MY-Q Z and qh are

negatively correlated (Fig. 6e), this relationship in-

tensifies reflectivity in the spurious storm during DA

(Fig. 6j) because the EnKF increases qhwhen decreasing

spuriously large model diagnosed Z. While experiment

MY-Q exhibits the weakest correlations between Z and

qr (Fig. 6a), the other ensembles exhibit mostly strong

positive correlations throughout much of the subdomain

(.0.3) (Figs. 6b–d). Differences in the forecast error

covariance structure between MY-Q (Fig. 6a) and MY-

ALL (Fig. 6b) suggest the importance of correctly up-

dating all model state variables.MY-ALL,NSSL-Q, and

NSSL-ALL analyses predict weakerZ values that better

fit observations in the subdomain (Figs. 6k–m). This

is in part because the background better fits observations

(i.e., no spurious storm prior to assimilation) and the

background error covariance produces a more optimal

analysis.

Updates to microphysical state variables, such as qr,

also impact thermodynamic state variables. For ex-

ample, enhanced evaporational cooling attributed to

an increase in precipitation during data assimilation

(Figs. 5a,b) may cause MY-Q to predict more intense

cold pools (Figs. 7a,b) and stronger (Figs. 7c,d) winds

thanMY-ALL.Windsmodified by spurious storms also

increase the RMSI for MY-QVr (Fig. 7c) more than for

MY-ALL Vr (Fig. 7d).

b. Evaluating surface hail size

For an analysis to skillfully estimate surface hail size,

microphysical variables must be properly updated so

that the analyzed hail PSD produces reasonable hail

size estimates. Box-and-whisker plots (Fig. 8) compare

the ensemble member analysis estimated areal surface

FIG. 7. Ensemble mean forecast (a),(b) temperature at the lowest model grid level above the surface and (c),(d) radial velocity at the

lowest KFTG grid tilt for (a),(c)MY-Q and (b),(d)MY-ALL prior to the final assimilation cycle at 2040 UTC. (e) Observed KFTG radial

velocity at the same time is provided. Thick black contours represent the 30 dBZ ensemble forecast mean Z smoothed using a 9-point

filter. Background maps are the same as Fig. 1.
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coverage of nonsevere, severe, and significant severe hail

to HCA output (Fig. 1c). Additional subjective compari-

sons are performed by comparing the probability-matched

mean (Ebert 2001) of the ensemble analysisDmax (Fig. 9)

to HCA output (Fig. 1c). Unlike a simple ensemble mean,

which typically smooths out extreme values (i.e., large

hail sizes), the probability-matched mean maintains

the frequency distribution of the ensemble to preserve

extreme values.

All ensembles overestimate the spatial coverage of

nonsevere hail (Fig. 8); in addition, MY-Q overesti-

mates the coverage of severe and significant severe hail

(Fig. 8a). In the probability-matched mean of the en-

semble analyses, Dmax in MY-Q (Fig. 9a) predicts the

largest hail (Dmax . 200mm) in spurious convection

located to the south and east of Denver. HCA output is

unable to identify the maximum hail size because all

hail greater than 50mm in diameter is classified as

‘‘significant severe’’; however, the largest hail report

recorded by the SPC for this event is 70mm, suggesting

that MY-Q substantially overestimates surface hail size.

Further, almost all MY-Q estimated severe and signifi-

cant severe hail coverage occurs in spurious convection

away from where HCA output indicates large hail to

occur (Fig. 1c). Although NSSL-Q underestimates the

coverage of significant severe hail (Fig. 8c), the analyses

(Fig. 9c) exhibit some qualitative skill and much of the

largest hail occurs in regions where significant severe

hail is detected in HCA output (Fig. 1c). MY-ALL

(Fig. 8b) and NSSL-ALL (Fig. 8d) underestimate the

spatial coverage of severe and significant severe hail,

and their probability-matched means (Figs. 9b,d) sug-

gest the analyses rarely indicate hail exceeding 25mm in

diameter.

Hail size changes as the DA system modifies qh and

Nth. The MY-Q filter, which does not modify Nth, fre-

quently estimates large hailstones (Fig. 9a), primarily

because the EnKF makes large adjustments to qh in

FIG. 8. Analysis estimated coverage of nonsevere (green), severe (blue), and significant severe (purple) hail

according toDmax between 2000 and 2040UTC for ensembles (a)MY-Q, (b)MY-ALL, (c)NSSL-Q, and (d)NSSL-

ALL. Hail coverage is only considered within the domain shown in Fig. 1 and where land elevation is less than

2.5 km above mean sea level. Actual coverage of nonsevere, severe, and significant severe hail based upon HCA

output (Fig. 1c) is marked with a thick horizontal line of the corresponding color. Although the largest observed

hailstone on this day was approximately 70mm, the coverage ofDmax. 100mm (yellow) is included to identify hail

size overestimation biases.
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regions where relatively little hail is present. When

large quantities of added ice mass are shared between

a relatively small number of hailstones, the average

hailstone diameter greatly increases. To demonstrate

this behavior a PSD is sampled from a hailstorm

southeast of Denver (‘‘3’’ in Fig. 9a) using the MY-Q

ensemble mean both before and after assimilation at

2140 UTC. At the MY-Q sampled grid point qh in-

creases by 5.3 3 1022 g kg21 (Table 1) during DA.

Because qh increases but Nth remains constant, the

slope of the analysis hail PSD becomes more shallow

than the forecast (Fig. 10a) and Dmax increases by

FIG. 9. The probability match mean of Dmax for ensemble analyses (a) MY-Q, (b) MY-ALL, (c) NSSL-Q, and

(d) NSSL-ALL between 2000 and 2040 UTC. A black ‘‘3’’ in (a) and (b) marks the location where hail PSDs are

sampled in Fig. 10. Horizontal dashed lines in (b) and (d) mark the locations where vertical cross sections are taken

in Figs. 11–15.

TABLE 1. MY-Q and MY-ALL forecast and analysis mean qh, Nth, and Dmax at 2040 UTC. The locations where the MY-Q and

MY-ALL hail variables are sampled is marked with an ‘‘3’’ in Figs. 9a and 9b, respectively. Hail state variables diagnose the hail PSDs

shown in Fig. 10.

MY-Q forecast MY-Q analysis MY-ALL forecast MY-ALL analysis

qh (g kg
21) 1.64 3 1022 6.94 3 1022 6.02 3 1022 2.68 3 1021

Nth (m
23) 4.55 4.55 24.19 92.32

Dmax (mm) 17 28 17 19

JUNE 2020 LABR IOLA ET AL . 2377

Brought to you by UNIVERSITY OF OKLAHOMA LIBRARY | Unauthenticated | Downloaded 12/30/20 10:35 PM UTC



approximately 11mm (Table 1). In extreme instances

DA causes Dmax to exceed 200mm in MY-Q (Fig. 9a).

NSSL-Q estimates hail sizes (Fig. 9c) that more closely

resemble HCA output (Fig. 1c). A more reliable mul-

tivariate covariance, due in part to fewer spurious

storms in the NSSL-Q background forecasts compared

to the MY-Q background forecasts (not pictured),

prevents large updates to qh and limits the most ex-

treme hail sizes.

Hail PSDs sampled from the MY-ALL ensemble

forecast and analysismean at 2140UTC in a hailstorm to

southeast of Denver (‘‘3’’ in Fig. 9b) demonstrate how

the EnKF adjusts hail size through changes to both qh
and Nth (Fig. 10b). During DA, the MY-ALL EnKF

increases qh by approximately 2.08 3 1021 g kg21 and

nearly triples Nth (Table 1). Although qh in MY-ALL

increases more than in MY-Q (Table 1), Dmax remains

relatively unchanged because of the increase inNth. The

slope of theMY-ALL analysis hail PSD is similar to that

of the forecast PSD (Fig. 10b) and subsequently Dmax

increases by only 2mm (Table 1). For this analyzed grid

point (Fig. 10b) Dmax is classified as nonsevere, despite

the HCA output (Fig. 1c) detecting significant severe

hail in the surrounding region. Microphysical variables,

such as Nth, need additional constraint to accurately

estimate hail size; previous work by XJZ10 suggests as-

similating additional data improves initial condition es-

timates by further constraining microphysical variables.

Although MY-ALL and NSSL-ALL analyses esti-

mate microphysical properties, such as Z with a mod-

erate to high level of skill (Figs. 3a,b), there are an

insufficient number of observations to constrain all

microphysical variables associated with multimoment

microphysics schemes and, as a result, the performance

of hail size forecast is limited. To the west of Denver

where the HCA detects significant severe hail (Fig. 1c),

MY-ALL (Fig. 9b) and NSSL-ALL (Fig. 9d) analyses

underestimate hail size in part because the EnKF

modifies moments of the hail PSD so that the slope of

the PSD remains relatively constant (e.g., Fig. 10b).

This causes hail mass to be split among more hail-

stones, limiting the ability to increase the mean hail-

stone diameter.

c. Ensemble correlation analysis

Differences in the microphysical parameterizations

cause hydrometeor properties (e.g., size, density, fall

speed) to differ substantially between MP schemes. For

example, Johnson et al. (2016) note that hail behavior

differs between theMY andNSSL schemes primarily due

to differences in hail production processes. Typically, the

MY scheme produces many small hail particles aloft be-

cause the MY hail category is primarily composed of

small, frozen raindrops that have been converted into hail

particles (Johnson et al. 2016). The NSSL scheme pro-

duces fewer and larger hailstones because hail is pro-

duced from dense graupel that has undergonewet growth

(Mansell et al. 2010). Simulated Z is intrinsically related

to such microphysical assumptions (e.g., Jung et al.

2008b,a, 2012; Dawson et al. 2014; Putnam et al. 2014,

2017b; Johnson et al. 2016, 2018); these assumptions also

determine the forecast error covariance (TX05; XJZ10).

The ensemble correlation between observation prior

Z and model state variables (i.e., w, u, qh, Nth, qr, Ntr)

illustrates how different hail treatments in MP schemes

impact the analysis increments. Ensemble correlation

FIG. 10. Hail PSDs diagnosed from model level 15 (1.96 km above ground level) of (a) MY-Q and (b) MY-ALL

ensemble mean forecasts and analyses at 2040 UTC. The grid point where the MY-Q and MY-ALL hail PSDs are

diagnosed is marked with an ‘‘3’’ in Figs. 9a and 9b, respectively. The hail variables used to diagnose the PSDs are

provided in Table 1. PSDs were selected to highlight examples of how the EnKF updates a hail PSD during

assimilation.
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analyses are performed on the hailstorm located to the

west of Denver over Interstate-70 (Fig. 1) prior to the

final DA cycle at 2040 UTC. Vertical cross sections are

taken through the updraft of the hailstorm (Figs. 9b,d)

and coincide with where most hail growth processes

occur. The correlation analysis is performed in the ver-

tical to capture the variation of hail particle behavior

both above and below the 08C isotherm.

When an assumed observation is taken from the ice-

phase dominant region of the MY-ALL updraft, w and

Z become negatively correlated (Fig. 11a). This corre-

lation pattern was first observed in XJZ10 and was at-

tributed to microphysical assumptions made in the MY

scheme. Stronger updrafts loft more rain and cloud

water aloft, leading to a positive correlation between w

and rainwater throughout much of the updraft above

the 08C isotherm (i.e., supercooled water) (Figs. 12b,d).

Supercooled raindrops are converted into hail within

the MY scheme, hence updraft intensity is also pos-

itively correlated with Nth (Fig. 12e) throughout

much of the storm. Because raindrops are relatively

small, the mean mass diameter of hail decreases in

strong updrafts (e.g., Johnson et al. 2016; XJZ10),

and thus Z is negatively correlated with w in MY-ALL

forecasts. Weaker updrafts advect less supercooled

liquid above the 08C isotherm and lower the pro-

duction rate of small hailstones; additionally larger

hailstones aloft fall through the weaker updrafts to

enhance Z.

MY-ALL correlations determine how model state

variables are modified during reflectivity assimilation.

Similar to XJZ10, Z at the observation location is neg-

atively correlated with u in the updraft region (Fig. 11d)

because w and u are positively correlated in the updraft

FIG. 11. Vertical cross sections of MY-ALL ensemble forecast mean (a) w, (b) qr, (c) qh, (d) u, (e) Ntr, and (f) Nth prior to the final

assimilation cycle at 2040 UTC. Cross sections are taken through the Denver hailstorm, denoted as east–west line in Fig. 9b. Forecast

error correlations between an assumed Z observation taken from within the hail growth zone (white star) and state variables

are plotted. The same plotting convention is used to contour correlation as in Fig. 6. The horizontal brown line represents the

08C isotherm.
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region (Fig. 12a). Hydrometeor state variables: qr
(Fig. 11b), Ntr (Fig. 11e), and Nth (Fig. 11f) are nega-

tively correlated with Z between 4 and 8 km above

MSL; this is where frozen raindrops are converted to

hail. Unlike with Nth, Z exhibits mostly positive cor-

relations with qh (Fig. 11c) above the 08C isotherm,

suggesting the complex relationship between Z and the

hail size spectrum.

Unlike MY-ALL, Z at the observation location is

positively correlated with w (Fig. 13a) throughout

much of the NSSL-ALL storm updraft; however, sim-

ilar to MY-ALL, w is positively correlated with both

rain and hail state variables (Figs. 14b–e). Strong up-

drafts in the NSSL-ALL storm loft liquid water above

the 08C isotherm. Instead of being converted into small

hail particles, the supercooled liquid is accreted by

graupel and hail, and causes rimed ice particles to in-

crease in size (Labriola et al. 2019a). It is also noted

that Z and u are positively correlated throughout the

updraft in the NSSL-ALL storm (Fig. 13d) due to the

same processes in MY-ALL.

Prognostic graupel and hail volume (yg and yh, re-

spectively) equations allow the NSSL scheme to vary

rimed ice density during the forecast and modify both

particle sedimentation and hail production processes. In

the storm updraft region, Z and yh are positively corre-

lated (Fig. 15a). Hail accreting more liquid water in the

stronger updraft increases hail volume and Z in the

updraft (Figs. 15a,b). It is noted that hail density is a

nonunique solution, and that an infinite combination of

qh, yh pairs can produce the same density value; corre-

lations are therefore not indicative of modifications to

hail density.

While this study primarily evaluates the ensemble

background error correlation fields within strong thun-

derstorms at 2040 UTC, it is important to note the

background error covariance evolves with time through

the DA cycles. Correlations between observation prior

Z and w taken from within the updraft of a storm to the

east of Denver are evaluated throughout the DA win-

dow (Fig. 16). This storm is selected because it is present

in observations throughout the DAwindow. Prior to the

FIG. 12. As in Fig. 11, but for (a) u, (b) qr,

(c) qh, (d) Ntr, and (e) Nth. Plotted correla-

tions are between an assumed w observation

in the hail growth zone and the plotted model

state variables.
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first DA cycle both MY-ALL and NSSL-ALL are not

confident in the location of organized convection, which

causes correlations between w and Z to be noisy

(Figs. 17a,d). Both ensembles predict storm updrafts to

be weak (w , 15m s21) at 2020 UTC (Figs. 17b,e).

Because of that, the MY scheme predicts the storm to

produce little hail. Instead, the weak updrafts loft

precipitation above the 08C isotherm and enhance Z;

w and Z become negatively correlated with time as

the storm intensifies and strong updrafts increase the

number of small hail stones aloft. These correlation

fields are similar to those observed in the Denver hail

storm (Fig. 11a). Unlike MY-ALL, w and Z are posi-

tively correlated in NSSL-ALL between 2020 and

2040 UTC (Figs. 17e,f) because the updrafts advect

more precipitation above the 08C isotherm and enhance

the production of large hailstones. The evolving correla-

tion fields demonstrate the sensitivity of the background

error covariance to the microphysical assumptions made

within MP schemes as well as other factors including the

quality of the state estimation. In this paper, we focus

more on the later time (2040 UTC) when the state esti-

mation becomes better.

Correlations between model state variables (i.e., w

and u) and Z have important consequences on the rep-

resentation of analyzed storms. The correlation patterns

observed in this study were also observed in other strong

storms at 2040 UTC (e.g., Figs. 17c,f) and during earlier

DA cycles (not shown).WhenMY-ALL underestimates

(overestimates) Z, the filter will decrease (increase) w

(Fig. 11a) and make the updraft air temperature cooler

(warmer) (Fig. 11d). In effect the EnKF in MY-ALL

weakens the analyzed storm. Both w (Fig. 13a) and u

(Fig. 13d) are positively correlated withZ in NSSL-ALL

and cause the filter to intensify the storm under similar

circumstances. Z is generally a function of the diameter

of a hailstone to the sixth power although it becomes

more complex for a large or wet hailstone due to theMie

FIG. 13. As in Fig. 11, but for NSSL-ALL (a) w, (b) qr, (c) qh, (d) u, (e)Ntr, and (f) Nth. Plotted correlations are between an assumed Z

observation in the hail growth zone and the plottedmodel state variables. Cross sections are taken through theDenver hailstorm, denoted

as east–west line in Fig. 9d.
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scattering effect. In addition, numerous observational

studies (e.g., Heymsfield 1983; Nelson 1983; Ziegler

et al. 1983; Foote 1984; Dennis and Kumjian 2017) have

suggested that hail size is not a monotonic function of

updraft strength, but is also influenced by vertical wind

shear, environmental moisture, and updraft volume.

More observations are needed to determine which mi-

crophysics scheme produces an analysis increment that

more closely reflects reality.

4. Summary and further discussion

Newer multimoment bulk microphysics schemes (MP

schemes) are increasing in complexity and predicting

more state variables in order to improve the represen-

tation of microphysical processes (e.g., riming, sedi-

mentation). As the number of degrees of freedom

within a MP scheme increases, initial state estimation

using an EnKF becomes more challenging, in part be-

cause the large number of microphysical state vari-

ables predicted by a MP scheme are insufficiently

constrained by the limited number observations that

can infer microphysical properties [e.g., radar reflec-

tivity (Z)].

In this study a cycled EnKF framework is used to

update the microphysical properties of hail-producing

storms for the 8 May 2017 Colorado severe hail event.

Four ensemble forecast experiments are conducted us-

ing either the Milbrandt and Yau (2005a) double-

moment (MY) scheme or the NSSL double-moment

variable density rimed ice scheme (Mansell et al. 2010).

An EnKF is used to update either only hydrometeor

mixing ratios (MY-Q, NSSL-Q) or all microphysical

state variables (MY-ALL, NSSL-ALL); in addition to

dynamic and thermodynamic information. While most

previous studies use observed Z to update all micro-

physical variables, this study examines whether updating

a limited number of particle size distribution moments

(i.e., mass mixing ratio) provides sufficient constraint for

an ensemble system run using a multimoment scheme.

The model forecasts and analyses are evaluated against

observed Z in addition to output from a hydrometeor

FIG. 14. As in Fig. 13, but for (a) u, (b) qr,

(c) qh, (d) Ntr, and (e) Nth. Plotted correla-

tions are between an assumed w observa-

tion in the hail growth zone and the plotted

model state variables.
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classification algorithm (HCA) to determine which con-

figuration produces the more realistic state variable esti-

mates related to hail.

For ensembles that update only hydrometeor mixing

ratio, in particular MY-Q, the forecast error covariance

is often unreliable and limits the accuracy of state variable

estimates.We suspect that the forecast error covariance is

unreliable because updating a limited number of micro-

physical variables introduces large imbalances into the

ensemble prediction system during assimilation. For

example, negative correlations between Z and hydro-

meteor mixing ratios in experiment MY-Q cause spu-

rious radar echoes to be enhanced during assimilation,

even if clear-air reflectivity data are assimilated. Further,

due to the poor multivariate error covariance structure,

the EnKF in MY-Q was unable to replicate Z in-

tensity or structure within mature storms. Generally,

the forecast error covariance of MY-ALL and the

NSSL ensembles (NSSL-Q and NSSL-ALL) is more

reliable than that of MY-Q, allowing the ensemble

analyses to estimate Z and radial velocity (Vr) with

less error.

Comparison (and verification) of analyzed surface

hail size against HCA output provides insight into how

the different EnKF configurations update hail particle

size distributions. Generally, ensembles that update

only mixing ratio (MY-Q, NSSL-Q) estimate large

surface hail sizes because large quantities of hail mass

can be distributed among a relatively small number of

hailstones. Ensembles that update all microphysical

FIG. 16. KFTG observed Z at the lowest radar tilt (0.58). Thick black lines denote the approximate location of where vertical cross

sections are taken in Fig. 17.

FIG. 15. As in Fig. 13, but for yh. Plotted correlations are between yh and an assumed (a) Z observation or (b) w

observation in the hail growth zone.
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variables (MY-ALL and NSSL-ALL) tend to under-

estimate surface hail size because these ensembles

typically predict larger hail number concentrations and

cause hail mass to be split between many small hail-

stones. Results suggest the need to assimilate addi-

tional observations of microphysical relevance in order

to better constrain the increased number of state var-

iables (e.g., number concentration).

Hail production and growth assumptions made byMP

schemes substantially influence the forecast error co-

variance. The MY scheme generates hail primarily from

small frozen raindrops; this process increases the num-

ber of small hailstones above the 08C isotherm and

causes Z to be negatively correlated with air temperature

and updraft strength. Due to differences in hail production

processes, the opposite correlation patterns are observed

in the NSSL scheme forecasts for intense hailstorms. Hail

growth assumptions also influence correlation patterns for

hydrometeor state variables. For this study theNSSL-ALL

experiment favors more positive correlations between Z

and hail variables (mass and number) than the MY-ALL

experiment. While this study provides insight into the

complexities of updating microphysical variables via an

EnKF, it is noted that only a limited number of the avail-

able schemes are evaluated. A large number of multimo-

ment schemes (e.g., Thompson et al. 2008; Morrison et al.

2005, 2009; Lim and Hong 2010; Morrison and Milbrandt

2015; Morrison et al. 2015; Milbrandt and Morrison 2016)

are used inweather prediction systems; however, relatively

few studies have analyzed how underlying microphysical

assumptions made within these schemes impact multivar-

iate ensemble background error covariances and state

variable updates within ensemble DA. We have also

shown that the multivariate ensemble covariances can be

sensitive to the quality of storm analysis and possibly also

the storm intensity and morphology.

Due to the many possible combinations of variables

that are able to produce a given Z value, microphysical

state variables will remain insufficiently constrained by

observed reflectivity. The assimilation of polarimetric

observations is shown to provide additional constraint in

observation system simulation experiments (OSSEs)

conducted by Jung et al. (2008b, 2010b) and a real case

study conducted by Putnam et al. (2019); however,

assimilating polarimetric variables remains nontrivial.

Although MP schemes can replicate basic polarimetric

FIG. 17. Vertical cross section of the (a)–(c) MY-ALL and (d)–(f) NSSL-ALL ensemble mean w at (a),(d) 2000, (b),(e) 2020, and

(c),(f) 2040 UTC. Cross sections are taken from within a storm to the east of Denver. Forecast error correlations between an assumed

Z observation taken from within the hail growth zone (white star) and w are plotted. The same plotting convention is used to contour

correlation as in Fig. 6. The horizontal brown line represents the 08C isotherm.
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signatures (e.g., Johnson et al. 2016, 2019; Putnam et al.

2017a,b, 2019), the NWP output from these schemes is

often biased in intensity and coverage. To benefit from

the assimilation of polarimetric observations, more

effort is needed to improve the representation of mi-

crophysical processes that generate polarimetric sig-

natures and to find the optimal configurations that can

maximize the impact of polarimetric data. Improving

the representation of microphysical processes has the

potential to not only improve EnKF estimates, but also

mitigate misrepresentations of subgrid-scale processes

and reduce model errors.
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