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ABSTRACT: In this study, we implement the capabilities to assimilate GOES-R Geostationary Lightning Mapper flash
extent density (FED) data within the Joint Effort for Data Assimilation Integration (JEDI) system, coupled with the
Finite-Volume Cubed-Sphere (FV3) dynamical core for forecasting. We evaluate different data assimilation (DA) methods,
including the local ensemble transform Kalman filter (LETKF), gain-form LETKF (LGETKF), and ensemble 3DVAR
(En3DVar), for a test case with active convection over the United States. The convergence behavior of En3DVar is
consistent with expectations. Sensitivity to the vertical localization strategies in the algorithms is examined. LGETKF
applies gain-form vertical localization, which demands more computational resources than LETKF and En3DVar when using
smaller vertical localization radii [e.g., 0.2 or 0.4, compared to larger radii like 1 or 4 in In(p/po) space]. While En3DVar
achieves a better balance between accuracy and efficiency, it demands significantly more memory than LETKF and LGETKF,
with the current JEDI implementation at least. Sensitivity experiments indicate that larger vertical localization radii
[e.g., 4 in In(p/py) space] improve analysis and 6-h forecast after DA when verified against the observed reflectivity
field. Overall, all three DA methods produce comparable results, outperforming the experiment that does not assimilate
any data. This work serves to establish the credibility of the lightning DA implementation within the new JEDI system
and to understand the effects of algorithm differences related to vertical covariance localization on the assimilation of
FED data, whose observation operator involves column integration of a hydrometeor state variable.

SIGNIFICANCE STATEMENT: This work implemented capabilities to assimilate high-frequency lightning mapper
data from the GOES-R geostationary weather satellites, within the next-generation data assimilation system called the
Joint Effort for Data assimilation Integration, which will be used by all operational weather prediction systems of the
U.S. National Weather Service. A lightning flash extent density (FED) observation operator with its tangent linear and
adjoint components was implemented in the Joint Effort for Data Assimilation Integration’s (JEDI’s) Unified Forward
Operator, making FED assimilation available to both ensemble Kalman filter and variational algorithms within JEDI.
The new capability is tested with three data assimilation algorithms: the local ensemble transform Kalman filter
(LETKEF), gain-form LETKF, and ensemble 3DV AR to verify correctness across the algorithms and examine their dif-
ferent vertical localization treatments. Using a convective storm case, we confirm the correctness of the implementation
and demonstrate potential positive impacts of assimilating the lightning data on convective storm forecasts, while noting
that further multicase studies are needed to generalize the findings.
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1. Introduction advancements in observation systems, including weather ra-

. . . . . . dars and satellites, it is possible to capture fine convective-
The accuracy of initial conditions is crucial for improving

the precision of numerical weather prediction (NWP) (Kalnay
2002). A lack of convective-scale information in the initial
conditions leads to the well-known spinup issue in precipita-
tion forecasting (Sun and Crook 1997; Xue et al. 2003; Zhang
et al. 2004; Kain et al. 2008; Bauer et al. 2015). With the

scale details typically associated with precipitation systems
within the NWP initial conditions. Previous studies have con-
sistently demonstrated the value of radar data assimilation
(DA) in improving short-term weather forecasts (Tong and
Xue 2005; Hu et al. 2006a,b; Jung et al. 2008; Aksoy et al.
2009, 2010; Gao and Stensrud 2012; Sun and Wang 2013;
Kong et al. 2018; Liu et al. 2019, 2020; Kong et al. 2021).
Other studies have also demonstrated the importance of high-
resolution satellite data in improving storm-scale NWP (Zhang
et al. 2016a; Honda et al. 2018; Jones et al. 2018; Minamide and
Zhang 2018; Zhang et al. 2018; Sawada et al. 2019; Jones et al.
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The assimilation of observations on lightning flashes of
thunderstorms or lightning data has also shown promise in im-
proving convective storm prediction, given that the data also
contain information about convection. This is particularly
valuable in regions lacking ground-based weather radar cov-
erage, where lightning data can serve as a complementary
observational source. Earlier research has predominantly fo-
cused on indirect assimilation methods, employing data from
various sources, including ground-based lightning observation
networks and pseudo—-Geostationary Satellite Lightning Map-
pers (GLMs) lightning observations prior to the availability of
real-time GLM data. These lightning data have been used in
different ways: either to adjust latent heat or humidity profiles
within the model (Alexander et al. 1999; Chang et al. 2001;
Papadopoulos et al. 2005; Mansell et al. 2007) or to be con-
verted into pseudo-observations of moisture, temperature,
reflectivity, or vertical velocity that are then assimilated
(Fierro et al. 2012, 2014; Marchand and Fuelberg 2014; Fierro
et al. 2015, 2016, 2019; Ge et al. 2019; Hu et al. 2020; Xiao et al.
2021). These studies generally achieved positive impacts of
lightning DA, and sometimes the impacts can be on par with
those of radar data (Fierro et al. 2016). It is worth noting,
however, that most of these methods are indirect assimilation
methods that rely on some form of derived pseudo-observations,
and the analysis approach is generally univariate, with Xiao et al.
(2021) being an exception. Thus, they do not update multiple
model state variables consistently; the latter is expected to fur-
ther increase the positive impacts.

The development of ensemble-based DA methods, includ-
ing the ensemble Kalman filter (EnKF; Evensen 1994) and
ensemble-variational (EnVar) methods (Hamill and Snyder
2000; Lorenc 2003), and their applications to convective-scale
DA with radar data (Snyder and Zhang 2003; Tong and Xue
2005; Kong et al. 2018) have prompted their application to di-
rectly assimilate lightning data. Incorporating flow-dependent
ensemble background error covariance within such systems
has enabled the simultaneous updating of all model state vari-
ables. At the same time, the direct use of observation opera-
tors removes the need for prior retrieval or conversion of
state variables that are often empirical. For instance, Mansell
(2014) and Allen et al. (2016) employed the EnKF method to
assimilate simulated or pseudo-flash extent density (FED)
observations into a cloud model. In our recent research, we
have developed direct assimilation capabilities for real GLM
FED data with the EnKF and EnVar DA algorithms within
the Gridpoint Statistical Interpolation analysis system (GSI;
Kleist et al. 2009) framework. Preliminary case studies have
shown improvement in the analysis and short-term forecast of
convective storms (Kong et al. 2020, 2022, 2024).

In this study, we implement and test the GOES-R lightning
DA capabilities within the new Joint Effort in Data Assimilation
Integration (JEDI, https://www.jcsda.org/jcsda-project-jedi). JEDI
is being developed to replace the existing GSI DA system for all
National Weather Service (NWS) operational forecast systems. It
offers a modular architecture that supports both variational and
ensemble DA algorithms, with recently implemented capabilities
for assimilating microwave radiance and radar data (Liu et al.
2022; Park et al. 2023). As part of this study, we migrated the
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FED observation operator previously developed for GSI into the
Unified Forward Operator (UFO) module of JEDI. This opera-
tor follows the nonlinear formulation introduced in Kong et al.
(2022), which uses a third-order polynomial fit between model
graupel mass and observed FED. The implementation includes
the forward operator as well as its tangent linear and adjoint com-
ponents, enabling its use in both ensemble Kalman filter and vari-
ational DA algorithms in JEDI. The core operator routines are
written in FORTRAN and remain largely similar to the GSI
implementation. Only minor modifications were required to inter-
face with JEDI’s higher-level C++ infrastructure, primarily
through standard FORTRAN-C interoperability wrappers pro-
vided by the UFO framework. This capability represents the first
GLM FED operator implemented in the JEDI system, and it
has been publicly released as part of the JEDI community code-
base. The JEDI DA system is coupled with the Finite-Volume
Cubed-Sphere (FV3) forecast model (Lin 2004; Putman and Lin
2007; Harris et al. 2021).

Specifically, this paper details the implementation and test-
ing of GLM FED DA capabilities using the local ensemble
transform Kalman filter (LETKF; Hunt et al. 2007), the local
gain-form ensemble transform Kalman filter (ETKF) (LGETKEF,
Bishop et al. 2017; Lei et al. 2018), and ensemble 3DVAR
(En3DVar) algorithms within JEDI. The primary objective is
to validate the implementation of these new capabilities and
to understand and document their behaviors and performance
in assimilating GLM FED data, whose observation operator is
atypical. While comparing the relative performance of these
well-established algorithms in general is not the primary pur-
pose, we focus on examining the particular behaviors of each
algorithm most relevant to FED data.

The paper is structured as follows: Section 2 outlines the
DA methods and procedures utilized in the study. Section 3
describes the simulation setup and experimental design.
Section 4 focuses on the algorithm behaviors, including single-
observation experiments that clarify the behaviors of observa-
tion-based and model-space localization used by different algo-
rithms. It first examines the convergence of cost function
minimization in En3DVar to validate the variational implemen-
tation. It also presents sensitivity tests varying vertical localiza-
tion radii and identifies the optimal vertical localization radius
based on the fractions skill score (FSS; Roberts and Lean
2008) from 6-h reflectivity forecasts following 1-h cycled
DA. Section 5 presents the overall evaluation results of the
DA and forecast experiments, comparing the effectiveness
of different assimilation approaches using objective skill
scores. Finally, section 6 summarizes the findings and con-
clusions from the study.

2. Assimilation methods and procedures

Prior literature has described the formulations of LETKF,
LGETKF, and En3DVar. In this section, we briefly describe
these algorithms with emphasis on how covariance localiza-
tion is treated in each algorithm. The En3DVar algorithm
implemented in JEDI employs a specialized package for
representing and localizing ensemble background error
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covariance on unstructured grids, which will also be briefly
described.

a. The LETKF algorithm with R-based localization

The LETKF (Hunt et al. 2007) is a variant of EnKF and is
a localized version of the ETKF (Bishop et al. 2001). In
LETKEF, observations are divided into local patches, each cen-
tered on a specific grid point. The algorithm draws on the con-
cept of the local ensemble Kalman filter (LEKF; Ott et al.
2004), particularly in its approach of updating the central grid
point of each patch in parallel to optimize computational effi-
ciency (Miyoshi and Yamane 2007; Liu et al. 2008). The
LETKF employs observation-based localization, where the
observation error variance R is increased with distance from
the grid point to achieve the effect of background error co-
variance localization (Hunt et al. 2007; Miyoshi and Yamane
2007; Greybush et al. 2011). The method is often referred to
as observation-/R-based localization (Nerger et al. 2012).

b. The LGETKEF algorithm with R-based and model-
space localizations

The LGETKEF, based on Bishop et al. (2017) and Lei et al.
(2018), offers a model-space covariance localization that does
not require the knowledge of the physical location of the ob-
servation assimilated. This is especially suitable for satellite
radiance observations and for the GLM lightning FED data,
whose observation operators involve vertical integration and
the observations themselves are not defined at particular height
levels. The idea of leveraging empirical orthogonal function
(EOF) decomposition (Lorenz 1956) for model-space localiza-
tion is also utilized by Liu et al. (2009) for a 4DEnVar algorithm.
In LGETKEF, the concept of retained covariance and the
number of eigenvectors plays a significant role in the locali-
zation performance. The retained covariance in LGETKF
refers to the portion of the covariance matrix preserved dur-
ing the localization and transformation processes. Selecting
an appropriate number of eigenvectors is critical for balanc-
ing computational cost and the degree of covariance approx-
imation. Retaining too few eigenvectors and the associated
covariance can result in loss of essential information, degrad-
ing the filter’s ability to accurately represent system state
and uncertainties. Conversely, retaining too many eigenvec-
tors can increase computational costs without significantly
improving accuracy. Therefore, choosing the right number
of eigenvectors and retaining the right amount of covariance
are important for balancing LGETKF DA performance and
efficiency. In this study, we use the LGETKEF solver as im-
plemented in JEDI, which applies model-space localization
in the vertical direction using the gain formulation, while re-
taining the observation-space localization in the horizontal
directions using R-based localization with the Gaspari—-Cohn
function. This follows the standard LGETKF implementation
structure established in GSI and adopted in JEDI. To ensure
compatibility with our previous GLM FED assimilation work
in the GSI framework (e.g., Kong et al. 2020, 2024), we use
the GSI-based FORTRAN implementations of both LETKF
and LGETKF within the JEDI system. This choice also
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facilitates verification of the FED observation operator and
provides a consistent basis for comparing across different
DA algorithms. In JEDI, another version of LETKF imple-
mented in C++ is also available.

¢. The En3DVar algorithm with BUMP-based
localization

The En3DVar algorithm used in this study follows the
hybrid-EnVar formulation originally proposed by Hamill
and Snyder (2000), in which the background error covariance
matrix B is constructed as a weighted sum of a static compo-
nent B and an ensemble-based component B,. In our imple-
mentation, however, we use pure En3DVar (PEn3DVar) by
omitting the static term (i.e., B = B,), to ensure a fair compar-
ison with LETKF and LGETKF, which also use only ensem-
ble covariance.

Vertical and horizontal localization for the ensemble-based
B, is performed using the Background Error on an Unstruc-
tured Mesh Package (BUMP; Ménétrier 2020), a modular
component of JEDI. BUMP models localization functions
directly on the FV3-LAM'’s cube-sphere grid, offering im-
proved flexibility and computational efficiency, especially
for unstructured or limited-area domains. More specifically,
localization is modeled using the normalized interpolated
convolution from an adaptive subgrid (NICAS) method
within BUMP, which computes correlation functions on a
subset of sampling points and interpolates them to the full
cube-sphere grid. Once generated, the localization matrix can
be reused for subsequent DA cycles, eliminating the need to
reinitialize localization each time, as is required in some re-
cursive filter approaches.

This study builds on previous lightning DA work in GSI
(Kong et al. 2020, 2022, 2024) but uses the JEDI implementa-
tion of PEn3DVar with BUMP for the first time. The use of
PEn3DVar allows us to test vertical localization in model
space, in a configuration consistent with LGETKEF, and to bet-
ter understand algorithmic behavior in response to vertically
integrated lightning observations.

As in Kong et al. (2024), we will not include any static back-
ground error covariance in our tests with En3DVar in this pa-
per, so that the algorithm is a pure En3DVar (PEn3DVar)
instead of a hybrid En3DVar. Again, the main objective of
this paper is not to compare different DA algorithms in gen-
eral but to validate the correctness of algorithm implementa-
tions for lightning DA and to better understand the algorithm
behaviors for our application. Not including static background
error covariance in the En3DVar makes it more similar to the
LETKF algorithms, which do not include static covariance
either.

3. Simulation setup and experimental design
a. GOES-R GLM FED data processing

In this work, FED data are derived from level-1I GLM
lightning flash data featuring 20-s refresh rates. The dataset
offers a pixel resolution of roughly 8 km over the contiguous
United States (CONUS), as described in Goodman et al. (2013).
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FIG. 1. Flow diagram of the (middle) LETKF and LGETKF and (bottom) PEn3DVar DA experiments vs
(top) the control run. The process begins with spinup forecasts of 40 members from 2100 to 2300 UTC, starting
from GDAS analyses at 1800 UTC. FED observations are assimilated in 5-min cycles between 2300 and
0000 UTC. Post-DA, ensemble forecasts for LETKF and LGETKF commence from the final analyses at
0000 UTC and continue until 0600 UTC. In the PEn3DVar experiment, a singular forecast is produced from the
final analysis. The CTRL experiment, without DA, carries on with ensemble forecasts from 1800 UTC straight

through 0600 UTC the next day.

To facilitate FED processing, the GLM lightning data are col-
lected into a designated 10 X 10 km? grid. Our processing meth-
odology aligns with the work of Bruning et al. (2019). It also
involves converting the GLM data into HDFS5 format, which is
JEDTI’s official observation format.

b. Forecast model setup and initialization of ensembles

The FV3-LAM is used as our forecast model (Lin 2004;
Putman and Lin 2007; Harris et al. 2021). FV3-LAM is used
in the planned version 1 of the Rapid Refresh Forecast
System (RRFSv1; Dowell et al. 2022; James et al. 2022). For our
experimental setup, we closely follow the model configuration
used by Park et al. (2023), which focuses on testing radar DA
capabilities implemented in JEDI. Specifically, we employ a
smaller domain with the extended Schmidt gnomonic projec-
tion, encompassing 310 X 310 horizontal grid points across
Texas and Oklahoma (Fig. 1). The grid has an approximate
3-km grid spacing and 64 vertical levels. An experimental
physics suite for RRFSv1 labeled “RRFS_v1_alpha” (Banos
et al. 2022) is used, which includes the Thompson microphysics
(Thompson et al. 2008), MYNN PBL (Nakanishi and Niino 2009;
Olson et al. 2019), Noah-MP land surface (Ek et al. 2003;

Niu et al. 2011), and RRTMG radiation (Mlawer et al. 1997)
schemes sourced from the Common Community Physics Pack-
ages (CCPP; Heinzeller et al. 2023). The same physics suite was
also used in Tong et al. (2024).

The initial ensemble is derived from the NCEP operational
Global Data Assimilation System (GDAS; Derber et al. 1991;
Whitaker et al. 2008; Kleist et al. 2009) EnKF analyses at
1800 UTC 20 May 2019. For lateral boundary conditions, the
GDAS 3-hourly ensemble forecasts up to 9 h are employed.

¢. Design of data assimilation experiments

Using the graupel-mass-based nonlinear GLM FED obser-
vation operator introduced by Kong et al. (2022), a series of
experiments are conducted to test and validate the assimila-
tion of FED data within the JEDI framework using three
different algorithms (Table 1). Specifically, the operator is
constructed from a third-order polynomial fit between the ob-
served GLM FED and model-simulated graupel mass over a
15 X 15 km? column, as described in Kong et al. (2022). This
nonlinear formulation accounts for the complex relationship
between lightning activity and graupel distribution. In Kong
et al. (2022), it was shown through experiments that this

TABLE 1. Descriptions of the DA experiments.

Vertical localization radius

Experiment Algorithm for LDA [in In(p/po) space]

NoDA Not applicable

LETKF LETKF 2, 0. 4, 1,4
LGETKF30% P, LGETKEF (30% retained Pp) 0 2 04,1,4
LGETKF60% P, LGETKEF (60% retained Pp,) 0.2,04,1,4
LGETKF90% P, LGETKEF (90% retained Pp) 02,04,1,4
PEn3DVar Pure En3DVar using 100% ensemble covariance, one-way coupled with 02,04,1,4

LETKEF with the corresponding vertical localization radii

PEn3DVarG Pure En3DVar using 100% ensemble covariance, one-way coupled with 02,04,1,4

LGETKF60% P, with the corresponding localization radii
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nonlinear operator yields more accurate FED forecasts than
linear formulations.

The experiments focus on evaluating the impact of vertical
localization radius in In(p/po) space (where p and p, are the
pressure and reference/surface pressure in hPa) and exploring
the effect of retained fraction of ensemble background
error covariance (Pp) in LGETKF. A control experiment,
CTRL, without DA (NoDA) serves as a baseline for com-
parison, while experiments PEn3DVar and PEn3DVarG
couple the PEn3DVar method with LETKF and LGETKEF,
respectively.

Table 1 provides a description of the DA experiments. The
LETKF and LGETKF algorithms were tested with different
vertical localization radii [0.2, 0.4, 1, and 4 in In(p/p,) space],
while LGETKF experiments were further evaluated for vary-
ing fractions of retained P, (30%, 60%, and 90%). The
PEn3DVar experiments use 100% ensemble covariance and
are one-way coupled with either LETKF or LGETKF
(referred to as PEn3DVar and PEn3DVarG, respectively).
Ensemble forecasts with 40 members are spun up from
1800 to 2300 UTC from GDAS analyses, after which FED
observations are assimilated at 5-min intervals between
2300 and 0000 UTC (Fig. 1). Postassimilation, ensemble fore-
casts from LETKF or LGETKEF are initialized at 0000 UTC
and run until 0600 UTC. For the PEn3DVar experiments,
a single deterministic forecast is produced from the final
PEn3DVar analysis for the same period. The control ex-
periment (NoDA) runs ensemble forecasts from 1800 to
0600 UTC the next day without DA.

To mitigate the development of spurious storms in the
background, zero FED observations are also assimilated. This
strategy follows prior work (e.g., Kong et al. 2020, 2024) and
is analogous to the assimilation of zero radar reflectivity to
suppress false convection (Tong and Xue 2005). This ap-
proach is supported by Mansell et al. (2002), who showed that
lightning-free regions are typically associated with weak grau-
pel loading and weak updrafts and can thus be used to con-
strain deep convection in numerical simulations.

An adaptive inflation factor of 0.95, which relaxes the pos-
terior spread toward the prior spread (Whitaker and Hamill
2012; Kotsuki et al. 2017; Maldonado et al. 2020), is employed
to maintain the ensemble spread. The FED operator is a
vertical integral of graupel mass, which, like GLM FED ob-
servations, lacks inherent vertical location information. For
LETKF, the FED observations are assumed to be at a height
of 6.5 km (Allen et al. 2016; Kong et al. 2020), within the
mixed-phase region where most lightning occurs. The specifi-
cation of vertical location is not required for LGETKF and
En3DVar, which employ model-space localization. Horizon-
tal localization is applied with a cutoff radius of 15 km, and a
small observation error of 0.5 flashes per minute per pixel is
used, following Kong et al. (2020).

In all data assimilation experiments in this study, the model
state vector that is updated by the DA algorithms includes
not only the hydrometeor mixing ratios (graupel, snow, and
rain) but also wind components (u, v, w), temperature, and
water vapor mixing ratio. Although the FED observation op-
erator is directly dependent on graupel mixing ratio only, the

Brought to you by UNIVERSITY OF OKLAHOMA LIBRARY | Unauthenticated | Downloaded 11/2

KONG ET AL.

2871

assimilation updates other state variables through ensemble-
derived flow-dependent background error cross covariances.
The indirect impacts on wind, temperature, and humidity
fields have been extensively analyzed in our previous paper
(Kong et al. 2020; see especially Figs. 8 and 9) and are not re-
peated here. This study presents the hydrometeor increments
as the most immediate and interpretable response to FED
observations.

d. Case overview

On 20 May 2019, the Southern Great Plains, extending
to Missouri and Arkansas, experienced a notable episode of
intense convective storms. These storms were driven by an
upper-level trough over the eastern United States and a sur-
face low pressure system in the central region, leading to the
formation of tornadic supercells, particularly east of a pro-
nounced dryline stretching from Texas to Missouri. The inter-
actions of regional topography, combined with warm and
moist air advection from the south and the influence of
the upper-level jet stream, contributed to the development
of these severe storms. As a result, the National Weather
Service Storm Prediction Center issued numerous severe
weather advisories. This day was marked by the occurrence of
34 tornadoes and numerous reports of wind and hail distur-
bances, underlining its significance in severe weather events
(Fig. 2). This same case was utilized to assess the impact
of radar data assimilation within the JEDI framework, us-
ing the LETKF and LGETKF algorithms as in Park et al.
(2023).

To provide additional context for this case, the spatial struc-
ture and temporal evolution of the convective system are il-
lustrated later using hourly accumulated precipitation forecasts
(see Fig. 12).

4. Implementation validation and optimization of
selected parameters

a. Convergence of En3DVar cost function

Since the primary focus of this study has been the imple-
mentation of lightning DA (LDA) capability within the JEDI
DA framework, validating the correctness of this implementa-
tion is crucial. Variational DA requires the development of
tangent linear and adjoint codes for the specified operators.
Although these codes have passed tangent linear and adjoint
tests in JEDI, it is essential to examine the convergence of the
cost function for En3DVar.

As in many variational data assimilation systems (Courtier
et al. 1994), En3DVar employs a double-loop procedure,
where nonlinear observation operators are linearized within
the outer loops, while cost function minimization occurs
through inner-loop iterations. With the linearized observation
operators, the cost function becomes quadratic and has a sin-
gle minimum. During successive outer loops, linearization is
performed around the updated analysis states, helping reduce
approximation errors and improving the final analysis accu-
racy. Since the FED observation operator used in this study is
nonlinear, this outer-loop mechanism is particularly important
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FIG. 2. Spatial distribution of severe weather events, 20 May
2019. This map highlights the geographic distribution of tornadoes,
hail, and wind reports on the specified date. Tornadoes are denoted
by red triangles, hail by green diamonds, and wind events by
blue circles. The map includes state and country boundaries to
offer geographical context and outlines the domain size of the
experiment.

for obtaining consistent minimization results. Evaluating the
convergence of the cost function under this outer-loop struc-
ture is essential for verifying the effectiveness of the LDA im-
plementation and identifying the required number of outer
loops and inner-loop iterations. Figure 3 illustrates the con-
vergence of the cost function across three distinct outer-loop
iterations, with each outer loop consisting of 30 inner-loop
iterations, totaling 90 iterations displayed on the horizontal
axis. During “outer-loop 1,” there is a significant reduction in
the cost function, indicating rapid convergence. In “outer-
loop 2,” a noticeable reduction in the cost function is also ob-
served at the beginning, though the rate of change diminishes
progressively. Conversely, “outer-loop 3” exhibits only mini-
mal changes after the initial iterations. This pattern suggests
that convergence is achieved after the first two outer loops,
with subsequent iterations in outer-loop 3 contributing little
to further reduction of the cost function. Therefore, two outer
loops are sufficient to achieve convergence, while 30 iterations
in each outer loop appear sufficient.

b. Comparisons of computational costs among LETKF,
LGETKF, and En3DVar

In evaluating the performance of various DA algorithms, it
is of practical interest to assess their computational costs and
memory usage to understand their efficiency and scalability.
The same number of computing nodes (5) and cores (225)
are utilized across all experiments for the comparison of
LDA among LETKF, LGETKF, and PEn3DVar. The per-
centage of retained P, significantly influences the number
of eigenvectors to be used, affecting computational cost. As
shown in Table 1, we test varying levels of P, retention in
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FIG. 3. Convergence of the cost function over 30 iterations for
each of the three outer loops. The cost function values are plotted
for each iteration within the three outer loops, labeled as outer-
loop 1 (blue), outer-loop 2 (green), and outer-loop 3 (red). The
horizontal axis represents the number of iterations, and the vertical
axis represents the cost function value.

LGETKF to examine their effects on computational cost
and memory usage. We explore different vertical localiza-
tion radii since they also significantly influence the computa-
tional cost.

Figure 4a shows that the vertical localization radius di-
rectly affects computational costs. LETKF is consistently less
expensive than LGETKF across various localization radii.
The differences in computational costs between LETKF and
PEn3DVar are less pronounced. For PEn3DVar, the wall-
clock time shows little sensitivity to the localization radius.
In the JEDI version used for this study (v1.1), the number of
NICAS sampling points was fixed at 1400 (controlled by the
parameter nclmax), so the computational cost is dominated
by constructing and applying the covariance from these sam-
pling points rather than by the choice of localization radius.
Because the FV3-LAM domain used in this case study is rela-
tively limited in size, 1400 sampling points provided a reason-
able balance between accuracy and efficiency. In more recent
JEDI/SABER versions, the parameter nclmax has been re-
placed by sampling and nicas.resolution options, but the prin-
ciple remains the same: The computational cost depends
primarily on the number of sampling points rather than the
localization radius. Notably, memory usage differences be-
come particularly significant with LGETKF, where a smaller
vertical localization radius substantially increases computa-
tional cost. Higher percentages of retained background error
covariance (Pp) in LGETKF are also associated with in-
creased computational costs. This is due to the need to retain
a larger number of eigenvectors to capture the covariances ac-
curately. In contrast, LETKF shows similar computational
costs across various localization radii. This is largely due to
the smaller number of FED observations used in the study
(9801), which reduces the impact of changes in the localiza-
tion radius. When the localization radius is large (e.g., 4), the
differences in computational costs between LETKF and
LGETKF narrow, as there is effectively no localization in
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FIG. 4. Comparison of computational costs of DA methods based on vertical localization radius. (a) The computa-
tional costs in seconds (wall-clock time) for various methods against different vertical localization radii. (b) Memory

usage in gigabytes for the same set of methods.

either method with such a large localization radius. However,
as the localization radius decreases, the computational cost
disparity increases significantly, with LGETKF becoming sub-
stantially more expensive. For FED data whose observational
operator involves column integral of graupel mass, larger ver-
tical localization radii are usually desirable (see section 4b).

Memory usage is also a critical consideration, as shown in
Fig. 4b. In the JEDI version used here (v1.1), LETKF and
LGETKF employed a halo-style observation distribution,
while PEn3DVar used the default round-robin distribution
for distributed memory processing on processor cores. This
difference in distribution strategy accounts for part of the
memory contrast observed in Fig. 4. PEn3DVar nevertheless
demonstrates notably higher memory demands compared
to LETKF and LGETKF, mainly reflecting the algorithmic
requirements of the variational solver (e.g., storing and apply-
ing global covariance structures and gradients), as well as
implementation details that may require further optimization,
rather than the observation distribution strategy itself. This
difference is observed consistently across the experiments,
with memory requirements of PEn3DVar being about an or-
der of magnitude higher (Fig. 4b). In more recent JEDI/
SABER versions, the distribution must be explicitly specified
in the YAML configuration, with halo typically used for en-
semble Kalman filter methods and round-robin for variational
methods and HofX applications.

c. Single-observation experiments for LETKF, LGETKF,
and En3DVar

As discussed in section 2, LETKF employs R-based locali-
zation in all three dimensions, while LGETKF and En3DVar
utilize model-space localization in the vertical direction. For
the FED observation operator, which involves vertical inte-
gration, the behaviors of the vertical localization methods with
different localization radii, especially those in model space, are
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unclear. To address this, we conduct single-observation experi-
ments to examine the effects of localization based on how the
observation innovation is spread in space. A single observation
point was placed at coordinates (x = 528 km, y = 750 km),
with an observation value of 15 flashes per minute per pixel.
The ensembles used in these experiments were generated
from spinup forecasts initialized from the 1800 UTC GDAS
analyses, as described in Fig. 2. Additionally, the percentage
of retained P, in LGETKF affects localization accuracy. A
higher percentage of retained P, can improve localization ac-
curacy but at an increased computational cost. In the single-
observation experiments, we also assess the magnitude and
spatial distribution of analysis increments for LGETKF with
varying percentages of retained P,. The results are compared
with PEn3DVar, which also employs model-space localization
but does not rely on modulated ensembles or singular value
decomposition (SVD) for its localization.

Four sets of vertical localization radii, ranging from
R; = In(p/py) = 0.2,0.4,1, and 4 (with four effectively cover-
ing the entire depth of the model domain, therefore repre-
senting effectively no vertical localization), were used for
different algorithms. As shown in Fig. 5, when R, is small
(0.2 and 0.4), the analysis increments of hydrometeor mixing
ratios produced by LETKF have a much smaller vertical ex-
tent (Figs. 5a,b) compared to those by LGETKF and PEn3DVar
(e.g., Figs. Sm,n,q,r). This is because the R-based localization of
LETKEF restricts analysis increments to within the specified dis-
tance from the assumed observation height of 6.5 km, which is
chosen following Allen et al. (2016) and Kong et al. (2020) to
represent the mixed-phase region where lightning activity most
frequently initiates. In contrast, LGETKF and PEn3DVar do
not assume a specific observation height level, so that analysis in-
crements are found at and near levels where graupel is present.
A small localization radius prevents the spread of analysis incre-
ments to lower levels, where other hydrometeors, such as
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FIG. 5. Vertical cross sections of mixing ratio increments (g kg ') of rain (shading), snow (purple contours, starting from 0.1 with 0.3 g kg "
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with 90% retained covariance, and (q)—(t) PEn3DVar algorithms, respectively. The cross section passes through the single observation point
(x = 528 km, y = 750 km).
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rainwater, might dominate. This suppression is more pro-
nounced in LETKF compared to LGETKF and PEn3DVar,
which is undesirable for observation operators involving verti-
cal integration, such as lightning and satellite radiance data.

From a physical perspective, the FED observation opera-
tor involves a vertical integral of graupel mass; the impact
of the observation is expected to extend throughout the con-
vective column. Therefore, a vertical localization strategy
that enables broader vertical spreading (i.e., with larger ef-
fective localization radii) is physically more consistent with
this application.

However, larger localization radii are not always better.
The purpose of covariance localization is to suppress spurious
correlations that arise from limited ensemble size. Excessively
large vertical radii may admit unrealistic correlations between
distant levels, potentially degrading the analysis. Thus, a bal-
ance between enabling physical vertical coupling and main-
taining statistical robustness is desired. To investigate this
balance empirically, we perform sensitivity experiments using
a range of vertical localization radii (R, = 0.2, 0.4, 1, 4).
While small R; values are not necessarily suitable for FED
observations, they serve a diagnostic purpose by revealing the
behavioral differences between observation-space (LETKF)
and model-space (LGETKF, En3DVar) localization. These
differences are most evident in single-observation experi-
ments that help validate algorithmic behaviors.

Three different percentages of retained P, are tested in
LGETKEF and compared with PEn3DVar. Notably, retaining
90% of P, in LGETKF results in analysis increments similar
to those of PEn3DVar (as shown in the bottom two rows of
Fig. 5), which agrees with expectation since both methods em-
ploy model-space vertical localization, and LGETKF has
nearly complete P, retention. When only 30% of P is re-
tained, the LGETKF analysis increments of graupel mixing
ratio, with a small vertical localization radius (Fig. 5e), are
more vertically confined but exhibit higher magnitude com-
pared to PEn3DVar (Fig. 5q). In contrast, retaining 60% of
Pp, in LGETKEF produces increments that are comparable to
those of PEn3DVar, even for small localization radii, suggest-
ing that retaining 60% of P, may be enough for achieving the
desired accuracy at a relatively lower cost.

d. Sensitivity to vertical localization scales across
LETKF, LGETKF, and En3DVar

In the previous section, single-observation experiments are
conducted to gain some insights into the behaviors of the al-
gorithms assimilating FED observations with various localiza-
tion radii and retained covariance levels. In this section, we
assimilate all FED observations to determine the optimal ver-
tical localization radius and the most appropriate percentage
of retained P,. In our prior FED DA studies, we typically use
a large vertical localization radius that has effectively no local-
ization effect to allow the FED observations to influence the
entire model depth (Kong et al. 2020, 2022, 2024). Here, the
sensitivity experiments test the validity of such a choice.

The same set of sensitivity tests in the last subsection is run,
assimilating a full set of FED data instead of a single observation.
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Optimal parameters are identified based on the FSS of 6-h
reflectivity forecasts following 1-h FED data assimilation
with 5-min cycles, following the procedures outlined in Fig. 2.
Intentionally, this study does not explore variations in the
horizontal localization radius. Taking into account the FED
observation pixel resolution of ~10 km, an 18-km horizontal
localization radius is selected following the guidance of previ-
ous studies (Mansell 2014; Kong et al. 2020, 2022, 2024). This
radius is larger than both the observation pixel size and the
3-km grid spacing of the model, ensuring that each grid point
is influenced by at least two FED observations to avoid too
noisy analysis increments. It also avoids noise that can be in-
troduced by distant covariances. The 18-km horizontal locali-
zation radius corresponds to the cutoff distance at which the
Gaspari—Cohn localization function becomes zero in LETKF
and LGETKEF. The same horizontal localization length scale
is applied in En3DVar via the BUMP-generated localization
matrix.

The LETKEF algorithm using vertical localization radii R, = 0.2,
04, 1, and 4 shows subtle yet noticeable variations in FSS
performance for composite reflectivity at a 20-dBZ threshold
(Fig. 6a). Because capturing convective structures is more
challenging at high thresholds, we focus here on lower thresh-
olds for the overall convective system structure. According to
Fig. 6a, the LETKF_V4 variant, with R; = 4, generally shows
higher forecast accuracy across these metrics. Similarly, other
LGETKEF variants, particularly for R, = 4, perform margin-
ally better (Fig. 6b). Among the LGETKEF variants, retaining
a covariance of 60% strikes an optimal balance between per-
formance and computational efficiency (section 4c), as in the
case of single observation tests. In contrast, the PEn3DVar al-
gorithm, particularly for R; = 4, displays more pronounced
differences and achieves higher FSS than its counterparts
(Figs. 6c,d).

While these sensitivity tests with LETKF, LGETKF, and
PEn3DVar show some differences, the differences are not
significant. The V4 variants of both LETKF and LGETKEF,
particularly with 60% retained covariance in LGETKF, show
marginally better FSS performance for composite reflectivity.
In addition to this slight performance advantage, the R, = 4
configuration is also the most computationally efficient, as
it avoids excessive localization computations in the vertical.
Considering both forecast performance and runtime effi-
ciency, the largest vertical localization radius (R; = 4) and
60% retained P, are chosen as the optimal settings for our
experiments. This study therefore validates the earlier use of
a large vertical localization radius for FED assimilation.

5. Overall performance evaluation of LDA with LETKEF,
LGETKEF, and PEn3DVar

In the previous section, optimal vertical localization radius
R; = 4 for all DA methods and a 60% retained P, for
LGETKEF are determined. This section performs further eval-
uations on the performance of LETKF, LGETKF, and
PEn3DVar algorithms with these settings, through both statis-
tical verification and subjective evaluation of lightning and re-
flectivity forecasts.
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FI1G. 6. FSS for composite reflectivity at the 20-dBZ threshold, evaluated within a 1-h DA window and forecast peri-
ods from 0 to 6 h. (a),(b) Results from DA experiments using LETKF and LGETKEF algorithms with varying vertical
localization radii R;, = 0.2, 0.4, 1, and 4 (indicated by _V followed by the R, number). LGETKF variants with differ-
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the same localization radii. Only the mean FSS results for both LETKF and LGETKF are presented for clarity.

The FSSs for the analyses and forecasts verified against ob-
served FED and composite reflectivity are shown in Fig. 7 for
LETKF, LGETKF, PEn3DVar, and PEn3DVarG as well as
NoDA experiments. Figures 7a and 7b show the FSS for FED at
thresholds of 1 and 5 flashes per minute per pixel, respectively,
while Figs. 7c and 7d depict the FSS for composite reflectivity at
thresholds of 20 and 35 dBZ. The results are shown within the
1-h DA window and across the 0-6-h free forecast periods.

The figure demonstrates that LDA experiments generally
yield higher FSS values than NoDA. Specifically, LETKF and
LGETKEF show superior performance for FED thresholds in
the initial forecast hours after DA (Figs. 7a,b). Likewise,
PEn3DVar and PEn3DVarG demonstrate improved FSS,
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particularly for the 20-dBZ reflectivity threshold during the
free-forecast periods (Figs. 7c,d). These results highlight the
positive impacts of assimilating FED data in improving the ac-
curacy of forecasts in terms of both FED and composite re-
flectivity, even though no reflectivity data are assimilated.
While NoDA shows slightly higher FSS values at the
35-dBZ threshold during certain forecast hours (Fig. 7d), this
appears to be partially due to overprediction in the northern
portion of the storm system, which increases spatial overlap
with observed high reflectivity regions. In contrast, DA experi-
ments more successfully capture the southern convective core
that is largely missed in NoDA, but the slight spatial displace-
ments in the forecasts of DA experiments limit improvement
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F1G. 7. FSS for (top) analyses and forecasts of FED at thresholds of 1 and 5 flashes per minute per pixel and
(bottom) composite reflectivity at thresholds of 20 and 35 dBZ. The results are presented within the 1-h DA window
and across the 0-6-h free-forecast periods. The figure includes comparisons between NoDA and DA experiments us-
ing LETKF, LGETKF, PEn3DVar, and PEn3DVarG. Bold lines represent the ensemble mean for NoDA, LETKF,
and LGETKEF (average of 40 members), while thin lines of the same color represent individual ensemble members.

Deterministic results of PEn3DVar and PEn3DVarG are depicted by a single bold line.

in FSS. This suggests that FSS alone may not fully reflect
improvements in storm structure and intensity captured by
the DA methods. These effects are discussed further in the
next section based on subjective verification of reflectivity
forecasts.

Performance diagrams, as introduced by Roebber (2009),
can provide a more comprehensive assessment of the skills of
forecasts. Figure 8 shows that all DA experiments outperform
NoDA in forecasting both FED and composite reflectivity, es-
pecially in terms of FED in earlier forecasts. This superiority
is evidenced in two key metrics: a higher critical success index
(CSI), indicated by the shaded contours (the closer to the top-
right corner, the higher is the CSI score), and a lower bias, in-
dicated by the dashed lines (no bias along the lower-left to
top-right corner line of 1). During the first hour of the
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forecast, the improvement in the forecast accuracy and reli-
ability of the DA experiments over NoDA is more evident.
While this difference diminishes over time, it remains notable
up to 2 h postassimilation, underscoring the sustained impact
of the lightning DA. For CSI, PEn3DVar and PEn3DVarG
have overall slightly higher scores than LETKF and LGETKF
(Fig. 8). It is also true for biases for most of the forecasts be-
tween 1 and 2 h. The DA experiments also have slightly lower
biases (close to 1) than NoDA experiments, especially in the
latter half of the 2-h forecast window.

Since FED is directly assimilated in our study, we focus on
comparing the forecasts of this parameter in our subjective
evaluation in Fig. 9. The figure compares 1-4-h FED forecasts
from various DA experiments with NoDA and with matching
observations. The DA experiments, particularly PEn3DVar
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FIG. 8. Performance diagrams for FED and composite reflectivity forecasts across various thresholds and time frames, using a 9-km
neighborhood radius. (a)-(d) The 0.5-2-h FED forecasts after DA with a threshold of 1 flash per minute per pixel. (¢)—(h) The same time
intervals for FED forecasts with a threshold of 5 flashes per minute per pixel. (i)~(1) The 0.5-2-h composite reflectivity forecasts at a
20-dBZ threshold and (m)-(p) forecasts at a 35-dBZ threshold. Forecast systems include NoDA (cyan), LETKF (green), LGETKF
(blue), PEn3DVar (magenta), and PEn3DVarG (red). Ensemble means for LETKF, LGETKF, and NoDA are represented by colored
boxes, while En3DVar, being a single member system, is directly represented by a box.

and PEn3DVarG, show notable improvements over NoDA, In addition to analyzing FED forecasts, we further assess
especially in capturing convective activities in the southwest-  the ensemble neighborhood probabilities for 1-4-h composite
ern parts of the convective system, where lightning activity is  reflectivity forecasts. Figure 10 shows the probability of re-
more prevalent. PEn3DVar and PEn3DVarG demonstrate flectivity forecasts exceeding the 20-dBZ threshold, while
similar effectiveness and slightly outperform LETKF and Fig. 11 shows those for the 35-dBZ threshold. The observed
LGETKEF. These results further indicate the benefits of assim-  composite reflectivity contours of the corresponding thresh-
ilating lightning data in predicting, e.g., lightning patterns that  old are overlaid in black in the figures for different experi-
are better aligned with observations up to 3—4 h. ments. Consistent with the FED forecasts, PEn3DVar and
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FI1G. 9. Observed and forecasted FED over 1-4 hours: (a)-(d) observations, while forecasts are presented
for (e)~(h) NoDA, (i)~(1) LETKF, (m)—~(p) LGETKEF, (q)-(t) PEn3DVar, and (u)—(x) PEn3DVarG. Shown
are (a),(e),(i),(m),(q), 1-; (b),(£),(j),(n),(r) 2-; (c),(g),(k),(0),(s) 3-; and (d),(h),(1),(p),(t) 4-h forecasts.
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FIG. 10. Ensemble neighborhood probabilities for 1-4-h composite reflectivity forecasts exceeding 20 dBZ from (a)-(d) NoDA,
(e)—(h) LETKEF, (i)—(1) LGETKEF, (m)—(p) PEn3DVar, and (q)-(t) PEn3DVarG, overlaid with MRMS composite reflectivity observations

for the same threshold (black contour).

PEn3DVarG show slightly better forecast accuracy compared
to LETKF and LGETKF. All DA methods show significant
improvement over NoDA, particularly in the southwest re-
gions of the convective system, where NoDA tends to under-
estimate reflectivity. The results further highlight the value of
lightning DA in improving short-term forecasts of convective
storms.
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We examine further hourly accumulated precipitation fore-
casts. Evaluation of precipitation provides more insight on the
hydrological aspects of the forecast. The probability-matched
ensemble mean hourly accumulated precipitation forecasts
from LETKF, LGETKF, and NoDA, and the deterministic
hourly accumulated precipitation forecasts of experiments
PEn3DVar and PEn3DVarG are shown in Fig. 12, with
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FIG. 11. Ensemble neighborhood probabilities for 1-4-h composite reflectivity forecasts exceeding 35 dBZ from (a)-(d) NoDA,
(e)-(h) LETKF, (i)—(1) LGETKEF, (m)—(p) PEn3DVar, and (q)—(t) PEn3DVarG (%), overlaid with MRMS composite reflectivity obser-
vations for the same threshold (black contour).

estimated precipitation observations by the Multi-Radar than PEn3DVar and PEn3DVarG. This difference becomes
Multi-Sensor (MRMS; Zhang et al. 2016b) system overlaid, for =~ more pronounced in longer-range forecasts (3—4 h), where
forecast hours 1 through 4. the LETKF and LGETKEF tend to underpredict precipita-

The figures show that all DA methods improve precipita- tion intensity. In contrast, PEn3DVar and PEn3DVarG
tion forecasts, particularly in capturing storm patterns missed consistently provide accurate predictions of intense precipita-
by NoDA. While LETKF and LGETKEF outperform NoDA tion in the southwest, aligning more closely with MRMS
in tracking the southwestern storms, they are less effective  observations.
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FIG. 12. Probability-matched mean hourly accumulated precipitation forecasts from NoDA, LETKF, and
LGETKEF, deterministic forecasts of PEn3DVar and PEn3DVarG, overlaid with MRMS-estimated hourly
precipitation in black contours.
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6. Summary and conclusions

In this study, we implemented the capabilities to assimilate
GOES-R GLM flash extent density data within the JEDI sys-
tem, integrated with the FV3-LAM dynamical core that is in-
tended to be used by RRFSv1. The JEDI DA system is also
intended to be used by RRFSv2 and other future operational
forecasting systems of the NWS. The primary goal is to vali-
date the implementation and evaluate the performance of
various data assimilation methods, the LETKF, LGETKF,
and En3DVar algorithms within the JEDI framework, includ-
ing comparisons of their vertical localization strategies, com-
putational efficiency, memory usage, and resulting forecast
accuracy for a test case. Convergence behavior of En3DVar is
consistent with expectations.

Our computational cost analysis showed that LGETKEF re-
quires significantly more resources when relatively small verti-
cal localization radii are used or when higher percentages of
retained covariance are desired, leading to higher computa-
tional costs compared to LETKF and En3DVar. The cost of
LETKF does not change much with the vertical localization
radius. PEn3DVar has a slightly better performance in terms
of forecast accuracy at a reasonable computational cost, al-
though the current implementation requires an order of mag-
nitude more memory than both LETKF and LGETKEF. It
should be noted that PEn3DVar does require the running
of either LETKF or LGETKF, which provides the ensemble
perturbations for flow-dependent covariance. Therefore, run-
ning the En3DVar requires an additional computational step.

To better understand the behaviors of the three algorithms,
in particular in terms of the effects of different vertical locali-
zation treatments in these algorithms, for the assimilation of
lightning FED data whose observation operator involves ver-
tical integration through the model column depth, single FED
observation experiments were run. Vertical localization radii
R; equaling to 0.2, 0.4, 1, and 4 in the In(p/p,) space were ex-
amined. Significant differences exist among the algorithms
when the radius is small compared to the model domain depth
because the localization is in observation space for LETKF
and model space for LGETKF and En3DVar. When large R,
is used so that there is effectively no vertical localization, the
three algorithms perform very similarly. Given the nature of
the FED observation operator, and based on sensitivity ex-
periments, large values of R; = 4 are found to be preferred,
and subsequent experiments and evaluations for a test case
use this value. Furthermore, retaining 60% of the background
error covariance when performing vertical localization in the
gain-form LETKEF is found to be sufficiently accurate, saving
some computational costs.

Fraction skill scores for FED and composite reflectivity
forecasts are calculated against observations up to 6 h, and
performance diagrams are plotted for the forecasts up to 2 h.
Subjective evaluations of the forecasts are performed for fore-
cast FED, neighborhood ensemble probabilities of composite
reflectivity for two thresholds, and hourly accumulated pre-
cipitation forecasts up to 4 h. These evaluations show that the
FED DA experiments generally clearly outperform the ex-
periment where FED data are not assimilated, and among the
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DA experiments, the En3DVar algorithm coupled with LETKF
or LGETKEF slightly outperforms the two forms of LETKF
algorithms. Comparing the algorithms in general and determin-
ing which one is better is not the main goal of this paper—the
main goal is to validate our implementation of FED DA within
various algorithms in JEDI, and such capabilities may poten-
tially be used in future operational NWP systems of the NWS,
including the RRFS.

A noted limitation of this study is the use of a single test
case. This can limit the generalizability of the findings in terms
of the DA impact and relative performance of the algorithms.
While the current design focuses on a single 1-h FED DA cy-
cling period followed by a 6-h forecast, future research should
expand the evaluations across multiple weather scenarios and
cases to further assess the effectiveness and robustness of the
LDA capabilities.
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