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ABSTRACT

Hail forecast evaluations provide important insight into microphysical treatment of rimed ice. In this study

we evaluate explicit 0–90-min EnKF-based storm-scale (500-m horizontal grid spacing) hail forecasts for

a severe weather event that occurred in Oklahoma on 19 May 2013. Forecast ensembles are run using

three different bulk microphysics (MP) schemes: the Milbrandt–Yau double-moment scheme (MY2), the

Milbrandt–Yau triple-moment scheme (MY3), and the NSSL variable density-rimed ice double-moment

scheme (NSSL). Output from a hydrometeor classification algorithm is used to verify surface hail size fore-

casts. All three schemes produce forecasts that predict the coverage of severe surface hail with moderate to

high skill, but exhibit less skill at predicting significant severe hail coverage. A microphysical budget analysis

is conducted to better understand hail growth processes in all three schemes. The NSSL scheme uses two-

variable density-rimed ice categories to create large hailstones from dense, wet growth graupel particles;

however, it is noted the scheme underestimates the coverage of significant severe hail. Both the MY2 and

MY3 schemes produce many small hailstones aloft from unrimed, frozen raindrops; in the melting layer,

hailstones become much larger than observations because of the excessive accretion of water. The results of

this work highlight the importance of using a MP scheme that realistically models microphysical processes.

1. Introduction

Each year, hail causes on average more than

$1.4 billion (U.S. dollars) in property and crop damage

in the United States (Changnon et al. 2009). Densely

populated regions in particular are susceptible to costly

hail damage; for example, the 1995 ‘‘Mayfest’’ hail-

storm near Fort Worth, Texas, caused more than

$2 billion in damage and injured 109 people at an

outdoor festival (Edwards and Thompson 1998). The

cost of hail-related damage is expected to increase as

cities expand; most hail events that have caused more

than $1 billion in insured losses have occurred since

2001 and the frequency of occurrence of such events is

increasing (Changnon 2009).

Extending the warning lead time for severe hail has

the potential to mitigate hail-related damage, though

this is challenging, as severe hail events often develop

quickly. To extend severe weather warning lead time,

the National Weather Service (NWS) is shifting from

issuing severe weather warnings based upon detection

by, for example, radar (warn-on-detection), to a para-

digm where warnings will be issued based upon high-

resolution numerical weather prediction (NWP) model

guidance (warn-on-forecast; Stensrud et al. 2009,

2013) Many studies analyze the skill of convective-

scale forecasts; however, only a handful of studies (e.g.,

Milbrandt and Yau 2006; Snook et al. 2016, hereafterCorresponding author: Jonathan Labriola, j.labriola@ou.edu
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S16; Luo et al. 2017; Gagne et al. 2017; Labriola et al.

2017, hereafter L17; Adams-Selin and Ziegler 2016; Luo

et al. 2018) assess the skill of explicit hail prediction (hail

size and coverage). Hail prediction using storm-scale

NWP forecasts remains understudied because of the

difficult and complex nature of hail storm prediction,

hail growth processes, and challenges associated with

hail forecast verification.

The skill of explicit hail prediction is dependent upon

the NWP model’s ability to predict the complex pro-

cesses and the storm environment that support the

growth of hail; this requires an accurate representation

of the hailstorm structure, dynamic, thermodynamic,

and microphysical processes, as well as the surround-

ing environment. Hail grows where supercooled liquid

accretes to the surface of rimed ice; however, growth

is limited if a large number of hail embryos depletes

the supercooled liquid (e.g., Heymsfield 1983). Hail

particle growth is strongly correlated with storm up-

draft strength (e.g., Rasmussen and Heymsfield 1987).

Strong updrafts suspend large rimed ice particles in

regions of supercooled liquid; however, if an updraft is

too strong the particles are more rapidly advected

outside of the optimal growth zone. Strong vertical

wind shear also contributes to hail growth (e.g., Nelson

1983; Foote 1984; Dennis and Kumjian 2017). Increased

deep layer shear extends the storm updraft horizon-

tally and increases the residence time of hail within

the growth zone. Because of the complex nature of

riming, a large number of microphysical parameteri-

zations that have different treatments for rimed ice

were developed with the goal of improving the repre-

sentation of rimed ice.

Microphysical processes in convective-scale NWP

models are mostly parameterized using bulk micro-

physics (MP) schemes (e.g., Lin et al. 1983; Milbrandt

and Yau 2005a). Bulk MP schemes predict the bulk

characteristics for hydrometeor species x such as mixing

ratio qx, total number concentration Ntx, or reflectivity

Zx to define a commonly used three-parameter gamma

particle size distribution (PSD):

N(D)5N
0x
Daxe2lxD , (1)

where lx is the slope parameter, ax is the shape pa-

rameter, and N0x is the intercept parameter (Ulbrich

1983). A fewMP schemes (Mansell et al. 2010; Morrison

and Milbrandt 2015; Morrison et al. 2015; Milbrandt

and Morrison 2016) also have the capacity to predict

hydrometeor volume (yx) and thus explicitly derive

density (rx); this is primarily done for rimed ice hydro-

meteor categories, which undergo large fluctuations in

density during growth and melting. Variable density

MP schemes (e.g., Mansell et al. 2010) have the ability to

update particle fall speeds and rimed ice production.

To save computational time, one or more PSD pa-

rameters are often assumed to be constant, though such

assumptions can limit the model’s ability to realistically

represent microphysical processes. For example, most

double-moment MP schemes predict the third (qx) and

zeroth (Ntx) moments of a PSD to diagnose lx and N0x,

but assume ax is constant. Double-moment schemes are

able to simulate qualitatively polarimetric signatures

(Jung et al. 2012; Johnson et al. 2016; Putnam et al.

2017b), but the schemes often suffer from excessive size

sorting (e.g., Milbrandt and Yau 2005b; Dawson et al.

2014; Johnson et al. 2016; Morrison et al. 2015). Triple-

moment MP schemes, which additionally predict the

sixth moment of the PSD (Zx) can diagnose ax. The

shape parameter narrows the hydrometeor size spectra

and limits size sorting by having the weighted fall speeds

of a hydrometeor type converge toward a singular value

(Milbrandt and Yau 2005a; Dawson et al. 2014).

Convective-scale forecasts have been shown to pre-

dict spatial extent and size of hail at the surface with

some skill. Multiple studies (e.g., S16; L17; Luo et al.

2017, 2018) have used predicted hail quantities (mass,

number concentration) to identify regions where hail

reaches the surface. Simulated radar products such

as the maximum estimated size of hail (MESH; Witt

et al. 1998a) have also been used to derive surface

hail size from model output (S16; L17; Luo et al. 2017,

2018). Another method, the Thompson hail method

(Thompson et al. 2018), uses model diagnosed hail PSDs

to approximate the largest ‘‘observable’’ hailstone.

Variants of this method have been used to diagnose the

maximum surface hail size and distinguish regions of

hail growth (Milbrandt and Yau 2006; S16; L17; Luo

et al. 2018). The skill of hail forecasts derived directly

from model output is strongly dependent upon choice

of MP scheme; to account for model biases, machine

learning algorithms can be applied to CAM output to

create storm-based hail forecasts (Gagne et al. 2015,

2017; McGovern et al. 2017).

Convective-scale explicit hail forecasts are subject to

significant error associated with the NWP model (e.g.,

initial conditions,microphysics).Many recent convective-

scale studies use cycled ensemble Kalman filter (EnKF;

Evensen 1994, 2003) data assimilation (DA) to gener-

ate initial conditions (e.g., Dowell et al. 2004; Snook

et al. 2011, 2012, 2015; Dawson et al. 2012; Jung et al.

2012; Putnam et al. 2014, 2017a; Yussouf et al. 2013,

2016; Wheatley et al. 2014; Schwartz et al. 2015; Skinner

et al. 2018). This technique is preferred because flow-

dependent error covariances derived from the forecast

ensemble allow the DA system to update unobserved
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variables such as temperature, pressure, and micro-

physical variables from available observations (e.g.,

Tong and Xue 2005, 2008a). An EnKF DA system can

thus use radar observations, which indirectly observe

hydrometeor information, to improve the microphysical

state variables of hail producing storms (S16; L17).

Hail forecast verification is a substantial challenge.

Hail events are underreported in rural areas, away from

major highways, as well as in cases when amore extreme

severe weather event (e.g., one or more tornadoes) oc-

curs in addition to hail (Doswell et al. 2005; Witt et al.

1998b; Allen and Tippett 2015). Additionally, hail sizes

that correspond to familiar circular or spherical objects

(e.g., dimes, softballs) are overreported (Sammler 1993),

as such objects are commonly used as size references in

reports from the public. New observational databases

attempt to mitigate observed hail size biases. The me-

teorological phenomena identification near the ground

(mPING; Elmore et al. 2014) phone application re-

quires users to report hail in size increments of 0.25 in.,

and the severe hail analysis and verification experi-

ment (SHAVE; Ortega et al. 2009) directly interviews

the public to create a hail observation database with

high spatial resolution. Nevertheless, surface-based re-

ports remain inadequate for objective hail forecast

verification.

The next-generation radar (NEXRAD; Crum et al.

1993) system is the only observational platform that

performs full-volume scans of the atmosphere at a

temporal frequency (approximately 5min) sufficient to

capture the rapid evolution of convective storms. Radar-

derived hail products, such as MESH, serve as a proxy

for hail size and can be used for forecast verification

(e.g., S16). Although MESH varies in skill throughout

the United States, it is not subject to population bias

and thus superior to ground-based reports (Cintineo

et al. 2012).

Polarimetric radars provide observations such as dif-

ferential reflectivity Zdr, copolar correlation coefficient

rhv, and differential phase Fdp, in addition to Z and ra-

dial velocity Vr. With these additional observations, one

is able to infer hydrometeor properties such as shape,

size, orientation, and phase (Kumjian and Ryzhkov

2008). Hydrometeor classification algorithms (HCAs;

Park et al. 2009) apply a fuzzy logic algorithm to both

single-and dual-polarization radar data to classify the

dominant hydrometeor type. This study implements

the Putnam et al. (2017b) HCA, along with hail size

discrimination algorithm membership functions from

Ortega et al. (2016) to classify the dominant hail size into

one of three bins: nonsevere (5mm), severe (25mm),

and significant severe (50mm). HCAs often classify hail

size with more skill than MESH (Ortega et al. 2016),

although biased observations degrade the skill of the

classifications.

Previous studies (i.e., S16; L17; Luo et al. 2017, 2018)

evaluated hail forecasts produced using single-moment,

double-moment, and triple-moment MP schemes;

however, no studies have evaluated hail forecasts pro-

duced using a variable density MP scheme, which has

the ability to represent a spectrum of rimed ice parti-

cle characteristics. In this study double-moment, triple-

moment, and variable-density double-moment MP

schemes are used to produce explicit ensemble hail

forecasts for a severe hailstorm event that occurred in

the Oklahoma City, Oklahoma, metropolitan area.

Surface hail size forecasts are subjectively and objec-

tively verified against HCA output (Ortega et al. 2016)

using the Brier skill score (Brier 1950), reliability dia-

grams, and relative operating characteristic curves. In

addition to forecast evaluations, a microphysical bud-

get analysis is conducted. This study analyzes hail

growth and decay processes predicted by each MP

scheme to identify sources of forecast error, and deter-

mine the impact of microphysical processes on the pre-

diction of hail.

The rest of the paper is organized as follows. In section

2 we provide a brief overview of the 19 May 2013

Oklahoma City severe hail event and describe the ex-

perimental design, including the DA and forecast

model settings. Hail forecast verification statistics and

an in-depth analysis of hail growth and decay processes

are presented and discussed in section 3. A summary

and some further discussion on the results are given

in section 4.

2. Case, experiment configuration, and verification
procedures

a. Case overview

On 19 May 2013 an upper-level low pressure system

developed in the northern plains of the United States

as a negatively tilted trough moved over the southern

plains. An 1800 UTC (1300 LST) sounding launched

from the Norman Weather Forecast Office (WFO)

indicated the environment was both highly unstable

(CAPE ;4878 J kg21) and strongly sheared [0–6-km

shear ;49kt (;25ms21)], ideal for the development

of supercell thunderstorms. Thunderstorms initiated

along a dryline boundary west of Oklahoma City start-

ing at approximately 1945 UTC. Three supercell thun-

derstorms (Fig. 1a) produced large regions of severe

hail, and localized regions of significant-severe hail, in

the southwestern Oklahoma City metropolitan area

(Figs. 1b,c). Aside from producing large hail throughout
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the region, these storms also produced two long-track

tornadoes that produced EF-3 damage [on the enhanced

Fujita (EF) scale] in Carney, Oklahoma, and EF-4

damage in Shawnee, Oklahoma. For further discussion

on this event we refer the reader to Carlin et al. (2017)

and Wienhoff et al. (2018).

b. Prediction model configurations

All experiments use the Advanced Regional Pre-

diction System (ARPS; Xue et al. 2000, 2001) as the

prediction model. The model domain consists of 573 3
515 3 53 grid points with a 500-m horizontal grid spac-

ing. The model grid is stretched in the vertical, with

a minimum vertical grid spacing of 50m at the surface

and an average vertical grid spacing of 425m. The

ARPS model settings follow those of S16 and L17.

Model physics (Xue et al. 2000, 2001) include NASA

Goddard Flight Center shortwave and longwave ra-

diation, surface fluxes calculated from surface drag co-

efficients, surface temperature and volumetric water,

a two-layer soil model, and a 1.5-order turbulent

kinetic energy-based subgrid-scale turbulence parame-

terization (Deardorff 1980; Klemp and Wilhelmson

1978; Moeng 1984).

Hail forecasts are produced using three different

MP schemes: the Milbrandt and Yau (2005a) double-

moment MP scheme (MY2), the Milbrandt and Yau

(2005a) triple-moment MP scheme (MY3), and the

National Severe Storms Laboratory (NSSL) double-

moment variable-density-rimed ice MP scheme (Mansell

et al. 2010). Forecast maximum surface hail size (Dmax)

is calculated using a variant of the Thompson hail al-

gorithm introduced in S16. Dmax is calculated at the

first model level above the surface (;25m AGL) and is

defined as the largest diameter for which the hail PSD

has at least 1 stone per 10 000m4 (Milbrandt and

Yau 2006).

The MY2 scheme is selected for this experiment be-

cause it has been used in multiple recent hail predic-

tion studies (e.g., S16, L17, Luo et al. 2017, 2018). The

MY2 and MY3 schemes use the same prognostic equa-

tions for hydrometeor mass mixing ratio and number

concentration; however, MY3 also predicts hydrome-

teor Z; Z is used to diagnose the PSD shape parame-

ter. This parameter narrows the size distribution and

limits further size sorting by causing weighted fall speeds

to converge toward a singular value (Dawson et al.

2014). The NSSL scheme includes mass mixing ratio

and number concentration, as well as prognostic equa-

tions for both hail and graupel volume (and thus den-

sity). Variable density is used to update particle fall

speeds and conversion rates between hydrometeor

species (e.g., dense wet-growth graupel is converted to

hail; Mansell et al. 2010). The minimum number con-

centration threshold is set to 1028m23 for the MY2 and

MY3 schemes; the default setting (1023m23) led to ex-

cessive removal of hail, including some large hail near

the surface. Unlike the MY2 and MY3 schemes, which

threshold via number concentration andmass, the NSSL

cheme only thresholds via mixing ratio, and thus does

not remove as many hail grid points near the surface.

Vertical cross sections taken through the hail core of

a thunderstorm, after a 60-min forecast, are used to

demonstrate the impact of reducing the minimum num-

ber threshold. The default MY2 scheme (Figs. 2a,c,e)

removes near-surface hail that is relatively sparse in

both mass (,5 3 1023 gm23) and number (,5 3
1025m23); however, the updated scheme (Figs. 2b,d,f)

FIG. 1. (a) KTLX observed Z at the lowest radar tilt (0.58), valid for 2220 UTC. (b) A swath of the largest observed hail size between

2155 and 2320 UTC. Hail size is determined by applying an HCA to the lowest radar tilt of KTLX and KINX (0.58) and merging the

subsequent output. (c) Surface-based hail size reports (SPC and mPING) between 2155 and 2320 UTC. On the background maps thin

black lines are highways and purple lines are urban boundaries.
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predicts more hail to reach the surface that is classi-

fied as observable by the Dmax algorithm (Fig. 2f).

Decreasing the minimum number threshold in the

MY2 and MY3 schemes substantially increases sur-

face hail size and coverage (Figs. 3c,d) compared

to the default scheme (Figs. 3a,b) because the lower

threshold limits the removal of near-surface hail. Al-

tering the minimum number threshold affects mostly

near-surface hail size forecasts (Fig. 3), while model

state variables (e.g., w, qh, Nth) remain relatively similar

between the forecasts (Figs. 2a–d) in the rest of the

storm. Reducing the minimum number concentration

FIG. 2. Vertical cross sections taken through the hail core of a supercell thunderstorm after a 60-min forecast.

Forecasts are run using the MY2 scheme where the minimum number concentration is set to (a),(c),(e) 1023 m23

and (b),(d),(f) 1028 m23. Cross sections are of (a),(b) mh, (c),(d) Nth, and (e),(f) Dmax. In each plot a brown hor-

izontal line represents the 08C isotherm and black contours indicate regions where updraft velocity exceeds 5m s21.
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threshold does not increase the number of spurious

storms for this study.

c. Radar observation operators and EnKF DA
configurations

The EnKF DA requires accurate and efficient radar

reflectivity observational operators consistent with the

MP schemes used. The Rayleigh scattering approxima-

tion (Jung et al. 2008a,b) is typically used to simulate

the Z of ice hydrometeors in our prior EnKF studies

(Dawson et al. 2010; Snook et al. 2011, 2015, S16; Jung

et al. 2012; Putnam et al. 2014; L17). While this obser-

vation operator is computationally efficient, it fre-

quently overestimates the Z of large ice particles that

cause Mie scattering (e.g., hail). The T-matrix radar

simulator/observation operator (Jung et al. 2010) ac-

counts for Mie scattering; it uses the T-matrix calcula-

tions (Vivekanandan et al. 1991; Bringi and Chandrasekar

2001) to derive the scattering amplitude of hydrome-

teors for different size bins and Z is then calculated by

integrating the scattering amplitude over a given

PSD. Recent updates have optimized the computa-

tional efficiency of the T-matrix method; for example,

Putnam et al. (2018, manuscript submitted toMon.Wea.

Rev.) calculates scattering amplitude for select PSD

parameters and uses lookup tables and interpolation to

derive Z. This study uses the Putnam et al. (2018, man-

uscript submitted to Mon. Wea. Rev.) T-matrix-based

operator, which accounts for Mie scattering at compu-

tational speeds comparable to the Rayleigh scattering

approximation.

Adjustments are made to the radar forward obser-

vation operator to accommodate the different MP

schemes. To reduce the size of scattering amplitude

lookup tables, the Rayleigh scattering approximation is

assumed for the NSSL snow category, since snow par-

ticles are small enough that we can assume Rayleigh

scattering with little to no error. To simulate the melting

layer, a variant of the Jung et al. (2008a) melting model

is used to create ice–water mixtures for both graupel and

FIG. 3. Swaths of forecast maximum surface Dmax calculated at every model time step between 2155 and

2320 UTC. Forecasts are run using the (a),(c) MY2 and (b),(d) MY3 schemes, where the minimum number con-

centration threshold is set to (a),(b) 1023 m23 or (c),(d) 1028 m23. Background maps are the same as in Fig. 1.
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hail. The ice–water hybrid category (which is generated

offline) is determined via a ratio between ice and rain-

water mixing ratios. For example, the hail–water mixing

ratio ( fwh) is:

f
wh

5
q
r

q
r
1q

h

. (2)

While computationally efficient, this calculation does

not account for shedding and thus allows too much liq-

uid to accumulate on the surface of an ice particle. In

regions where qr is large, this can cause the diameter of

melting ice to overinflate. To maintain computational

efficiency but to produce more realistic Z we modify

the ice–water mixture number concentration so that the

mean mass diameter of the melting ice species is pre-

served during melting.

A 40-member ensemble is used for both the EnKF

DA and forecast periods during this experiment, and

one ensemble experiment is run using each of the mi-

crophysical schemes listed above (MY2, MY3, NSSL).

Hereafter, the ensembles run using the MY2, MY3,

and NSSL schemes are referred to as EXP_MY2,

EXP_MY3, and EXP_NSSL, respectively. Initial and

boundary conditions are provided by the Center for

Analysis and Prediction of Storms (CAPS) EnKF-

initialized storm-scale ensemble forecast (SSEF; Jung

et al. 2014). The EnKF-initialized SSEF is a 40-member

ensemble of convection allowing (4-km horizontal grid

spacing) forecasts that were run using the Advanced

Research version of the Weather Research and Fore-

casting (WRF) Model (ARW; Skamarock et al. 2008)

for the NOAA Hazardous Weather Testbed Spring

Forecasting Experiment. The SSEF model domain

spans the contiguous United States, forecasts are ini-

tialized at 1800 UTC 19 May 2013 and are run until

0000 UTC 20 May 2013. Additional information about

the SSEF is provided in Kong (2013).

At 1900 UTC, our 500-m domain ensemble is ini-

tialized by interpolating from the SSEF. To introduce

additional storm-scale perturbations, a 2-dimensional

recursive filter is used to create smoothed Gaussian

perturbations with horizontal and vertical correlation

scales of 6 km and 3km, respectively, which are added

to the interpolated 1900 UTC SSEF ensemble. The

storm-scale perturbations have standard deviations of

2m s21, 2K, and 0.5 g kg21 for horizontal wind compo-

nents (u, y), potential temperature u, and water vapor

mixing ratio qy, respectively. Sixty-minute spin-up en-

semble forecasts are launched from the perturbed ini-

tial conditions and run until 2000 UTC when EnKF DA

is first performed. The CAPS EnKF system (Xue et al.

2006; Tong and Xue 2008b), which is based upon the

Whitaker and Hamill (2002) ensemble square root filter

(EnSRF) algorithm, is used to assimilate observations

every 10min from 2000 to 2150 UTC, the time of final

EnKF analysis. This configuration resulted in the im-

proved suppression of spurious storms.

Assimilated conventional observations include sur-

face (Oklahoma Mesonet, ASOS, and AWOS) and pro-

filer observations. Conventional observations are not

used to update vertical velocity (w) because in prelimi-

nary tests, unreliable covariances led to the develop-

ment of spurious updrafts. A list of the model state

variables updated by each observation type is pro-

vided in Table 1. Observation error settings largely fol-

low S16: surface observation errors are assumed to

be 1.5m s21 for u and y, 2.0K for u, and 2.0K for dew-

point temperature (Td). The surface observation co-

variance localization radius is set to 300 km in the

horizontal and 6km in the vertical. Wind profiler ob-

servations are used to update background u and y winds

and assume an error of 2.5m s21 for both variables and

a covariance localization radius of 80 km in the hori-

zontal and 6km in the vertical.

Radar observations can infer important microphysi-

cal information and are assimilated. Data from the

nearest Oklahoma City NEXRAD radar (KTLX) are

interpolated horizontally to the model grid column

locations but are preserved in the vertical at the height

of the radar beam (Xue et al. 2006); Z and Vr obser-

vations are also thinned in the horizontal to one obser-

vation every 1 km in regions of precipitation (observed

Z . 5 dBZ) and to one observation every 2 km in re-

gions of clean air (observed Z, 5 dBZ). Radar data are

thinned horizontally to control the ensemble spread

reduction due to assimilation of very dense observa-

tions. KTLX observation errors are assumed to be

4.0m s21 for Vr and 6.0 dBZ for Z (Snook et al. 2013),

and the covariance localization function (Gaspari and

Cohn 1999) cutoff radius is set to 3km in both the hor-

izontal and vertical.

As multicategory microphysical variables are under-

constrained by observedZ, large uncertainties may exist

within analyzed variables. Uncertainties may increase

for multimoment schemes because of the larger number

TABLE 1. A list of the assimilated observations along with the

corresponding model state variables that are updated by each

observation.

Observation Updated state variables

Surface u, y, u, qy
Profiler u, y

Sounding u, y, u, qy
KTLX Z u, y, w, u, qy, qx
KTLX Vr u, y, w, qy
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of predicted variables (Xue et al. 2010); for example,

the MY2, MY3, and NSSL schemes predict 12, 17, and

15 state variables, respectively. Multimoment schemes

better represent the nonmonotonic relationship be-

tween qx and Z, which improves the representation

of simulated radar variables (e.g., Putnam et al. 2014),

and motivates the use of multimoment schemes in an

EnKF during radar DA (Jung et al. 2012). To limit the

influence of unreliable covariances we update only hy-

drometeor mixing ratio during DA (Table 1). Up-

dating only hydrometeor mixing ratios may lead to the

slower filter convergence rate but we found the system

produces fewer spurious storms than updating more

variables.

The relaxation-to-prior-spread (Whitaker and Hamill

2012) method is used to inflate the posterior ensemble

spread to 95% of the prior ensemble spread for all

updated variables. Although Ntx, yx, and Zx are not

updated (and thus never inflated), the variables are

modified to avoid unrealistic PSD behavior during

inflation. During inflation, Ntx is updated to preserve

hydrometeor mean mass diameter, yx is updated to

preserve particle density, and Zx is updated to preserve

PSD shape parameter. Subjective comparisons between

MY3 predicted Z after inflation and radar-observed

Z (not shown) indicate that the diagnostic update can

produce the posterior Z that compares well with

observations.

d. Verification procedure

HCA output from the two nearest NEXRAD radars

(KTLX and KINX) is used to verify hail size forecasts.

Observations from KTLX and KINX are interpolated

to the 500-m model grid and a 9-point smoother is ap-

plied to the Zdr and rhv fields to reduce noise. The HCA

is performed for radar data on the lowest elevation

angle within 120 km of a given radar—120km is the

maximum distance Ortega et al. (2016) used to evaluate

hail size. Although the HCA is applied to the lowest

radar tilt, the membership functions derived by Ortega

et al. (2016) are tuned to detect surface hail size. Next,

the data are merged (the largest hail size is selected

where radar volumes overlap). Because of small-scale

noise, a final smoothing filter is applied to the merged

HCA output. The smoothing filter decreases (increases)

hail size detections when the four closest grid points

are smaller (larger); when a detection is updated, it is

set to match the four surrounding grid points. Merged

HCA output (Fig. 1b) is used for both subjective and

objective forecast verification in this study.

Hail forecast verification is challenging in part be-

cause large surface hail is a highly localized phenome-

non. When using a traditional neighborhood ensemble

probability (NEP; Schwartz et al. 2010) approach, small

position errors between ensemble members can lead

to mostly nonzeros probabilities that are difficult to

verify. Neighborhood maximum ensemble probability

(NMEP; Ben Bouallègue and Theis 2014; Schwartz and

Sobash 2017) considers the probability of an event oc-

currence within distance i; this expands both the number

of probabilistic and observed events and increases the

sharpness of the forecast. For objective verification the

NMEP method defined in Schwartz and Sobash (2017)

is used to verify the probability of an event occurrence

within 10km of a grid point with a smoothing Gaussian

filter of 10 km. This distance was selected because it

accounts for small forecast storm displacement errors,

but maintains the high spatial resolution necessary for

warn-on-forecast applications.

Probabilistic hail size forecasts are evaluated using

the Brier skill score (Brier 1950), reliability diagrams,

and relative operating characteristic (ROC;Mason 1982)

curves. The Brier skill score is defined by three separate

components: forecast reliability, resolution, and uncer-

tainty. Forecast reliability compares predicted proba-

bility of occurrence to observed frequency, which is used

to infer model bias and is most commonly displayed in

terms of a reliability diagram. In an unbiased system,

observed frequency and predicted probability are simi-

lar; if there is a mismatch, the model suffers an over-

prediction (underprediction) bias when the predicted

probability of occurrence is larger (smaller) than the

observed frequency. ROC curves determine the model’s

ability to discern between events and nonevents. ROC

curves are generated by plotting probability of detec-

tion (POD) against probability of false detection (POFD)

for increasing probability thresholds. Forecast skill is

usually determined by the area under the ROC curve

(AUC), if the AUC exceeds 0.7 then the forecast is

skilled at predicting the event (Buizza et al. 1999).

3. Results

a. Forecast evaluation and verification

The 90-min-long hail size forecasts starting from the

final EnKF analyses at 2150 UTC are verified between

2155 and 2320 UTC, a period during which multiple

supercell thunderstorms produce severe and significant

severe hail over the Oklahoma City metropolitan area

(Figs. 1b,c). Accumulated swaths of the forecast maxi-

mum Dmax (calculated at every model time step) are

verified against accumulated swaths of observed maxi-

mum hail size as indicated by HCA output (calculated

every radar volume scan). We note that radars ob-

serve the atmosphere far less frequently (;5min) than
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a typical storm-scale model time step (;1 s); however,

we believe that the higher temporal resolution of the

model output better captures the extent and evolution

of hail in the model storms, and thus choose to per-

form verification with the highest temporal frequency

data available. Hail size forecasts are verified for two

separate diameter thresholds including severe hail

(diameter . 25 mm) and significant severe hail

(diameter . 50mm).

For this study, we first subjectively evaluate the

NMEP of severe and significant severe hail and note

forecast biases. The predicted probability of severe hail

(P[severe hail]) (Figs. 4a–c) is generally high (. 0.7) in

regions where severe hail is observed. Both EXP_MY3

(Fig. 4b) and EXP_NSSL (Fig. 4c) predict the north-

ernmost hail swath to be oriented toward the northeast,

suggesting these ensembles predict the rightward devi-

ation in storm motion commonly observed in supercell

thunderstorms (Bunkers et al. 2000). Unlike the above

two ensembles, EXP_MY2 (Fig. 4a) predicts a bifurca-

tion in maximum P[severe hail] values for the north-

ernmost storm. This bifurcation is due to the production

of spurious storms in EXP_MY2 forecasts. EXP_MY2

forecasts produce many spurious storms, this increases

the overall coverage of severe hail and the total area

where P[severe hail] . 0.4 (Fig. 4a). Both EXP_MY2

(Fig. 4d) and EXP_MY3 (Fig. 4e) predict P[significant

severe hail] to exceed 0.5 where HCA output (Fig. 1b)

indicates the occurrence of significant severe hail.

Reliability diagrams indicate that ensembles pre-

dict the spatial coverage of severe hail (Fig. 5a) with

relatively little bias. Although Brier skill scores

(Table 2) vary slightly (0.532–0.633), all three ensembles

produce skillful severe hail forecasts. For significant

severe hail forecasts, the Brier skill score (Table 2) de-

creases for all three ensembles (0.132–0.463), indicat-

ing the ensembles predict more extreme events with

less skill. EXP_NSSL predicts significant severe hail

with the least skill (Table 2), in part because the en-

semble produces under confident significant severe hail

size forecasts (Fig. 5b) and rarely predicts P[significant

severe] . 0.2 (Fig. 4f). Despite lower Brier skill scores

(Table 2), EXP_MY2 and EXP_MY3 produce reliable

significant severe hail forecasts (Fig. 5b) and predict

significant severe hail with higher confidence than

EXP_NSSL.

Contrary to the other verification metrics, ROC

curves (Fig. 6) indicate the ensembles predict both se-

vere and significant severe hail with a high level of skill

(AUC . 0.92). Large variations in P[significant severe]

between the ensembles does not appear to have a large

impact on the AUC score. It is noted that verifications

FIG. 4. The NMEP of (a)–(c) severe hail and (d)–(f) significant severe hail predicted using the (a),(d) MY2, (b),(e) MY3, and

(c),(f) NSSL MP schemes between 2155 and 2320 UTC. Thick black contours represent the locations of observed severe or

significant severe hail according to HCA output. Background maps are the same as in Fig. 1.
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are performed for a single event and additional case

studies are needed; however, findings from this study are

believed to be meaningful.

Swaths of Dmax produced by single ensemble mem-

bers (Fig. 7) provide insight into hail predictions.

EXP_MY2 overpredicts the size of hail at the surface,

with both members 20 (Fig. 7a) and 40 (Fig. 7d) pre-

dicting hail to exceed 150mm (;6 in.) in diameter. The

HCA output (Fig. 1b) is unable to determine the upper

limit on observed hail size for hail exceeding 50mm

because the algorithm classifies all hail 50mm and larger

as significant severe; however, mPING reports suggest

that hail, which occurred during this event, did not ex-

ceed 3 in. (;75mm) (Fig. 1c) in diameter. The MY2

scheme surface hail size overprediction bias is noted in

several previous studies; both L17 and Luo et al. (2018)

note the scheme produces excessively large surface hail.

The MY3 scheme employs the same mass and number

concentration tendency equations as the MY2 scheme;

as such, EXP_MY3 also overpredicts hail size (Figs. 7b,e).

Despite an overprediction bias, EXP_MY3 members

(Figs. 7b,e) predict smallerDmax values than EXP_MY2

members (Figs. 7a,d). Forecast differences are in part

because microphysical processes (e.g., sedimentation)

FIG. 5. Reliability diagrams for the probabilistic (a) severe hail

forecasts and (b) significant severe hail forecasts shown in Fig. 4. In

the diagrams blue lines correspond to EXP_MY2, red lines to

EXP_MY3, and green lines to EXP_NSSL. Forecasts exhibit skill

when the forecast reliability falls within the gray shading. The

number of samples per forecast probability bin is provided for both

(a) severe hail and (b) significant severe hail.

TABLE 2. The Brier skill score for EXP_MY2, EXP_MY3, and

EXP_NSSL. Skill scores are calculated for severe hail and signifi-

cant severe hail forecasts between 2155 and 2320 UTC. The cor-

responding NMEP used to derive the Brier skill score is provided

in Fig. 4.

Severe Significant severe

EXP_MY2 0.532 0.352

EXP_MY3 0.633 0.463

EXP_NSSL 0.629 0.132

FIG. 6. ROC curves for the probabilistic (a) severe and

(b) significant severe hail forecasts shown in Fig. 4. In the diagrams

blue lines correspond to EXP_MY2, red lines to EXP_MY3, and

green lines to EXP_NSSL. Forecast AUC scores are provided,

scores that are greater than 0.7 predict severe or significant severe

hail with skill.
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are sensitive to variations in the shape parameter

(Milbrandt and Yau 2005a).

EXP_NSSL forecasts (Figs. 7c,f) qualitatively most

closely match HCA output in terms of maximum hail

size. EXP_NSSL members predict the northernmost

storm to produce more severe hail than what is observed

in HCA output (Fig. 1b), though this is partly because

we compare low temporal frequency (;5min) radar

observations to high temporal frequency (;1 s) NWP

output. Additionally, the NSSL scheme predicts the

storms to produce hail cores that are wider than

observations.

b. Hail production processes

Similar to the microphysical budget analysis con-

ducted in L17, this study analyzes hail growth and decay

process predicted by each MP scheme to identify sour-

ces of forecast error. Hail microphysical tendency terms

(e.g., accretion, sublimation, melting) from a single time

step are integrated along a horizontal plane that spans

the verification domain (Fig. 4). Terms are plotted as

a function of average model level height in order to il-

lustrate the model’s treatment of hail both above and

below the 08C isotherm. Vertical cross sections are taken

through the hail core of a supercell thunderstorm

during the microphysical budget analysis to illustrate

the impact of microphysical processes on the repre-

sentation of hail. We conduct the microphysical anal-

ysis at 2250 UTC; this is one hour into the forecast

period when multiple supercell thunderstorms are pro-

ducing hail.

Hail growth assumptions in MP schemes impact the

representation of hail within the model. In EXP_MY2

(Fig. 8b) and EXP_MY3 (Fig. 8d), hailstones are al-

most exclusively created by the three-component ac-

cretion of rain; this was first reported in Johnson et al.

(2016). Three-component accretion of rain occurs

when rainwater freezes to the surface of a frozen hy-

drometeor species to produce a subsequent third ice

hydrometeor type (e.g., rain freezing onto snow to cre-

ate hail). A static threshold is used to determine the

resulting hydrometeor category. The NSSL scheme hail

category does not contain frozen raindrops (Mansell

et al. 2010), instead hail is created from dense graupel

(rg . 800 kgm23) in wet growth conditions (Fig. 8f).

EXP_NSSL Nth tendencies (Fig. 8f) are approxi-

mately one to two orders of magnitude smaller than

EXP_MY2 (Fig. 8b) or EXP_MY3 (Fig. 8d) Nth

FIG. 7. Swaths of forecast maximum surfaceDmax calculated at every model time step between 2155 and 2320 UTC. Swaths are created

for ensemble members (a)–(c) 20 and (d)–(f) 40, which are run using the (a),(d) MY2, (b),(e) MY3, and (c),(f) NSSLMP schemes. These

members are representative of the other ensemble member forecasts. Black polygons in (a) and (c) highlight the locations where hail

processes are analyzed later in the study. Background maps are the same as in Fig. 1.
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tendencies because dense, wet-growth graupel particles

are much less numerous than frozen raindrops.

The three-component accretion of rain increases the

number of hailstones above the 08C isotherm in the

EXP_MY2 (Fig. 8b) and EXP_MY3 (Fig. 8d) forecasts;

however this process contributes relatively little to the

total mass of hail aloft because frozen raindrops are

relatively small (Figs. 8a,c). The two largest mh growth

processes for the MY2 (Fig. 8a) and MY3 (Fig. 8c)

schemes are the accretion of rain and cloud water.

Similar to L17, the MY2 (Fig. 8a) and MY3 (Fig. 8c)

schemes both predict hail to accrete rainwater near the

surface despite the wet-bulb temperature exceeding

08C. The consequences of this process are discussed

later in section c of this chapter. Unlike MY2 and MY3,

the NSSL scheme assumes all accreted water is shed

in and beneath the melting layer for hail, eliminating

the possibility of mh growth. EXP_NSSL mh tenden-

cies (Fig. 8e) are smaller in magnitude than either

EXP_MY2 (Fig. 8a) or EXP_MY3 (Fig. 8c) because the

rate of accretion and melting is proportional to hail

number concentration. The NSSL scheme predicts

fewer hailstones than the MY2 and MY3 schemes, and

thus predicts less rain and cloud water droplets are

accreted.

Vertical cross sections of hail-related microphysical

variables (Fig. 9) are evaluated to understand the

impact of microphysical processes on the behavior

of hail. Although the EXP_MY2 (Figs. 7a,d) and

EXP_MY3 (Figs. 7b,e) predict storms to produce

Dmax . 100mm at the surface, cross sections indicate

hail is much smaller above the 08C isotherm (Figs. 9g,h).

The NSSL scheme predicts storms to produce smaller

Dmax values at the surface (#75mm) (Figs. 7c,f); how-

ever,Dmh
remains large throughout the vertical depth of

the updraft (Fig. 9i). Differences in microphysical as-

sumptions cause EXP_MY2 and EXP_MY3 to predict

larger hail than EXP_NSSL beneath the 08C isotherm,

but smaller hail aloft.

Both the MY2 (Fig. 9d) and MY3 (Fig. 9e) schemes

predict Nth to be large above the 08C isotherm at 5km

above mean sea level; this is the approximate level

where the three-component accretion of rain is maxi-

mized (Figs. 8b,d). Since frozen raindrops are relatively

small in diameter, the three-component accretion of rain

decreases the Dmh
above the 08C isotherm for both

EXP_MY2 (Fig. 9g) and EXP_MY3 (Fig. 9h) members.

The small hail particles aloft are advected downwind

of the updraft, creating a plume of hail that extendsmore

than 40km. Although the MY2 and MY3 schemes pro-

duce large plumes of hail aloft, the small hail particles

in the plumes mostly melt before reaching the surface.

S16 previously noted the MY2 scheme melts hail too

quickly and underpredicts the spatial coverage of hail

at the surface. The underprediction bias noted in S16 is

mitigated when a less stringent minimumNth threshold

of 1028m23 is used, this allows hailstones that are more

sparse in number concentration to reach the surface.

Above the 08C isotherm, the NSSL scheme produces

fewer but larger hailstones than either the MY2 or MY3

FIG. 8.Microphysical source and sink terms for (a),(c),(e)mh and

(b),(d),(f) Nth predicted by (a),(b) EXP_MY2, (c),(d) EXP_MY3,

and (e),(f) EXP_NSSL at 2250 UTC. Microphysical terms are in-

tegrated over each model vertical level spanning the verification

domain shown in Fig. 4. The terms are plotted as a function of

average model height per vertical level. Terms are summed for

each ensemble member, the interquartile range of the ensemble is

shaded and median value is denoted as a dark line. Only terms that

contribute greater than 10 kgm21 for mh and 10m21 for Nth are

plotted. In each plot the upper horizontal dashed black line is the

average 08C isotherm height and the lower horizontal dashed line is

the average wet-bulb temperature 08C isotherm height.

1204 MONTHLY WEATHER REV IEW VOLUME 147



schemes because hail is created from wet-growth grau-

pel. Large hail behaves differently from small rimed

ice particles: first, upper-level winds do not advect the

NSSL scheme hail as far downstream, and most large

hail (Dmh
. 4.5mm) thus remains confined to the

boundaries of the storm updraft region (Fig. 9i). Second,

the larger hailstones have an increased terminal veloc-

ity, and thus higher fall speeds. An increased fall speed

causes a higher percentage of hailstones to reach the

surface before melting and produces relatively wide

swaths of severe hail (Figs. 7c,f) that closely match ob-

servations (Figs. 1b,c).

c. Hail melting processes

In this study, EXP_MY2 forecasts (Figs. 7a,d) pre-

dict Dmax to frequently exceed 150mm (approximately

6 in.), despite HCA output (Fig. 1b) indicating that

surface hail is mostly nonsevere or severe (,50mm

in diameter). Much of the hail growth in EXP_MY2

forecasts occurs in the melting layer; EXP_MY2 mem-

ber 20, which is representative of most EXP_MY2

members, predicts Dmax to increase from 25mm to

more than 150mm while traversing the 08C isotherm

(Fig. 10a). L17 suggests much of this growth is because

hail in the MY2 scheme accretes rain and cloud water

in and beneath the melting layer.

To better understand MY2 scheme hail growth,

we integrate the total microphysical tendency ofmh and

Nth over a subdomain that encompasses only the hail

core of EXP_MY2 member 20 (Fig. 7a). Microphysi-

cal tendencies vary substantially throughout a single

storm, integrating the tendencies over the hail core

(Figs. 10b,c) provides more insight into hail growth

processes than integrating over the verification domain

(Figs. 8a,b). Above the 08C isotherm Nth increases rap-

idly due to the three-component accretion of rain

(Fig. 10c). The introduction of many small, frozen rain-

drops decreases the mean size of hail aloft. Beneath

the 08C isotherm, mh increases (Fig. 10b) because hail

accretes more rain and cloud water than it melts and

sheds. At approximately the same layer below the

freezing level, Nth slowly decreases due to melting

(Fig. 10c), this is because accretional growth does not

increase Nth. When mh increases but Nth decreases the

slope parameter of the hail PSD lh becomes shallow

(Fig. 11b) and causesDmax to exceed 150mm (Fig. 10a).

Accretional growth maintains or expands hail size,

allowing more hail to reach the surface.

EXP_MY3 predicts Dmax (Figs. 7b,e) to exceed

150mm less frequently than EXP_MY2 (Figs. 7a,d),

even though both MP schemes use the same mh and

Nth tendency equations. Hail PSDs selected from three

grid points within a hail core of EXP_MY3 member

5 (Fig. 11a) indicate that when ah . 0 the PSD follows

a gamma distribution which narrows the PSD and

moderates Dmax (Fig. 11b). Multiple studies (e.g.,

Milbrandt and Yau 2005b; Kumjian and Ryzhkov 2012;

Dawson et al. 2014) have documented that ah increases

due to sedimentation. Although the MY3 scheme mod-

erates Dmax, hail continues to accrete liquid in and be-

neath the melting layer, which causes EXP_MY3 to

predict hail greater than 100mm in diameter (Figs. 7b,e).

EXP_MY2 and EXP_MY3 member 20 forecasts are

rerun without the accretion of rain and cloud water

beneath the 08C isotherm (EXP_MY2_NOAC and

EXP_MY3_NOAC, respectively) to demonstrate the

sensitivity of surface hail size to the accretion of water

beneath the 08C isotherm. EXP_MY2_NOAC (Fig. 12a)

and EXP_MY3_NOAC (Fig. 12b) predict the maxi-

mum surface hail size to be smaller in diameter than

EXP_MY2 (Fig. 7a) and EXP_MY3 (Fig. 7b) forecasts,

and more closely resemble observations (Figs. 1b,c). It

is noted that EXP_MY2_NOAC (Fig. 12a) predicts

hail to exceed 100mm; however, most of this hail is at-

tributed to initialization from the EXP_MY2 member

20 analysis, andwithin 10min of forecast initializationmost

of the storms cease to produce hail greater than 100mm

in diameter. Forecast experiments EXP_MY2_NOAC

(Fig. 12a) and EXP_MY3_NOAC (Fig. 12b) are in

agreement with the conclusions of this study and sug-

gest the accretion of liquid water beneath the 08C iso-

therm is important to the production of large hailstones

(Dmax . 100mm).

Coverage of severe hail increases at the surface for

EXP_MY2_NOAC (Fig. 12a) and EXP_MY3_NOAC

(Fig. 12b) when compared to EXP_MY2 (Fig. 7a) and

EXP_MY3 (Fig. 7b) forecasts. In all three MP schemes

the Nth melting tendency term is used to preserve Dmh

during melting; however, both the MY2 and MY3

schemes reduce the Nth melting term by 90% when ac-

cretional growth occurs. Except in updrafts where large

quantities of liquid water are accreted, when the Nth

melting term is reduced Dmh
decreases because mh de-

creases more quickly than Nth. When accretion of liquid

water is eliminated beneath the 08C isotherm the Nth melt-

ing tendency is not reduced, and thus EXP_MY2_NOAC

and EXP_MY3_NOAC predict hail to more frequently

exceed 25mm in diameter (Fig. 12).

EXP_NSSL exhibits limited hail growth across the

08C isotherm. EXP_NSSL member 20, for example,

predicts a change of only 0–5mm across the melting

layer (Fig. 13a), compared to a change of 150mm across

the melting layer in EXP_MY2 member 20 (Fig. 10a).

Microphysical tendency terms in the hail core of

EXP_NSSL member 20 (Fig. 7c) suggest mh (Fig. 13b)

and Nth (Fig. 13c) decrease at approximately the same
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rate beneath the 08C and isotherm. Both terms decrease

at the same rate because hail sheds all accreted liquid

when the air temperature is warmer than 08C. Although

the NSSL scheme limits hail growth within the melt-

ing layer, EXP_NSSL forecasts severe and significant

severe hail (Figs. 4c,f) because large hailstones are cre-

ated from wet-growth graupel above the 08C isotherm.

Most MP schemes assume ice is dry; this assumption

has important consequences on the treatment of hail

beneath the 08C isotherm. Collection of water beneath

the 08C isotherm will increase the ice water fraction

and potentially hail size (Lesins and List 1986); however,

if too much liquid water is collected than the hailstone

will shed and evaporate excess liquid (Rasmussen and

Heymsfield 1987; Chong and Chen 1974). Instead of

representing the collection of water, the MY2 and

MY3 schemes freeze rain and cloud water onto the

surface of hail (i.e., accretion). Since the accreted water

is frozen, excess liquid cannot be removed via shedding,

and instead mh increases when the air temperature is

well above freezing (Fig. 10b). In contrast, the NSSL

scheme does not allow any liquid water collection be-

neath the 08C isotherm (Fig. 13b); this limits a potential

hail growth process within the scheme and poten-

tially limits the maximum surface hail size. Without the

ability to represent ice–water hybrid categories these

FIG. 9. A vertical cross section taken through the hail core of the northernmost supercell thunderstorm predicted by member 20 of

(a),(d),(g) EXP_MY2, (b),(e),(h) EXP_MY3, and (c),(f),(i) EXP_NSSL at 2250 UTC. Cross sections are of (a)–(c) mh, (d)–(f) Nth, and

(g)–(i) Dmh
. In each plot a brown horizontal line represents the 08C isotherm and black contours indicate regions where updraft velocity

exceeds 5m s21.
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MP schemes must continue to make assumptions on the

treatment of hail during melting.

4. Summary and discussion

In this study we evaluate 90-min-long EnKF-

initialized explicit hail ensemble forecasts at 500-m

grid spacing for the 19 May 2013 Oklahoma City,

Oklahoma, supercell hailstorm event. For the initial

conditions, we assimilate all available surface, profiler,

and radar (reflectivity and radial velocity) observations

every 10min, over a 110-min period ending at the final

analysis time of 2150 UTC. Three ensembles, consisting

of 40 members each, are run for both the data assimi-

lation and forecast periods. Each ensemble is similarly

configured but uses one of three microphysics (MP)

schemes: the Milbrandt and Yau (2005a) double-moment

MP scheme (MY2), the Milbrandt and Yau (2005a)

FIG. 10. (a) A vertical cross section ofDmax taken through the hail core of the northernmost storm predicted by EXP_MY2member 20

at 2250 UTC. (b),(c) The total microphysical tendency for mh and Nth, respectively, are also shown. The total microphysical tendency is

integrated over each model vertical level in the storm hail core, which is highlighted by the black polygon in Fig. 7a. The tendencies are

plotted as a function of average model level height. In the vertical cross section in (a) the horizontal brown line represents 08C isotherm

and the black contour represents where updraft velocity exceeds 5m s21. In (b) and (c) the upper horizontal dashed black line is the 08C
isotherm and the bottom dashed line is the wet-bulb 08C isotherm.

FIG. 11. (a) A Swath of forecast maximum surface Dmax calculated at every model time step between 2155

and 2320 UTC for EXP_MY3 member 5. A black polygon indicates where hail PSDs are sampled for the MY3

scheme. Background maps are the same as in Fig. 1. (b) A comparison of hail core PSDs for EXP_MY2 member

20 (Fig. 7a), EXP_MY3member 5 (Fig. 11a), and EXP_NSSLmember 20 (Fig. 7c) at 2250UTC. PSDs are sampled

from within the black polygons in Fig. 7a, Fig. 11a, and Fig. 7c, respectively. Because the minimum y-axis value is

1024 m23 mm21 the x intercept is considered to be the maximum observable hail size Dmax. For EXP_MY3, a

rightward shift in the PSD peak is caused by an increased shape parameter.
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triple-moment MP scheme (MY3), or the NSSL double-

moment variable-density-rimed ice MP scheme (Mansell

et al. 2010). Ensembles run using these schemes are

hereafter referred to as EXP_MY2, EXP_MY3, and

EXP_NSSL, respectively.

Surface hail size forecasts are verified against output

from a hydrometeor classification algorithm (HCA).We

determine the forecast maximum hail size (Dmax) via

hail particle size distributions (PSDs), which approxi-

mates the largest observable hailstone at each model

grid point. Area under the relative operating charac-

teristic (AUC) scores indicate all three MP schemes

predict the coverage of severe (diameter .25mm) and

significant severe (diameter .50mm) hail with a high

level of skill ($0.92); albeit Brier skill scores suggest

the schemes predict significant severe hail coverage

with less skill than severe hail coverage. The ensembles

produce reliable hail size forecasts, with the exception

of EXP_NSSL, which produces under confident signifi-

cant severe hail forecasts. Although EXP_MY2 and

EXP_MY3 produce skillful severe and significant severe

hail forecasts, both ensembles overestimate the maxi-

mum surface hail size. Qualitatively, EXP_NSSL most

closely resembles HCA output but the scheme predicts

limited significant severe hail coverage.

Hail production tendencies are evaluated during the

forecast period to understand hail size forecast differ-

ences and biases. Storms predicted by either EXP_MY2

or EXP_MY3 generally produce a large number of small

hail particles above the 08C isotherm because the MP

schemes create hail via the three-component accretion

of rain (i.e., frozen raindrops). The small hail particles

are advected downstream of the updraft to produce

large plumes of hail aloft that extend more than 40km

downstream of the updraft. EXP_NSSL predicts storms

to produce fewer but relatively larger hail particles

above the 08C isotherm because the NSSL scheme

hail category consists of only dense graupel that has

undergone wet growth.

Hail size forecast skill is also determined by how MP

schemes model hail in and beneath the melting layer.

Because water fraction is not predicted by the MY2,

MY3, or NSSL schemes, neither scheme is able to rep-

resent the collection of liquid water in the melting layer.

Both the MY2 and MY3 MP schemes assume all water

collected by hail is converted to ice both above and

beneath the melting layer; this process causes model

predicted hail to exceed 150mm (;6 in.) in diameter

beneath the 08C isotherm. In regions where hail is ex-

ceptionally large the MY3 scheme often increases the

shape parameter (ah) of hail. Increasing ah narrows the

hail PSD and moderates the most extreme hail sizes

(diameter.150mm); however, EXP_MY3 continues to

overpredict hail size. The NSSL scheme sheds all ac-

creted liquid water when the air temperature is warmer

than 08C. While this assumption prevents the rapid

growth of hail in themelting layer, it is not realistic when

compared to observations (e.g., Rasmussen et al. 1984)

and neglects potential hail growth via the collection of

water (Lesins and List 1986).

To further improve the hail forecast skill, we must

use MP schemes that accurately model hail growth

processes. MP schemes such as the predicted particle

properties (P3; Morrison and Milbrandt 2015; Morrison

et al. 2015; Milbrandt and Morrison 2016) scheme and

the Ice-Spheroids Habit Model with Aspect-ratio Evo-

lution (ISHMAEL; Jensen et al. 2017) scheme explicitly

predict the mass and volume of accreted rime to avoid

converting between predefined hydrometeor species.

Hydrometeor conversion between unrimed and rimed

FIG. 12. Swaths of forecast maximum surfaceDmax calculated

at every model time step between 2155 and 2320 UTC. Fore-

casts are initialized frommember 20 analyses of (a) EXP_MY2

and (b) EXP_MY3. Forecasts (a) EXP_MY2_NOAC and

(b) EXP_MY3_NOAC are run with modified MY2 and MY3

schemes, respectively, where the accretion of rainwater and cloud

water does not occur beneath the 08C isotherm. Background maps

are the same as in Fig. 1.
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ice categories is a large source of model error, this is

most evident in EXP_MY2 and EXP_MY3 forecasts

when frozen rain is converted to hail. ISHMAEL also

predicts particle shape, which is shown to impact the

spatial distribution of ice due to size sorting (Jensen

et al. 2018). Further investigation into the inclusion of

prognostic water fraction equations such as those in

Ferrier (1994) could also improve representation of ice

within the melting layer. Integrating these novel MP

schemes into a hail prediction system could be part of

an investigation of the benefit of including additional

microphysical variables and processes.

Data assimilation can also be used to improve the

microphysical state of hailstorms; however, we must

determine if microphysical variables are being realisti-

cally updated by the DA system. Performing data as-

similation when using a multimoment MP scheme is

nontrivial. Because of the large number of predicted

hydrometeor properties, microphysical variables are

typically under constrained by observations (i.e., re-

flectivity). Microphysical variables also have very non-

linear relations with observations; Xue et al. (2010)

notes this introduces large errors into the initial condi-

tions. For this study, we update only hydrometeor mix-

ing ratios to limit the degrees of freedom of the model

that are updated. Although this technique produces a

stable configuration, the resulting analysis is suboptimal

because Dmax is often too large in early cycles when

forecast errors are large. An optimal data assimilation

procedure for multimoment MP schemes should be

developed to improve initial condition estimates and

produce a more skilled hail size forecast.

A limited number of studies have analyzed hail fore-

casts for storm modes other than supercell thunder-

storms. Many nonrotating storms produce large hail and

cause extensive damage, one such hail event causedmore

than $1.4 billion in hail damage in Colorado (Fritz 2017).

Studies such as Luo et al. (2017) have evaluated the skill

of next-day CAM forecasts for a severe-hail-producing

pulse thunderstorm, but to our knowledge no studies

have evaluated hail forecasts for nonrotating storms

using a frequently updated, high-resolution ensemble

forecast framework. In the future we plan to expand the

number of case studies to include multiple hail events.
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