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ABSTRACT

Explicit prediction of hail using numerical weather prediction models remains a significant challenge; mi-

crophysical uncertainties and errors are a significant contributor to this challenge. This study assesses the

ability of storm-scale ensemble forecasts using single-moment Lin or double-moment Milbrandt and Yau

microphysical schemes in predicting hail during a severe weather event over south-central Oklahoma on

10May 2010.Radar and surface observations are assimilated using an ensembleKalman filter (EnKF) at 5-min

intervals. Three sets of ensemble forecasts, launched at 15-min intervals, are then produced from EnKF an-

alyses at times ranging from 30min prior to the first observed hail to the time of the first observed hail. Forty

ensemble members are run at 500-m horizontal grid spacing in both EnKF assimilation cycles and subsequent

forecasts. Hail forecasts are verified using radar-derived products including information from single- and dual-

polarization radar data: maximum estimated size of hail (MESH), hydrometeor classification algorithm

(HCA) output, and hail size discrimination algorithm (HSDA) output. Resulting hail forecasts show at most

marginal skill, with the level of skill dependent on the forecast initialization time and microphysical scheme

used. Forecasts using the double-moment scheme predict many small hailstones aloft, while the single-moment

members predict larger hailstones. Near the surface, double-moment members predict larger hailstone sizes

than their single-member counterparts. Hail in the forecasts is found to melt too quickly near the surface for

members using either of the microphysics schemes examined. Analysis of microphysical budgets in both

schemes indicates that both schemes suboptimally represent hail processes, adversely impacting the skill of

surface hail forecasts.

1. Introduction

Severe hail is, on average, directly responsible for

over a billion dollars of damage in the United States

annually (Jewell and Brimelow 2009). Many businesses

and industries are vulnerable to hail, including insurance,

agriculture, aviation, transportation, and auto sales. There

have been multiple instances in which a single hailstorm

has caused over $1.0 billion (U.S. dollars) in hail damage

(Changnon and Burroughs 2003). Furthermore, the cost

of damages resulting from severe hail is expected to in-

crease in the future as a result of increasing population

and rising property values.

Current methods of forecasting maximum hail size

are limited in their ability to represent the surrounding

environment. One commonly used hail size forecast

model, HAILCAST (Jewell and Brimelow 2009),

applies a one-dimensional model that uses proximity

soundings to predict the growth of hailstones from ini-

tial hailstone embryos. Adams-Selin and Ziegler (2016)

developed a version of HAILCAST that is imple-

mented within convection allowing numerical weatherCorresponding author: Jonathan Labriola, j.labriola@ou.edu
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prediction (NWP) model forecasts to provide high spatial

and temporal resolution hail forecasts. HAILCAST

does not account for microphysical and dynamic fea-

tures found within convective storms that have non-

negligible impacts on hail growth. Forecasting hail using

NWP models remains a relatively understudied subject

in the field of meteorology, particularly when compared

to efforts focused on the prediction of other weather

hazards such as flooding and tornadoes. Even as NWP

forecast skill at convective scales continues to increase,

skillful explicit prediction of hail remains difficult, re-

quiring the model to accurately represent the storm in-

tensity, mode, and motion, as well as microphysical and

other physical processes important for hailstone for-

mation. The short time scale of hailstorms and the lim-

itations of the parameterizations used to represent

microphysical processes within these storms contribute

to rapid model error growth in hail-related forecast

fields. In this study, we directly address the challenges

of explicit hail prediction by investigating the ability of

high-resolution ensemble forecasts using varying mi-

crophysics (MP) schemes to predict hail at varying lead

times for a group of supercell thunderstorms that oc-

curred over Oklahoma on 10 May 2010.

Ensemble prediction has become a vital tool for con-

vective-scale forecasting because it is helpful in accounting

for the fast error growth present at convective scales

(Lorenz 1969; Clark et al. 2009, 2010). A well-designed

ensemble will generate an ‘‘envelope’’ of possible out-

comes that contains the true atmospheric state (Kalnay

2002; Kalnay et al. 2006). Furthermore, the ensemble can

be used to generate probabilistic forecasts and provide

uncertainty information. Two of the major factors affect-

ing the ability of the ensemble to generate skillful short-

term ensemble convective-scale forecasts are the data

assimilation (DA; i.e., initial conditions) and MP para-

meterizations employed by the forecast system.

To maximize the accuracy of short-term storm-scale

ensemble forecasts, it is necessary to reduce errors in

the initial conditions by incorporating observational in-

formation via DA. To perform this task, modern storm-

scale NWP systems, both in operations and research,

rely upon cycled DA systems that assimilate observa-

tions at regular intervals (e.g., Snyder and Zhang 2003;

Dowell et al. 2004, 2011; Zhang et al. 2004; Tong and

Xue 2005; Caya et al. 2005; Xue et al. 2006, 2010; Lei

et al. 2008; Snook et al. 2011, 2015, 2016; Dawson et al.

2012; Jung et al. 2012a; Yussouf and Stensrud 2012;

Yussouf et al. 2013; Putnam et al. 2014). While both

variational and statistical techniques have been used,

ensemble-based DA techniques, such as the ensemble

Kalman filter (EnKF; Evensen 1994, 2003), are often

chosen because they benefit from nonstatic spatial

covariances carried by and derived from the ensemble.

Flow-dependent covariances are particularly important

at the storm scale, as they allow for the correction of

errors in fields that, while not usually directly observed,

strongly influence convective dynamics (e.g., vertical

velocity, in-cloud temperature, pressure, and MP prop-

erties) (Tong and Xue 2005, 2008b). In this study, we use

an EnKF DA system to assimilate radar and other

observational data.

The parameterization of microphysical processes is

complex, and is generally a large contributor to uncer-

tainty within convective-scale models. In most research

and operational applications, bulkMP schemes are used to

parameterize cloud and precipitation processes because of

their computational efficiency compared to spectral bin

MP schemes. Most bulk MP schemes assume a three-

parameter gamma distribution to describe the hydrome-

teor particle size distribution (PSD):

N(D)5N
o
Dae2lD , (1)

where No, l, and a are the intercept, slope, and shape

parameters, respectively (Ulbrich 1983). MP schemes

can vary in complexity depending on themethod used to

specify these three parameters. The simplest schemes,

single-moment (SM) schemes, predict only the mass

mixing ratio (referred to in this paper as the mixing ra-

tio) of hydrometeors. More complex double-moment

(DM) schemes typically predict the total number con-

centration in addition to the mixing ratio. A number of

recent studies (e.g., Jung et al. 2010; Dawson et al. 2010;

Jung et al. 2012a; Putnam et al. 2014; Johnson et al. 2016)

have found that the additional degrees of freedom

within the predicted PSD when using a DMMP scheme

allow for a more realistic representation of features

observed in convective storms (e.g., cold pool structure,

hydrometeor size sorting, polarimetric signatures). In

this study, we will compare the relative performance of a

DM scheme and an SM scheme within the EnKF DA

and ensemble forecasts for hail.

Objective verification of hail forecasts is also a major

challenge.Hail reports contain size and population biases,

making verification of hail forecasts using these datasets

difficult. In one of the first real-data convective-scale ex-

plicit hail prediction studies, Snook et al. (2016, hereafter

S16) used products derived from Weather Surveillance

Radar-1988 Doppler (WSR-88D) observations as sup-

plementary sources of information for verification of hail

forecasts to limit the impact of surface hail report biases

and to facilitate verification in sparsely populated areas.

More recently, Luo et al. (2017) used radar-derived

products to verify hail simulations using one-, two-, and

three-moment versions of the Milbrandt and Yau (2005)
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MP scheme. The Milbrandt and Yau (2005) three-

moment version was found to perform the best. One ra-

dar product that is often used operationally as a proxy for

hail observations is the maximum estimated size of hail

(MESH). MESH is computed using a vertical integration

of radar reflectivity Z multiplied by a temperature-based

weighting function to estimate the maximum hail size at

the surface (Witt et al. 1998). MESH was also used in the

study to evaluate hail prediction. The recently upgraded

WSR-88D network observes several polarimetric fields,

including differential reflectivity Zdr, copolar correlation

coefficient rhv, and differential phase Fdp in addition to

radial velocity Vr and Z. These variables can be used to

infer various properties of hydrometeors, including their

size, shape, orientation, and phase (Kumjian and

Ryzhkov 2008). When used as inputs for a fuzzy logic

hydrometeor classification algorithm (HCA; Heinselman

and Ryzhkov 2006; Park et al. 2009), polarimetric radar

observations can be helpful in inferring the dominant

hydrometeor species present, as well as in discriminating

between regions of severe and nonsevere hail (Ryzhkov

et al. 2013; Ortega et al. 2016).

In this paper, storm-scale ensemble forecasts with

500-m horizontal grid spacing are performed using

single- and double-moment MP schemes for the case

of a group of supercell thunderstorms occurring over

southern Oklahoma on 10 May 2010. The goals of this

study are 1) to evaluate the ability of ensemble fore-

casts with varying lead times to skillfully predict hail

from these storms, 2) to evaluate the strengths and

weaknesses of hail forecasts produced using different

MP schemes, and 3) to investigate biases related to hail

prediction in the MP schemes used in this study. These

results can be used to further improveMP schemes and

improve the viability of explicit hail prediction within a

warn-on-forecast framework (Stensrud et al. 2009).

The remainder of the paper is organized as follows.

Section 2 provides a brief overview of the case, the en-

semble configuration, and the techniques used in this

study to verify ensemble hail forecasts. In section 3, we

examine the sensitivity of hail prediction to the choice of

MP scheme and forecast lead time, as well as giving

consideration to the biases present in the MP schemes

used. Finally, an overall summary of the results and dis-

cussion of potential areas for future investigation are

presented in section 4.

2. Data and methods

a. Case overview

On the afternoon of 10 May 2010, a severe weather

outbreak occurred in Oklahoma, in which a line of

discrete supercell thunderstorms developed over the

central and south-central parts of the state, producing

multiple tornadoes and severe hail (Fig. 1). These

thunderstorms developed ahead of a dryline at approx-

imately 2200 UTC (Fig. 1a) and moved very quickly

(80–90 kmh21). For ease of reference, we will refer to

southern storms by a letter designation in alphabetical

order from north to south (see Fig. 1). The northern-

most, left-splitting storm is labeled storm A. Storms

B–D are right-moving supercell thunderstorms. At

2315 UTC (Figs. 1c,d), storm C produced an EF3 tor-

nado; Storm Prediction Center storm reports indicate

that storm D simultaneously produced hail of up to 4-in.

(101.6mm) diameter. For an observationally oriented

discussion of this case, we refer the reader to Palmer

et al. (2011) and Bodine et al. (2014).

b. Experiment setup

1) PREDICTION MODEL AND DOMAIN

The Advanced Regional Prediction System (ARPS;

Xue et al. 2000, 2001) is used as the prediction model in

this study. All experiments use the same 7233 7233 53

model grid, with a horizontal grid spacing of 500m and

a stretched vertical grid with a minimum vertical grid

spacing of 50m near the surface that increases to a

maximum vertical spacing of 800m at the model top

(approximately 21 km above the surface). The 500-m

horizontal grid spacing used in this study is consistent

with Snook et al. (2016) and is necessary to resolve

finescale structures associated with hail processes. Full

model physics are used (Xue et al. 2000), including the

NASA Goddard Space Flight Center short- and long-

wave radiation scheme; surface fluxes calculated from

surface drag coefficients, surface temperature, and sur-

face volumetric water; a two-layer soil model; and a

1.5-order subgrid-scale turbulent mixing and planetary

boundary layer parameterization. The initial ensemble

forecasts for the DA cycles are initialized at 2000 UTC

(approximately 75min prior to convective initiation),

from a 40-member ARPS parent ensemble run at 4-km

horizontal grid spacing (Jung et al. 2012b 2013). The

parent ensemble (Fig. 2a) is initialized at 1500 UTC

and assimilates surface and radar observations hourly

(1500–1700 UTC), the frequency of assimilation in-

creases to every 10min 1 h prior to the completion of

DA at 1800 UTC. After 1800 UTC, a 6-h forecast is run

until 0000 UTC 11 May 2010; the initial and external

boundary conditions are interpolated from the parent

ensemble forecast. External boundary conditions are

obtained hourly from the parent ensemble (Fig. 2a), and

linear time interpolation is used to interpolate between

boundary conditions. Hydrometeor information is not
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included in the boundary conditions (‘‘dry boundary

conditions’’) to minimize the occurrence of spurious

convection initiating along the model boundaries.

2) MICROPHYSICS SCHEMES

The Milbrandt and Yau (2005) DM MP scheme

(hereafter MY2) and the Lin et al. (1983) scheme as

modified by Tao and Simpson (1993) (hereafter LIN)

are used in two different sets of ensemble forecast ex-

periments, which will be described in detail below. Hail

forecasts produced using the Milbrandt and Yau (2005)

SM MP scheme (not shown) were found to be inferior

to both the LIN and MY2 scheme forecasts and, thus,

will not be discussed. The MY2 scheme has been used

in a number of previous ARPS studies (e.g., Dawson

et al. 2010; Jung et al. 2012a; Putnam et al. 2014; Dawson

et al. 2015), including the recent hail prediction study of

S16. The LIN scheme, which is implemented in the

parent ensemble (Jung et al. 2012b), is one of the most

widely used single-moment MP schemes (Snook et al.

2011, 2015; Putnam et al. 2014), has previously been

compared to the MY2 scheme (Jung et al. 2012a), and

includes a rimed ice category that is most similar to

hail. The MY2 scheme includes predictive equations

for hydrometeor number concentrationsNtx and mixing

ratios qx for cloud water (Ntc, qc), cloud ice (Nti, qi),

rain (Ntr, qr), snow (Nts, qs), graupel (Ntg, qg), and hail

(Nth, qh), allowing the scheme to diagnose N0x and lx
while assuming a fixed-shape parameter (which, in this

study, is set to 0). The LIN scheme predicts the mixing

ratios of five hydrometeor species: cloud water (qc),

cloud ice (qi), rain (qr), snow (qs), and hail (qh), allowing

the scheme to diagnose lx for precipitating species while

using preset constant values for N0x. Unlike the MY2

scheme, the LIN scheme does not include a separate

graupel category. The LIN hail category assumes a

particle density of 913 kgm23 and N0h 5 4.4 3 104m24.

To reduce cold pool intensity, the default N0r (8.0 3
106m24) is reduced to 2.0 3 106m24 following Snook

and Xue (2008).

FIG. 1. KOUN 0.58 tilt observed reflectivity field on 10 May 2010 at (a) 2200, (b) 2230, (c) 2300, and (d) 2330 UTC.

Letter identifiers for individual storms are included. Purple contours represent urban boundaries.
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c. DA settings

Starting from 2000 UTC, a 30-min spinup ensemble

forecast is performed. After this spinup period, cycled

DA is performed (Fig. 2b) using the CAPS EnKF DA

system (Tong and Xue 2005; Xue et al. 2006; Tong and

Xue 2008a). This system employs a variant of the en-

semble square root filter (EnSRF; Whitaker and Hamill

2002). Available S-band WSR-88D and Engineering

Research Center for Collaborative and Adaptive Sens-

ing of the Atmosphere (CASA; McLaughlin et al. 2009)

X-band radar observations, soundings, profiler data,

Oklahoma andWest TexasMesonet observations, along

with ASOS and AWOS observations, are assimilated at

15-min intervals from 2030 to 2115 UTC. Starting from

2115UTC, the approximate time of convective initiation

(Fig. 2b), the DA interval is reduced to 5min for the

remainder of the DA period. During DA, the radar-

indicated severe hail is first observed at 2150 UTC

(there are too few surface-based reports to use direct

hail size observations), and at 2155 UTC the storms

produce multiple tornado reports (Fig. 2b). Storm D

develops late within the DA period. The storm produces

Z . 20dBZ first at 2155 UTC, causing it to be under-

sampled by DA for ensembles launched at 2200 and

2215 UTC and completely unsampled by DA for ensem-

bles launched at 2145 UTC.

In preliminary experiments, performing many fre-

quent DA cycles caused time integration instability in

some ensemblemembers because fast-moving storms on

this day resulted in the repeated introduction of large,

unbalanced adjustments to the model state variables. To

alleviate this problem, the incremental analysis update

(IAU) technique (Bloom et al. 1996) is used to in-

corporate the analysis increments into the forecast

model. Incremental updates decrease with time during

the 5-minDA cycles. IAU is particularly desirable for its

filtering properties that reduce the impact of introducing

large adjustments into a model. To maintain ensemble

spread, a relaxation-to-prior-spread algorithm is applied

FIG. 2. (a) Forecast diagram detailing the parent ensemble configuration for the case study.

Red region represents 1-h DA cycling, orange is 10-min DA cycling, and the 3 denotes when

external boundary conditions for the case study ensemble are obtained from the parent en-

semble. The time at which the case study ensemble is initialized is denoted above the timeline.

(b) Forecast diagram detailing the case study ensemble configuration for both the MY2 and

LIN ensembles. Blue region represents the spinup period, red is 15-minDA cycling, and orange

is 5-min DA cycling. Significant weather events that are of importance to the case study are

listed above the timeline. In both panels green regions represent forecast periods and down-

ward arrows indicate when assimilation occurs.
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following Whitaker and Hamill (2012) using a co-

efficient of 0.95, along with multiplicative covariance

inflation in regions directly influenced by radar obser-

vations with an inflation factor of 1.10 (Tong and Xue

2005). From these continuous DA cycles, three separate

ensemble forecast experiments are launched at 2145,

2200, and 2215 UTC. To refer to these forecast ensem-

bles, we adopt a naming convention in which a forecast

ensemble is denoted by the MP scheme used (MY2 or

LIN) and the time T0 at which the forecast was launched

(e.g., MY2_2145T0 or LIN_2215T0).

Other configurations of the DA system largely follow

S16. Radar observation errors of 6.0 dBZ and 4.0m s21

are assumed forZ andVr, respectively. The cutoff radius

of the covariance localization function (Gaspari and

Cohn 1999) is set to 3 km in the horizontal and vertical

directions to be consistent with Jung et al. (2012a) and

Snook et al. (2016). Radar observations are interpolated

horizontally onto the model grid but are not in-

terpolated vertically (Xue et al. 2006). The forward

observation operator for DA uses the T-matrix method

for raindrops and the Rayleigh scattering approxima-

tion for ice particle scattering amplitude calculations

(Jung et al. 2008). Radar data from the four S-band

WSR-88Ds closest to the storms of interest are assimi-

lated; these radars include Twin Lakes, Oklahoma

(KTLX); Fredrick, Oklahoma (KFDR); Dyess Air

Force Base, Texas (KDYX); and Dallas–Fort Worth,

Texas (KFWS).Data from four X-band radars operated

by CASA (McLaughlin et al. 2009) are also assimi-

lated. The Chickasha (KSAO), Rush Springs (KRSP),

Cyril (KCYR), and Lawton (KLWE) CASA radars were

located between KTLX and KFDR in southwest

Oklahoma, adding more near-surface radar coverage in

this area. Reflectivity data from the CASA radars were

processed using automated attenuation correction; for

CASA radars, only Z observations exceeding 25 dBZ

are assimilated to avoid assimilation of spurious, fully

attenuated observations. The CASA data preprocess-

ing procedure follows Snook et al. (2011).

Observation errors for surface measurements are as-

sumed to be 1.5m s21 for horizontal wind components u

and y, 1.5K for air temperatureT, 2.0K for dewpointTd,

and 2.0 hPa for air pressure p. The horizontal covariance

localization radius for surface observations is 300 km,

and the vertical localization radius is 6 km. Assumed

errors for sounding data are 1.2K for T, 2.0K for Td,

and 0.6 hPa for p. For both soundings and wind pro-

filer observations, an error of 2.5m s21 is assumed for u

and y. A horizontal localization radius of 800km and a

vertical localization radius of 6 km are used for these

upper-air observations. The above settings follow Snook

et al. (2015).

d. Verification procedure

For verification, the model predictions of Z are cal-

culated using a T-matrix method to obtain scattering

amplitudes for both rain and frozen model hydrometeor

fields (Jung et al. 2010). This method is capable of rep-

licating the Mie scattering caused by large hailstones,

resulting in realistic estimates for radar variables from

themodel data. The direct use of the T-matrixmethod as

the forward operator within DA for ice hydrometeor

categories is too expensive and is, therefore, only done

for forecast verification; Z is highly relevant in evalu-

ating the skill of hail forecasts because it provides

valuable information about storm mode, structure, in-

tensity, and microphysical state.

Because the storms in this study occurred largely over

rural areas, there are relatively few surface hail reports

available, and the available reports likely do not fully

represent the region over which hail actually fell due to

population biases typical of severe weather reports (e.g.,

Wyatt and Witt 1997; Davis and Ladue 2004). To sup-

plement surface reports, radar-derived products such as

MESH and hail swaths indicated by a HCA are used

as supplementary sources of observed hail information,

as was done in S16. MESH uses a weighted vertical

integration of Z in regions of Z . 40dBZ above the

freezing level H0 to estimate the maximum hail size:

severe hail index5 0:13

ðH
H0

W(H)EdH and (2)

MESH5 2.54(severe hail index)0.5, (3)

whereE is the weightedZ andW is a temperature-based

weighting function described in Witt et al. (1998).

Ortega et al. (2009, 2016) document that MESH has a

large false alarm ratio, and a wide range of maximum

hail sizes can be found within a single MESH value.

However, MESH is a commonly used operational

product, and in many cases it is the only dataset capable

of providing high spatiotemporal resolution estimates of

surface hail size, making it an important supplementary

data source for local storm reports in less populated

regions (Melick et al. 2014). Though polarimetric ob-

servations were not available from operational WSR-

88D observations in 2010, available polarimetric radar

observations from the experimental dual-polarization

WSR-88D in Norman, Oklahoma (KOUN), are ac-

cessed to determine likely regions of hail using a variant

of the HCA of Park et al. (2009) with modifications

following S16. KOUN is situated 100–150 km away from

the storms, and the lowest radar tilt samples the storms

at approximately 1.5–3.0 km AGL. This HCA uses

observed Z, Zdr, and rhv as inputs for a fuzzy logic
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algorithm to distinguish among dominant observed hy-

drometeor types. Observed Vr is used in addition to

these fields to distinguish ground clutter.

Ensemble forecasts produced using neighborhood

ensemble probability (NEP; Schwartz et al. 2010, 2017)

and probability-matched ensemble means (Ebert 2001)

are verified in this study. NEP analyzes the fractional

coverage of event occurrence over a given neighborhood.

This method is used because, at the convective scales,

models often perform poorly in terms of point-to-point

verification (e.g., threat scores) as a result of common

displacement errors, particularly for highly localized

phenomena such as hail. NEP mitigates this issue by al-

lowing for small displacement errors, producing a proba-

bilistic forecast by verifying each point against a nearby

neighborhood of points, determined using a radius of

influence (2.5km in this study, following S16). The

probability-matched mean method produces a single

best-guess forecast from the ensemble using the spatial

distribution of the ensemble mean, but maintaining the

frequency distribution of the full ensemble; this preserves

extreme values that would otherwise be smoothed away

when computing the ensemble mean.

Radar-derived MESH is used for objective verifica-

tion in this study, as it is the only data source available

with the spatial and temporal resolution necessary for

surface hail size verification. The fractions skill score

(FSS; Roberts and Lean 2008) is employed in this study

to compare the fractional coverage of predicted surface

hail to the fractional coverage of radar-derived MESH.

This verification technique is particularly useful because

it provides the scales at which the model predicts the

spatial extent of the surface hail with acceptable skill.

For this study a hail size threshold of 5mm is used for

verification; larger hail sizes (e.g., severe hail, significant

severe hail) will not be verified because the sample size

of these events is too small.

3. Results

a. Ensemble prediction of general reflectivity
structure

The forecast NEP for P(Z . 25dBZ) at 2245 UTC is

shown in Fig. 3 for the ensemble forecasts started at

2145, 2200, and 2215 UTC using the MY2 and LIN MP

schemes, respectively. In each experiment, the storms in

the ensemble forecasts move eastward more quickly

than the observed storms. Storm motion bias is fre-

quently documented in convective modeling studies

FIG. 3. The NEP of the ensemble predicted reflectivity exceeding 25 dBZ (color shading) for (a) MY2_2145T0,

(b)MY2_2200T0, (c)MY2_2215T0, (d) LIN_2145T0, (e) LIN_2200T0, and (f) LIN_2215T0 valid at 2245UTC 10May

2010. The observed 25-dBZ reflectivity contours are plotted in black, along with the corresponding observed storm

letter identifiers. Purple contours represent urban boundaries.
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(e.g., S16; VandenBerg et al. 2014; Yussouf et al. 2016),

and is likely attributed to model error. As expected,

ensembles with the longest lead times [i.e., those

launched the earliest; MY2_2145T0 (Fig. 3a) and LIN_

2145T0 (Fig. 3d)] contain larger regions of moderate

probability values and fewer areas with probability near

1.0, reflecting the greater variability in storm placement

and intensity within these ensembles than in ensembles

launched at later times, though there is still strong

agreement among the members of these ensembles in

predicting the northern part of the storms in the sub-

domain. The MY2_2145T0, MY2_2200T0, and LIN_

2145T0 results (Figs. 3a, 3b, and 3d, respectively) have

lowered confidence in storm D; P(Z. 25dBZ) is below

0.4 for these ensembles. Analysis of individual ensemble

members indicates that the LIN scheme generally pre-

dicts smaller regions where Z exceeds 25 dBZ than the

MY2 scheme. Both LIN_2145T0 (Fig. 3d) and LIN_

2200T0 (Fig. 3e) predict the development of a new storm

behind the primary line, displaced from a secondary line

of observed storms farther to the west. The MY2 en-

sembles (Figs. 3a–c) and LIN_2215T0 (Fig. 3f) also

predict this secondary line; however, P(Z . 25dBZ) is

less than 0.2. We can see that LIN_2215T0 (Fig. 3f)

captures the spatial extent of the storms better than

MY2_2215T0 (Fig. 3c). At longer lead times, the MY2

and LIN ensemble forecasts capture the spatial extent of

the storms with similar levels of skill.

b. Ensemble prediction of MESH

Ensemble hail forecasts valid from 2215 to 2315 UTC

are compared and verified during this study. During this

time, the WSR-88D MESH swath (Fig. 4) for storm A

remains nonsevere (MESH , 25mm) and is oriented

more to the northeast than the other swaths (which are

oriented more to the east-northeast). Storm B, located

just south of storm A, also produces a swath of non-

severe MESH before dissipating (Fig. 4). Both storms

C and D produce long swaths of MESH that contain

indications of severe hail (maximum predicted MESH

exceeding 25mm).

The MY2 and LIN ensembles predict MESH swaths

(Fig. 5) near the observed MESH swaths (Fig. 4), but

greatly overpredict the spatial extent of theMESH field.

As noted earlier, the forecasted storms in all ensembles

movemore quickly than the observed storms (maximum

observed storm motion 80–90 km h21), causing the

MESH swaths to extend too far to the north and east.

Ensembles using both the MY2 and LIN schemes per-

form poorly in predicting MESH for storm D; the storm

intensifies to maturity only after the end of the DA pe-

riod, reducing the ability of the models to accurately

forecast this storm. Only LIN_2200T0 predicts a MESH

swath associated with storm D (Fig. 5e). Contrary to the

WSR-88D MESH (Fig. 4), the ensemble forecasts pre-

dict storm B to produce the highest-intensity MESH,

until after approximately 2250 UTC, when the ensem-

bles with shorter lead times [MY2_2200T0 (Fig. 5b),

MY2_2215T0 (Fig. 5c), LIN_2200T0 (Fig. 5e), and LIN_

2215T0 (Fig. 5f)] predict that storm C intensifies. Be-

cause of the initially large hail in terms of simulated

MESH for stormB predicted by both theMY2 (Figs. 5a–c)

and LIN (Figs. 5d–f) ensembles, it is believed that the

predicted storm B is similar to the observed storm C

(Fig. 4) except that it is geographically displaced.

While LIN_2200T0 produces a more accurate forecast

of MESH for storm D, the LIN ensembles consistently

overpredict the intensity of MESH produced by all of

the storms. In all three LIN ensembles (Figs. 5d–f),

MESH exceeds 75mm for both storms B and C, while

the observed MESH swaths produced by these storms

never exceed 50mm.MaximumMESH values produced

by the MY2 ensembles (Figs. 5a–c) are more similar to

those in the observations. All three MY2 ensembles

generally predict MESH values of less than 25mm

(nonsevere) for storms B and C, with only small regions

ofMESH exceeding 25mm. The LIN ensembles also fail

to capture the weakening of storm A later during the

2215–2315UTC forecast period. In the observations, the

left-splitting storm A stops producing MESH . 5mm

by 2305 UTC (see Fig. 4), while the LIN ensembles

predict a swath of MESH for storm A continuing

through 2315 UTC (Figs. 5d–f). In LIN_2215T0, storm

A spuriously intensifies late in the forecast period,

FIG. 4. MESH field calculated from a mosaic of KOUN, KTLX,

and KFDR radar observations mapped onto the model grid be-

tween 2215 and 2315 UTC. Letter identifiers for observed storms

are included; purple contours represent urban boundaries.
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producing large MESH values near the eastern end of

the 1-h forecastMESH swath (Fig. 5f). Though theMY2

ensembles (Figs. 5a–c) predict longer MESH swaths for

storm A than the observations (Fig. 4), the intensity of

the storm is better represented in these ensembles than

in the LIN ensembles. Both MY2_2200T0 (Fig. 5b) and

MY2_2215T0 (Fig. 5c) predict weakening in the MESH

field of storm A, with maximum MESH values de-

creasing to only 5mm by 2315 UTC.

Both MP schemes show limited skill in predicting the

spatial coverage ofMESH. 5mm at scales beneficial to

explicit short-term hail prediction. The ensemble aver-

age FSS (Roberts and Lean 2008) indicates that the LIN

scheme (Figs. 6d,e) predicts the spatial coverage of

MESH . 5mm with more skill than the MY2 scheme

(Figs. 6a–c). Both LIN_2215T0 (Fig. 6f) and LIN_

2200T0 (Fig. 6e) have several ensemble members that

predict the spatial coverage of MESH. 5mm with skill

at scales of less than 10km. No ensemble members from

MY2_2215T0 (Fig. 6c) and MY2_2200T0 (Fig. 6b) pre-

dict the spatial coverage of MESH . 5mm with skill at

scales less than 10 km. It is important to note that FSS

remains unaffected by the LIN scheme’s overprediction

bias in maximum hail size (Figs. 5e,f) because a low

threshold of nonsevere hail (MESH . 5mm) is ana-

lyzed. MESH values associated with severe hail

(MESH . 25mm) are too localized to be objectively

analyzed for this case study. Reduced MESH forecast

skill is likely due to an overprediction bias in the spatial

area of MESH (Fig. 5); this is because the predicted

storms move too quickly in both the MY2 and LIN

schemes.

To better understand the differences in the predicted

MESH swaths from the LIN and MY2 ensembles, we

will now consider explicit predictions of hail from the

different experiments. The total mass of frozen hydro-

meteor species (hail and graupel) is presented as a

function of height for ensemble members 10 and 30

of MY2_2215T0 and LIN_2215T0 in Fig. 7. These two

ensemble members are selected because member 10 pre-

dicts large quantities of hail, particularly in MY2_2215T0,

while member 30 predicts more modest quantities of hail.

The hydrometeor mass content for hydrometeor x (mx) is

defined as

m
x
5 q

x
3 r

air
, (4)

where qx is the mixing ratio of hydrometeor x and rair is

the air density. The LIN scheme exhibits less variability

between members in mh and, generally, predicts larger

mh values above the freezing layer than the MY2

scheme for both members 10 and 30 (Figs. 7a,c). The

MY2 scheme likely predicts smallermh values aloft due

in part to the fact that the scheme has two separate

rimed ice categories (graupel and hail), while LIN rep-

resents all rimed ice in the form of dense ice precipita-

tion as hail. The MY2 scheme predicts a substantial

fraction of dense frozen precipitation to be graupel, with

FIG. 5. The probability-matched mean of the ensemble predicted MESH swath between 2215 and 2315 UTC. Letter

identifiers for predicted storms are included; purple contours represent urban boundaries.
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the mass of graupel mg exceeding mh in both members

(Figs. 7a,c). The combined mass of frozen hydrometeors

is overall much larger in the MY2 members than in the

LIN members (Fig. 7), and in terms of vertical distri-

bution, does not extend as far below the melting layer in

MY2 as in the LINmembers. Consistent withmost other

MY2members, MY2member 30 predicts almost no hail

reaching the surface. This result is consistent with the

findings of S16, who reported that very little hail reached

the surface in their MY2 forecasts of supercell thun-

derstorms, even where hail was observed, leading to

substantial underprediction of the near-surface hail

mass content. In the MY2 members, graupel, which is

smaller in diameter than hail in the simulations, con-

tributes much less to the total Z than does hail, despite

being the dominant hydrometeor species above the

freezing layer in terms of mass (Figs. 7b,d). The com-

ponent of Z from graupel (Zg) is approximately 30 dBZ

over much of the vertical extent of the storm, while Zh

exceeds 50 dBZ above the freezing layer. The MY2

scheme (Figs. 8a,b), which has been previously reported

to predict many smaller hailstones (Johnson et al. 2016),

predicts smaller hailstones aloft than does the LIN

scheme (Figs. 8c,d). Small hailstones are a consequence

of MY2 growth mechanisms, frozen raindrops signifi-

cantly increase Nth in the freezing layer but do not

proportionally modifymh; this decreases the mean mass

diameter of hail aloft. The LIN scheme assumes a con-

stant intercept parameter, and the mean mass diameter

increases aloft as mh increases. A more detailed micro-

physical budget analysis of the two schemes will be

presented in a later section. Reflectivity Z, which is

proportional to the sixth moment of the PSD, is most

sensitive to larger hailstones; consequently, LIN pre-

dicts larger Zh aloft than MY2 (Figs. 7b,d). Having an

additional low-density rimed ice category (graupel) may

also further reduce Z in MY2. MESH is a function of Z

above the melting layer and is, thus, strongly sensitive to

the distribution and intensity of the reflectivity field

within the storm. Overall, the MY2 scheme predicts

more realistic Z above the freezing layer than the LIN

scheme (see Fig. 5). Differences between the hail PSDs

predicted by the two schemes will be further analyzed in

section 3c.

c. Explicit prediction of hail

1) EVALUATION OF HAIL MASS CONTENT

We will now compare the predicted hail mass content

mh against radar-indicated hail swaths defined using the

HCA described earlier in section 2b, following the

methods of S16. In both the LIN and MY2 ensembles,

stormsB andC are predicted to produce the largestmass

of hail (Fig. 9). The LIN ensembles (Figs. 9d–f) predict

FIG. 6. FSSs of ensembles (a) MY2_2145T0, (b) MY2_2200T0, (c) MY2_2215T0, (d) LIN_2145T0, (e) LIN_2200T0,

and (f) LIN_2215T0 for predicting the spatial coverage of MESH . 5mm between 2215 and 2315 UTC. Radar-

derived MESH shown in Fig. 4 is used as the observations. The threshold for a skillful forecast is the horizontal top

dashed line; climatology is the bottom dashed line in each panel. Each of the individual ensemble member FSSs is

marked as a gray line, and the mean FSS of the ensemble is marked as a boldfaced colored line.
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mh exceeding 5.0 gm23 in these storms; in contrast,

MY2_2200T0 (Fig. 9b) and MY2_2215T0 (Fig. 9c) pre-

dict mh of less than 2.0 gm23 for storms B and C, while

MY2_2145T0 (Fig. 9a) predicts even smaller mh values

and produces hail only for storm B in many members.

The MY2 ensemble members predict mh of less than

0.01 gm23 for storm A, which is located closest to the

KOUN radar site. From the predicted MESH field

(Figs. 5a–c), it is evident that theMY2 ensembles predict

highZ associated with stormA above the freezing layer,

but hail rapidly melts in the model below the freezing

level (Figs. 7a,c), leading to very low mh for storm A at

the height of the 0.58 KOUN radar tilt (approximately

1 km above the surface near storm A) in the MY2 en-

sembles. Both LIN_2200T0 (Fig. 9e) and LIN_2215T0

(Fig. 9f) predict hail at the height of the 0.58 KOUN

radar tilt for storm A. We find that LIN_2145T0

(Fig. 9d), which generally poorly represents storm A,

does not predict any hail associated with storm A.

The swaths of hail predicted by the LIN ensembles

(Figs. 9d–f) are larger in geographic extent than those

predicted by the MY2 ensembles (Figs. 9a–c) and gen-

erally more intense. All LIN ensembles predict mh

exceeding 0.03 gm23 (the threshold for verification of

the mh content used in S16) throughout much of the

southern third of the subdomain; this region includes

large areas where no surface hail was observed. In

contrast, the MY2 scheme predicts more limited hail

swaths with fewer false alarms.

An east–west vertical cross section of the mh content

through the hail core of storm B at 2245 UTC for

members 10, 20, 30, and 40 of MY2_2215T0 and LIN_

2215T0 (Fig. 10) reveals that the largest mh values are

collocated with the primary storm updraft. The LIN

members (Figs. 10e–h) contain a large region of hail

approximately 10 kmwide within the updraft of stormB,

FIG. 7.Member 10 of (a),(b)MY2_2215T0 and LIN_2215T0 valid at 2245UTC.Member 30 of (c),(d)MY2_2215T0

and LIN_2215T0 valid at 2245 UTC. Shown in (a) and (c) are the total hydrometeor species mass per model grid

height within a subdomain that encompasses storms A–D. A threshold of 100 gm21 is plotted to delineate mean-

ingful quantities of hail predicted by the model. Shown in (b) and (d) are the average reflectivities contributed by

hydrometeor species per model height in a subdomain surrounding the storms of interest. The 5th–95th percentile

freezing layer heights within the subdomain are shaded in blue. Only 2–16 km AGL is plotted to highlight features

above the freezing layer.
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withmh values exceeding 2.0 gm23. The MY2 members

mostly predict narrower, weaker updrafts for storm B,

along with correspondingly lower amounts of hail, with

mh rarely exceeding 1.0 gm23 for storm B in MY2

members 20, 30, and 40 (Figs. 10b–d). MY2 member 10

(Fig. 10a), which is initialized with the strongest updraft

for storm B of the selected members, is markedly dif-

ferent, exhibiting a robust updraft, with mh exceeding

2.5 gm23. For all selected members, the MY2 scheme

predicts smaller, more localized hail cores, typically less

than 5km wide. Hail in the MY2 members melts more

quickly below the freezing layer than the LIN members.

Only MY2 member 10 predicts hail (mh . 0.03 gm23)

that reaches the surface within the vertical cross section,

while all LIN members predict hail that reaches the

surface at this time. This is in agreement with the

observations.

2) EVALUATION OF MAXIMUM HAIL SIZE

The PSD for hail can be used to estimate the maxi-

mum hail diameterDmax at any given point, as suggested

by Milbrandt and Yau (2006a). The predicted PSD in

the model is based upon the exponential distribution,

with the shape parameter being set to 0 in Eq. (1) for this

study. As hail diameter increases, the number concen-

tration decreases. For very large diameters, the pre-

dicted hail becomes so sparse that it would not be

physically observable (e.g., one hailstone per cubic ki-

lometer). In S16, a cutoff value for number concentra-

tion of 1024m23mm21 (equivalent of one hailstone in a

cube with sides approximately 20m in length) is used to

denote Dmax. This choice of cutoff value is similar

(though not identical) to that used by Milbrandt and

Yau (2006a).

Hail PSDs for LIN and MY2 members 10 and 30 at

varying heights in the lower troposphere are compared

in Fig. 11, highlighting differences in the predicted hail

PSD, particularly near and within the melting layer. The

PSDs presented in Fig. 11 are calculated at varying

heights, placed horizontally at the location of the mh

maximum of storm B at 1000m abovemean sea level for

eachmember. The lowest number concentration plotted

in Fig. 11 is 1024m23mm21, thus the x intercept of each

PSD in Fig. 11 is Dmax.

FIG. 8. Vertical cross sections of the hail meanmass diameter field at 2245UTC forMY2members (a) 10 and (b) 30

and LIN members (c) 10 and (d) 30. The cross section is taken through the mh maximum of storm B at 1 km. The

freezing layer is marked with a brown line. The u and w winds are denoted with arrows.
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Within the melting layer, the MY2 scheme predicts

PSDs that contain relatively few but large hailstones, as

evidenced by the lower slope of the PSDs at 4000m

(Figs. 11a,b). At 5000m, 500m above the freezing layer,

the MY2 scheme predicts a large number of small hail-

stones in both member 10 (Fig. 11a) and member 30

(Fig. 11b). Within the melting layer at 4000m, the sizes

of the largest hailstones increase. At this height theMY2

FIG. 10. A vertical cross section of the mh field at 2245 UTC. The cross section is taken through a 1-km maximum in mh in storm B.

Shown are members (a) 10, (b) 20, (c) 30, and (d) 40 of MY2_2215T0 and LIN_2215T0 members (e) 10, (f) 20, (g) 30, and (h) 40. The

freezing layer is marked by a brown line; u and w winds are denoted by arrows.

FIG. 9. Probability matchedmean ofmh presented as swaths valid for 2215–2315UTC.Data are linearly interpolated to the height of the

KOUN 0.58 tilt. Swaths of hail diagnosed by the HCA from KOUN 0.58 data during the same time span are contoured in red. Letter

identifiers for observed storms are included; purple contours represent urban boundaries.
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scheme decreases Nth to preserve mean mass diameter

due to melting, the scheme also predicts that hail ac-

cretes rain and cloud water, causing mh to increase.

Accretional growth while hail is simultaneously melting

causes the MY2 scheme to predict that the hail mean

mass diameter increases in the melting layer; Milbrandt

and Yau (2006a) documented similar results. An anal-

ysis of the treatment of hail within the MP schemes will

be performed later in section 3d. Hailstones in MY2

member 10 (Fig. 11a) grow much larger than in MY2

member 30 (Fig. 11b), consistent with the much more

robust storm updraft predicted in member 10. Because

N0 is constant in the SM LIN scheme (N0h 5 4 3
1024m24), LINmembers 10 (Fig. 11c) and 30 (Fig. 11d)

exhibit PSDs with many small hailstones, even as hail

melts below the freezing level. Because of its fixed N0

value, the LIN scheme decreases in mass through

melting larger hailstones and decreasing hail mean

mass diameter; this is unrealistic and is a disadvantage

of SM schemes. Despite this disadvantage, the LIN

scheme does predict a larger Dmax just below the

freezing layer (Figs. 11c,d), with less variation between

ensemble members than for the MY2 members

(Figs. 11a,b).

Vertical cross sections ofDmax through the hail core of

stormB in selectedMY2 andLINmembers are shown in

Fig. 12. Because of the constraints on the SM scheme,

the Dmax field in the LIN members (Figs. 12e–h) is

directly proportional to the mh content (Figs. 10e–h).

Large hail cores containing severe hail (Dmax . 25mm)

are predicted in the LIN members; these hail cores are

collocated with the storm updraft. The largest Dmax

value in each of the LIN members is around 45–50mm

and is consistently located near the freezing level

(Figs. 12e–h). Because the MY2 scheme allows the in-

tercept parameter to vary, Dmax is not directly pro-

portional to mh for the MY2 members (Figs. 12a–d). In

MY2members 20, 30, and 40 (Figs. 12b–d), the extent of

large hail in the hail core of storm B is less than in the

corresponding LIN members, and the maximumDmax is

only slightly lower, at around 35–40mm, despite the far

lower mh values in the hail cores of the MY2 members

compared to the LIN members (Figs. 10b–d and 10f–h).

Member 10 of MY2_2215T0 (Fig. 12a) shows a marked

difference in both the mh and Dmax fields compared to

the other MY2_2215T0 members. Values of mh in the

hail core of member 10 exceed 2.0 gm23, which is

comparable to LIN_2215T0 member 10, and much

higher values of Dmax are present, up to 90mm; the

largest values of Dmax are predicted below the freezing

layer (Fig. 12a), which is consistent with Fig. 11a. Values

of Dmax indicate that hail remains largely nonsevere

FIG. 11. PSDs for hail within the hail core of stormB at 2245UTC at varying heightsMSL for

MY2_2215T0 members (a) 10 and (b) 30 and for LIN_2215T0 members (c) 10 and (d) 30. PSDs

are taken at the horizontal location of themhmaximum at 1000mMSL. Themodel surface is at

300m MSL and the freezing layer is at 4500m MSL.
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above the freezing layer in MY2 member 10. This is

because above the freezing level there is an increase in

Nth, distributing mh between more, but smaller, hail-

stones. In the other three selected MY2 ensemble

members (Figs. 12b–d), the updrafts are weaker, and

almost no hail withDmax greater than 10mm reaches the

surface. It is important to note that although Dmax .
5mm near the surface in these cross sections, members

predict mh , 0.03 gm23 at the surface (Fig. 10).

To produce a forecast estimate of maximum hail size

at the surface, we consider swaths of maximum Dmax,

presented as probability-matched mean values for each

ensemble. The correlation between near-surface Dmax

(SFC) and MESH is analyzed (Table 1) to better un-

derstand the relationship between these two fields.

Model-simulated MESH is dependent upon simulated

observations above the melting layer and implicitly

accounts for melting within the algorithm (Witt et al.

1998); Dmax explicitly accounts for melting calculated

within the MP scheme. MESH and Dmax should be

highly correlated because both fields represent the

maximum hail size at the surface; however, the corre-

lation between the two fields is low (0.256–0.302) for

MY2 and even lower (0.174–0.227) for LIN (Table 1).

Low correlations between the Dmax and MESH indi-

cate discrepancies in melting treatment. Analyzing

the maximum Dmax within the lowest kilometer (1KM)

of the atmosphere reduces the impact of near-surface

melting, which can be excessive as noted earlier in our

discussion of Figs. 10 and 12, as well as prior results

(e.g., S16). Reducing the impacts of near-surface

melting improves the overall correlation between the

model-simulated MESH and Dmax for both the MY2

(0.438–0.461) and LIN (0.481–0.519) schemes (Table 1).

Because of the improved correlation between the two

fields, this study will analyze swaths of maximum

Dmax within the lowest kilometer of the atmosphere

(Fig. 13).

Both the MY2 and LIN ensembles produce very little

near-surface hail for storms C and D. The MY2

(Figs. 13b,c) and LIN (Figs. 13e,f) ensemble forecasts

were launched at 2200 UTC and later predict near-

surface hail from storm C. The ensemble forecasts un-

derestimate the spatial extent of hail when compared

to the WSR-88D MESH (Fig. 4). Only LIN_2145T0

(Fig. 13d) predicts that storm A does not produce near-

surface hail; the other ensemble forecasts (Figs. 13a–c

and 13e–f) more closely resemble the WSR-88DMESH

field (Fig. 4). Storm B produces the most extensive and

FIG. 12. A vertical cross section of the Dmax field at 2245 UTC from four ensemble members from MY2_2215T0 and LIN_2215T0,

respectively, similar to those shown in Fig. 10. The cross section is taken through themhmaximumof stormB at 1 km. The freezing layer is

marked with a brown line.

TABLE 1. The average correlation coefficient between LIN- and

MY2-derived MESH results with predicted Dmax at the surface

(SFC) and maximum Dmax within the lowest kilometer of the

atmosphere (1KM).

2145T0 2200T0 2215T0

MY2 SFC 0.302 0.284 0.256

MY2 1KM 0.461 0.456 0.438

LIN SFC 0.227 0.174 0.212

LIN 1KM 0.519 0.481 0.492

DECEMBER 2017 LABR IOLA ET AL . 4925



largest surface hail in the ensemble forecasts. Initially,

MY2_2200T0 (Fig. 13b) and MY2_2215T0 (Fig. 13c)

overestimate the maximum hail size in the storm B hail

swath, but Dmax quickly decreases to values close to

those indicated by the observed MESH (Fig. 4). The

initial overestimates of Dmax in the vicinity of storm B

can largely be attributed to the addition of large hail-

stones near and below the freezing layer during EnKF

DA. Storm B weakens during the forecast in most en-

semble members, consequently producing increasingly

smaller hailstones beneath the freezing level. Member

10, which is initialized with a more robust updraft,

maintains the intensity of storm B during the forecast

and produces large hailstones below the freezing layer

during the forecast (Fig. 12a). The corresponding LIN

ensembles, LIN_2200T0 (Fig. 13e) and LIN_2215T0

(Fig. 13f), do not initially overpredictDmax for storm B,

remaining relatively consistent with the WSR-88D

MESH values for the full 2215–2315 UTC swath. The

MY2 and LIN ensembles with the earliest initializa-

tion time, MY2_2145T0 (Fig. 13a) and LIN_2145T0

(Fig. 13d), produce similar hail-swath predictions that

underestimate the spatial extent of hail near the surface

compared to WSR-88D MESH, although the MY2 en-

semble at this time better captures the hail swath asso-

ciated with the left-splitting storm A (Fig. 13a).

While both MP schemes demonstrate the ability to

explicitly predict the size of hail near the surface, the

ensembles lack skill in representing the fractional cov-

erage of Dmax . 5mm at scales adequate for opera-

tional use (Fig. 14). The ensembles that were initialized

the latest, MY2_2215T0 (Fig. 14c) and LIN_2215T0

(Fig. 14f), are capable of representing the fractional

coverage of near-surface hail at scales of approximately

45 km. These ensembles assimilated more data than

ensembles initialized at 2145 and 2200 UTC, leading to

an overall improvement in the skill of the hail forecasts.

For MY2_2145T0 (Fig. 14a), MY2_2200T0 (Fig. 14b),

LIN_2145T0 (Fig. 14d), and LIN_2200T0 (Fig. 14e), we

show limited skill in capturing the fractional coverage of

near-surface hail at spatial scales of less than 50 km. It is

important to note that radar-derived MESH (Fig. 4) is

used to verifyDmax forecasts (Fig. 14); weak correlation

between the two fields likely suppresses FSS values. The

FSS of the simulated MESH verified against radar-

derived MESH (Fig. 6) increases for all ensembles;

this is because both fields contain similar biases in esti-

mated surface hail size and spatial extent (Ortega et al.

2009, 2016). Additionally, whenDmax is calculated in the

melting layer, the algorithm inherits biases associated

with the MP scheme treatment of melting hail that de-

grade forecast skill (e.g., extreme hail growth in the

FIG. 13. The probability matched mean of the maximum Dmax field within the lowest kilometer of the atmosphere between 2215 and

2315 UTC for the (a)–(c) MY2 and (d)–(f) LIN ensembles. Individual storm letter identifiers are included for predicted storms; purple

contours represent urban boundaries.
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MY2 scheme). An analysis of the microphysical treat-

ment of hail is continued later in the section.

Though MESH can be used to provide an estimate of

maximum hail size at the surface from Z and tempera-

ture information above the freezing level, the avail-

ability of dual-polarization radar observations provides

additional information that can be utilized to verify

surface hail size. To this end, we apply a hail size dis-

crimination algorithm (HSDA; Ryzhkov et al. 2013)

modified by Ortega et al. (2016) with confidence vectors

equal to one (J. Krause 2016, personal communication)

to verify model-predicted maximum hail size. The

HSDA is run in addition to the HCA in regions where

the HCA output identifies rain/hail. It includes addi-

tional membership functions for Z, Zdr, and rhv that

classify hail into one of three size categories: nonsevere

(0–25mm), severe (25–50mm), and significant severe

(.50mm). Compared to the WSR-88D MESH field

(Fig. 4), the HSDA (Fig. 15) output produces localized

hail swaths with a larger maximum hail size. The HSDA

output indicates multiple regions with hailstones larger

than 50mm in diameter, while the MESH field hardly

contains values exceeding 50mm. These significant se-

vere swaths tend to be far away from KOUN, where the

radar observes high above the ground near the freezing

layer. Hailstones near the freezing layer are expected to

be larger than those near the surface as they have un-

dergone less melting.

For direct comparison to the HSDA (Fig. 15), we in-

terpolate the predicted Dmax field to the KOUN 0.58
radar tilt (Fig. 16). The LIN_2200T0 (Fig. 16e) and LIN_

2215T0 (Fig. 16f) ensembles predict that storm A

produces nonsevere hail near the surface, similar to

WSR-88DMESH. Hail associated with the left-splitting

storm A is underpredicted or absent in LIN_2145T0

(Fig. 16d) and the MY2 ensembles (Figs. 16a–c).

Ensembles MY2_2200T0 (Fig. 16b) and MY2_2215T0

(Fig. 16c) predict storm A to produce near-surface hail,

but excessive melting limits the size and spatial extent of

the hail. TheMY2 ensembles (Figs. 16a–c) predict more

localized swaths of severe hail than the LIN ensembles

(Figs. 16d–f) for storm B at the elevation of the KOUN

radar data. Both MY2_2200T0 (Fig. 16b) and MY2_

2215T0 (Fig. 16c) predict relatively narrow swaths of hail

exceeding 95mm in diameter, resembling a swath of

significant severe hail produced by storm C in the

HSDA output (Fig. 15). Localized pockets of significant

severe hail predicted by the MY2 ensembles more

FIG. 14. FSSs for ensembles (a) MY2_2145T0, (b) MY2_2200T0, (c) MY2_2215T0, (d) LIN_2145T0, (e) LIN_2200T0, and (f) LIN_

2215T0 for predicting the spatial coverage ofDmax. 5mmbetween 2215 and 2315UTC.Note thatDmax is themaximumhail size using the

Dmax algorithm within the lowest kilometer of the atmosphere. Radar-derived MESH is used as the observations. The threshold for

a skillful forecast is shown by the top horizontal dashed line; climatology is the bottom dashed line in each figure. Each of the individual

ensemble member FSSs is marked as a gray line, and the mean FSS of the ensemble is marked as a boldface colored line.
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closely resemble severe hail regions in the HSDA out-

put than the LIN ensembles, which predict wider swaths

of severe hail no larger than 50mm in diameter. The

MY2 and LIN ensembles both predict spatially larger

swaths of hail greater than 5mm in diameter than the

HSDA output.

At the elevation of the 0.58 KOUN tilt, the LIN en-

sembles (Figs. 16d–f) produce a larger region of hail in

the southern portion of the subdomain than the MY2

ensembles (Figs. 16a–c) and much of this hail is associ-

ated with storm D (see Fig. 4). The MY2 ensembles

produce limited nonsevere hail in this region, withDmax

not exceeding 20mm in diameter (Figs. 16a–c). The LIN

ensembles predict hail as large as 35mm in diameter in

this region, a result more in agreement with the HSDA

output (Fig. 15) andWSR-88DMESH (Fig. 4), although

much of the hail predicted by the LIN ensembles to the

south of the observed storm D is spurious. The Dmax

field interpolated to the elevation of the 0.58 KOUN tilt

(Fig. 16) more closely resembles the WSR-88D MESH

field (Fig. 4) in both spatial coverage and size of hail than

the forecast MESH field (Fig. 5) for both the MY2 and

LIN ensembles.

Some of the ensembles predict storms (particularly

storm D) that do not produce hail, although WSR-88D-

derived MESH (Fig. 4) indicates otherwise. It is im-

portant to note that each of the observed storms,

including storm D, is present in most ensembles. A

swath of NEP of P(Z. 35dBZ) for the 2215–2315 UTC

forecast period (Fig. 17) reveals that all ensembles, with

FIG. 16. The probability matched mean of theDmax field linearly interpolated to the KOUN 0.58 radar tilt between 2215 and 2315UTC.

The ensembles are plotted following the convention in Fig. 3. Predicted storm letter identifiers are included; purple contours represent

urban boundaries.

FIG. 15. Swath ofHSDAoutput from2215 to 2315UTC forKOUN

0.58 tilt observations. To reduce noise in the output, differential re-

flectivity and copolar correlation coefficient are smoothed using a

nine-point filter before use in the HCA. Observed storm letter iden-

tifiers are included; purple contours represent urban boundaries.
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the exception of LIN_2145T0 (Fig. 17d), capture the

storm-splitting event that produces storm A, and storms

B, C, and D. Given that the storms are well captured by

most of the ensembles in terms of Z but not in terms of

near-surface hail (i.e.,Dmax), further investigation of the

MP scheme’s treatment of hail beneath the freezing

layer is warranted.

d. Evaluation of microphysical budgets

To identify the cause of biases observed within Dmax

and the MESH forecasts, microphysical hail source and

sink terms are examined using a microphysical budget

analysis. These terms are shown (Fig. 18) in the form of

accumulated totals within the updrafts (w . 5.0m s21)

and downdrafts (w , 22.5m s21) of supercell thunder-

storms in south-central Oklahoma at 2245 UTC. Terms

are summed along a horizontal plane, and the resulting

summed values are plotted as a function of model grid

height to illustrate the model’s treatment of hail both

above and below the 08C isotherm.

The magnitude of mh within the storm is highly de-

pendent upon the choice ofMP scheme; the LIN scheme

predicts larger mh values than the MY2 scheme (e.g.,

Figs. 9 and 10). Mostmh in the LIN scheme is generated

in the storm updrafts via accretion of cloud water, ac-

cretion of snow, and three-component accretion of rain

(Fig. 18e); the accretion of cloud water and snow within

the LIN scheme results in the generation of more mh

than do all of the MY2 mh source terms combined

(Fig. 18a). The LIN scheme predicts hail that accretes

relatively little rain; this is because the accretion of rain

and shedding water are treated as a single term during

the wet growth of hail. Because of the large accretion of

snow and cloud water terms during wet growth, the LIN

scheme predicts hailstones that shed more water than

accrete rain. Both theMY2 (Fig. 18b) and LIN (Fig. 18f)

schemes predict mh growth is limited within storm

downdrafts; these regions are typically unsaturated with

respect to water and do not support the accretion of

cloud water. In storm downdrafts modest mh growth is

attributed to hail colliding with hydrometeors such as

rain in the MY2 scheme (Fig. 18b) and snow in the LIN

scheme (Fig. 18f).

Large accretional mh growth terms cause the LIN

scheme to predict large mh values aloft, confined to

storm updrafts (Figs. 10e–h). Because the LIN scheme is

an SM scheme, the hail mean mass diameter is largest

aloft (Figs. 8c,d), where mh is largest. MESH, which is

dependent upon Z above the freezing layer, increases

as a result of the large hail predicted to be aloft by the

LIN scheme (Figs. 5d–f). Within the storm updraft the

mh source and sink terms for theMY2 scheme (Fig. 18a)

are smaller in magnitude than those in the LIN scheme

(Fig. 18e); the three most significant mass growth terms

in the scheme are the accretion of cloud water, the ac-

cretion of rain, and three-component accretion of rain.

FIG. 17. The NEP of Z . 35 dBZ between 2215 and 2315 UTC. Model-predicted radar reflectivity is linearly

interpolated onto the KTLX 0.58 radar tilt. Observed reflectivity exceeding 35 dBZ is contoured in black. Observed

storm letter identifiers are included; purple contours represent urban boundaries.
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Of particular note is the continued accretion of rain-

water by hail throughout the melting layer in both the

storm updraft and downdraft regions; this is an un-

physical behavior of the MY2 scheme (Figs. 18a,b).

Above the melting layer in the storm updraft region,Nth

quickly increases in the MY2 forecasts (Fig. 18c). This is

due to three-component accretion of rain and the con-

version of graupel to hail. A large increase in the Nth

above the freezing layer causes the mean mass diameter

of hail to decrease aloft within storm updrafts in the

MY2 simulations (e.g., Fig. 8a); this pattern of behavior

is the opposite of what occurs within the LIN scheme.

The tendency of the MY2 scheme to predict small hail

aloft is noted in Johnson et al. (2016); these small hail-

stones produce lower Z, resulting in lower predicted

MESH values (Figs. 5a–c).

Vertical cross sections of hail mean mass diameter

(Figs. 8a,b), Dmax (Fig. 12), and hail PSDs (Fig. 11) in-

dicate that theMY2 scheme predicts rapid growth in hail

size beneath the 08C isotherm.Analysis of theMY2 total

contribution to mh within the storm updraft (Fig. 19a)

indicates that the scheme predicts a net growth in mh

beneath the wet-bulb freezing level. Within this layer

hail accretes cloud water and rain; however. almost no

water is shed (Figs. 18a,b). The inability of hail to effi-

ciently shed water in the melting layer significantly in-

creases hail size in the MY2 simulations. Instead of

being shed, accreted water freezes to hailstones and in-

creases mh, even when hailstones undergo melting and

Nth decreases (Fig. 19b). Increasing mh and decreasing

Nth causes the mean mass diameter of hail to inflate in

the upper melting layer (Figs. 8a,b). In extreme exam-

ples,Nth decreases quickly andmh increases, resulting in

predicted Dmax . 95mm (Fig. 12a). Within thunder-

storm downdrafts hail does not increase in size as rap-

idly, and the total mh and Nth tendencies are much

smaller and remain neutral or decreasing throughout the

vertical extent of the downdraft (Fig. 19b).

PSDs throughout the hail core predicted by the LIN

scheme (Figs. 11c,d) indicate that hail can grow

FIG. 18. Themh tendency terms for (a),(b) MY2_2215T0 and (e),(f) LIN_2215T0, as well as theNth tendency terms

for (c),(d) MY2_2215T0 at 2245 UTC. There are no Nth tendency terms predicted by the LIN scheme. Tendency

terms are summed at each vertical height over a subdomain that encompasses storms A–D, either within storm

(a),(c),(e) updraft or (b),(d),(f) downdraft regions, where w . 5m s21 or w , 22.5m s21, respectively. Terms are

contoured between the 5th and 95th percentile values within the ensemble; the median value is marked with

a boldfaced colored line. Only significant mh tendency terms (terms in which the median exceeds 0.5 gm21 in

magnitude) and Nth tendency terms (terms in which the median exceeds 10 stones m21) are plotted. The average

freezing layer within the subdomain is marked as the upper horizontal dashed black line, and the average wet-bulb

freezing layer over the subdomain is marked as the lower dashed black line.
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modestly in size near the upper melting layer, primarily

as a result of three-component accretion of rain, accre-

tion of cloud water, and accretion of snow near the 08C
isotherm (Fig. 18e). Similar to theMY2 scheme, the LIN

scheme predicts the hail to shed relatively little water

beneath the 08C isotherm; however, hail growth in the

melting layer is limited. This is because the scheme

does not allow accretional growth of hail beneath the

wet-bulb freezing level (Figs. 18e,f), causing the melt-

ing term to be dominant beneath the 08C isotherm

(Figs. 19e,f). The LIN scheme also assumes a constant

intercept parameter; thus, hail diameter is a monotonic

function of mh.

4. Summary and discussion

In this study, we evaluate the ability of SM and DM

MP schemes in an EnKF-initialized storm-scale en-

semble forecasting system to explicitly predict hail in

0–90-min forecasts for both left- and right-moving su-

percells in south-central Oklahoma on 10May 2010. The

experiments assimilate Z and Vr from both operational

WSR-88D and experimental CASA X-band radars, as

well as incorporating surface observations using EnKF

and 40 ensemble members. Ensemble forecasts are then

launched at 15-min intervals starting approximately

30min prior to the first indication of hail by the WSR-

88D data in terms of the MESH. The DA and forecast

experiments are performed using one of two MP

schemes: the SM LIN and DM MY2 schemes. To sup-

plement the sparse surface hail reports recorded on

10 May 2010, hail products derived from WSR-88D

observations are used to verify hail forecasts (as in S16);

these products includeMESH and the output of a HCA.

Ensemble forecasts are also compared to the output of a

HSDA run on WSR-88D observations.

The forecast ensembles exhibit marginal to moderate

skill in predicting Z produced by the supercell thun-

derstorms over southern and central Oklahoma on

10 May 2010. Forecasts were poorer for the ensembles

that were launched earliest (the MY2 and LIN en-

sembles launched at 2145 UTC); these ensembles only

FIG. 19. The total mh tendency for (a),(b) MY2_2215T0 and (e),(f) LIN_2215T0 and the total Nth tendency for

(c),(d) MY2_2215T0 at 2245 UTC. There are no Nth tendency terms predicted by the LIN scheme. Tendency terms

are summed at each vertical height over a subdomain that encompasses stormsA–Deitherwithin storm (a),(c),(e) updraft

or (b),(d),(f) downdraft regions, where w . 5m s21 or w , 22.5m s21, respectively. Terms are contoured between

the 5th and 95th percentiles values within the ensemble, and themedian value is marked with a boldface colored line.

The average freezing layer within the subdomain ismarked as the upper horizontal black dashed line, and the average

wet-bulb freezing layer over the subdomain is marked as the lower black dashed line.
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predict the single strongest storm. Ensembles launched

later (at 2200 and 2215 UTC) predict most of the hail-

producing storms, though they still exhibit limited abil-

ity to predict storms that matured after the end of the

DA period. The storms in all ensemble forecasts move

to the north and east more quickly than do the observed

storms. Similar biases in storm motion have been noted

in prior studies, including S16. The previous literature

suggests storm motion biases are likely attributable to

model error (Yussouf et al. 2016). This study provides no

additional information for why simulated storms move

too quickly.

Both MP schemes predict the geographic extent and

size of hail with marginal skill for 0–75-min time scales

for forecasts launched when most of the storms of in-

terest are mature or close to mature (i.e., at 2200 or

2215 UTC). The geographic extent of hail in the en-

semble forecasts resembles that of the observations, but

predicted hail size often differs from radar-derived hail

sizes. Ensembles launched earlier, when the storms of

interest were still developing (LIN_2145T0 and MY2_

2145T0), exhibit low skill in predicting hail; these en-

sembles underestimate the intensity of the storms

throughout the duration of the experiment. Because the

forecast storms consistently moved faster than the ob-

served storms, all experiments exhibit hail swaths ex-

tending farther to the east than in surface observations

or radar-indicated hail fields.

The LIN scheme predicts spatially larger swaths of

hail than the MY2 scheme as a result of the micro-

physical treatment of hail. The LIN ensembles often

predict mh values nearly an order of magnitude larger

than those predicted in corresponding MY2 ensembles

because of the accretion of significant quantities of cloud

water and snow by hail within the LIN scheme. Because

SMMP schemes assume a constant intercept parameter,

both Dmax and the hail mean mass diameter are pro-

portional to mh in the LIN scheme. Since mh is largest

above the melting layer in the LIN forecasts, the largest

hail sizes are similarly located above the melting layer.

We note that unlike the MY2 scheme, the LIN scheme

does not have a separate graupel category.Whenmg and

mh are combined in the MY2 forecasts, the combined

total exceedsmh predicted in the LIN forecasts. Because

the MY2 scheme predicts Nth to modify the intercept

parameter, both Dmax and the hail mean mass diameter

can be increased without modifying mh in the MY2

forecasts. This allows the MY2 scheme to predict large

quantities of small hailstones aloft and fewer, larger

hailstones near the surface. Occasionally, the MY2

scheme predicts unrealistically large near-surface hail

sizes. This behavior can be attributed to the scheme al-

lowing hail mass to increase via the accretion of cloud

and rainwater in the melting level (where Nth simulta-

neously decreases because of melting and no accreted

water is shed). Overall, in the ensemble forecasts pro-

duced in this study, the LIN scheme predicts wide swaths

of severe hail (25 , Dmax , 50mm), while the MY2

scheme predicts localized swaths of severe hail, in-

cluding some significant severe hail (Dmax . 50mm).

The WSR-88D-derived MESH is used operationally

to assess the potential size of hail at the surface based on

the observedZ and temperature aloft. When theMESH

algorithm is applied to the ensemble forecasts, the LIN

ensembles generally overpredictMESH both in terms of

intensity and spatial extent. The LIN ensembles predict

significant severe hail (MESH . 50mm) in several

storms, while MESH derived from WSR-88D observa-

tions does not exceed 50mm. The widespread intense

MESH in the LIN ensembles can be attributed in part to

the larger hailstones predicted within the storms, pro-

ducing high values of simulated Z (Z . 50dBZ) and,

thus, very large values of MESH. In contrast, the MY2

scheme favors smaller hail, which lowers the simulated

Z. Including separate high- and low-density rimed ice

categories in theMY2 schememay additionally lowerZ.

Overall, the MY2-predicted MESH more closely re-

sembles WSR-88D MESH than the LIN-predicted

MESH. Accurate MP representation of different hy-

drometeor categories is an ongoing area of research;

future work focusing on the characterization of hail and

graupel has the potential to mitigate errors introduced

into the ensemble by the MP scheme, allowing for more

accurate prediction of the size and distribution of hy-

drometeors within storms.

Compared to proxy surface observations, including

MESH derived from WSR-88D observations, and the

output of a HSDA in close proximity to the radar per-

formed on the lowest radar tilt, all ensembles generally

underpredict the explicit (i.e., Dmax) size and spatial

coverage of hail near the surface. In the LIN ensembles,

the default value of hailN0 of the LIN scheme results in

incorrect preferential melting of the largest hailstones,

limiting the size of a hailstones near the surface. In

contrast, in theMY2 forecasts, the scheme decreases the

Nth to preserve the mean mass diameter during melting.

This is a more physical approach. In some instances

accretional growth within the melting layer significantly

increases the maximum hail size within the MY2 simu-

lations. Additionally the MY2 scheme predicts that hail

melts too quickly, resulting in almost no hail reaching

the surface. Also, even when temperatures exceed 08C,
the MY2 scheme predicts hail to grow in diameter be-

neath the freezing layer as a result of the accretion of

rain and cloud water (wet growth). This process is most

notable in storms with intense updrafts. Because there
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are few in situ observations of hail near the freezing

level, verification of such processes is difficult; surface-

based hail reports and radar observations offer only

limited information on the melting of hail aloft. Cur-

rently, WSR-88D MESH is the best method for verify-

ing predicted surface hail despite it being mainly

dependent on reflectivity observations above the freez-

ing layer. With the polarimetric upgrade of the opera-

tional WSR-88Ds, HCA and HSDA algorithms based

on low-level polarimetric data have the potential to

become preferred over MESH for hail verification. For

this case study, surface hail reports are limited because

most of the storms occurred in a sparsely populated rural

portion of southern Oklahoma; future work will in-

vestigate hail-producing storms occurring over urban

areas for which more widespread surface observations

are available.

One potential way of further improving hail pre-

diction is through the use of a three-moment MP

scheme, such as that of Milbrandt and Yau (2006b).

Introduction of a third moment allows the scheme to

predict the shape parameter of the PSD. This may help

to better represent hydrometeor sedimentation and

mitigate the melting bias noted in this study, potentially

allowing more realistic quantities of hail to reach the

surface. Other recently developed schemes, such as

those of Mansell et al. (2010) and Milbrandt and

Morrison (2013), attempt to better represent the variety

of rimed ice particles present in a storm. These MP pa-

rameterizations show promise in improving hail pre-

diction. By explicitly predicting bulk density of graupel

and/or hail, these schemes allow a greater range of

possible particle characteristics. In another recently

developed method, the predicted particle properties

(P3) scheme of Morrison and Milbrandt (2015) and

Morrison et al. (2015), the rimed ice category predicts

the rimed ice number concentration, volume, mass,

and mixing ratio, allowing for four degrees of freedom

for describing rimed ice particles. The use of these

new MP schemes may further improve short-term hail

prediction.

This study finds that 0–90-min hail predictions are

unreliable near the surface, regardless of the complexity

of the MP scheme. The skill levels of surface hail size

forecasts are intrinsically tied to the model’s ability to

correctly represent microphysical processes of hail for-

mation, growth, and decay; such forecasts will thus likely

continue to show limited skill unless the treatment of

hail, particularly during melting processes, is improved

within themodel. The forecast fields that perform best in

this study are those not impacted by the effects of near-

surface hail melting:mh andDmax at the vertical location

of the 0.58 radar tilt, which is relatively far from the radar

site, as well as MESH. Thus, this study highlights the

importance of improving the performance of MP

schemes with regard to the treatment of the melting of

hail. Amore rigorous examination of the impact of using

different rimed ice categorizations on hail prediction in

future studies could help clarify the benefits and impacts

of more recently developedMP schemes that allow for a

spectrum of rimed ice characteristics, such as the P3

scheme. Further research on these problems is strongly

desirable as this study and other recent studies have

shown the potential of explicit hail prediction.
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