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Abstract 
 

In this study, a hybrid En3DVar data assimilation (DA) scheme is compared with 
3DVar, EnKF, and pure En3DVar for the assimilation of radar data in a real tornadic storm 
case. Results using hydrometer mixing ratios (CVq) or logarithmic mixing ratios (CVlogq) 
as the control variables are compared in the variational DA framework. To deal with the 
lack of radial velocity impact issues when using CVq, a procedure that assimilates 
reflectivity and radial velocity data in two separate analysis passes is adopted. Comparisons 
are made in terms of the root mean square innovations (RMSIs) as well as the intensity and 
structure of the analyzed and forecast storms.  For pure En3DVar that uses 100% ensemble 
covariance, CVlogq and CVq have similar RMSIs in the velocity analyses, but errors grow 
faster during forecasts when using CVlogq. Introducing static background error covariance 
B at 5% in hybrid En3DVar (with CVlogq) significantly reduces the forecast error growth. 
Pure En3DVar produces more intense reflectivity analyses than EnKF that more closely 
match the observations. Hybrid En3DVar with 50% B outperforms other weights in terms 
of the RMSIs and forecasts of updraft helicity, and is thus used in the final comparison 
with 3DVar and EnKF. The hybrid En3DVar is found to outperform EnKF (3DVar) in 
better capturing the intensity and structure of the analyzed and forecast storms (intensity 
and evolution of the rotating updraft).  
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1. Introduction 
The initial conditions are critical for numerical weather prediction (NWP). For 

convective-scale NWP, when the initial condition does not contain convective-scale 
information, the model has to go through “spinup” process to develop convective-scale 
processes that tends to delay the onset of precipitation in the forecast, affecting very-short-
range forecast skill of precipitation and other hazardous weather (e.g., Sun et al. 2014). To 
improve the initial condition and alleviate the spinup problem, efforts assimilating Doppler 
weather radar observations, including the radial velocity and reflectivity, which contain 
rich information on precipitating hydrometeors and flow fields within storms, have shown 
great promises (Sun and Crook 1994; Sun and Crook 1997, 1998; Snyder and Zhang 2003; 
Xue et al. 2003; Dowell et al. 2004; Tong and Xue 2005; Xue et al. 2006; Tong and Xue 
2008; Xue et al. 2009; Yussouf and Stensrud 2010; Auligne et al. 2011; Dawson et al. 2015; 
Gustafsson et al. 2018). Different data assimilation (DA) methods have been used in these 
studies. 

The three-dimensional variational (3DVar) method is one of the most commonly used 
DA methods because of the computational efficiency. However, 3DVar is not necessarily 
best suited for convective-scale DA, because of the lack of simple balance relations at the 
convective scale among the model state variables, which are often exploited in its large-
scale applications (Wu et al. 2002; Sugimoto et al. 2009). The hydrostatic or quasi-
geostrophic balances typically assumed for large-scale DA are no longer suitable; instead 
highly nonlinear 3D dynamics and complex microphysical processes are dominant. 
Although positive impacts have been found by assimilating radar data using 3DVar (Gao 
et al. 2004; Xiao et al. 2005; Hu et al. 2006; Xiao et al. 2007; Zhao and Xue 2009; Du et 
al. 2012; Gao and Stensrud 2012; Ge et al. 2012, 2013; Xue et al. 2014), the assimilation 
of reflectivity data is often achieved through indirect approaches, such as an add-on 
complex cloud analysis step (e.g., Hu et al. 2006), latent heat nudging (Wang and T.Warner 
1988; Manobianco et al. 1994; Dixon et al. 2009; Ballard et al. 2016; Simonin et al. 2017), 
or by assimilating pre-retrieved hydrometeor mixing ratios (e.g., Wang et al. 2013). Due 
to the lack of general balance among the state variables, rapid initial adjustments usually 
occur in the initial forecasts, leading to rather rapid loss of prediction skill (Kain et al. 2010; 
Xue et al. 2013). 

To produce convective-scale initial conditions in which state variables are dynamically 
consistent with each other, the NWP model that governs the state evolution should be 
utilized. The four-dimensional variational (4DVar) method that employs the full NWP 
model as a strong constraint is a natural choice to fulfill such a requirement; unfortunately, 
non-linearities associated with complex physical processes that are important for accurate 
convective scale prediction make the application of 4DVar at the convective-scale 
technically very challenging. In 2017, hourly cycling 4DVar was implemented at the 
British Met Office, but radar data assimilation is only limited to radial velocity data (with 
15 min DA frequency) (Gustafsson et al. 2018). The application of 4DVar for reflectivity 
data assimilation has been mainly limited to systems based on simple models (e.g., Sun 
and Crook 1997). 

 The ensemble Kalman filter (EnKF, Evensen 1994) is another approach that employs 
the full NWP model within the DA process through ensemble forecasts; the relations 
among the state variables are realized through the cross-variable forecast error covariances 
estimated from the ensemble. Since its initial introduction to convective-scale DA about 
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15 years ago, the EnKF method has enjoyed great popularity and reasonable success for 
radar data assimilation and convective scale NWP (e.g., Snyder and Zhang 2003; Dowell 
et al. 2004; Zhang et al. 2004; Tong and Xue 2005; Xue et al. 2006; Jung et al. 2008; Tong 
and Xue 2008; Aksoy et al. 2009, 2010; Jung et al. 2010; Dowell et al. 2011; Snook et al. 
2011; Zhang et al. 2011; Jung et al. 2012a; Snook et al. 2012; Stensrud et al. 2013).  

There are issues with EnKF also, however. Because of the rather limited size of the 
ensemble that can be afforded in practice, the background error covariance matrix 
estimated from the limited ensemble is severely rank deficient, which usually leads to 
spurious long-range correlations (Hamill and Snyder 2000). Although covariance 
localization helps to alleviate the problem, it usually prevents the inclusion of long-range 
balances that are physical (Houtekamer et al. 2005; Kepert 2009; Greybush et al. 2011). In 
comparison, static, non-flow-depedent, climatological background error covariance that 
often assumes simple Guassian correlation models, is usually full rank, or close to full rank. 
Certain large-scale/longer-range correlations are often built into the static covariances (e.g., 
Wu et al. 2002).  

To take advantage of the beneficial aspects of static and flow-dependent ensemble 
covariances, a hybrid approach that utilizes a linear combination or weighted average of 
the static and ensemble covariances within a 3DVar framework was proposed by Hamill 
and Snyder (2000), and tested with relatively simple models (Hamill and Snyder 2000; 
Etherton and Bishop 2004). Lorenc (2003) proposed an alternative computationally much 
more efficient hybrid algorithm that employs extended control variables, and Wang et al. 
(2007) showed that this algorithm is mathematically equivalent to that of Hamill and 
Snyder (2000). The use of hybrid covariances helps alleviate the rank deficiency problem, 
and allows for the utilization of longer-range correlations found in the static covariance. 
The use of a variational framework for simultaneous assimilation of all observations 
enables covariance localization in the model space, instead of the observation space 
required by EnKF algorithms, such as the ensemble square-root algorithm of Whitaker and 
Hamill (2002). Also, equation constraints can be incorporated into a variational framework 
much more easily. 

Potential benefits of hybrid DA over 3DVar and EnKF were first demonstrated using 
the simple models (e.g., Hamill and Snyder 2000; Lorenc 2003; Etherton and Bishop 2004; 
Wang et al. 2007), then applied to global (Buehner et al. 2010b, 2010a; Clayton et al. 2013) 
and mesoscale NWP models (e.g., Li et al. 2012; Zhang et al. 2013; Pan et al. 2014). For 
the convective scales, hybrid DA applications have been more limited; existing studies 
have only tested the method with simulated observations, assuming no model error (Gao 
et al. 2013; Gao and Stensrud 2014; Gao et al. 2016; Kong et al. 2018). To apply the hybrid 
method to radar DA problem, the radar radial velocity and reflectivity data will need to be 
properly assimilated variationally.  

The direct assimilation of reflectivity in a variational framework, however, faces 
specific difficulties when using the hydrometeor mixing ratios as the control variable 
(CVq); this is due to the nonlinearity of the reflectivity observation operator, as first 
reported by Sun and Crook (1997). Specifically, when background rainwater (or snow or 
graupel or hail) mixing ratio is very small, the gradient of the cost function can become 
extremely large, making the total cost function minimization difficult to converge. 
Furthermore, when radial velocity and reflectivity data are assimilated together using CVq, 
the gradient of the part of cost function related to reflectivity observations is much (orders 
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of magnitude) larger than that corresponding to radial velocity, making the minimization 
difficult to converge, and the assimilation of radial velocity data ineffective (Wang and 
Wang 2016; Liu et al. 2020). Alternatively, indirect assimilation of retrieved rainwater 
mixing ratio was proposed in Wang et al. (2013) to overcome some of the difficulties, but 
their study assumed warm-rain processes only, i.e., the reflectivity is only a function of 
rainwater mixing ratio. Ideally, reflectivity is assimilated directly, and the partitioning 
among the hydrometeors contributing to the observed reflectivity is left for the DA system 
to determine. To avoid the same problem, Wang and Wang (2016) proposed to use 
reflectivity as the control variable instead (referred to as CVZ here). With this approach, 
tangent linear or adjoint of the reflectivity observation operator is not needed, so that the 
extremely large values of the tangent linear and adjoint of the observation operator for 
small mixing ratios can be avoided. However, with the CVZ approach, static background 
error covariance cannot be easily incorporated into the variational cost function to form a 
hybrid EnVar system in the traditional sense. This is because that in such a hybrid system, 
the static background error covariance is unlikely accurate for the highly spatially and 
temporally varying hydrometeor and reflectivity variables, and as in 3DVar, analysis 
increments in hydrometeor variables rely almost exclusively on the relationships between 
hydrometeors and reflectivity as given by the reflectivity observation operator. The adjoint 
of the operator defines the sensitivity of the hydrometeors to reflectivity, which is used to 
variationally adjust the hydrometeor state variables given reflectivity observation 
innovations. Therefore, to effectively include the effect of static background error 
covariance in a hybrid system, tangent linear and adjoint of the reflectivity observation 
operator are still needed. 

In Carley (2012), the logarithms of the hydrometeor mixing ratios are used as the 
control variables (named CVlogq hereafter) for radar data assimilation instead of CVq; the 
use of CVlogq is found to substantially reduce linear approximation errors of the 
reflectivity observation operator (which is also noted in Wang et al. (2011)) compared to 
CVq. More recently, Liu et al. (2020) report based on observing system simulation 
experiments (OSSEs) with 3DVar that CVlogq can avoid the convergence difficulties 
encountered with CVq, but it can also cause improper spreading of analysis increments 
when the increment of logarithmic mixing ratios is converted back to mixing ratios. A 
number of technical treatments were proposed in their study to alleviate the problems, 
resulting in better analyses and forecasts of a supercell storm. However, the relative 
performances of CVlogq and CVq for real cases or in an EnVar framework have yet to be 
examined. As to the special treatments, the following are used. When using CVq, a lower 
limit is added to the hydrometeor mixing ratios (qLim) or to equivalent reflectivity (ZeLim) 
in the reflectivity observation operator to confine the gradient of reflectivity DA. A double-
pass procedure is used that assimilates reflectivity and radial velocity in two separate passes. 
When using CVlogq, a smoothing function and a lower limit are applied to the background 
hydrometeor mixing ratios when converting the analysis increment from the logq space 
back to the q space to help suppress improper spreading of the analysis increments. More 
details can be found in Liu et al. (2020). 

In Kong et al. (2018), hybrid ensemble-3DVar (En3DVar) was systematically 
compared with EnKF, 3DVar, pure En3DVar (with 100% ensemble covariance) in the 
OSSEs for a simulated supercell storm under perfect model assumption. Radar radial 
velocity and reflectivity data were assimilated. To facilitate direct comparison between 
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EnKF and pure En3DVar, a ‘deterministic forecast’ EnKF algorithm, called DfEnKF, was 
introduced, in which the ensemble mean forecast within regular EnKF was replaced by a 
deterministic forecast starting from the ensemble mean analysis making the algorithm more 
analogous to pure En3DVar. When all algorithms were independently tuned optimally, 
hybrid En3DVar did not outperform DfEnKF or pure En3DVar, though their analyses were 
all better than 3DVar analyses. Therefore, when ensemble error covariance was a good 
estimation of the true error distribution, the benefit of static background error covariance 
used in the hybrid En3DVar was not obvious in the perfect-model OSSEs. Furthermore, 
CVlogq or other new treatments developed in Liu et al. (2020) were not used in the OSSEs 
of Kong et al. (2018). Experiments with real data where model errors are inevitable, and 
using improved treatments are obviously needed. 

In this paper, the hybrid En3DVar algorithm documented in Kong et al. (2018) 
including additional treatments from  Liu et al. (2020) is applied to a real tornadic storm 
case, and its performance relative to 3DVar, EnKF and pure En3DVar are further examined. 
The performances of CVq and CVlogq are also compared. We aim to address the following 
questions for a real case: 1) Does hybrid En3DVar outperform 3DVar and EnKF? 2) Does 
static B have positive contribution to the final analysis and forecasts in the hybrid DA 
experiments? 3) How different or similar are EnKF and pure En3DVar that uses the same 
100% ensemble covariance? 4) How much improvement does the use of CVlogq provide 
relative to CVq? 

The rest of the paper is organized as follows. In section 2, the DA schemes (EnKF, 
DfEnKF, and hybrid En3DVar) and the observation operators are described. In section 3, 
the real storm case, the prediction model used, the design of data assimilation experiments, 
and the radar observations to be assimilated are introduced. In section 4, CVq and CVloq 
are compared in hybrid En3DVar with different hybrid weights. In addition, EnKF, 
DfEnKF, and pure En3DVar that use 100% ensemble covariance are compared for the 
assimilation of reflectivity observations. Sensitivity experiments are conducted to obtain 
the optimal covariance weights for hybrid En3DVar, using CVq or CVlogq. Finally, hybrid 
En3DVar with optimal covariance weights, 3DVar, EnKF, DfEnKF are compared based 
on both objective verifications and subjective evaluations of physical fields. A summary 
and conclusions are provided in section 5. 

2. Data assimilation algorithms and radar observation operators 

a. The EnKF algorithm 
The ensemble square root filter (EnSRF) algorithm of Whitaker and Hamill (2002), a 

variant of EnKF, is used, in which the ensemble mean and ensemble perturbations are 
updated separately:  

 , (1) 

 x𝒌𝒂
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ensemble size N.  is the observation vector.  is the observation operator which can be 
nonlinear. Here, 

 , (3) 

 𝐊& = ,1 + / 𝐑
𝐇𝐏(𝐛𝐇𝐓)𝐑

0𝐊. (4) 
 𝐊 (𝐊& ) is the (“reduced”) Kalman gain,  is the tangent linear observation operator. 
Ensemble covariance  is estimated from  and used in the Kalman gain.  is the 
observational error covariance. A Gaspari and Cohn (1999) localization function is used to 
localize the ensemble covariance;   is the Schur product with the correlation matrix 

. A more detailed description on the EnSRF algorithm as implemented in the Advanced 
Regional Prediction System (ARPS) framework can be found in Xue et al. (2006) and Kong 
et al. (2018).   

b. The DfEnKF algorithm 
In the standard EnKF, as in Eq. (1) of EnSRF, the ensemble mean analysis  is based 

on the ensemble mean forecast  and its observational counterpart . However, in 
En3DVar, a single, deterministic forecast is run from the En3DVar analysis of the previous 
cycle, and this forecast is updated by the En3DVar algorithm. To facilitate more direct 
comparison between EnKF and En3DVar, an alternative implementation of EnKF, called 
DfEnKF, first introduced by Kong et al. (2018), is also tested here. In DfEnKF, a single 
deterministic forecast , serving as the background , that starts from a previous 

analysis , is updated using the ensemble mean update equation given in (1). To better 
describe the algorithm, Eq. (6) in Kong et al. (2018) is reproduced here: 

 , (5) 

where  is the DfEnKF analysis,  is from the deterministic forecast  at the 
beginning of the analysis cycle, and is the same Kalman gain as in  
Eq. (1).  This ‘deterministic’ analysis in Eq. (5) is run at the same time as the ensemble 
mean analysis in Eq. (1), just like the En3DVar analysis is run alongside the EnKF. When 
100% ensemble covariance derived from the ensemble perturbations from the EnKF 
system is used in En3DVar, its solution should be theoretically the same as the solution of 
Eq. (5), under idealized conditions. More discussions on this algorithm can be found in 
(Kong et al. 2018). 

c. The 3DVar and En3DVar algorithms 
The hybrid En3DVar algorithm follows Lorenc (2003), in which the flow-dependent 

ensemble covariance is introduced into a 3DVar framework via a set of extended control 
variables (Liu and Xue 2016). Within hybrid En3DVar, the background error covariance 
is effectively a weighted average of the static and flow-dependent ensemble covariances, 
and the weights vary between 0 and 1; when the weight of static error covariance is 1 (0), 
the scheme becomes pure 3DVar (pure En3DVar). Detailed equations of the En3DVar 
algorithm as well as information on the radar radial velocity and reflectivity observation 
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operators can be found in (Kong et al. 2018). To produce physically consistent hydrometeor 
analyses, temperature-dependent vertical profiles are specified for the static background 
errors of hydrometeor variables in 3DVar and hybrid En3DVar based on Liu et al. (2019). 
Because of the lack of cross-covariance in the static background error covariance, the 
3DVar is by itself univariate although additional equation constraint in the cost function 
can couple state variables together. Spatial covariance is realized through spatial recursive 
filter (Gao et al. 2004). 

3. Case overview, prediction model, and DA experiment design 

a. Case overview 
On 10 May 2010, a total of 56 tornadoes favored by an intense dry line occurred in the 

state of Oklahoma, including two intensity level 4 on the enhanced Fujita scale (EF4, 
WSEC 2006) and four intensity level 3 on the enhanced Fujita scale (EF3) tornados that 
produced significant damage over many areas. Three people were killed and over 450 
people were injured in the state of Oklahoma during the tornado outbreak. This was the 
second largest tornado outbreak documented in Oklahoma (with the largest one occurring 
on May 3, 1999). From 1700 to 1941 CDT, a total of 42 different tornadoes occurred. The 
tornadic storms moved at speeds of 50 to 60 miles per hour, with the tornado damage paths 
spreading over a north-south area of over 200 miles; softball size (about 3.5 inches in 
diameter) hail was also reported at several locations. 

According to the National Weather Services, there were 13 different storms producing 
tornadoes on that day. They are denoted storms A through O (see 
https://www.weather.gov/oun/events-20100510). Among these storms, storm J was the 
most productive, spawning 20 out of 55 tornadoes, including one EF4 (J1) and one EF3 
(J4) tornado, causing one fatality and several injuries. Considering that tornado J4 (referred 
to as the Seminole storm hereafter since most of the damage path is located in Seminole 
county, Fig. 1) has the largest damage width, the convective system that spawned tornado 
J4 is selected as the focus system of this study.  

b. Prediction model 
The ARPS model is used during the DA cycles and the free forecasts after DA. To 

capture all long track storms traversing Oklahoma that day, the model domain is set to 
cover most Oklahoma except for its northwest panhandle area (the narrow westward 
extension of the State of Oklahoma that looks like a handle of a frying pan), centering at 
35.7oN and 97.5oW (Fig. 1). The domain size is 363	×	363 ×	53, with a 1 km grid spacing 
in the horizontal and 0.4 km on average in the vertical with vertical grid stretching. The 
minimum vertical grid spacing near the surface is 20 m. Full model physics  are used, 
including the 1.5-order turbulent kinetic energy (TKE)-based subgrid-scale turbulence 
parameterization (Sun and Chang 1986), a two-layer soil model (Noilhan and Planton 
1989), and the  Lin et al. (1983) single-moment ice microphysics. More details on the 
physics options can be found in Xue et al. (2001). Forth-order monotonic computational 
mixing is used to help suppress grid-scale noise. The values of intercept parameters for 
rain, snow, and hail used are 8×106 m-4, 3×106 m-4, and 4×104 m-4, respectively, in both the 
microphysics scheme and the reflectivity operator. 
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c. Design of assimilation experiments 
The initial ensembles with a 1-km grid spacing are interpolated from a set of parent 

(40-member) ensemble analyses at 1900 UTC 10 May 2010 that are initialized at 1500 
UTC and assimilate surface, upper-air, profiler, and radar observations with a 4-km grid 
spacing using the ARPS EnKF (Jung et al. 2012b; Jung et al. 2013). Similarly, the external 
boundary conditions (also with a 4-km grid spacing) are interpolated from the hourly parent 
ensemble forecasts initialized from the parent ensemble analyses at 1500 UTC using the 
ARPS model (Xue et al. 2000; Xue et al. 2001). Since the ensemble is initialized from 
coarser-resolution analyses, 30-minute spin-up ensemble forecasts are first run from 2100 
UTC on the 1-km experiment grid. Radar radial velocity and reflectivity data from radar 
sites in Oklahoma (KTLX, KINX, KVNX, KFDR) are then assimilated every 5 minutes 
from 2130 UTC to 2230 UTC using 3DVar, EnKF/DfEnKF, and En3DVar with and 
without static covariance (corresponding to hybrid and pure En3DVar, respectively) DA 
methods (Fig. 2). Multiplicative inflation with an inflation factor of 20% is applied to 
regions where observed reflectivity is higher than 5 dBZ. In addition, adaptive inflation 
that inflates the posterior ensemble spread in proportion to the amount of ensemble spread 
reduced in DA (Whitaker and Hamill 2012) is applied. The inflation coefficient used is 
0.95. Covariance localization radii for radar observations are set to 6 km and 4 km in 
horizontal and vertical directions, respectively, using a fifth-order correlation function of 
Gaspari and Cohn (1999). Similar radii are used in Snyder and Zhang (2003) and Aksoy et 
al. (2009)  For pure and hybrid En3DVar, the recursive filter decorrelation length scales 
for the localization of ensemble covariance are 1.6 km in the horizontal and 1.1 km in the 
vertical respectively, which are equivalent to the 6 km and 4 km cutoff radii for EnKF 
based on Eq. (4) in Pan et al. (2014). For 3DVar, the decorrelation scales for the static 
background error covariance used are 4.1 km and 1.4 km in horizontal and vertical 
directions, respectively, following those used in (Kong et al. 2018).  

Radar data assimilated are radial velocity where observed reflectivity exceeds 10 dBZ, 
and reflectivity data everywhere (including ‘clear-air’ reflectivity, e.g., reflectivity <5 dBZ) 
from four WSR-88D radars (Oklahoma City, Tulsa, Vance Air Force Base, and Frederick 
or KTLX, KINX, KVNX, KFDR). The observation errors for reflectivity and radial 
velocity are 5 dBZ and 3 m s-1, typical of expected errors with real radar observations that 
also include representation errors.  

Five experiments are performed to evaluate the performance of different DA algorithms, 
i.e., hybrid En3DVar, pure En3DVar, 3DVar, EnKF, and DfEnKF. As defined in Kong et 
al. (2018), DfEnKF is updated in the same manner as the ensemble mean background in 
EnKF and, therefore, is  algorithm-wise parallel to  pure En3DVar. At the end of DA cycles 
at 2230 UTC, a single deterministic forecast is launched from the ensemble mean or 
deterministic analysis of each algorithm. The configurations of these experiments are 
summarized in Table 1. 

In EnKF and En3DVar DA, we choose not to update the horizontal velocity fields (u, 
v) using assimilating reflectivity data because the relatively small physical correlations 
among their background forecast errors can be dominated by noise/errors, leading to large 
errors in analyzed winds if updated (by reflectivity). A weight of 5 %, 25 %, 50 %, and 
75 % are given to the static background error covariance (experiments names are suffixed 
with “%B” in Table 1) in a set of hybrid En3DVar sensitivity experiments, and the results 
are compared to determine the optimal covariance weights. 
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As discussed in Introduction, the gradient of the cost function of reflectivity can be 
much larger than that of radial velocity when hydrometeor mixing ratios are used as the 
control variables and, thus, radial velocity assimilation becomes ineffective (Wang and 
Wang 2016; Liu et al. 2020). We compare two experimental setups: 1) directly using 
hydrometeors as the control variables (CVq), but assimilating reflectivity and radial 
velocity data separately in two passes (corresponding experiments using a single pass are 
also done but the results are clearly worse and therefore not included); 2) using logarithmic 
mixing ratios as the control variables (CVlogq) and assimilating radial velocity and 
reflectivity data together. The performances of CVq with double passes and CVlogq are 
evaluated in the En3DVar framework, using different hybrid covariance weights. The 
results of different DA experiments are compared. More details on the experiments can be 
found in Table 1. 

d. Radar data preprocessing and quality control 
The operational WSR-88D radar data from four radar sites in Oklahoma (KTLX, KINX, 

KVNX, KFDR) are interpolated horizontally to the ARPS model grid column locations but 
are kept on the original radar elevation levels in the vertical. A radar beam-pattern 
weighting function is applied in the vertical in the radial velocity and reflectivity 
observation operators, as described in Xue et al. (2006). Automatic quality control is 
applied to the radar data that includes velocity dealiasing, despeckling, and  removal of 
ground clutters and anomalous propagation artifacts (Brewster et al. 2005).  

4. Results of assimilation experiments  

a. Comparisons between CVq and CVlogq with hybrid En3DVar and different weights 
The root mean square innovation (RMSI, where innovation is the difference of 

observation prior or posterior from observation) is used to quantify model analysis and 
forecast quality and compare the performance of different DA algorithms. In this study, the 
RMSIs are calculated over regions where the observed reflectivity exceeds 15 dBZ. Figure 
3 shows the RMSIs of radial velocity and reflectivity analyses and forecasts from hybrid 
En3DVar with different weights of static covariance B using CVq or CVlogq. For hybrid 
En3DVar with 0% static B, CVq and CVlogq exhibit similar innovations (or loosely 
speaking, errors) in analyzed radial velocity and reflectivity (Figs. 3a, b) but the forecast 
error growth is noticeably faster with CVlogq especially for radial velocity, suggesting 
more balanced analyses among the state variables using CVq (Figs. 3a, b) in this case with  
0% B. We note here, as was done in Pan et al. (2014), that for an En3DVar system coupled 
with an EnKF system that provides the ensemble covariance, the EnKF system should in 
principle also use two separate passes if two passes are used by En3DVar (with CVq), 
assimilating the same set of observations in each pass. This is not done here, because doing 
so will significantly increase the computational cost, and it is our goal to show that using 
CVlogq can produce quality analyses without resorting to the two-pass procedure.  The 
fact that for the second pass of En3DVar (with CVq) that assimilates Vr observations, the 
ensemble perturbations are not updated as they should be after Z observations are 
assimilated would tend to allow Vr data to have larger impacts on the state variables that 
are updated by them (due to the lack of reduction in the ensemble spread by Z earlier); this 
may explain why CVq which uses two passes, appears to be more effective in producing 
more balanced analyses and more accurate forecasts.  
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Introducing non-zero B into En3DVar significantly improves the fit of analyzed Vr to 
observations in all experiment as evidenced by the smaller RMSIs of analysis in Figs. 3c, 
3e, 3g, 3i, and 3k; the analysis RMSIs for Vr are smallest for CVlogq with 50% B (Fig. 
3g). During the analysis cycles, the Vr forecast errors increase when more weights are 
given to B for both CVlogq and CVq, while the improvement to Z RMSIs due to non-zero 
B is mostly limited to Z forecasts for CVlogq (e.g., Figs. 3f - 3l). During the free forecast 
period,  the largest improvement is seen in the CVlogq experiments, where the Vr RMSIs 
become similar to those of CVq cases, and the Vr forecast RMSIs are slightly lower with 
non-zero B after the first 10 minutes of forecast (left column of Fig. 3), and those of CVlogq 
are slightly larger after 40 minutes of forecast. For Z forecast RMSIs, those of CVlogq 
become more noticeably lower than those of CVq after the first 20 minutes of free forecast 
for 25% or more weight of B (e.g., Fig. 3f).   

Since CVq requires that reflectivity and radial velocity data are assimilated separately 
in two separate passes to achieve similar performance as CVlogq, it is computationally 
more expensive. Also, since the static or ensemble background error covariance is not 
updated across the passes, the use of multiple passes is theoretically problematic. If the 
EnKF has to be split into two passes, the increase in computational cost will be much more, 
making the approach unsuitable for operational use. For these reasons, and the fact that the 
Z forecast RMSIs are somewhat lower in later forecasts, CVlogq will be used in the 
En3DVar experiments in the rest of this paper. 

b. Comparisons between EnKF, DfEnKF, and pure En3DVar for reflectivity DA 
EnKF, DfEnKF, and pure En3DVar (PEn3DVar) all use 100% ensemble covariances. 

In theory, they should produce similar results, at least under idealized conditions including 
linearity and the absence of sampling error. In practice, their performances can be different, 
especially when the observation operator (such as that of Z) is highly nonlinear as shown 
by Kong et al. (2018) in perfect model OSSEs. In this section, we compare the performance 
of these three algorithms for a real case, assimilating reflectivity observations only 
(because the algorithms tend to differ more when assimilating reflectivity whose 
observation operator is nonlinear). As discussed earlier and in Kong et al. (2018), DfEnKF, 
being a deterministic algorithm, is more analogous to PEn3DVar.  

The RMSIs of the analyzed Z from experiments EnKF, DfEnKF and PEn3DVar (Table 
1 for CVlogq experiments) are plotted every 15 min in Fig. 4, together with those of CTRL 
for reference. Compared to CTRL, all three DA experiments significantly reduce the 
RMSIs of Z analyses. EnKF and DfEnKF perform very similarly and both have a few 
percent higher RMSIs than PEn3DVar (Fig. 4). 

To see why PEn3DVar has smaller RMSIs than EnKF (or DfEnKF), the analyzed Z at 
8 km (where differences are most obvious) above ground level (AGL) for the first four 
analysis cycles are depicted in Fig. 5. The overall structures of analyzed Z in EnKF and 
DfEnKF are similar and both underestimate the intensity of Z compared to PEn3DVar and 
the observations in the earlier cycles. After the third cycle, the analyzed Z of EnKF, 
DfEnKF, and PEn3DVar become similar. As discussed in Kong et al. (2018), the serial 
(where observations are assimilated one by one in EnKF and DfEnKF) versus global 
(where all observations are assimilated simultaneously in PEn3DVar) nature and the direct 
updating of state variables using the filter equations (in EnKF and DfEnKF) versus 
variational minimization to find the analysis increments (in PEn3DVar) can cause 
differences in the analysis results. With the EnKF algorithm that is serial, when significant 
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under dispersion occurs during the DA processes, observations assimilated later in the 
serial data processing (within the same cycle) may have too small impact, and the global 
En3DVar algorithm may have advantage. However, the RMSI differences between 
EnKF/DfEnKF and PEn3Dvar for this case are probably not statistically significant.  

c. Optimal covariance weights for hybrid En3DVar 
To determine a relative ‘optimal’ weight for hybrid En3DVar, four sets of experiments 

are selected from section 4a, which are experiments with 5%, 25%, 50%, and 75% static 
background error covariance B with CVlogq. The corresponding experiments are named 
as HEn3DVar5%B, HEn3DVar25%B, HEn3DVar50%B, and HEn3DVar75%B, 
respectively (Table 1). Their results are also compared with PEn3DVar and 3DVar that are 
effectively hybrid algorithms using 0% and 100% static B, respectively. 

The Z analyses after 1-h DA are very close, as evidenced by similar RMSIs at 2230 
UTC (Figs. 3d, 3f, 3h, 3j, 3l). When comparing the Z fields at 1 km AGL after 45 minutes 
of forecast, the Z forecasts from hybrid En3DVar with weights of B higher than 25% are 
similar to or better than those of lower weights in capturing the Z intensity and structure of 
the main supercell compared to the observations (Fig. 6). Storms in HEn3DVar5%B (Fig. 
6b), especially the main tornadic supercell storm with a clear hook echo (Fig. 6a), are less 
organized than those in experiments with 25 to 75% B. The subjective evaluations based 
on the structures of Z forecasts are consistent with the RMSIs of Z forecasts shown in Fig. 
3; the RMSIs for hybrid CVlogq experiments are lower in later forecasts for B weights 
larger than 25%. Combined with the fact that the Vr analysis RMSIs are lowest with 50% 
B (Fig. 3g), equal weights for the static and ensemble covariances appear to be optimal. 
This is in contrast to the results of perfect model OSSEs of Kong et al. (2018), where the 
benefit of including static background error covariance B is not obvious. We believe that 
when the prediction model is perfect, the state estimation and ensemble covariances can be 
rather accurate, as found in Tong and Xue (2005), the inclusion of a static B is not necessary. 
In our current real case, model error is inevitable, and significant errors tend to exist in 
both analyses and forecasts, the benefit of including static B is more obvious, and the 
optimal weight assigned to the static B is actually quite large at 50%. As shown in Fig. 6, 
the storms west of the major line of storms that have developed during the forecast period 
along a dry line are mostly missed in all experiments. To improve the forecast of these 
storms, observations that can help improve the pre-storm environment near the dryline are 
likely needed (Xue and Martin 2006; Liu and Xue 2008). 

As described earlier in the case overview, the May 10, 2010 case is one with multiple 
tornadoes. During the current forecast period, the observed supercell storm over 
Pottawatomie and Seminole counties produced an EF3 tornado (J4 in Fig. 1). To see how 
well the predicted storm over that region is capturing supercell storm characteristics, in 
particular a rotating updraft, among the hybrid En3DVar DA experiments, we plot the 
accumulated swaths of the 2 – 5 km integrated updraft helicity (UH, Kain et al. 2008) that 
are greater than 200 m2 s-2 during the 0 – 1.5 h forecast period, along with the observed J4 
tornado damage path (Fig. 7). The swath of predicted UH in convection-allowing models 
has been shown to be a good predictor of tornado potential and is often used to evaluate 
prediction of tornadic supercell storms (e.g., Clark et al. 2013; Snook et al. 2019; Stratman 
et al. 2020).  

As shown in Fig. 7, the strongest forecast UH swath is off to the southeast of the 
observed tornado track with 5 % B (Figs. 7a), and the swaths are also much weaker than in 
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other experiments (Fig. 7). When the weight of static B is equal to or greater than 25 %, 
the swath of the most intense UH is collocated with the observed tornado damage path. 
Among these experiments, HEn3DVar50%B and HEn3DVar75%B have stronger and 
more focused (narrower) UH swaths that cover the observed tornado damage path (Figs. 
7c and 7d).  Combined with earlier discussions, we choose again 50 % as the optimal 
weight for static B for the hybrid En3DVar. 

d. Comparisons of EnKF, DfEnKF, 3DVar, and hybrid En3DVar with optimal weights 
With the optimal weight of B at 50% in HEn3DVar50%B, the RMSIs of Vr and Z 

analyses and forecasts are compared with those of CTRL, EnKF, DfEnKF and 3DVar in 
Fig. 8. Compared to CTRL, all DA experiments are able to reduce the RMSIs. The velocity 
forecasts of EnKF during the DA cycles have much smaller RMSIs than other DA 
experiments (including DfEnKF, Fig. 8a). Much of this difference is actually because of 
the effects of ensemble averaging to arrive at the ensemble forecasts used to calculate the 
Vr RMSIs.  The wind fields in the deterministic forecasts used to calculate RMSI in all 
other experiments tend to contain a lot finer scale structures that are difficult to match up 
with those in the Vr observations while the ensemble averaging smooths out many of the 
smallest-scale structures. During the free forecast, EnKF initially benefits from the reduced 
level of analysis RMSI, but later its RMSIs become close to those of other DA experiments. 
All free forecasts are single deterministic forecasts. The Vr RMSIs for HEn3DVar50%B, 
3DVar, and DfEnKF have similar levels for both velocity analyses and forecasts, with those 
of DfEnKF forecasts being slightly larger up to 20 min into the free forecast. 

For Z, the RMSIs for both analyses and forecast within the DA cycles, are, however, a 
lot closer between EnKF and DfEnKF (Fig. 8b), presumably because the Z fields contain 
less fine-scale structures than the wind fields so that ensemble mean for DfEnKF does not 
have as much impact. During the free forecast period, the DfEnKF Z RMSIs are initially 
larger but become smaller after 15 min compared to those of EnKF. For reflectivity, the 
RMSIs for 3DVar and HEn3DVar50%B are very similar within the DA cycles and 
throughout the free forecast period (Fig. 8b), and are consistently lower than those of EnKF 
and DfEnKF, suggesting that the variational algorithms, 3DVar and hybrid En3DVar, 
outperform the EnKF algorithms, in terms of Z. As discussed earlier, and in Kong et al. 
(2018), the nonlinearity in the reflectivity operator tends to make a difference between the 
global variational algorithms and the serial EnKF algorithms. It is somewhat surprising, 
however, that 3DVar performs almost as well as the hybrid En3DVar algorithm with 
optimal hybrid weights, given that 3DVar does not contain any cross-variable covariance. 
The results are generally consistent with the results in Fig. 3, where the CVlogq hybrid 
En3DVar results are similar once the weight of static B is 25% or higher. It appears that 
for this real case, the quality of ensemble-derived covariance is not that good so that the 
analyses can benefit from a significant fraction of static B even though it lacks cross-
covariances. During the short, rapid assimilation cycles, state variables not directly updated 
by 3DVar much have been adjusting quickly to variables better constrained by the Vr and 
Z observations.  

Figure 9 compares 45-min forecast Z from different experiments, at the time when the 
Seminole tornadic storm was most intense in terms of Z during the free forecasts. 
HEn3DVar50%B and 3DVar are able to forecast an intense supercell storm near the 
location of observed Seminole storm. The forecast storm in pure En3DVar (PEn3DVar) 
does not have a clearly defined hook echo (Fig. 9e) while EnKF significantly 
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underestimates Z intensity and coverage of the supercell storm. DfEnKF predicts the storm 
coverage better than EnKF and PEn3DVar but still underestimates the intensity. The hook 
echo signature of the tornadic supercell storm is better captured in 3DVar and 
HEn3DVar50%B, with that in the latter being better defined. 

Figure 10 compares the 2 – 5 km UH (greater than 200 m2 s-2) swaths of 0 –1.5 h free 
forecasts (after DA) for each experiment against the J4 tornado damage path. The intensity 
of UH forecasts from EnKF and PEn3DVar are much weaker than other DA experiments 
(Figs. 10a, d). DfEnKF is able to produce a long and intense UH swath but places too far 
north (Fig. 10b). On the other hand, the locations of the UH swath from 3DVar and 
HEn3DVar50%B compare well with the tornado damage path. However, the intensity of 
storm rotations near the end of the damage path (forecasts) weakens too early in 3DVar, 
while high UH (>1400 m2 s-2) values are maintained throughout the entire J4 tornado period 
in HEn3DVar forecasts (Fig. 10e).  

To better compare the forecast wind structure among the DA experiments, we plot in 
Fig. 11 the 1-h forecast Vr at the lowest elevation angle from different experiments, we see 
that HEn3DVar50% better captures the velocity couplet associated with the mesocyclone 
within the supercell than other experiments (Fig. 11).  The results are consistent with the 
higher intensity of the 1-h UH forecasts (pointed by black arrows in Figs. 10c, e) from 
hybrid En3DVar than that from 3DVar as well as the others. 

To understand the reasons for the performance difference in the forecasts, surface 
perturbation potential temperature fields from DfEnKF, 3DVar and HEn3DVar50%B are 
compared (Fig. 12). The fields from different experiments after 1-h DA are similar (Fig. 
12 a-c). However, the forecast cold pool (especially at 60 min of forecast) from 3DVar is 
colder than the other two cases (Fig. 12 d - i). As shown in Fig. 11, HEn3DVar50% better 
captures the velocity couplet associated with the mesocyclone within the supercell than 
3DVar, which is believed to be related to the weaker cold pool of HEn3DVar50%B relative 
to that of 3DVar. Tornadogenesis is more likely in supercells that have intermediate 
intensity cold pools rather than too strong or too weak cold pools (Markowski et al. 2002; 
Grzych et al. 2007; Hirth et al. 2008; Markowski and Richardson 2014).  

A convective cold pool is usually related to melting of ice particles and evaporation of 
rain water at the lower levels. The vertical cross-sections of the mixing ratios of rainwater 
and hail through the maximum vertical velocities of DfEnKF, 3DVar, and 
HEn3DVar50%B are compared in Fig. 13. The mixing ratios of the hail and rainwater at 
the lower levels from 3DVar is much larger than those of the others in the forecasts after 
DA (Fig. 13), indicative of the potential for more hail melting and rainwater evaporation 
and thus more intense cold pool in the forecasts of 3DVar.  

The vertical cross-sections of the vertical velocity fields from DfEnKF, 3DVar, and 
HEn3DVar50%B are compared in Fig. 14. The updraft from 3DVar is weaker than that of 
HEn3DVar50%B, likely leading to more rainwater and hail falling to the low levels and 
thus more intense cold pool. Overall, the reason that HEn3DVar50%B has better 
performance than 3DVar is likely because that En3DVar produces analyzed state variables 
that are more physically consistent with each other and so that the analyzed storm can be 
sustained in the forecast and hydrometeors do not fall to ground too quickly. The analyzed 
hydrometeor mixing ratios from DfEnKF are the smallest (Fig. 14a), which appears to 
explain why the weakest updraft in DfEnKF does not lead to a strong cold pool in the 
forecasts (Fig. 12a). 
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5. Summary and conclusions  
In this study, radar data from 4 operational WSR-88D radars are assimilated using 

hybrid En3DVar, 3DVar, EnKF, and pure En3DVar schemes and their relative 
performance is compared for the 10 May 2010 Oklahoma severe storms including a 
tornadic supercell. Radar radial velocity and reflectivity data are assimilated every 5 
minutes for 1 hour followed by 1-hour ensemble and deterministic forecasts. To alleviate 
the unique difficulties assimilating radar reflectivity and radial velocity together in the 
variational framework, two alternative approaches are taken here: 1) use hydrometeor 
mixing ratios as the control variables (CVq), but assimilate reflectivity and radial velocity 
data in two separate analysis passes and 2) use logarithmic hydrometeor mixing ratios as 
the control variables (CVlogq) and assimilate reflectivity and radial velocity 
simultaneously. CVq and CVlogq are compared in the pure En3DVar and hybrid En3DVar 
frameworks. In addition, EnKF is compared with pure En3DVar that uses 100% ensemble 
covariance. To facilitate direct comparison between EnKF and pure En3DVar, results using 
a deterministic forecast EnKF (denoted DfEnKF) introduced in Kong et al. (2018) is also 
included here. Finally, Hybrid En3DVar with 5 %, 25 %, 50 %, and 75 % weight of static 
background error covariance B is compared with 3DVar, EnKF, DfEnKF, and pure 
En3DVar in terms of RMSIs and subjective assessment of storm features. The experiment 
results and related conclusions are summarized as follows: 

• Pure En3DVar with CVlogq and CVq have similar RMSIs in radial velocity 
analyses but the error growth rate is much larger in CVlogq than in CVq, suggesting 
CVq analysis is more balanced than that of CVlogq. However, the large error 
growth in CVlogq is significantly reduced by introducing a small percentage (e.g., 
5%) of static B in hybrid En3DVar. Since CVq requires reflectivity and radial 
velocity data being assimilated separately in two passes to achieve similar 
performance to CVlogq, En3DVar with CVlogq is preferred over the use of the 
CVq approach, although pure En3DVar with CVlogq produces somewhat larger 
RMSIs of radial velocity than CVq.  

• EnKF and DfEnKF perform similarly and both underestimate the intensity of the 
reflectivity analyses compared to pure En3DVar analyses, especially in the earlier 
cycles.  

• Hybrid En3DVar with four different weights (5 %, 25 %, 50 %, 75 %) of static B 
are compared in terms of the RMSIs as well as forecasts of storm updraft helicity 
(UH) to determine an optimal choice of weight among them. They are also 
compared with pure En3DVar and 3DVar that effectively have 0% and 100% 
weight of B. Hybrid En3DVar with 50% of B is found to perform better than other 
weights; it better captures the hook echo structure of the major tornadic supercell 
storm in the 45 min forecast of reflectivity, as well as in 0 – 1 h forecasts of UH.  

• Hybrid En3DVar with 50% B is compared with 3DVar, EnKF, DfEnKF, and pure 
En3DVar in terms of RMSIs and analyses/forecasts of storm intensity/structures. 
3DVar and hybrid En3DVar outperform EnKF and DfEnKF in terms of the 
intensity and structure of storm analyses and forecasts. The intensity and evolution 
of UH forecasts are better depicted in hybrid En3DVar relative to 3DVar. The 
RMSIs of radial velocity forecasts during the DA cycles from EnKF is much 
smaller than those of DfEnKF and En3DVar in which a single deterministic 
forecast instead of the ensemble mean forecast is used as the forecast background 
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for the analysis. Such a difference suggests that the averaging of wind forecasts 
(wind fields tend to have more special scale structures) over ensemble members 
help decrease errors in the ensemble mean velocity forecasts (which are used to 
calculate the RMSIs).  

• The better forecast resulting from hybrid En3DVar appears to be due to its more 
physically consistent state variables analyzed that can better sustain the storms in 
the forecast. 

Finally, we note that the conclusions obtained here are based on a single real data case. 
As first paper to perform such detailed comparisons for real storms, we believe such a study 
is necessary and allows for more detailed examination of the assimilation and forecast 
results. More storm cases are obviously needed to further examine the relative performance 
of hybrid En3DVar, pure 3DVar, and EnKF, to further optimize the algorithms, and to 
draw more reliable and general conclusions. This is planned for future studies.   
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Table 1 Descriptions of the assimilating experiments. Suffix “_CVq” indicates using 
mixing ratios 𝑞!	(x = r, s, h are mixing ratios of rain, snow and hail) as the control 
variables, while “CVlogq” indicates using 𝑙𝑜𝑔"#

$# as the control variables.     
Experiment name. Use of background error covariance Analysis updating 
CTRL (no DA) N.A. N.A. 

EnKF 100% ensemble covariance Updates ensemble mean 
background forecast and 
ensemble perturbations 
using EnSRF algorithm. 

DfEnKF 100% ensemble covariance Updates a single 
deterministic background 
forecast using EnSRF 
ensemble mean updating 
algorithm. 

HEn3DVar0%B_CVq/CVlogq 
 (or PEn3DVar_CVq/CVlogq) 

0% static & 100% ensemble covariance Updates a single 
deterministic background 
forecast using En3DVar 
algorithm. 

HEn3DVar5%B_CVq/CVlogq 5% static & 95% ensemble covariance 
HEn3DVar25%B_CVq/CVlogq 25% static & 75% ensemble covariance 
HEn3DVar50%B_CVq/CVlogq 50% static & 50% ensemble covariance 
HEn3DVar75%B_CVq/CVlogq 75% static & 25% ensemble covariance 
HEn3DVar100%B_CVq/CVlogq 
(or 3DVar_CVq/CVlogq) 

100% static & 0% ensemble covariance 
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Fig. 1 The model and DA domain and locations of four S-band WSR-88D radars (KTLX, 
KVNX, KFDR, and KINX as marked by the black dots) whose data are assimilated, 
overlaid with the damage paths of tornadoes (blue and red trajectories) that occurred in 
Oklahoma on May 10, 2010. The red trajectory indicates the damage path of the EF3 storm 
simulated in this study.   
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Fig. 2 The flow diagrams of DA experiments.    
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Fig. 3 Comparisons of the RMSIs of (a, c, e, g, i) radial velocity (m s-1) and (b, d, f, h, j) 
reflectivity (dBZ) analyses and forecasts from hybrid En3DVar with (a, b) 0%, (c, d) 5%, 
(e, f), 25%, (g, h) 50%, (i, j) 75%, and (k, l) 100% weight of static B for CVq and CVlogq, 
respectively. The RMSIs of hybrid En3DVar with 0% B are also overlaid in Figs (c) - (l) 
as references.  
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Fig. 4 Comparisons of the RMSIs of the analyzed reflectivity from CTRL, PEn3DVar, 
EnKF, and DfEnKF.    
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Fig. 5 Reflectivity observations (a - d) and analyses at 8 km AGL from (e – h) EnKF, (i – 
l) DfEnKF, and (m – p) PEn3DVar for the beginning four DA cycles, valid at (a, e, i, m)  
2130 UTC, (b, f, j, n) 2135 UTC, (c, g, k, o) 2140 UTC, and (d, h, l, p) 21:45 UTC, 
respectively.	 
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Fig. 6 (a) reflectivity observations and 45-minute reflectivity forecasts at 1 km AGL from 
hybrid En3DVar with (b) 5%, (c) 25%, (d) 50%, and (e) 75% weight of the static 
background error covariance B, overlaid with observed reflectivity contour that is equal to 
35 dBZ. The Seminole storm is pointed to by an arrow in (a). 
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Fig. 7 Swaths of 0 - 1.5 h forecasts of 2 - 5 km updraft helicity (UH) greater than 200 m2 

s-2 (shaded contours) from hybrid En3DVar with (a) 5% , (b) 25% , (c) 50%, and (d) 75% 
weight of the static B, overlaid with the Seminole tornado (J4) damage path (blue contour). 
The plotted UH swaths are composited from model output of UH at 5 min intervals.  
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Fig. 8 Comparisons of the RMSIs of (a) radial velocity and (b) reflectivity analyses and 
forecasts from CNTL, EnKF, DfEnKF, 3DVar, and hybrid En3DVar algorithm with 50% 
static B, as indicated by legends in the figure.  
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Fig. 9 (a) reflectivity observation and 45-min reflectivity forecasts at 1 km AGL from (b) 
EnKF, (c) DfEnKF, (d) 3DVar, (e) pure En3DVar, and (f) hybrid En3DVar with 50% static 
B, overlaid with observed 35 dBZ reflectivity contours. The Seminole storm is pointed to 
by an arrow in (a). 
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Fig. 10 Swaths of 0 - 1.5 h forecasts of 2 - 5 km updraft helicity greater than 200 m2s-2 
(shaded contours) from (a) EnKF, (b) DfEnKF, (c) 3DVar, (d) pure En3DVar, and (e) 
hybrid En3DVar with 50% weight of the static B, overlaid with the EF3 tornado Seminole 
damage path (blue contour). 	
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Fig. 11 (a) radial velocity observation and 1-h radial velocity forecasts at the lowest 
elevation angle of KTLX (0.5o) from (b) EnKF, (c) DfEnKF, (d) 3DVar, (e) pure En3DVar, 
and (f) hybrid En3DVar with 50% weight of static B (or HEn3DVar50%B) with the 
velocity couplet circled in black. 
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Fig. 12 Perturbations of the surface potential temperature (K) for (a, b, c) the analyses after 
60-min DA (valid at 2230 UTC), (d, e, f) 30-min (valid at 2300 UTC), and (g, h, i) 60-min 
forecasts after DA (valid at 2330 UTC) from (a, d, g) DfEnKF, (b, e, h) 3DVar, and (c, f, 
i) HEn3DVar50%B, respectively.  
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Fig. 13 Vertical cross-sections (through the maximum vertical velocities) of the 
hydrometeor mixing ratios of the rainwater (g kg-1, shaded contours) and hail (g kg-1, 
magenta contours, from 1 to 20 with interval of 3 g kg-1) for (a, b, c) the analyses after 60-
min DA (valid at 2230 UTC) and  (d, e, f) the 30-min (valid at 2300 UTC), and (g, h, i) 60-
min forecasts after DA (valid at 2330 UTC) from (a, d, g) DfEnKF, (b, e, h) 3DVar, and 
(c, f, i) HEn3DVar50%B, respectively. 
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Fig. 14 Vertical cross-sections of the vertical velocity field (m s-1, through their maximum 
values) for (a, b, c) the analyses after 60-min DA (valid at 2230 UTC) and (d, e, f) the 30-
min (valid at 2300 UTC), and (g, h, i) 60-min forecasts after DA (valid at 2330 UTC) from 
(a, d, g) DfEnKF, (b, e, h), 3DVar, and (c, f, i) HEn3DVar50%B, respectively.  
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