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1. Introduction

Nutter (2003) showed that the use of coarsely re-
solved and/or temporally interpolated lateral bound-
ary conditions (LBCs) is sufficient to cause under-
dispersive limited area model (LAM) ensemble fore-
casts. The effect is present in all typical modeling
systems using “one-way” LBC forcing and suggests
the need to apply statistically consistent, finescale
LBC perturbations at every time step throughout the
LAM simulations. In this paper, we present a method
for introducing LBC perturbations that is designed
specifically to help restore the loss of LAM ensem-
ble dispersion using a simplified model system.

The use of coarsely resolved and temporally in-
terpolated LBCs restricts small scale error growth
in LAMs because of the LBC “sweeping” effects
that were documented by Nutter et al. (2004) us-
ing a carefully controlled approach. This limitation of
LAMs has important consequences because it artifi-
cially inflates estimates of predictability limits which,
in turn, decreases forecast uncertainty. The LBC
sweeping mechanism associated with coarsely re-
solved LBCs has been considered previously by a
number of authors including Errico and Baumhefner
(1987), Vukicevic and Errico (1990), Paegle et al.
(1997), Warner et al. (1997), Hou et al. (2001), and
De Elı́a and Laprise (2002). Nutter et al. (2004) ad-
ditionally considered error growth constraints intro-
duced by temporal interpolation between relatively
infrequent LBC updates and extended the analysis
to quantify the impact on LAM ensemble dispersion.
They concluded that it is difficult to construct an ef-
ficacious LAM ensemble system unless these LBC
constraints on error growth are relaxed. To help im-

prove the design of LAM ensemble systems, LBC
perturbations are introduced in this paper to help
counter LBC sweeping effects by creating a statis-
tically consistent source of error growth along the
lateral boundaries. The LBC perturbations are de-
signed to amplify with time while coherently propa-
gating into the domain. The perturbations are shown
to help restore small-scale error growth that would
otherwise be swept away through the downstream
boundary.

The application of LBC perturbations described
herein has not previously been attempted to the au-
thors’ knowledge. The method goes beyond the
common practice of using an ensemble of unique
LBCs provided by individual members of an exter-
nal model ensemble. Earlier results by Nutter et al.
(2004) showed that an ensemble of LBCs does not
mitigate the LBC constraint on error growth at small
scales because the LBCs are still coarsely resolved
in both space and time. Hence, the LBC perturbation
method described here is superposed upon the full
set of LBCs originating as output from an ensemble
of external model forecasts.

We begin in section two with a review of statistical
measures used by Nutter et al. (2004) because the
same measures are applied herein to quantify en-
semble performance. In section three, we review the
simplified model system used by Nutter et al. (2004)
that is designed to isolate and control LBC errors.
An example LAM ensemble simulation obtained from
this model is presented in section four to provide a
basis for evaluating the impact of LBC perturbations.
Composition of the LBC perturbations is detailed in
section five. Statistical results shown in section six
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quantify how well the perturbations help restore LAM
ensemble dispersion. Concluding remarks address
the need for additional development before LBC per-
turbations can be applied in operational settings.

2. Ensemble Statistics

The ensemble statistics introduced by Nutter (2003)
and Nutter et al. (2004) are reviewed here for com-
pleteness. Suppose xi is a vector field defined on
a p-element grid, representing forecasts or analy-
ses obtained from an N -member ensemble, where
i = 1, . . . , N . The ensemble mean (a p-element col-
umn vector) is defined

x =
1
N

N∑
i=1

xi. (1)

The scalar spatial mean for the ith ensemble mem-
ber is given by

〈xi〉 =
1
p

p∑
k=1

xi,k =
1
p
1 · xi, (2)

where 1 is a p-element vector of ones. A useful norm
representing the average sum of squares (dot prod-
uct) over the grid is

‖xi‖2 =
1
p
xi · xi =

1
p

p∑
k=1

x2
i,k. (3)

Henceforth, let fi(t) denote individual forecast vec-
tors from the ensemble and a(t) represent the analy-
sis vector corresponding to each forecast. Note that
there is only one analysis vector for each time so
that ai(t) = a(t) = a. The forecasts and analysis are
functions of time, but we will henceforth drop the (t)
notation. These definitions are applicable for grid-
ded fields on both global (periodic, or laterally un-
bounded) and limited-area domains unless specified
otherwise.

Using the norms defined above, the ensemble
dispersion (D2), the ensemble mean square error
(S2), and the total biased error variance (σ2) are de-
fined as follows:

D2 =
1
N

N∑
i=1

∥∥fi − f
∥∥2
, (4)

S2 =
1
N

N∑
i=1

‖fi − a‖2 = D2 +
∥∥f − a

∥∥2
, (5)

σ2 =
1
N

N∑
i=1

‖(fi − ai)− 〈fi − ai〉1‖2
. (6)

The total biased error variance (σ2) may be ob-
tained equivalently in spectral form as (Errico, 1985)

σ2 =
1
N

N∑
i=1

K−1∑
κ=1

2 |Fi(κ)|2 , (7)

where Fi(κ) is the discrete Fourier transform of fi−a
and κ = 1, . . . ,K − 1 are the set of Nyquist re-
solved wavenumbers on the grid (Errico, 1985). In
this form, error variances may be computed individ-
ually for specific wavenumbers, or accumulated over
a range of scales.

One-dimensional spectra are obtained from the
two-dimensional fields using the procedure de-
scribed by Errico (1985). Specifically, linear trends
are first removed from each row and column of the
two-dimensional grid. Then variance spectra are ob-
tained by summing the magnitude of Fourier coef-
ficients within annular rings in wavenumber space.
Refer to Errico (1985) and Nutter (2003) for details.

A key aspect of this work is to study the impact of
scale deficient lateral boundary conditions on LAM
ensemble dispersion. To study this effect as a func-
tion of wavelength, we can link ensemble dispersion
to the spectral decomposition of total error variance
using the relation

D2 = σ2 +
1
N

N∑
i=1

(〈fi〉 − 〈a〉)2 −
∥∥f − a

∥∥2
, (8)

which is derived by Nutter et al. (2004). Using the
spectral variance from (7), Eq. 8 shows that en-
semble dispersion is determined by the accumulated
contributions to error variance at all resolved wave-
lengths, the ensemble mean square spatial error
(sme)2, and a reduction from the squared error of
the ensemble mean (eme)2. This expression will be
applied in section six to evaluate the impact of per-
turbed LBCs on ensemble dispersion by comparing
the magnitudes of each term obtained for both global
and LAM simulations.

The latter two terms in (8) cannot be decom-
posed in a simple way to reveal their contributions
to D2 at different scales. However, if these terms
are nearly the same for both global and LAM sim-
ulations, then their contributions to D2 are negated
under comparison. Under this condition, the direct
spectral relation between error variance and ensem-
ble dispersion is maintained. In the perfect model
simulations conducted for this work, the ensembles
are unbiased and the spatial error term is negligi-
ble on large domains. However, on small domains,
the spectral calculation of ensemble dispersion could
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become distorted because of phase errors intro-
duced by upscale perturbation growth. The ensem-
ble bias term could become large in practical appli-
cation due to model deficiencies. However, ensem-
bles can be calibrated to remove such biases (Hamill
and Colucci, 1997; Hamill, 2001).

The climatological variance provides a natural
standard of forecast skill since the theoretical up-
per bound for S2 and σ2 at error saturation is twice
the climate variance of analyses (Leith, 1974; Nut-
ter, 2003). To normalize the statistics in this work,
let F a

j (κ) be the coefficients obtained from the dis-
crete Fourier transform of the analysis field aj , where
j = 1, . . . ,M andM denotes the number of indepen-
dent cases. Then, following (7), the fraction of total
variance contributed by wavenumber(s) between k1

and k2 (1 ≤ k1 ≤ k2 ≤ K − 1) averaged over all M
cases is determined using

η̃a(κ) =
1
M

∑M
j=1

1
N

∑N
i=1

∑k2
κ=k1

2 |Fi(κ)|2

1
M

∑M
j=1

∑k2
κ=k1

2
∣∣F a

j (κ)
∣∣2 . (9)

The normalization applies equally to all wavenum-
bers, and has a theoretical maximum value of two.

3. Numerical model and its configurations

Numerical experiments are conducted using a
single-level modified barotropic vorticity channel
model. The model is configured specifically to iso-
late the effects of LBCs on LAM ensemble disper-
sion while avoiding analysis and model system er-
rors. Although simplified, the model remains nonlin-
ear, dispersive, and sensitive to initial condition (IC)
perturbations.

The model is based on a parameterized version
of the quasi-geostrophic potential vorticity equation
(Holton, 1979, Sec. 8.4.2). Hence, we call it the
parameterized potential vorticity (PPV) model. Let
ξ ≡ ζ−λ2ψ define the parameterized potential vortic-
ity, where ζ denotes relative vorticity, ψ is the stream-
function, and λ is the inverse of the Rossby radius
of deformation specified so that λ−1 = 1414.2 km. If
we apply this approximation to the quasi-geostrophic
potential vorticity equation and introduce a 4th-order
numerical diffusion term having an eddy diffusion co-
efficient ν, we obtain the PPV model

∂ξ

∂t
=
∂ψ

∂y

∂ξ

∂x
− ∂ψ

∂x

(
∂ξ

∂y
+ β

)
− ν∇2ξ, (10)

where β is the meridional gradient of Earth’s vorticity
evaluated at 45 degrees north latitude. The model’s
numerics are described fully in Nutter (2003) and
summarized in Nutter et al. (2004).

PPV model simulations are run with “global” and
limited-domain configurations. Both configurations
operate with the same time step and with 25 km
grid spacing to avoid the impact of numerical dis-
cretization errors when comparing simulations to a
model-generated truth. The global model configu-
ration is a zonally periodic channel domain dimen-
sioned 18000 km from west to east and 6000 km
from south to north. Four different LAM domains
are defined as subsets of the periodic channel do-
main [see Fig. 1 in Nutter et al. (2004)]. The largest
nested-domain is 6000 km2, the medium-sized do-
main is 3000 km2, and the two smallest domains are
1500 km2. One of the small domains is displaced
southward in the channel relative to the centralized
position of the others to evaluate error growth in a
less unstable part of the flow.

The LAM simulations are configured using “one-
way” Dirichlet boundary conditions for ψ and ξ ob-
tained from subsets of the global model simulations.
The one-way LBC scheme in the LAM simulations
applies a 7-point peripheral relaxation zone (Davies,
1976, 1983). LBCs are obtained by linearly interpo-
lating between subsets of the global simulations at
1, 3, and 6-hourly intervals. Coarsely resolved LBC
fields are generated by applying a low-pass spatial
filter to fields from global model simulations running
at the same resolution as the LAM. The low-pass
filter is a Fourier transform procedure (Errico, 1985;
Laprise et al., 2000; Nutter, 2003) that removes com-
pletely all wavelengths shorter than 150 km while
perfectly retaining the amplitudes of wavelengths
longer than 450 km. The filtering process preserves
the accuracy of large scale motions while removing
those which would not be present on a grid having
three times less spatial resolution as the LAM grid.
This analysis procedure is similar to that used most
recently by Laprise et al. (2000) and De Elı́a and
Laprise (2002).

A model-generated climatology of 100 indepen-
dent cases is used to obtain ICs and perturbations
for ensembles following the method used by Schu-
bert and Suarez (1989). Specifically, two unique
states are randomly selected from the model’s set of
climatological states. Perturbations are then formed
by scaling the difference between the two samples
by a factor of 0.10. Finally, the perturbation field
is added to an IC field represented by another cli-
matological state. This perturbation procedure is
repeated ten times for a given initial field to cre-
ate the starting conditions for 10-member ensemble
simulations. One-hundred independent 10-member
ensemble simulations are constructed by assigning
perturbations to ICs given by each of the available
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climatological cases.

4. Example Simulation - Unperturbed LBCs

An example simulation is reproduced from Nutter
et al. (2004) to show the effects of coarsely resolved
and temporally interpolated LBCs on ensemble dis-
persion and to provide a basis for later compari-
son against the same case run using LBC pertur-
bations. The example case is run as a LAM ensem-
ble configured with 3-hourly updated and low-pass
filtered (coarsely-resolved) LBCs run on the medium
domain. The ICs and LBCs for individual members
are obtained as direct subsets of the corresponding
global ensemble members, so an unperturbed “en-
semble of LBCs” has been applied.

To visualize the documented loss of ensemble
dispersion due to LBC filtering effects, the following
loss ratio is defined at each grid point p in the do-
main:

1−
d2

p (global)

d2
p (LAM)

(11)

where d2
p is the local dispersion defined similar to (4)

except it is not averaged over the domain. If this loss
ratio is locally negative, then the LAM ensemble has
less dispersion than the global ensemble at that grid
point.

The example LAM ensemble and its dispersion
loss ratio is shown in Fig. 1. At the initial time
(panel a), regions of increased and decreased vortic-
ity dispersion relative to the global ensemble appear
evenly distributed and similar in magnitude since the
loss ratio is near zero everywhere. After 12 hours
have elapsed (panel b), regions showing strong re-
ductions of dispersion appear along the upstream
side of the domain. At the same time, the disper-
sion loss ratio remains evenly distributed and near
zero within the downstream portion of the domain.
The reductions near the upstream boundary is at-
tributed to the spatial and temporal filtering effects
associated with the use of coarsely-resolved and
temporally-interpolated LBCs. The area impacted
by loss of dispersion grows with time as LBC errors
sweep through the domain from west to east. Lo-
cally, the LAM ensemble dispersion loss ratio shows
reductions of a factor of eight or larger.

5. LBC perturbations

Sufficient background information has been given to
develop and apply LBC perturbations to the LAM en-
semble simulations. The general procedure for im-

plementing LBC perturbations at each time step is
as follows (details to follow). A two-dimensional per-
turbation field is generated on the LAM grid using in-
verse Fourier transforms. The perturbation field has
zero mean and is periodic in both x- and y-directions.
The LBC perturbation field is initialized by assigning
random phase angles to each wavenumber. Ampli-
tudes of the perturbations are determined by the loss
of error variance at specific wavelengths due to LBC
effects. Once initialized, the field is translated at the
Rossby phase speed for each wavenumber so that
perturbations passing through the lateral boundary
remain coherent in both space and time. Pertur-
bation amplitudes increase with time based on the
amount of error variance needed to restore the por-
tion lost due to LBC sweeping. After the perturba-
tion field is constructed, it is added to the spatially
and temporally interpolated LBC field given by sub-
sets of an external model simulation. The perturbed
LBC field is then blended with the LAM solution only
within a peripheral wave relaxation zone at each time
step.

a. Implementation

i. Phase angle form of Fourier series

The net effect of using coarsely resolved and tem-
porally interpolated LBCs is a loss of variance at
small scales, and hence, a reduction in the total bi-
ased error variance (Nutter et al., 2004). The to-
tal biased error variance (Eq. 7) is computed us-
ing one-dimensional spectra as described in section
two. The error variance calculations retain only wave
amplitudes for isotropic wavenumbers and are aver-
aged over many independent cases. The phase an-
gle form of the Fourier series (e.g. Walker, 1988) is
most compatible with this statistical framework and
and is used to synthesize random fields having pre-
determined error variance spectra.

Consider the Fourier series expansion of a one-
dimensional periodic function f(x) = f(x+ L):

f(x) = a0 +
∞∑

k=1

[ak cos(2πkx/L) + bk sin(2πkx/L)] ,

(12)
where ak and bk are real amplitude coefficients. The
phase-angle form of the Fourier series is obtained
by letting ak = ck cos(−θk) and bk = ck sin(−θk),
where ck =

√
a2

k + b2k and θk is the phase angle for
wavenumber k. Apply these definitions for ak and bk
in (12) and manipulate so that
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Figure 1: Example case run on the medium domain with 3-hourly updated, low-pass filtered LBCs. A
“spaghetti” plot drawn with solid black lines shows the (516,540,564)×106 m2s−1 streamlines from each of
the 10 LAM ensemble members. Reduction of vorticity dispersion (Eq. 11) is shaded, while streamfunction
dispersion is shown with dashed contours at 2× 1012 m4s−2 intervals.
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f(x) = a0 +
1
2

∞∑
k=1

[
cke

iθkei(2πkx/L)
]

+
1
2

∞∑
k=1

[
cke

−iθke−i(2πkx/L)
]
. (13)

Equation (13) shows that a periodic function can
be synthesized simply by specifying a real ampli-
tude coefficient (ck) and phase angle (θk) for each
wavenumber k. This form is useful because the one-
dimensional variance spectra retain only the mag-
nitudes of complex Fourier coefficients. The phase
angles remain unknown but may be specified ran-
domly.

Fast Fourier transform (FFT) algorithms use the
complex form of the Fourier series. To convert (13)
to the more useful complex form, introduce complex
Fourier coefficients

F (0) = a0,

F (k) =
1
2
cke

iθk =
1
2
(ak − ibk),

F (−k) =
1
2
cke

−iθk =
1
2
(ak + ibk).

Apply these coefficients in (13) so that

f(x) = F (0) +
∞∑

k=1

[
F (k)e2πikx/L

]
+

∞∑
k=1

[
F (−k)e−2πikx/L

]

f(x) =
∞∑

k=0

F (k)e2πikx/L +
−∞∑

k=−1

F (k)e2πikx/L

f(x) =
∞∑

k=−∞

F (k)e2πikx/L. (14)

The extension of Eqs. (12) to (14) into their two-
dimensional forms is not difficult but involves many
additional terms. While details of the derivation are
omitted (see Walker, 1988), the complex form of the
Fourier series for a two-dimensional periodic field
f(x, y) = f(x+ Lx, y + Ly) is

f(x, y) = (15)
∞∑

k=−∞

∞∑
l=−∞

F (k, l) exp[2πi(kx/Lx + ly/Ly)].

The discrete Fourier series used for the calculations
is

f(x, y) ' (16)
Nx/2∑

k=
−Nx/2+1

Ny/2∑
l=

−Ny/2+1

F (k, l) exp[2πi(kx/Lx + ly/Ly)],

where x = (k+Nx/2+1)∆x and y = (l+Ny/2+1)∆y.
Even integers Nx and Ny denote the number of
grid points along each dimension of the domain. In
practice, Fourier series approximation of real fields
makes use of complex conjugate symmetries so
that the negative l wavenumbers are omitted (Press
et al., 1996).

Equation (17) can be used to synthesize a field
having pre-determined variance spectra |F ′

(k, l)|2
and random phase angles θk,l by specifying

F (k, l) =

√
|F ′(k, l)|2

2
(cos θk,l + i sin θk,l), (17)

except the factor of one-half is omitted for k = 0
and k = Nx/2. This factor is required since error
variance spectra obtained previously using FFT al-
gorithms were multiplied by two because of the com-
plex conjugate symmetry in transforms of real data.

ii. Amplitude of Perturbations

Amplitudes of the LBC perturbations are determined
by the pre-determined loss of error variance at spe-
cific wavelengths due to LBC effects (Nutter et al.,
2004). Thus, if σ2

κ denotes the one-dimensional er-
ror variance spectra obtained from previous global
and LAM simulations, amplitudes of the perturbation
spectra are determined using (17) with

|F
′
(k, l)|2 = σ2

κ(global)− σ2
κ(LAM), (18)

where κ =
√
k2 + l2. The perturbation spectra

are distributed equally among all the wavenumber
pairs (k, l) contained within each annular wavenum-
ber ring ℵ(κ) ± (1/2)δκ, where ℵ denotes near-
est integer. Variances are set to zero for wavenum-
ber pairs where κ exceeds that of the smallest re-
solved wavelength since these were not accumu-
lated in the one-dimensional spectra. Furthermore,
negative values of |F ′

(k, l)|2 are set to zero because,
in this case, the error variance in the LAM simula-
tions already exceeds that of the global simulations.

Results in Fig. 2 show |F ′
(k, l)|2 obtained for

the LAM ensemble configuration having 3-hourly up-
dated, low-pass filtered LBCs. Given these differ-
ence spectra, amplitudes of the LBC perturbation
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Figure 2: Difference in error variance spectra between global ensemble simulations and LAM ensemble
simulations having 3-hourly updated, low-pass filtered LBCs.

field are set to zero for about the first 12 hours, de-
pending on wavelength. The amplitude of the per-
turbation is greatest at wavelengths between about
100 and 1000 km. Indeed, these are the scales
that were most strongly effected by the filtering ef-
fects associated with spatial and temporal filtering of
LBCs (Nutter et al., 2004). Difference spectra are not
shown beyond 72 hours because there is minimal
additional growth beyond this time. The LBC per-
turbation field constructed using the difference spec-
tra in Fig. 2 begin with zero amplitude, then begin
to grow after about 12 hours until reaching a nearly
constant value around 72 hours.

The difference spectra for these simulations were
computed each hour. These spectra were interpo-
lated linearly in time before generating LBC pertur-
bation fields at every 7.5-minute time step of the
PPV model. Temporal interpolation of the spectra
before generating the perturbation field does not re-
duce small-scale variance as does interpolation be-
tween external LBC fields. Furthermore, temporal
changes in the difference spectra are small since

statistics were obtained as averages over 100 cases.
In practical applications, data will not be available
hourly, perhaps only every 3, or 6 hours. A possible
approach for these scenarios is to fit analytic curves
to the set of difference spectra (e.g. Lorenz, 1982;
Dalcher and Kalnay, 1987; Schubert and Suarez,
1989; Stroe and Royer, 1993; Reynolds et al., 1994;
De Elı́a and Laprise, 2002). Attempts were made
to fit such curves here, but it was difficult to ob-
tain parameters that produced accurate fits across
all scales of motion. This is an issue that should be
addressed further with application to more complex
atmospheric LAMs.

iii. Translating the Perturbation Field

The perturbation field is initialized by specifying uni-
form random phase angles 0 ≤ θk,l ≤ 2π in (17).
Once initialized, the phase angles are stored and in-
cremented at each time step to cause a translation
of the perturbation field when it is synthesized us-
ing (17). This translation is important for providing
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temporally and spatially coherent wave structures as
they pass through the lateral boundary. The field is
translated at some characteristic speed cκ by incre-
menting the phase angles such that

θk,l(t+ ∆t) = θk,l(t) + κcκ∆t, (19)

where again, κ =
√
k2 + l2.

An appropriate choice of translation speed for
this work is the Rossby phase speed. Since
the available error variance spectra are one-
dimensional, we use the isotropic, or uni-directional
phase speed

cκ = (U0k − βk/κ2)/κ, (20)

where U0 is the base state zonal flow speed. Rossby
phase speeds calculated using specified PPV model
constants are less than 12 ms−1. The x-component
of group velocity remains near 12 ms−1 while the y-
component of group velocity is generally less than
0.001 ms−1. Thus, the entire perturbation field
translates from west to east at about 12 ms−1. Other
choices for the translation speed could be more ap-
propriate in applications using full primitive equation
models. This question remains beyond the scope of
the present study.

b. Example Simulation with Perturbed LBCs

An example perturbation vorticity field (ζ
′
) was con-

structed at multiple times using (17) with the differ-
ence spectra in Fig. 2. Results are shown in Fig. 3.
Streamfunction perturbations are obtained by solv-
ing the Poisson equation ∇2ψ

′
= ζ

′
. The solu-

tion to the Poisson equation is unique to within a
constant value when using periodic boundary con-

ditions. Therefore, the spatial mean
〈
ψ

′
〉

was sub-

tracted from each solution to ensure that the pertur-
bation streamfunction remains unbiased.

As explained previously, error variances from the
LAM simulation are greater than those of the global
simulations for about the first 12 hours (see also Nut-
ter et al., 2004). Therefore, the amplitude of vorticity
perturbations are set to zero since the LAM simula-
tion already has excessive error variance during this
time. The impact of this choice is seen in Fig. 3a,b as
the perturbation field does not begin to amplify until
about 15 hours have passed. Careful examination of
the vorticity perturbation field reveals about 10 to 20
wave couplets across the breadth of the 3000 km2

domain. This result is consistent with the difference
spectra shown in Fig. 2 since wavelengths are on the
order of 150 to 300 km.

The vorticity field is translated at the Rossby
phase velocity using (19) and (20). Motion from west
to east is clearly evident in time animation of these
fields, and is also seen in Fig. 3 by locating and track-
ing local minima and maxima. The translation and
simultaneous amplification of the perturbation field
is more easily seen in the streamfunction perturba-
tions. Using the approximation Φ

′
= ψ

′
f , note that

the contours of ψ
′

correspond to 10 m2s−2 incre-
ments of geopotential height.

The vorticity and streamfunction perturbations
fields are constructed at each time step, and at the
spatial resolution of a LAM simulation. The perturba-
tions are then added to the temporally interpolated
LBC field provided by a coarsely-resolved external
model simulation. This perturbed external LBC field
is then blended with the LAM solution across the pe-
ripheral 7-point relaxation zone. The perturbations
are produced as a field covering the entire LAM do-
main to ensure that the spatial variance is restored
using coherent wave patterns. However, the pertur-
bations are applied only within the boundary zone
and modify the LAM solution only after propagating
into the domain.

An example LAM ensemble obtained from sim-
ulations having perturbed LBCs is shown with its
dispersion loss ratio (Eq. 11) in Fig. 4. The
“spaghetti” contours and streamfunction dispersion
(represented by the solid and dashed lines) appear
much the same as in as in Fig. 1. Hence, the LBC
perturbations have not introduced excessive noise
into the individual ensemble member simulations.

The effects of the LBC perturbations for this ex-
ample are seen in the dispersion loss ratio. Dur-
ing the first 12 to 24 hours, the dispersion loss ra-
tio is similar in both perturbed and unperturbed sim-
ulations. This is expected since the amplitude of
the perturbations is zero through the first 12 hours
as discussed previously. Once the LBC perturba-
tions begin to enter the LAM domain, they help en-
hance error variance locally and the dispersion loss
ratio becomes less negative compared to the unper-
turbed simulation (Fig. 1). Comparison of the sim-
ulations after about 60 hours shows that LBC per-
turbations have swept through the domain. Regions
of increased and decreased vorticity dispersion rel-
ative to the global simulation now appear evenly
distributed throughout the domain. The LBC per-
turbations do not apply instantaneously across the
breadth of the domain, but instead propagate inward
to restore those scales that have been filtered out by
LBC filtering and sweeping effects. After 96 hours,
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Figure 3: Example of LBC perturbation fields constructed for the medium domain using the difference in
error variance spectra between global ensembles and LAM ensembles having 3-hourly updated, low-pass
filtered LBCs (Fig. 2). Positive (negative) vorticity perturbations exceeding 0.5 × 10−5 s−1 are indicated by
light (dark) shades. Positive (negative) streamfunction perturbations are shown with solid (dashed) contours
at ±0.1× 106 m2s−1 intervals (zero line omitted).
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Figure 4: As in Fig. 1, except the example case is run with LBC perturbations such as those shown in Fig.
3.
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Figure 5: Normalized vorticity error variance (Eq. 9), averaged over 100 independent 10-member LAM
ensemble simulations having perturbed, 3-hourly updated, low-pass filtered LBCs (150 km wavelength
cutoff). Line labels (km) indicate wavelength(s) contributing to error variances. Dashed reference lines
show error variances from subsets of global ensemble simulations and dotted lines show error variances
from corresponding LAM ensemble simulations run without LBC perturbations.

the domain average dispersion loss ratio is -0.95 for
the unperturbed simulation (Fig. 1i) and -0.11 for the
perturbed simulation (Fig. 4i). Hence, the impact of
the LBC perturbations has been to restore LAM en-
semble dispersion from a loss of nearly 50% to a
loss of just 10% relative to the global ensemble sim-
ulations.

6. Statistical Results

The LAM ensemble simulations run by Nutter et al.
(2004) are repeated here, except LBC perturbations
are created and applied at each time step during
the simulations as discussed in the previous section.
Statistical results are obtained as averages over 100
independent 10-member LAM ensemble simulations

and are compared to results obtained from the ear-
lier unperturbed LAM simulations and also to those
obtained from subsets of global model simulations.

a. Ensemble Error Variance Spectra

Consider results from the LAM ensemble config-
uration having 3-hourly updated, low pass filtered
(coarsely resolved) LBCs that are perturbed at ev-
ery time step. Normalized error variances shown
in Fig. 5 reveal that the application of LBC pertur-
bations completely restores error variances at wave-
lengths longer than about 500 km to values obtained
from the control simulations run on the global do-
main. The LBC perturbations are less effective for
smaller scales, where the proportion of error vari-
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ance restored depends on domain size. For exam-
ple, on the large domain (Fig. 5a), the LBC pertur-
bations restore about 1/3 of the error variance lost
at saturation in the smallest scales. Compare this
to the small, centered domain (Fig. 5c), where the
LBC perturbations restore more than 3/4 of the error
variance lost in the unperturbed LAM simulations.

To explain these results, note that difference
spectra used to determine the amplitude of LBC
perturbations (Eq. 18) are based on error variance
calculations obtained from data over the full extent
of the LAM domain. However, LBC perturbations
are applied only within the peripheral 7-point wave-
absorbing zone. The perturbations subsequently
disperse and/or dissipate while propagating through
the LAM domain. Therefore, the difference spec-
tra likely underestimate the amplitude of LBC per-
turbations needed to fully restore LAM error vari-
ances to those obtained from global simulations.
The LBC perturbations are more effective on smaller
domains because there is less time for dispersion
and dissipation to reduce their impact while pass-
ing through the LAM domain. The perturbations
also restore variance more effectively for larger scale
waves since they have slower dispersion and less
dissipation. Furthermore, the small-scale perturba-
tions help maintain error variance at larger scales
through nonlinear wave interactions and the upscale
and downscale transfers of energy.

There are other interesting features seen in
Fig. 5. First, note that variance spectra in the per-
turbed simulations are identical to those for unper-
turbed simulations over the first 12 to 24 hours. As
discussed above, the amplitude of the perturbation
field is set to zero during this time because the LAM
variance spectra exceed those of the global simula-
tions. Note also that the error variance curves con-
tinue to oscillate because of the LBC error “pulse”
caused by temporal interpolation between otherwise
perfect LBCs (see Nutter et al., 2004).

LAM simulations were also conducted after
adding perturbations to hourly and 6-hourly updated
LBCs (not shown). Normalized error variances
(Eq. 9) obtained from simulations having perturbed,
hourly updated LBCs (not shown) reveal that error
variances from the perturbed LAM simulations are
nearly superimposed with those from the laterally
unbounded global ensemble simulations. This re-
sult shows that the LBC perturbations function as
designed. However, the additional effort of applying
LBC perturbations is not justified for hourly-updated
LBCs since error growth constraints are minimal for
this configuration (Nutter, 2003). Results from the
LAM configuration having 6-hourly updated LBCs

(not shown) reveal similar features as those in Fig. 5,
although the LBC perturbations are slightly less ef-
fective since they had a greater proportion of total
variance to recover.

b. Ensemble Summary Statistics

It has been shown that the use of LBC perturbations
capably restores much of the error variance lost by
coarsely resolved and temporally interpolated exter-
nal LBC fields, especially on smaller domains and at
wavelengths longer than 250 km. The primary goal
of applying LBC perturbations is to restore LAM en-
semble dispersion without adversely impacting the
individual ensemble members. Equation (8) pro-
vides a direct link between ensemble dispersion and
the error variance evaluated in the previous subsec-
tion. It is useful to compare the relative magnitudes
of each term in this equation to help determine what
portion of total error variance (σ2) contributes to en-
semble dispersion (D2) relative to the remaining bias
terms. The ensemble mean square error (S2, Eq. 5)
also is evaluated as an overall measure of perfor-
mance.

Results are presented here for the model con-
figuration having perturbed, 3-hourly updated, low-
pass filtered (coarsely resolved) LBCs (Fig. 6). The
loss of error variance at small scales due to LBC
constraints was noted previously in Fig. 5. The inte-
grated effect is a decrease in total error variance (σ2)
over the first 24-48 hours of the simulation, depend-
ing on domain size. In previous simulations without
LBC perturbations, the loss of total error variance
leveled off at a near constant value as LBC sweep-
ing reached a balance with small-scale error growth
on the interior of the LAM domain (see Nutter et al.,
2004). In contrast, the amplitude of the LBC pertur-
bations in the simulations shown here grow with time
and begin to restore the total error variance. Conse-
quently, the difference in spectra between global and
LAM ensembles becomes less negative with time.
The total error variance is not restored completely as
noted in the previous section, but is most effectively
restored on the smaller domains.

An interesting characteristic noted on all domains
is the increase of total error variance in the LAM sim-
ulations during the first 12 hours. Close examina-
tion of Fig. 5 shows that this increase in variance is
due to contributions at smaller scales. The source
of this extra variance early in the LAM simulations is
due to the different solution obtained by solving the
Helmoltz equation to obtain vorticity from perturbed
LBCs. This introduces the error variance at small
scales, and also contributes to an increase in
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Figure 6: Difference in vorticity summary statistics for LAM ensemble simulations having perturbed, 3-hourly
updated, low-pass filtered LBCs (150 km wavelength cutoff) compared to statistics from global ensemble
simulations. Results are averaged over 100 independent 10-member ensemble simulations. Line labels in
the legend are defined in section two.

ensemble mean error (Fig. 6). In spite of the initial in-
crease in error variance, LAM ensemble dispersion
decreases for about 48 hours in all simulations be-
cause of the increase in ensemble mean error in the
absence of changes in the spatial bias (see Eq. 8).

The ensemble statistics oscillate with time due to
the LBC error pulse caused by temporal interpola-
tion. The oscillation has a 3-hour period associated
with the interval at which LBCs are updated from
external model fields. With each update, the exter-
nal fields are perfect except for the removal of short
waves by low-pass filtering to emulate coarse reso-
lution and the subsequent addition of perturbations
to restore variance at those scales.

The total error error variance is fully restored
when LBC perturbations are applied in LAM config-
urations having hourly updated LBCs (not shown).
This result is expected since error variance spectra

were restored at all wavelengths for this configura-
tion (Nutter, 2003). Furthermore, the use of LBC per-
turbations does not introduce additional spatial bias
or ensemble mean error. Most importantly, when us-
ing hourly updated LBCs, LAM ensemble dispersion
is fully restored to values obtained from correspond-
ing subsets of global ensemble simulations. Results
from LAM configurations using 6-hourly simulations
reveal similar results to those shown in Fig. 6.

7. Scaled LBC Perturbations

Results shown in Fig. 5 reveal that the amplitude of
LBC perturbations needed to fully restore error vari-
ance growth is underestimated under certain LAM
configurations. Specifically, the perturbation ampli-
tudes are underestimated at wavelengths shorter
than 500 km, especially when applied to large do-
main simulations having coarsely resolved external
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LBCs updated at intervals of 3 hours or longer. In an
attempt to remedy this deficiency, the perturbation
amplitudes are increased by applying a scale fac-
tor to the difference spectra |F ′

(k, l)|2 (Eq. 18). The
scale factor is defined as ratio of error variances ob-
tained from perturbed LAM ensembles to those ob-
tained from corresponding subdomains of global en-
semble simulations. Thus, the difference spectra are
redefined by introducing the scaling factor Λ so that

Λ = σ2
κ(global)/σ2

κ(perturbed LAM) (21)

and

|F
′
(k, l)|2 = Λ[σ2

κ(global)− σ2
κ(unperturbed LAM)].

(22)
The use of scaled LBC perturbations does yield

a small improvement for the LAM configuration hav-
ing low-pass filtered LBCs that are updated every 3-
hours (not shown). Given an increase in perturbation
amplitudes of up to 40% after scaling, the increase
in error variance at scales less than 500 km is about
0 to 6%. Although tiny improvements are seen in
the error variance spectra, the ensemble summary
statistics (not shown) indicate that ensemble disper-
sion is almost unchanged compared to the configu-
ration having unscaled LBC perturbations. Hence,
the significance of these improvements using scaled
LBC perturbations is questionable and not recom-
mended given the additional computational expense.

8. Conclusions

A new method has been developed to apply LBC
perturbations at every time step of LAM simulations.
The perturbations are intended to restore the small-
scale error variances and ensemble dispersion lost
due to coarsely resolved and temporally interpolated
external LBC fields.

Results showed that the application of LBC per-
turbations in LAM ensemble simulations is highly ef-
fective at restoring error variances and ensemble
dispersion to the values obtained from subsets of
global ensemble simulations. Two exceptions were
noted. First, error variances were not fully restored
at wavelengths shorter than 500 km, especially for
large domain simulations having coarsely resolved
external LBC fields updated at intervals of 3 hours
or longer. This deficiency was attributed to the fact
that short-wavelength LBC perturbations have small
amplitudes and subsequently disperse and/or dis-
sipate while propagating through the LAM domain.
The second notable exception is that, in spite of the
gain in error variance, ensemble dispersion for the
small domains could not be fully recovered between

about 12 and 48 hours of the simulations. This de-
ficiency was explained by the increase in ensemble
mean error caused by coarsely resolved and tempo-
rally interpolated external LBC fields. The increase
in ensemble mean error causes a decrease in en-
semble dispersion that cannot be recovered by the
use of LBC perturbations as applied herein.

The LBC perturbations are based solely on dif-
ferences in error variance spectra. Their only re-
lationship to the dynamical evolution of flow inside
the LAM domain is through the nonlinear advection
term that transfers energy and enstrophy upscale
and downscale throughout the spectrum. To en-
sure that the LBC perturbations do not overwhelm
the quality of the LAM solution, it is necessary that
their amplitudes remain small. Furthermore, the en-
semble mean error can become inflated if the per-
turbations are too strong. An increase in ensemble
mean error contributes to a loss of ensemble disper-
sion, which opposes the effort to restore dispersion
through increases in error variance. Although not
perfect in every aspect, the LBC perturbations de-
veloped in this work appear small enough to satisfy
these concerns while restoring most of the ensem-
ble dispersion and error variance lost through LBC
constraints.

We conclude with comments on how this work
may apply to more realistic modeling systems. Two
fundamental assumptions were made at the start of
this work (Nutter et al., 2004). First, it was assumed
that natural error growth at large scales is (or can be)
stated accurately using global model forecasts. This
assumption is needed to ensure that error variances
and ensemble dispersion are correct at wavelengths
exceeding the breadth of the LAM domain. LBC
perturbations are only effective at scales up to the
size of the LAM domain and cannot correct deficien-
cies caused by improper error growth rates at larger
scales. Second, the assumption was made that er-
ror growth rates at small scales in LAMs should be-
have the same as those in global models operating
at equivalent resolution. The amplitude of the LBC
perturbations was determined by the difference in er-
ror variance spectra between global ensembles and
LAM ensembles having unperturbed LBCs. Hence,
the LBC perturbations may be less effective if there
are differences in the variance spectra caused by
dynamical or artificial discrepancies between exter-
nal and LAM models. A related assumption is that
the model simulations are unbiased, since ensem-
ble dispersion is linked to the total error variance, the
ensemble mean error and the spatial bias. This sec-
ondary assumption is less important because cor-
rections can be applied for systematic model errors.
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The greatest challenge faced in applying the LBC
perturbation technique to other modeling systems
is the determination of appropriate amplitude co-
efficients needed for constructing the perturbation
fields. Global ensemble systems have been avail-
able for more than a decade. It should not be diffi-
cult to obtain error variance spectra over many cases
for these ensembles, especially since most are in-
tegrated using spectral methods. The greater chal-
lenge is to obtain error variance spectra from LAM
ensemble systems. LAM ensemble systems have
existed for several years, but most do not include the
statistical verification packages needed to calculate
one-dimensional error variance spectra. Such pack-
ages would need to be developed, then results ac-
cumulated over many cases. Once an appropriate
set of verification data has been accumulated, cor-
rections for systematic errors must be applied before
obtaining difference spectra. Finally, an issue that
requires additional research is how to determine the
vertical structure of LBC perturbations.

Temporal interpolation of coarsely resolved ex-
ternal LBC fields has been shown to remove small-
scale features from LAM solutions and quickly sweep
out any set of initial condition perturbations (Nutter
et al., 2004). LBC perturbations applied at every
time step are essential to the design of an effica-
cious LAM ensemble system. The effort will be most
rewarding on smaller domains where LBC sweep-
ing effects act most quickly to constrain error growth
rates. The additional expense of applying LBC per-
turbations may be offset by the ability to integrate
LAM ensembles over smaller domains.
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