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ABSTRACT

Day-ahead (20–22 h) 3-kmgrid spacing convection-allowingmodel forecasts are performed for a severe hail

event that occurred in Denver, Colorado, on 8 May 2017 using six different multimoment microphysics (MP)

schemes including: the Milbrandt–Yau double-moment (MY2), Thompson (THO), NSSL double-moment

(NSSL), Morrison double-moment graupel (MOR-G) and hail (MOR-H), and Predicted Particle Properties

(P3) schemes. Hail size forecasts diagnosed using the Thompson hail algorithm and storm surrogates predict

hail coverage. For this case hail forecasts predict the coverage of hail with a high level of skill but underpredict

hail size. The storm surrogate updraft helicity predicts the coverage of severe hail with the most skill for this

case.Model data are analyzed to assess the effects of microphysical treatments related to rimed ice. THOuses

diagnostic equations to increase the size of graupel within the hail core. MOR-G and MOR-H predict small

rimed ice aloft; excessive size sorting and increased fall speeds cause MOR-H to predict more and larger

surface hail thanMOR-G. TheMY2 and NSSL schemes predict large, dense rimed ice particles because both

schemes predict separate hail and graupel categories. The NSSL scheme predicts relatively little hail for this

case; however, the hail size forecast qualitatively improves when themaximum size of both hail and graupel is

considered. The single ice category P3 scheme only predicts dense hail near the surface while above the

melting layer large concentrations of low-density ice dominate.

1. Introduction

Hailstorms cause substantial property damage in the

United States; between 2017 and 2018 seven hail events

caused more than $1 billion (U.S. dollars) in damage

(NCEI 2017). The high cost of recent severe hail events

can be attributed in part to the growth and expansion

of cities; urban populations have increased by more

than 56% and urban areas have grown by 154% since

1960 (Joyce et al. 2008). As cities in hail-prone regions

continue to expand, damage from hail is expected to

further increase (Rosencrants and Ashley 2015). In an

effort to mitigate the impacts and damage of hail,

meteorologists are increasingly relying on numerical

weather prediction (NWP) models to improve hail

forecast skill and extend hail warning lead time. This

study assesses next-day hail forecasts for the 8May 2017

Colorado hail event and analyzes how the treatments of

rimed ice in the multimoment microphysics effect sur-

face hail size forecasts.Corresponding author: Jonathan Labriola, j.labriola@ou.edu
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Convection-allowing models (CAMs) are run at hor-

izontal grid spacings capable of representing dominant

circulations in midlatitude convective storms (Weisman

et al. 1997), but insufficient to resolve finescale convec-

tive features (Kain et al. 2008)—such grid spacings are

typically around 3–4km. CAMs are able to represent

deep, moist convection without too large of a compu-

tational cost so that forecasts over large regions [such as

the contiguous United States (CONUS)] with relatively

long lead times (up to a couple of days) can be produced

(Clark et al. 2012a).

CAMs are increasingly used operationally (e.g.,

Benjamin et al. 2016; Jirak et al. 2018), and multiple

research organizations run CAM forecasts routinely

(e.g., Coniglio et al. 2010; Clark et al. 2012a; Schwartz

et al. 2015; Gallo et al. 2017; Sobash et al. 2016). The

Hazardous Weather Testbed (HWT) Spring Forecast-

ing Experiment (SFE), performed each year during the

climatological maximum for severe weather over the

United States (Clark et al. 2012a), has analyzed next-day

CAM ensemble forecast output since 2007 (Xue et al.

2007; Kong et al. 2007). Additionally, the National

Weather Service is running deterministic CAM fore-

casts called High-Resolution Rapid Refresh (HRRR;

Smith et al. 2008; Benjamin et al. 2016) and produces

loosely integrated ensemble-of-opportunity-type en-

semble forecasts called High-Resolution Ensemble

Forecast (HREF; Jirak et al. 2018) as outgrowth of the

HWT SFE activities.

The horizontal grid spacing used byCAMs is too coarse

to resolve many severe weather phenomena including

large hail, severe winds, and tornadoes—for this reason,

storm surrogates are often used instead to diagnose se-

vere weather. Updraft helicity (UH):

UH5

ðz1
zo

zwdz , (1)

is the vertical integration of the product of vertical

vorticity z and updraft speed w between two atmo-

spheric layers, z0 and z1 (typically 2 and 5km above the

surface, respectively), and is used to identify intense

rotating updrafts found in supercells (Kain et al. 2008).

Because supercell thunderstorms produce a relatively

large amount of reported severe hail, wind, and torna-

does, UH can serve as a surrogate predictor for severe

weather including hail (e.g., Sobash et al. 2011, 2016;

Clark et al. 2013). Other storm surrogate fields include

simulated radar reflectivity Z at the 2108C level and

column integrated total graupel (CTG). Maximum

storm surrogate values calculated during the forecast

every time step (i.e., forecast maximum) are often used

to capture the rapid evolution of storms (Kain et al.

2010; Clark et al. 2012b, 2013), this is done because

model data at typical model output intervals are unable

to capture the dynamic and microphysical evolution of

storms that occurs at subminute time scales.

Despite the high impact of severe hail events, explicit

hail prediction remains relatively understudied. Fore-

casting hail is difficult; hail growth and melting are de-

pendent upon interactions of growing hailstones with

the surrounding environment and involves complex in-

ternal microphysical and kinematical processes. Nelson

(1983) and Foote (1984) documented that hail growth is

dependent upon embryo trajectories through the storm

updraft; these trajectories are in turn largely governed by

storm dynamics, including updraft orientation, volume,

and intensity. A number of studies have documented the

intricacies of hail microphysical processes, such as the

transition between wet and dry growth (Lesins and List

1986; Garcia-Garcia and List 1992), variation in density

(Heymsfield 1978; Knight and Heymsfield 1983; Ziegler

et al. 1983; Gilmore et al. 2004; Knight et al. 2008), and

the interaction of water on the surface of hail (Chong and

Chen 1974; Rasmussen andHeymsfield 1987; Miller et al.

1988; Garcia-Garcia and List 1992; Phillips et al. 2014).

Microphysical parameterization (MP) schemes are used

to simulate the complex microphysical processes ob-

served in convective storms for CAMs.

In real-time NWP (operational or experimental) all

CAMs use bulk MP schemes (hereafter MP schemes)

to predict the evolution of precipitation. MP schemes

assume a particle size distribution (PSD) function for

each hydrometeor species (x), and determine parame-

ters of the function from predicted quantities such as

the hydrometeor mass mixing ratio (qx), number con-

centration (Ntx), reflectivity (Zx), and volume (yx) or

density (rx). The most commonly assumed distribution

for hydrometeor PSDs is a three-parameter gamma-

distribution (Ulbrich 1983):

N(D)5 N
0x
Daxe(2lxD) , (2)

where N0x is the intercept parameter, ax is the shape

parameter, and lx is the slope parameter of the PSD.MP

schemes vary in complexity based upon the number of

PSD parameters that are predicted. The number of de-

grees of freedom or parameters predicted has impacts

on how the scheme represents microphysical processes,

including melting and sedimentation.

MP schemes usually predict PSDs for distinct hydro-

meteor categories with predefined characteristics (e.g.,

rain, cloud water, snow). Certain hydrometeor types

such as rain can more easily be represented via this ap-

proach; however, rimed ice typically includes a spectrum

of particle characteristics such as: density, size, shape,
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and fall velocity within convective storms that make it

difficult to represent with static parameters. Many MP

schemes predict a single category for rimed ice (e.g., Lin

et al. 1983; Rutledge andHobbs 1983;Meyers et al. 1992;

Ferrier 1994; Thompson et al. 2008; Morrison et al. 2005;

Morrison and Grabowski 2008); user defined parame-

ters determine if the rimed ice behaves more similar

to graupel (low-density rimed ice) or hail (high-density

rimed ice). MP schemes such as Milbrandt and Yau

(2005b) predict two separate rimed ice categories that

represent both low- and high-density rimed ice. Prog-

nostic equations for rimed ice volume (and thus den-

sity) have also been successfully implemented within

MP schemes (e.g., Mansell et al. 2010; Milbrandt and

Morrison 2013; Morrison and Milbrandt 2015) and al-

low NWP models to represent a spectrum of ice and

rimed ice characteristics.

Hail size information can be extracted from the CAM

predicted microphysical state variables. The Thompson

hail size algorithm (Thompson et al. 2018; Gagne et al.

2019) uses hail PSDs predicted by MP schemes to ap-

proximate the maximum observable hail size at each

grid point; variants of this method have been used

to verify forecasts and understand process-level hail

growth and decay processes (Milbrandt and Yau 2006a;

Snook et al. 2016; Labriola et al. 2017,2019; Luo et al.

2018). Surveys conducted during the SFE indicate that

forecasters find the additional information provided by

explicit hail size forecasts useful relative to surrogate

fields (e.g., UH) (Gallo et al. 2017).

Objective hail forecast verification is a substantial

challenge. Surface-based hail reports exhibit consider-

able population biases (Wyatt and Witt 1997; Davis and

LaDue 2004); hail in rural regions tends to be under-

reported. Surface-based reports also exhibit consider-

able size biases; the general public often report hail size

in terms of familiar circular or spherical objects (e.g.,

dimes, golf balls), causing the overrepresentation of

hail sizes corresponding to such objects (Jewell and

Brimelow 2009). Further, data gaps in surface obser-

vations are typically too large to capture the rapid

evolution of severe hail producing storms.

TheU.S. NextGenerationWeather Radar (NEXRAD)

system (Crum et al. 1993) is an observational platform

capable of capturing the evolution of severe hail within

thunderstorms in three dimensions. Radar-derived hail

products have been used to verify hail forecasts in several

recent studies (e.g., Gagne et al. 2015, 2017; Snook et al.

2016; Labriola et al. 2017, 2019; Luo et al. 2017, 2018) and

are often used operationally to diagnose maximum hail

size (Cintineo et al. 2012). Radar-derived hail proxies, such

as hydrometeor classification algorithm (HCA; Park et al.

2009; Putnam et al. 2017) output, are preferable to surface

reports because they produce high-resolution surface

hail size estimates that are not subject to population

biases or gaps in data over rural areas (Cintineo et al.

2012). HCAs use single- and dual-polarization radar data

(i.e., Z, differential reflectivity Zdr, correlation coeffi-

cient rhv, and differential phase udp) to diagnose the

dominant hydrometeor species (e.g., rain, snow, hail)

within a given radar observation volume. The HCA of

Ryzhkov et al. (2013) and Ortega et al. (2016) further

classifies hail into one of three size categories: non-

severe, severe, or significant severe (corresponding to 5,

25, or 50mm in hailstone diameter, respectively).

It is noted that the HCA provides hail size informa-

tion only at the location of radar observations (i.e.,

along a radar beam) and not explicitly the surface, which

is often the location of greatest interest. Additionally,

HCA output is highly sensitive to biases in differential

reflectivity measurements (Ortega et al. 2016). For cali-

brated radar observations, HCA membership functions

have been found to classify hail size within a 120-km

range of a radar with greater skill than other radar-

derived hail products such as the maximum estimated

size of hail (MESH) (Ortega et al. 2016). Following

Labriola et al. (2019), HCA output is used to verify

forecasts in this study both subjectively and objectively.

In this study, we present results from six CAM fore-

casts using differentMP schemes for amultiple hailstorms

that occurred over the Denver, Colorado, metropolitan

area on 8 May 2017. Rimed ice treatments are compared

between MP schemes to understand how microphysical

assumptions impact surface hail size forecast skill. The

remainder of this paper is organized as follows: In section 2,

we discuss the ensemble configuration and the evaluated

hail forecast fields, and provide a brief description of the

verification methodologies used in this study. Hail size

forecasts are evaluated in section 3, together with a

microphysical analysis of the model output. Finally, re-

sults are summarized and further discussed in section 4.

2. Methods

a. Case overview

On 8 May 2017, positive vorticity advection from an

upper-level trough located over Baja California and low-

level forcing along a weak frontal boundary located over

the Palmer divide (an east–west area of raised terrain to

the south of Denver) initiated multicellular thunder-

storms south and east of Denver around 1930 UTC. This

event serves as an example of a prominent Denver cy-

clone (Szoke et al. 1984; Blanchard and Howard 1986).

Surface wind convergence along the elevated terrain of

the Palmer divide positively contributed to thunderstorm
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initiation and intensification. Upslope flow to the north

of the frontal boundary also initiated discrete thunder-

storms along the Front Range of the Rocky Mountains

nearDenver andFortCollins,Colorado, around2005UTC.

The storms (Fig. 1b) produced large hail between 2000

and 2200 UTC; HCA output (Fig. 1c) and surface-based

reports indicate surface maximum hail sizes from these

storms ranged between 1 and 2.75 in. (25–70mm) in diam-

eter. Damage from these storms was particularly extensive

because one of the storms produced hail up to 2.75 in.

(70mm) in diameter over the Denver metropolitan area

during the evening rush hour. Estimated insured losses from

this storm are approximately $2.3 billion (U.S. dollars)

(NCEI 2017), making it the most costly insured catastrophe

in Colorado state history (Fritz 2017).

This severe hail event was unique in that the observed

surface dewpoint temperature was approximately 88C,
this was an abnormally dry environment to support the

development severe hailstorms in Colorado (Modahl

1979). Although the environment was relatively dry,

vertical wind shear contributed to the development of

prolific hailstorms. The observed 0–6-km bulk shear for

this event was 30–40kt (1 kt’ 0.5144ms21) (Marsh

2017). Idealized simulations run byDennis and Kumjian

(2017) suggest that increased deep layer shear elongates

storm updrafts and increases hail residence time in a

favorable growth region. The vertical wind shear also

supported the development of supercell thunderstorms

for this event, many of the large hail producing thun-

derstorms exhibited rotation (not pictured). Of the dif-

ferent storm morphologies, supercell thunderstorms

most frequently produce large hail in the United states

(Blair et al. 2017) and are often associatedwith hail events

that cause more than $1 billion (U.S. dollars) in damage

(e.g., Changnon and Burroughs 2003; Changnon 2009).

b. Model configuration

This study uses an ensemble of six WRF-ARW fore-

casts produced using configurations closely based

upon the Center for Analysis and Prediction of Storms

(CAPS) storm-scale ensemble forecast (SSEF) that was

run operationally during the 2017 HWT SFE (Jung et al.

2018). During the HWT SFE, the CAPS SSEF was ini-

tialized at 0000UTCevery day. CAPS SSEF experiments

have been included in multiple studies that analyze next-

day severe weather predictions (e.g., Clark et al. 2012a,b;

Loken et al. 2017; Gagne et al. 2017), a relatively long

lead time for convective-scale forecasts. The 0000 UTC

FIG. 1. (a) The verification domain during this study. S-Band radars KCYS, KFTG, and KPUX are plotted, gray

shading indicates the 130-km range of the radars (the HCA is applied within this radius). Radar locations (d) and

cities (*) are included on the map. (b) Maximum observed Z the lowest radar tilt (0.58) for radars plotted in (a) at

2130 UTC. (c) Merged HCA output between 2000 and 2200 UTC using the same radars as in (a). Merged HCA

output is calculated on a 500-m grid and scaled to the native 3-km grid for this image. Output categorizes hail sizes

as nonsevere (diameter . 5mm), severe (diameter . 25mm), and significant severe (diameter . 50mm). Purple

contours represent urban boundaries.
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8 May 2017 operational North American Mesoscale

Forecast System (NAM) analysis is used as the analysis

background while the 12-km NAM forecasts at 3-hourly

intervals are used to provide lateral boundary conditions.

Weather Surveillance Radar-1988 Doppler (WSR-88D)

data, along with available soundings and upper air ob-

servations, are analyzed using the Advanced Regional

Prediction System (ARPS) 3DVAR/Cloud-analysis sys-

tem (Hu et al. 2006a,b) to generate initial conditions on a

3-km CAM grid.

The 3-km grid has 1621 3 1121 3 51 grid points and

covers the CONUS. Six CAM forecasts initialized from

the 3DVAR analysis differ only in the MP scheme used.

They include theThompson et al. (2008) (THO),Morrison

et al. (2005, 2009) and Morrison and Milbrandt (2011)

double-moment graupel (MOR-G) and double-moment

hail (MOR-H), Milbrandt and Yau (2005b) double-

moment (MY2), Mansell et al. (2010) National Severe

Storms Laboratory (NSSL) double-moment schemes,

and the Predicted Particle Properties (Morrison et al.

2015; Morrison and Milbrandt 2015) single ice category

(P3) scheme. The forecasts are run to 24h, using the

WRF-ARW Model version 3.9.1.1 (Skamarock et al.

2008). Other relevant model settings and parameteriza-

tions follow those of the 2017 CAPS 3DVAR SSEF

control member (Kong 2017). This includes the use of the

MYJ planetary boundary layer scheme, the Noah land

surface model, and the longwave and shortwave radia-

tion parameterization using the Rapid Radiative Trans-

fer Model for general circulation models (RRTMG).

c. Overview of microphysics schemes

Microphysics schemes selected for this study are

partially or fully double-moment schemes that are

frequently selected in the CAPS HWT SFE ensemble

(e.g., Kong 2017). Multimoment schemes were chosen

because single-moment schemes do not explicitly pre-

dict the sedimentation of number concentrations and

are generally unable to represent size sorting processes

(e.g., Wacker and Seifert 2001; Milbrandt and Yau

2005b; Dawson et al. 2010; Jung et al. 2010) unless

special treatment is made such as that in the Thompson

et al. (2004) scheme for snow. While there are many

differences between theMP schemes used in this study,

this paper will primarily focus on differences in the

treatment of rimed ice categories (Table 1). Hail and

graupel categories are frequently referred to as ‘‘rimed

ice categories’’ in this study; however, many of the

rimed ice categories also include unrimed frozen rain-

drops. Unrimed ice is often included in the graupel or

hail categories because this is the hydrometeor type

they most closely resemble.

Unlike the other MP schemes examined in this study,

THO is single-moment for a low-density rimed ice cat-

egory, for which it predicts only mixing ratio (qg). In a

compromise to represent both hail and graupel within

the single rimed ice category, rather than modify den-

sity, the THO scheme diagnoses Ntg and thus modifies

the size of rimed ice. This is done because rimed ice

surface accumulations are shown to be more sensitive to

changes in the assumed intercept parameter than den-

sity (Gilmore et al. 2004). The THO scheme assumesNtg

to be a function of themeanmass diameter of supercooled

rain and qg (Khain et al. 2015) (Table 1). Supercooled

liquid water is considered to account for wet-growth

processes in convective storms (G. Thompson 2019,

personal communication). Near storm updrafts, where

raindrop diameters and qg are large, THO increases

the size of graupel by decreasingNtg; outside the updraft

region graupel particles are relatively small in diameter.

Both the MOR-G and MOR-H schemes predict a

single low-density rimed ice category. The MOR-H

scheme implements the same prognostic equations as

the MOR-G scheme; however, rimed ice characteristics

are more similar to hail (i.e., high-density, and larger

terminal velocities) (Table 1). Running both versions of

the MOR scheme allow forecasts to be run with differ-

ent rimed ice particle characteristics that are shown to

have a large impact of storm structure (Morrison and

Milbrandt 2011).

The MY2 and NSSL schemes have two rimed ice cat-

egories, that separately represent high-density (hail) and

low-density (graupel) rimed ice particles. They pre-

dict both mixing ratio and total number concentration

TABLE 1. Ice categories and prognostic variables for the six analyzedMP schemes during this study. N/A indicates that the category is not

predicted by the MP scheme. See main text (section 2c) for more details.

Graupel Hail Ice (general) Snow Cloud ice

THO qg, diagnostic (Ntg), rg 5 500 kgm23 N/A N/A qs qi, Nti

MOR-G qg, Ntg, rg 5 400 kgm23 N/A N/A qs, Nts qi, Nti

MOR-H N/A qh, Nth, rh 5 900 kgm23 N/A qs, Nts qi, Nti

MY2 qg, Ntg, rg 5 400 kgm23 qh, Nth, rh 5 900 kgm23 N/A qs, Nts qi, Nti

NSSL qg, Ntg, yg qh, Nth, yh N/A qs, Nts qi, Nti

P3 (1 category) N/A N/A qi_tot, Nti_tot, qi_rim, yi_rim N/A N/A
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for both hail and graupel. The NSSL scheme addition-

ally includes prognostic equations for hail and graupel

volume mixing ratios, allowing the scheme to derive

spatially varying particle densities. The variable den-

sity rimed ice categories are used by the NSSL scheme

to represent a spectrum of rimed ice characteristics

and to improve representation of hailstone production

(Labriola et al. 2019).

Unlike the other four MP schemes, the P3 scheme

has a user specified number of ‘‘free’’ ice-phase cate-

gories, each of which can represent a wide range of ice

particle types (e.g., cloud ice, snow, graupel, and

hail). The P3 scheme includes four prognostic vari-

ables (Table 1) that describe the evolution of a gen-

eral ice category; this includes: the total ice mass mixing

ratio (qi_tot), the total ice number concentration (Nti_tot),

the accreted rime mass mixing ratio (qi_rim) and the ac-

creted rime volume mixing ratio (yi_rim). The predicted

moments define a single PSD that includes up to four size

regimes: small circular dense ice, large nonspherical un-

rimed ice (e.g., snow), partially rimed ice, and fully rimed

ice (e.g., graupel, hail); each of these species uses differ-

ent mass–diameter and fall speed–diameter relationships.

The P3 scheme also diagnoses ax as a function of lx.

Thoughmultiple ice phase categories prevent the dilution

of ice particle characteristics (Milbrandt and Morrison

2016), this study uses the single ice category version of the

P3 scheme used by theCAPS SSEFduring the 2017HWT

SFE (Kong 2017).

d. Forecast evaluation and verification

This study verifies and analyzes forecasts over a sub-

domain based in Colorado (Fig. 1a) between 2000 and

2200 UTC, this is when the largest hail was observed.

Both storm surrogate methods and the Thompson hail

method are used to make hail size forecasts. Storm

surrogate fields used include UH, CTG, and Z at

the 2108C level; Gagne et al. (2015, 2017) used these

fields to diagnose severe and significant severe hail.

Thresholds used to identify severe and significant severe

hail for storm surrogate fields are consistent with Gagne

et al. (2017) as listed in Table 2. The Thompson hail size

algorithm (hereafter THAIL) is used to infer the max-

imum ‘‘observable’’ hail size from the predicted model

PSD category most similar to hail, defining the maxi-

mum observable hail diameter as the diameter at which

the integrated Nth of larger hailstones is 1023m23, or

one hailstone within a 100m3 100m patch with a depth

of 1m. The choice of this threshold is subjective and open

to interpretation; however, variants of THAIL using a

similar threshold have been used in other recent hail

forecasting studies (e.g., Milbrandt and Yau 2006a; Snook

et al. 2016; Labriola et al. 2017, 2019; Luo et al. 2018).

THO, MOR-G, MOR-H, and MY2 assume the hydro-

meteor category most similar to hail follows an inverse-

exponential distribution (i.e., the hail PSD shape

parameter is assumed to be zero). This distribution has

an extended tail for large hail sizes and can cause the

scheme to predict larger ice particles than schemes that

assume nonzero shape parameters (e.g., NSSL and P3).

For both explicit hail size fields and observations, non-

severe, severe, and significant-severe hail are defined as

hail exceeding 5, 25, and 50mm in diameter, respectively.

Hydrometeor classification algorithm (HCA) output

from polarimetric WSR-88D observations is used in this

study to verify hail forecasts; this dataset was chosen

because it is unaffected by population biases and is

generally in agreement with ground-based reports. The

HCA used and its implementation are identical to those

of Putnam et al. (2017). All hail falls within 130km of at

least one WSR-88D during this event; at approximately

this range the HCA algorithm is capable of quite accu-

rately estimating surface hail size (Ortega et al. 2016). A

two-dimensional HCA output field is generated by in-

terpolating data from the lowest observed radar tilt for

WSR-88D sites Cheyenne (KCYS), Denver (KFTG),

and Pueblo (KPUX) to a grid with 500-m grid spacing

(Fig. 1a). Environmental information (i.e., air temper-

ature, moisture) required by the HCA is obtained from

the 3-km WRF-ARW Model forecasts. To resolve

small-scale features (i.e., hail cores) while avoiding ex-

cessive noise, radar data are first interpolated to the

500-m grid, and a 9-point smoothing filter is then applied

to Zdr and rhv. The HCA algorithm is performed for all

data within 130km of a WSR-88D radar. Although the

HCA is not applied to the entire subdomain, only to

regions shaded gray in Fig. 1a, it covers all areas im-

pacted by severe hailstorms. HCAoutput from the three

radar sites are then merged together; where multiple

radars observe the same location, the largest indicated

hail size is selected. To reduce noise and avoid spurious

detections, a smoothing filter is applied to the merged

HCA output. The smoothing filter increases (decreases)

the hail size detection when the four closest grid points

are larger (smaller); the updated detection is set to

TABLE 2. The thresholds for each field to diagnose nonsevere,

severe, and significant severe hail sizes. Thresholds are defined in

Gagne et al. (2017). N/A indicates a threshold does not exist for the

specific hail size bin.

Nonsevere Severe Significant severe

Updraft helicity N/A .75m2 s22 .150m2 s22

Column total graupel N/A .25 kgm22 .50 kgm22

Z at 2108C level N/A .60 dBZ .60 dBZ

Thompson hail .5mm .25mm .50mm
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match the four surrounding grid points. This technique

follows that of (Labriola et al. 2019). Finally, the radar-

HCA 500-m grid is then remapped to the WRF 3-km

grid by taking the largest value within a 3-km pixel

(Fig. 1c).

Due to the potentially large error present in day-

ahead (18–24 h) convective-scale forecasts, CAMs are

oftentimes unable to predict the initiation and devel-

opment of individual observed storms accurately. The

model is capable; however, of skillfully predicting an

environment favorable for convective development,

though the model environment is often modified by

modeled thunderstorms preceding the time of interest.

Due to the limits of intrinsic predictability (Lorenz

1969), verification of 18–24-h severe and significant se-

vere hail predictions using a point-by-point approach

provides little insight; this study will instead verify

the spatial coverage of hail. Fractions skill score (FSS;

Roberts and Lean 2008) is a metric that compares the

fractional coverage of predicted and observed events at

varying neighborhood lengths. The fractional coverage

approach taken byFSS circumvents the ‘‘double penalty’’

issue associated with displacement errors suffered in

point-by-point verifications. FSS is definedwith the mean

square error (MSE) and the reference mean square error

(MSEref):
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whereO is the binary observational field;M is the binary

forecast field; Nx and Ny are the x and y dimensions

of the domain, respectively; and n is the neighborhood

length. FSS can be calculated over an increasingly larger

neighborhood length to determine the smallest neigh-

borhood scale where a forecast predicts the spatial

coverage of hail with skill. A forecast is considered to

have acceptable (or useful) skill when the FSSmeets the

criterion:

FSS. 0:51
f
0

2
, (6)

where f0 is the random forecast skill. Verification is

performed for occurrence of hail exceeding a given size

within a 42-km radius of a grid point. This distance is

consistent with that used in current Storm Prediction

Center (SPC) convective outlooks (i.e., ‘‘within 25 miles

of a point’’) and previous CAM studies (e.g., Gagne

et al. 2017). FSS is used along with subjective compari-

sons to identify strengths and weaknesses of the differ-

ent hail forecast fields and compare forecasts performed

using different MP schemes. Forecasts are compared

for a single hail event, additional case studies are re-

quired to draw meaningful conclusions as microphysi-

cal processes vary substantially due to changes in the

stormmorphology and environment (e.g., Nelson 1983;

Heymsfield 1983; Dennis and Kumjian 2017).

3. Results

Storm surrogate (UH, CTG, Z at the 2108C level)

and surface maximum hail size (diagnosed via THAIL)

forecast fields produced using the THO, MOR-G,

MOR-H, MY2, NSSL, and P3 schemes are first evalu-

ated using HCA output as a proxy for hail size obser-

vations (Fig. 1c). The forecast verification domain (see

Fig. 1) extends along the front range of the Rocky

Mountains in Colorado between 2000 and 2200 UTC,

when HCA output indicates hail exceeding 50mm in

diameter in several storms (Fig. 1c).

a. Verification

Hail size forecasts (Fig. 2) diagnosed via THAIL are

the primary focus of subjective verification because they

can be directly compared against HCA output (Fig. 1c).

The P3 hail size forecast is not included within this study

because, at the time of the study, the THAIL algorithm

was not coded for the P3 scheme. MOR-G, MOR-H,

andMY2 hail size forecasts (Figs. 2b–d) predict the total

area coverage of hail .5mm to be similar to observa-

tions (Fig. 1c); however, the THO and NSSL forecasts

predict spatially small swaths of hail (Figs. 2a,e). Al-

though the NSSL forecast predicts storms to produce

updrafts that are similar in intensity to the other fore-

casts (Fig. 3), the scheme predicts storms to produce

mostly graupel at the surface and relatively little hail.

Since in the HWT SFE the THAIL algorithm does not

consider the NSSL graupel category, the forecast under-

estimates to coverage of rimed ice at the surface (Fig. 1c).

The NSSL hail and graupel categories are further ana-

lyzed later, in section 3b.

THAIL uses hail PSDs diagnosed from model output

at the lowest model level above the surface to estimate

surface maximum hail size. This method is subject to

the various microphysical characteristics and assump-

tions made by each MP scheme, differences among MP

schemes impact the surface diagnosed hail size. None

of the forecasts (Fig. 2) predict significant severe hail
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coverage; it is suspected this hail size underprediction is

due in part to predicted storm updrafts that are relatively

weak (,28ms21) (Fig. 3). MOR-G (Fig. 2b), MOR-H

(Fig. 2c), and MY2 (Fig. 2d) surface hail size forecasts

predict widespread nonsevere hail. The THO, MOR-H,

MY2, and NSSL forecasts (Figs. 2a,c–e) also predict lo-

calized cores of severe hail that better capture large sur-

face hail sizes observed in HCA output (Fig. 1c) than the

MOR-G forecast (Fig. 2b). A more in-depth analysis of

the microphysical treatment of rimed ice for each MP

scheme is presented in section 3b.

FSS is used in this study to examine at which scales

forecasts skillfully predict the fractional coverage of hail. It

is important to note that the FSS is calculated over a small

domain that includes multiple hail producing thunder-

storms. The fractional observed hail coverage within this

domain is thus much larger than what is normally ob-

served over the full CONUS, and the FSS required

for a skillful forecast is thus unusually high (Table 3).

Additionally, the fractional coverage of observed hail

(Table 3) is larger thanwhatHCAoutput suggests because

the verification method considers the largest observed hail

FIG. 2. Forecast maximum hail size between 2000 and 2200 UTC. Surface hail size forecasts are diagnosed by the

THAIL algorithm; forecasts are run using the (a) THO, (b)MOR-G, (c)MOR-H, (d)MY2, and (e)NSSL schemes.

The dashed black line marks the location where vertical cross sections are analyzed in Figs. 5, 8, and 12–14. The

background is the same as Fig. 1.
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diameter within a 42-km radius of a grid point. Although

the skill threshold is large for this study, severe hail is

considered to be a rare event climatologically throughout

the CONUS; for these types of rare hazards, 0.5 is con-

sidered to be the lower limit for skill (Mittermaier and

Roberts 2010). The FSS of significant severe hail is not

plotted because forecasts exhibit little skill at scales less

than 80km. The FSS is instead calculated for hail ex-

ceeding 5mm in diameter, which is roughly considered the

coverage of ‘‘all hail’’ (including both severe and non-

severe hail). Storm surrogate methods have generally not

been calibrated to diagnose regions of nonsevere hail and

therefore are omitted from the ‘‘all hail’’ category.

Storm surrogates that are defined using storm dy-

namic fields (i.e., UH) predict severe hail with more skill

than surrogates defined using microphysical variables

(i.e., CTG, Z at the 2108C level). Maximum hail size

diagnosed via THAIL exhibits the most skill at pre-

dicting severe hail coverage for the MOR-H (Fig. 4c)

and MY2 (Fig. 4d) forecasts; however, UH is the only

parameter that has a FSS that exceeds 0.5 for all fore-

casts (Fig. 4). Although UH predicts the coverage of

severe hail with some skill, there are variations in skill

FIG. 3. Forecast maximum updraft velocity between 2000 and 2200 UTC. Forecasts are run using the (a) THO,

(b)MOR-G, (c) MOR-H, (d) MY2, (e) NSSL, and (f) P3 schemes. The dashed black line marks the location where

vertical cross sections are analyzed in Figs. 5, 8, and 12–14. The background is the same as Fig. 1.

TABLE 3. Observed fractional coverage of hail considered by

FSS and the criterion for acceptable skill for each hail size

threshold.

Size category Fractional coverage Skill

All hail 0.588 0.794

Severe 0.503 0.751

Significant severe 0.437 0.719
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between forecasts for this case. Variations in the pre-

dictive skill of UH are attributed to differences in storm

track length and position (both of which vary substan-

tially between members) during the 2-h verification

window. Results are similar to Gagne et al. (2017) that

found UH to be a skilled predictor of large hail because

the parameter identifies storms with strong rotating

updrafts. Storms with rotating updrafts tend to be most

capable of producing severe hail. Because UH is strictly

based upon storm dynamics, the field is not directly

affected by the large differences in microphysical vari-

ables between MP schemes.

The skill of storm surrogates defined by microphys-

ical variables is strongly dependent upon choice of MP

scheme, in particular assumptions made within and the

predicted PSD details. The THO and MY2 schemes

predict large hail more than 10 km above mean sea

level (MSL), leading to increased performance of the

storm surrogate Z at the 2108C level (Figs. 4a,d). Z at

the2108C level underestimates the coverage of hail for

all other forecasts (Figs. 4b,c,e,f), because the otherMP

schemes predict either smaller rimed ice particles aloft

or large rimed ice is not lofted as high above the

ground. With the exception of MOR-H (Fig. 4c) that

predicts larger concentrations of rimed ice aloft than the

other forecasts, CTG shows no skill at predicting the

coverage of severe hail in terms of the FSS (Fig. 4).

Although hail diagnostic fields (e.g., UH, CTG) ex-

hibit some skill when predicting the coverage of severe

hail, verifications are limited to the scope of a single hail

event. Previous studies that analyzed multiple severe

hail events (e.g., Gagne et al. 2017), documented that

storm surrogates can produce extreme false alarm rates

when the NWP model forecasts storms that are never

observed in nature. Further, UH is tuned to detect hail

produced by rotating thunderstorms and is unable to

detect hail for other stormmodes. Results of verifications

provide information on the skill of the hail forecasts for

this event, but additional case studies are necessary to

understand how hail forecasts vary between cases.

b. Microphysical analysis

Model output is used in this study to understand the

modeledmicrophysical processes that impact the overall

quality of explicit hail size and storm surrogate forecasts.

To this end, vertical cross sections are presented for

various predicted variables, including: hydrometeor

mass content (mx), number concentration (Ntx), density

FIG. 4. The FSS of predicting all hail and severe hail coverage using storm surrogate methods (UH, CTG, Z at the 2108C level) and

maximum surface hail size diagnosed via THAIL (maximumhail size). Forecasts are created using the (a) THO, (b)MOR-G, (c)MOR-H,

(d) MY2, (e) NSSL, and (f) P3 schemes. In each figure the bottom horizontal black dashed line represents the climatology of severe hail

over the verification domain between 2000 and 2200 UTC (Fig. 1), the top horizontal black dashed line represents the line of skill for

severe hail. Maximum hail size is the only field plotted for the all hail size category (dashed green line) because storm surrogate methods

do not identify nonsevere hail coverage. Some curves [e.g.,Z at the2108C line in (b)], are not found in the plots because they fall below the

lower bound of plotted domain. The P3 scheme forecast does not include maximum surface hail size.
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(rx), mass-weighted mean diameter (Dmx), and rime

fraction. The mass content of hydrometeor species

x (mx) is the product of the hydrometeor mass mixing

ratio and air density. Vertical cross sections are plotted

at the location of the maximum surface hail size ac-

cording to hail size forecasts, this is typically collocated

with the storm updraft. Comparison of vertical cross sec-

tions are performed at 2130UTC; at this time each scheme

predicts a rotating thunderstorm (UH . 60m2 s22) and

rimed ice (q . 1 3 1024 g kg21) at the surface.

Contoured frequency by altitude diagrams (CFADs;

Yuter and Houze 1995) will also be used to gain a better

understanding of microphysical trends for: N0x, lx, rx,

and hail size diagnosed from model output via THAIL.

CFADs, which are calculated over the verification do-

main (see Fig. 1) at 5min intervals during the fore-

cast evaluation period (2000–2200 UTC), provide the

number of event occurrences per bin at each vertical

level with frequencies normalized by the total number

of occurrences. Information gained from this analysis

can be used to understand spatial trends in the micro-

physical variables predicted by the MP schemes.

1) SINGLE RIMED ICE CATEGORY SCHEMES

Characteristics of rimed ice particles vary significantly

between MP schemes, and these differences are largely

governed by the scheme-imposed properties of the rimed

ice category in question. TheTHO,MOR-G, andMOR-H

schemes predict a single hydrometeor category that rep-

resents rimed ice. Because all rimed ice particles are rep-

resented within a single category, all three schemes predict

large mass contents of ice aloft (Figs. 5a,d,g). Despite dif-

ferences in assumed rimed ice density (Table 1), MOR-G

(Fig. 5f) andMOR-H (Fig. 5i) predict rimed ice to remain

mostly small (Dmx, 2mm) above the 08C isotherm, larger

Dmx values are found primarily beneath the 08C isotherm.

The THO scheme predictsNtg (Fig. 5b) to decrease within

the updraft, this region correspondswith a relative increase

in Dmg (Fig. 5c).

CFADs of the rimed ice category PSD parameters

indicate the THO, MOR-G, and MOR-H schemes

predict large intercept (Figs. 6a,d,g) and slope parame-

ters (Figs. 6b,e,h), causing the rimed ice particles to be

smaller than 20mm in diameter (Figs. 6c,f,i) in general.

MOR-G (Fig. 6d) and MOR-H (Fig. 6g) predict the

intercept parameter of rimed ice to occupy a larger

range of values than THO (Fig. 6a), this is in part be-

cause the THO scheme constrains N0g to remain be-

tween 104 and 3 3 106m24. All three MP schemes

predict the intercept parameter to be within the ob-

served range of N0g values (104–1010m24) (Knight

et al. 1982). AlthoughMOR-H predicts rimed ice most

similar to hail and THO predicts a graupel/hail hybrid

category, both schemes predict the intercept parame-

ter of rimed ice to be several orders of magnitude

larger than theMY2 or NSSL hail categories. MY2 and

NSSL hail PSD parameters are discussed later in the

section.

MOR-G (Figs. 6d,e) and MOR-H (Figs. 6g,h) rimed

ice PSD parameters behave similarly, modifications

made to the bulk density and terminal velocity of rimed

ice does not appear to impact rimed ice PSDs. Because

MOR-H does not predict substantially larger hailstones

than MOR-G in a bulk sense it is speculated that the

increased fall speed of hail compared to graupel causes

MOR-H to predict more rimed ice to reach the surface

before melting resulting in the increased surface cov-

erage of hail (Fig. 2c). CFADs indicate that at the

lowest model grid heights (approximately 2 km above

MSL), MOR-H (Fig. 6i) predicts an increased fre-

quency of rimed ice reaching the surface than MOR-G

(Fig. 6f).

The diagnostic graupel intercept parameter in THO

causes the size of graupel to increase. At 2–10km above

MSL the THO scheme predicts a greater frequency

(approximately 2.5 3 1023) (Fig. 6a) of low N0g values

(approximately 104m24) causing the maximum size of

hail to exceed 70mm in diameter (Fig. 6c). At 8–10km

above MSL mg is relatively large (Fig. 5a) and super-

cooled liquid water is present, these conditions cause the

THO scheme graupel PSD to predict relatively low N0g

values (104m24) aloft. As part of the diagnostic pro-

cedure the THO scheme requires all grid points within a

vertical column to assume the lowest N0g value above.

Many of lowest N0g values are located 8–10km above

MSL, this subsequently enhances the size of rimed ice

toward the surface in the storm updraft region (Fig. 5c).

More than 10km above MSL there is no supercooled

liquid water and thus N0g is diagnosed to increase to

106m24 (Fig. 6a). Although the THO scheme predicts

rimed ice to grow farther aloft thanMOR_HorMOR_G,

the scheme is in closer agreement with the observed hail

growth zone,which is locatedwell above the 08C isotherm

(e.g., Ziegler et al. 1983; Foote 1984).

The diagnostic intercept parameter in the THO

scheme causes sharp local gradients in hail size because

variables used to diagnose Ntg are determined locally

(G. Thompson 2019, personal communication). To il-

lustrate how modifying Ntg impacts rimed ice particle

size, two graupel PSDs from adjacent grid points are

sampled at the ‘‘3’’ in Fig. 5c. Although qg is relatively

similar between the two grid points, the THO scheme

diagnoses Ntg to be much smaller in location 1 than lo-

cation 2 because supercooled liquid is present at the

former grid point (Table 4). At location 1mg is distrib-

uted among fewer hailstones causing the graupel PSD to
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favor fewer but larger graupel particles than location 2

(Fig. 7).

Neither theMOR-G (Fig. 6f) nor theMOR-H (Fig. 6i)

schemes replicate the growth of rimed ice aloft, instead

both schemes predict the diameter of rimed ice to in-

crease toward the surface. It is speculated that largemean

sizes near the surface are due to excessive size sorting.

Excessive size sorting is frequently documented in two-

moment MP schemes (e.g., Milbrandt and Yau 2005a;

Dawson et al. 2014; Morrison et al. 2015; Johnson et al.

2016, 2019, manuscript submitted to Mon. Wea. Rev.),

and typically occurs when the mass fall speed is larger

than number fall speed, causing more mass to reach the

surface and increase the particle mass-weighted mean

diameter. Because the THO scheme only predicts grau-

pel mass mixing ratio, this scheme cannot explicitly pre-

dict gravitational size sorting of rimed ice. Instead, the

scheme requires all grid points in a vertical column to

assume the lowest N0g value aloft; this treatment in-

creases the size of the rimed ice particles in the hail core

and simulates the effects of size sorting to some extent.

The effects of excessive size sorting are exacerbated

for MP schemes that assume inverse exponential dis-

tributions (e.g., MOR-G and MOR-H). Many double-

moment MP schemesmake additional efforts to improve

the simulation of size sorting. For example, a version of

the two-moment Milbrandt and Yau (2006b) scheme di-

agnoses hydrometeor PSD shape parameters instead of

FIG. 5. A vertical cross section of a hail core at 2130 UTC, the location of the cross section is marked in Fig. 2.

Vertical cross sections are taken of the rimed ice category predicted by the (a)–(c) THO, (d)–(f) MOR-G, and

(g)–(i) MOR-H schemes. Plotted variables include rimed ice: (a),(d),(g) mx, (b),(e),(h) Ntx, and (c),(f),(i) Dmx.

1 m s21 updrafts are contoured in black, the brown horizontal line denotes the 08C isotherm. The red ‘‘3’’ in

(c) marks the location where graupel particle size distributions are sampled.
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using fixed values, the THO scheme (Thompson et al.

2008) increases the rain number terminal velocity to re-

semble more closely mass terminal velocity, the NSSL

scheme adjusts hydrometeor number concentration to

prevent artificial growth in reflectivity (Mansell 2010),

and the P3 scheme uses drop breakup to limit unrea-

sonably large raindrops at the lower levels (Morrison

et al. 2015).

2) TWO RIMED ICE CATEGORY SCHEMES

TheMY2 (Figs. 8a–c) and NSSL (Figs. 8d–f) schemes

predict separate hail and graupel categories, with the

hail category generally producing mass and number

concentration values that are orders of magnitude lower

than corresponding values for graupel. The ability to

predict two separate categories allows the hail cate-

gory to represent generally larger rimed ice particles,

while smaller, more numerous rimed ice particles re-

main confined to the graupel category. PSD parame-

ter CFADs (Fig. 9) demonstrate that the MY2 and

NSSL schemes favor fewer but larger ice particles in the

hail category during the forecast evaluation period. Both

the MY2 and NSSL schemes predict N0h (Figs. 9a,d) to

be approximately 2 orders of magnitude smaller than

the single rimed ice category schemes intercept parame-

ters; neither scheme predicts lh (Figs. 9b,e) to exceed

FIG. 6. CFADs for (a),(d),(g)N0x, (b),(e),(h)lx, andmaximumhail sizediagnosed via (c),(f),(i)THAIL for the rimed

ice category predicted by the (a)–(c) THO, (d)–(f) MOR-G, and (g)–(i) MOR-H schemes during the forecast evalu-

ation period (2000–2200 UTC). Data are considered over the verification domain (Fig. 1). N0x is plotted using expo-

nentially growing bin intervals. Each CFAD has 20 horizontal bins evenly distributed over range of LOG

(100)–LOG(1010)m24 forN0x, 0–50 000m
21 forlx, and 0–100mmformaximumhail size. The approximate 08C isotherm

height is plotted with a horizontal black line. Gray shading in (a) marks the allowable range ofN0g in the THO scheme.

AUGUST 2019 LABR IOLA ET AL . 3057



7.5 3 103m21. This combination of PSD parameters

causes theMY2 and NSSL forecasts to predict larger hail

(Figs. 9c,f) than MOR_G (Fig. 6f) or MOR_H (Fig. 6i).

In previous studies such as Johnson et al. (2016), the

MY2 scheme was found to produce many small hail-

stones due to the three-component freezing of rain-

water (i.e., frozen raindrops). Vertical cross sections

taken through the MY2 forecast indicate that Nth

(Fig. 8b) increases and Dmh (Fig. 8c) decreases toward

the 08C isotherm in the hail core; this is due to the pro-

duction of many small hailstones. While this process is

not obvious in the forecast maximum hail size CFAD

diagram (Fig. 9c), in part because the CFAD is calcu-

lated over the entire verification domain, it is noted that

the MY2 scheme predicts a high-frequency occurrence

(.1022) of hailstones with a maximum diameter of ap-

proximately 5mm near the 08C isotherm. Although the

MY2 scheme produces small hailstones, the CFAD di-

agram of forecast hail size indicates the MY2 forecast

(Fig. 9c) predicts large hailstones (.50mm) to be ap-

proximately 4–9 km above MSL. Maximum hail size

CFADs (Figs. 9c,f) suggest that both theNSSL andMY2

schemes predict hail to grow primarily above the 08C
isotherm, this is in agreement with many previous ob-

servational studies such as Ziegler et al. (1983).

The MY2 scheme assumes that graupel is created

via the three-component freezing of rain, and as a result

both the hail and graupel categories exhibit similar be-

haviors in terms of mass (Fig. 10a) and number concen-

tration growth (not pictured). The NSSL scheme creates

hail through a series of microphysical interactions: grau-

pel increases in density during wet growth, and is sub-

sequently converted into hail (Mansell et al. 2010). Since

hail is only produced from dense graupel (as opposed to

from freezing of raindrops), the NSSL scheme generally

predicts relatively few (Nth , 10m23), but large (Dmh .
14mm) hailstones (Figs. 8e,f) within the storm updraft

region. These results are in agreement with Johnson et al.

(2016) and (Labriola et al. 2019).

Due to a multistep hail production process, the NSSL

forecast produces less rimed ice in the hail category

(Fig. 10b) than the MY2 scheme (Fig. 10a). The MY2

forecast predicts more hail than the NSSL forecast be-

cause the scheme creates hail quickly from frozen rain

drops. Although the NSSL scheme populates the hail

category more slowly than the MY2 scheme, both

schemes predict storms to produce large quantities of

graupel during the forecast evaluation period (Fig. 10).

NSSL and MY2 predicted graupel is not considered in

current operational surface hail size forecasts (Fig. 2)

because the THAIL algorithm only diagnoses the maxi-

mum size of ice in the hail category for these schemes.

To determine the impact of including graupel within

the THAIL algorithm, the forecast maximum size of hail

(FCST-H) (Figs. 11b,d) is compared to the forecast

maximum size of both hail and graupel (FCST-HG)

(Figs. 11c,e) at 2130 UTC. FCST-H is equivalent to

the THAIL algorithm implemented in the HWT SFE

(Fig. 2). FCST-HG predicts larger swaths of surface hail

that qualitatively resemble HCA output (Fig. 11a) more

closely than FCST-H for the NSSL scheme (Figs. 11d,e).

MY2 FCST-H and FCST-HG (Figs. 11b,c) are relatively

similar, in part because the scheme predicts multiple

swaths of hail at the surface. Although NSSL FCST-HG

(Fig. 11e) exhibits qualitative improvement in surface hail

size forecast skill, additional case studies are needed to

evaluate the benefit of including both rimed ice categories.

Vertical cross sections of mg (Figs. 12a,d) and Ntg

(Figs. 12b,e) suggest that the NSSL scheme predicts

storms to produce more graupel at the surface than the

MY2 scheme. Although the size of graupel is relatively

similar between the two forecasts (Figs. 12c,f), the NSSL

scheme includes prognostic volume mixing ratio equa-

tions that increase the bulk density (and thus fall speed)

FIG. 7. Particle size distributions collected at two adjacent points

in the hail core of a thunderstorm predicted by the THO scheme.

The locationwhere the PSDs are sampled is markedwith an ‘‘3’’ in

Fig. 5c. The predicted (qg) and diagnosed (Ntg) graupel moments

that diagnose the graupel PSDs are provided in Table 4.

TABLE 4. THO predicted (qg) and diagnosed (Ntg) graupel mo-

ments sampled at adjacent grid points marked by a red ‘‘3’’ in

Fig. 5c. Variables diagnosed particle size distributions in Fig. 7.

qg Ntg qr

Location 1 (x5 33 km,

y 5 9.2 km above

MSL)

2.67 g kg21 29.51m23 4.83 1023 g kg21

Location 2 (x5 33 km,

y 5 9.7 km above

MSL)

2.31 g kg21 328.79m23 0.0 g kg21
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of graupel to resemble high-density rimed ice (i.e., hail)

in the melting layer. Graupel particles with larger fall

speeds fall more quickly through themelting layer and are

less likely tomelt before reaching the surface (Figs. 12d,e).

The MY2 scheme assumes low-density graupel through-

out the storm (Table 1), we suspect reduced graupel

fall speeds limit the amount of graupel that reaches the

surface (Figs. 12a,b). Prognostic rimed ice density MP

schemes (i.e., NSSL and P3) are further discussed in the

following subsection.

3) PROGNOSTIC RIMED ICE PROPERTY SCHEMES

Variable density rimed ice categories allowMP schemes

(e.g., Mansell et al. 2010; Milbrandt and Morrison 2013;

Morrison and Milbrandt 2015) to improve representation

of particle fall speeds and microphysical processes. The

P3 and NSSL schemes, and some other schemes (e.g.,

Milbrandt and Morrison 2013), predict the volume

mixing ratio of rime to diagnose ice particle density

(Table 1). The NSSL scheme diagnoses the density of

separate hail and graupel categories. In contrast, the P3

scheme’s single general ice category can represent any

dominant type of ice, including fully rimed ice (graupel/

hail), in its size distribution depending on its diagnostic

values (e.g., rime fraction, bulk density). In the P3 scheme

forecast, ice particles are most similar to hail near the

surface: ice mass (Fig. 13a) and number concentration

(Fig. 13b) are relatively small (mi_tot, 0.1 gm23;Nti_tot,
10m23), but the mass-weightedmean diameter (Fig. 13c)

of ice is relatively large (Dmi_tot . 6mm). Although

Dmi_tot exceeds 6mm near the surface, P3 predicts ice

to be smaller than rimed ice in the MY2 or NSSL

scheme hail categories (Figs. 8c,f). Small ice particle

sizes are in part a consequence of the strict mean size

upper limit imposed within the P3 scheme that prevents

the formation of larger ice; when the limiter is relaxed

the predicted surface ice coverage and size increases

(Johnson et al. 2019, manuscript submitted to Mon.

Wea. Rev.). Fully rimed ice is found within the central

storm updraft (Fig. 13d), many observational studies

(e.g., Nelson 1983; Heymsfield 1983; Foote 1984; Ziegler

et al. 1983) have shown this is primarily where most

accretional growth occurs.

Vertical cross sections of hydrometeor density show

the NSSL scheme predicts more widespread coverage of

high-density rimed ice (.600 kgm23) (Figs. 14b,c) than

the P3 scheme (Fig. 14a). The P3 scheme predicts ice

densities to bemostly less than 300 kgm23 above the 08C

FIG. 8. A vertical cross section of a hail core at 2130 UTC, the location of the cross section is marked in Fig. 2.

Vertical cross sections are taken of the predicted rimed ice category most similar to hail in the (a)–(c) MY2 and

(d)–(f) NSSL schemes. Plotted variables include (a),(d) mh, (b),(e) Nth, and (c),(f) Dmh. 1 m s21 updrafts are

contoured in black, the brown horizontal line denotes the 08C isotherm.
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isotherm. In this region large concentrations (Nti_tot .
13 104m3) (Fig. 13b) of low-density particles dilute the

properties of high-density hail, closer to the storm up-

draft (where riming occurs) ri_tot increases to approxi-

mately 500kgm23 (Fig. 14a). In theNSSL scheme, distinct

graupel (Fig. 14c) and hail (Fig. 14b) categories allow

the prediction of moderate to high-density (.400kgm23)

rimed ice throughout the entire storm. Due to the

presence of rimed ice throughout the storm, NSSL

predicts the storm to produce a swath of hail and graupel

at the surface exceeding 50 km in width (Figs. 14b,c).

Higher-density ice in the P3 scheme is primarily confined

to the stormupdraft region. Subsequently, P3 predicts the

storm to produce a hail swath that is approximately 30km

FIG. 10. A time series of themass of hail and graupel predicted by the (a)MY2 and (b) NSSL

schemes from 2000 to 2200 UTC. Values are the sum of all hail and graupel where UH. 10m2 s22

within the three-dimensional domain that is used for verification (Fig. 1).

FIG. 9. As in Fig. 6, but for the (a)–(c) MY2 and (d)–(f) NSSL scheme hail categories.
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in width near the surface (Fig. 14a). The 2130 UTCHCA

output (Fig. 11a) indicates that storms in the general vi-

cinity of the cross sections produced surface hail cores

that were approximately 30km in diameter.

CFADdiagrams of rimed ice density (Fig. 15) indicate

that P3 and NSSL schemes predict different ice particle

densities aloft. With the exception of what is expected

to be high-density small ice spheres located more

than 10 km above MSL, moderate and high-density

ice (ri_tot . 500 kgm23) is rarely predicted by the P3

forecast (Fig. 15a) because the single ice category is

dominated by large concentrations (Fig. 13b) of low-

density (Fig. 14a) ice. The underrepresentation of dense

rimed ice may be improved in the P3 scheme through the

use of two or more ice categories that would result in re-

duced mixing/dilution of ice particle types, as shown

in Milbrandt and Morrison (2016). In general, the

NSSL scheme hail category predicts rimed ice density

(Fig. 15b) to be larger than 500kgm23, the minimum

hail density threshold within the scheme (Mansell et al.

2010). Beneath the 08C isotherm in the NSSL fore-

cast, the frequency occurrence of high-density hail and

FIG. 11. (a) HCA output at 2130 UTC. (b),(c) MY2 and (d),(e) NSSL forecast maximum size of hail [(b),(d);

FCST-H] and hail and graupel [(c),(e); FCST-HG] are provided at the same time. Background is the same as Fig. 1.
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graupel (rh,g . 900 kgm23) increases due to particle

collapse during melting (Figs. 15b,c).

4. Summary and further discussion

In this study, we analyze 20–22-h hail forecast skill for a

severehail event inColoradoon8May 2017, basedon3-km

grid spacingmodel forecasts using six differentMP schemes

including the Milbrandt–Yau double-moment (MY2),

Thompson (THO), NSSL double-moment (NSSL),

Morrison double-moment graupel (MOR-G), Morri-

son double-moment hail (MOR-H), and Predicted Par-

ticle Properties (P3) schemes. Subjective comparisons,

along with objective verification using fractions skill score

(FSS) are used to evaluate both severe and significant

severe hail forecasts. Surface hail size forecasts are di-

agnosed from model output via the Thompson algorithm

(THAIL) and storm surrogate fields [i.e., updraft

helicity (UH), column integrated total graupel (CTG),

and reflectivity Z at the 2108C level]. MP scheme

treatment of hail is further analyzed using three-

dimensional model output to identify microphysical

properties that impact the skill of surface hail size

forecasts and how hail-related processes are repre-

sented in each scheme.

Objective verification metrics indicate that UH pre-

dicts hail greater than 25mm indiameter (i.e., severe hail)

with a moderate level of skill for this case, confirming the

findings of Gagne et al. (2017). While maximum hail size

forecasts exhibit more skill at predicting the coverage of

severe hail thanUH for some forecasts (i.e., MOR-H and

MY2); UH is the only parameter to exhibit at least min-

imally useful predictive skill for all forecasts. This is in

part because UH is a storm surrogate field developed for

convective-allowing models (CAMs) run at coarse reso-

lutions (3–4-km grid spacing), and identifies storms with

strong rotating updrafts that are generally capable of

producing severe and significant severe hail. Other storm

surrogates that are microphysically based (i.e., CTG,

Z at 2108C level) produce less optimal results; forecast

skill for these parameters is highly variable and strongly

dependent upon choice of MP scheme and the treatment

of microphysical processes within.

Surface hail size forecasts are diagnosed from model

output via THAIL, and the level of forecast skill is

strongly dependent upon choice of MP scheme. All

forecasts underpredict the maximum size of hail for this

case study; most forecasts predict limited severe hail and

none of the forecasts predict significant severe hail de-

spite observations indicating otherwise. Although fore-

casts underestimate surface hail size, THO, MOR-H,

MOR-G, andMY2 schemes predict the coverage of hail

greater than 5mm in diameter, or ‘‘all hail sizes’’ with a

high level of skill.

FIG. 12. The same vertical cross sections as Fig. 8. Plotted variables include: (a),(d)mg, (b),(e)Ntg, and (c),(f)Dmg.
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A microphysical analysis is conducted in this study

to understand how the treatment of rimed ice in MP

schemes affects the skill of surface maximum size hail

forecasts. The THO scheme predicts a single-moment

graupel category and employs diagnostic equations to

determine the number concentration. Modifying the

graupel number concentration allows the scheme to

predict storms that produce large ‘‘hail-like’’ rimed ice.

MOR-G and MOR-H also predict a single rimed ice

category. Both schemes include the same prognostic

equations but assume different static properties for

rimed ice (particle density, fall speed). MOR-G and

MOR-H predict storms to produce large quantities of

relatively small rimed ice aloft; however, excessive size

sorting and an increased fall speed causes the latter

scheme to produce larger, severe hail at the surface.

MP schemes that predict two rimed ice categories similar

to graupel and hail (MY2 and NSSL) are able to repre-

sent large rimed ice in the hail category, generally smaller

rimed ice remains confined to the graupel category.

The NSSL scheme uses prognostic hail and graupel

volume mixing ratios to represent graupel and its

product more realistically (i.e., hail is created from

dense graupel); however, this multistep hail growth

process causes the scheme to produce relatively little

rimed ice in the hail category for this case study. Al-

though the scheme predicts relatively little rimed ice in

the hail category, the NSSL graupel category includes

dense rimed ice. Applying the THAIL algorithm to both

the NSSL hail and graupel categories qualitatively im-

proves surface hail size forecast skill by increasing the

coverage of surface hail. Although forecast improvements

FIG. 13. A vertical cross section of a hail core at 2130UTC, the location of the cross section is

marked in Fig. 3. Vertical cross sections are taken of the P3 predicted bulk ice category. Plotted

variables include: (a) mi_tot, (b) Nti_tot, (c) Dmi_tot, and (d) rime fraction. 1m s21 updrafts are

contoured in black, the brown horizontal line denotes the 08C isotherm.
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are promising, further analysis is required to determine if

including both the graupel and hail categories improves

surface hail size forecast skill for multirimed ice category

schemes (e.g., MY2 and NSSL).

To avoid converting between different ice species the

P3 scheme used in this study predicts the evolution of a

single ice category. This single ice category is predomi-

nately composed of large concentrations of low-density

ice particles above the melting layer, and consequently

the single ice category configuration of the P3 scheme is

unable to represent dense hail aloft. Future studies

should analyze the P3 scheme with multiple ice cate-

gories (Milbrandt and Morrison 2016) to determine if

multiple categories are effective in capturing the full

spectrum of ice phase particles found to coexist within

convective storms.

Postprocessing calibration of model output has been

shown to improve forecast accuracy and reliability.

Current surface hail size forecasts skillfully predict the

spatial coverage of hail for this case, but the algorithm

requires further optimization to improve surface hail

size estimates. THAIL should be updated to include the

support of newerMP schemes, such as the P3 scheme, and

be optimized and/or calibrated to better diagnose maxi-

mum surface hail size. The THAIL algorithm is depen-

dent upon an arbitrary minimum observable number

concentration threshold that can be adjusted to increase

or decrease predicted surface hail sizes. Thresholds can

be more realistically determined using observational

studies, for example Smith and Waldvogel (1989) evalu-

ated the relationship between observed maximum sur-

face hail size and sampling volume.Although calibrations

FIG. 14. (a) Vertical cross sections of the bulk ice density predicted by the P3 scheme and (b) hail and (c) graupel predict by the NSSL

scheme. The location of the cross sections is provided in Fig. 3. 1 m s21 updrafts are contoured in gray, the brown horizontal line denotes

the 08C isotherm.

FIG. 15. (a) CFADs for the density of bulk ice predicted by the P3 scheme and (b) hail and (c) graupel by the NSSL scheme during the

forecast evaluation period (2000–2200 UTC). Data are considered over the verification domain (Fig. 1). Bins are distributed evenly

between 0 and 900 kgm23, over increments of 50 kgm23 for each diagram. The approximate 08C isotherm height is plotted with a horizontal

black line.
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and additional model information could potentially

improve surface hail size forecast skill, it is important

to note that the skill remains constrained by the accu-

racy of surface observations.

Additional CAM surface hail size forecasting methods

should be analyzed. Model-derived hail proxies such as

the maximum estimated size of hail (MESH) have shown

skill at predicting surface hail size (e.g., Snook et al. 2016;

Labriola et al. 2017; Luo et al. 2017, 2018). Milbrandt

and Yau (2006a) noted the surface flux of hail exceeding

a critical diameter is important to consider at the surface

and provides information about the number of large

hailstones to reach the surface, and Luo et al. (2018)

examined the prediction of surface accumulated hail

number concentration for a real case. Machine learning

algorithms applied to CAM forecast output represent

another way of using environmental, dynamic, and mi-

crophysical information to calibrate surface hail size

forecasts. A storm-based machine learning approach

developed by Gagne et al. (2017) improves the skill of

surface hail size forecasts by reducing the number of

false alarm events and increasing forecast reliability.

Additional research using machine learning algorithms

to calibrate CAM forecasts has the potential to further

improve day-ahead surface hail size predictions beyond

the skill of current storm surrogate and explicit hail

forecasting methods, and is being pursued by this cur-

rent research group.

Conclusions drawn from this study are limited be-

cause this is a single case study and hail forecast skill is

expected to vary substantially from case to case. While

only one case study, results provide insight into hail

diagnostic parameters and the impact of microphysical

assumptions on the representation of rimed ice within

several multimomentMP schemes. Analyzing forecasts

run for a diverse set of well observed hail events is

necessary to draw more significant results.
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