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ABSTRACT

Capabilities  to  assimilate  Geostationary  Operational  Environmental  Satellite  “R-series ”  (GOES-R)  Geostationary
Lightning  Mapper  (GLM)  flash  extent  density  (FED)  data  within  the  operational  Gridpoint  Statistical  Interpolation
ensemble Kalman filter (GSI-EnKF) framework were previously developed and tested with a mesoscale convective system
(MCS)  case.  In  this  study,  such  capabilities  are  further  developed  to  assimilate  GOES  GLM  FED  data  within  the  GSI
ensemble-variational  (EnVar)  hybrid  data  assimilation  (DA)  framework.  The  results  of  assimilating  the  GLM  FED  data
using  3DVar,  and  pure  En3DVar  (PEn3DVar,  using  100% ensemble  covariance  and  no  static  covariance)  are  compared
with those of EnKF/DfEnKF for a supercell storm case. The focus of this study is to validate the correctness and evaluate
the  performance  of  the  new  implementation  rather  than  comparing  the  performance  of  FED  DA  among  different  DA
schemes.  Only  the  results  of  3DVar  and  pEn3DVar  are  examined  and  compared  with  EnKF/DfEnKF.  Assimilation  of  a
single  FED  observation  shows  that  the  magnitude  and  horizontal  extent  of  the  analysis  increments  from  PEn3DVar  are
generally larger than from EnKF, which is mainly caused by using different localization strategies in EnFK/DfEnKF and
PEn3DVar  as  well  as  the  integration  limits  of  the  graupel  mass  in  the  observation  operator.  Overall,  the  forecast
performance of PEn3DVar is comparable to EnKF/DfEnKF, suggesting correct implementation.
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Article Highlights:

•  GOES-R GLM FED data are implemented within the GSI ensemble-variational (EnVar) hybrid data assimilation (DA)
framework.
•   The  forecast  performance  of  PEn3DVar  is  comparable  to  EnKF  but  their  analyses  are  different,  due  to  different
localization strategies being used as well as the integration limits of the graupel mass in the observation operator.

 

 
 

 1.    Introduction

High spatiotemporal resolution lightning data offer a reli-
able  complement  to  radar  data  that  can  be  assimilated  into
convection-allowing  NWP  models,  especially  in  regions
where the Next-Generation Radar (NEXRAD, Doviak et al.,
2000)  Weather  Surveillance  Radar-1998  Doppler  (WSR-
88D) radar coverage is poor or absent, such as in mountainous

areas  due  to  beam blockage,  or  in  oceanic  regions  beyond
the range of ground-based radars. Efforts have been made to
assimilate lightning data into convection-allowing NWP mod-
els using nudging (e.g., Fierro et al., 2012, 2015; Marchand
and  Fuelberg,  2014),  3DVar  (Fierro  et al.,  2016, 2019; Hu
et al., 2020), 4DVar (Xiao et al., 2021), and EnKF methods
(Mansell,  2014; Allen  et al.,  2016).  Results  show  that  the
assimilation  of  either  cloud-to-ground  (CG)  and  especially
total (CG plus intra-cloud) lightning data often produces fore-
cast  improvements  comparable  to  those  from  assimilating
ground-based radar  data  (Fierro et al.,  2016).  Among these
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studies, Mansell (2014)  assimilated  explicitly-simulated
flash extent density (FED) data, and Allen et al. (2016) assimi-
lated pseudo-geostationary lightning mapper  (GLM, Good-
man  et al.,  2013)  observations  derived  from  ground-based
lightning mapping array (LMA, Rison et al., 1999; MacGor-
man et al., 2008) data, both using the more advanced ensem-
ble  Kalman  filter  (EnKF, Evensen,  1994)  method.  Here,
FED is  a  type  of  lightning  flash  rate  and  can  be  concisely
defined  as  the  total  number  of  lightning  flashes  occurring
within a given atmospheric column over a specified period
(Lojou and Cummins, 2005). The readers are referred to Brun-
ing  et al. (2019)  for  more  information  on  the  derivation  of
GLM FED data. Observation operators for FED that depend
on  graupel  echo  volume  or  graupel  mass  were  developed,
based on output data from storm-scale simulations conducted
with  explicit  electrification  physics  (Mansell  et al.,  2002,
2005; Allen et al., 2016). With these observation operators,
the FED is linearly related to the total graupel mass or graupel
volume  within  the  FED  pixel  column.  Other  studies  by
Fierro et al. (e.g., Fierro et al., 2012), Marchand and Fuelberg
(2014),  and Qie  et al. (2014)  assimilated  some  form  of
pseudo-data (water vapor mass, temperature, or ice-phase par-
ticles) derived from the lightning data either through nudging
or 3DVar, and such assimilation was shown to improve con-
vective initialization and short-term forecasts.

The GLM instruments on the GOES-R series geostation-
ary  satellites  detect  the  light  emitted  by  lightning  at  the
cloud tops and collect information about total lightning dis-
charges (Goodman et al., 2013). The GOES-R GLM is able
to  continuously  detect  total  lightning  activity  (intra-cloud
plus  CG)  over  the  Americas  and  adjacent  oceanic  regions
with  a  spatial  resolution/footprint  ranging  from  8  km  near
the center  of  the field of  view (near  nadir)  to  about  12 km
near  the  edges.  GLM  records  information  such  as  the  fre-
quency, location, optical energy, and extent of light emitted
from  lightning  discharges  to  better  depict  the  presence  of
developing  and  intensifying  thunderstorms.  NOAA/NASA
maintains two GOES-R series operational geostationary satel-
lites: GOES-16 in the GOES-East position and GOES-17 in
the  GOES-West  position.  Operational  datasets  from  these
satellites  have  been  made  available  since  late  2017  and
early  2019,  respectively.  In  March  2022,  GOES-18  was
launched  into  space  and  went  into  operational  service  as
GOES-West on 4 January 2023, replacing GOES-17.

Recently, real GLM lightning observations have been suc-
cessfully  assimilated  [e.g., Fierro  et al. (2019), Hu  et al.
(2020), and Kong et al. (2020)]. Fierro et al. (2019) and Hu
et al. (2020) used indirect assimilation of lightning (flash den-
sity  rates)  through  pseudo-observations  for  water  vapor
mass,  as  derived  from  GLM  lightning  observations  with  a
3DVar  system (Gao et al.,  2016; Wang et al.,  2018). Kong
et al. (2020)  assimilated  GLM lightning  (flash  extent  data)
more directly using an EnKF method. In Fierro et al. (2019),
the added value of lightning DA was investigated by assimilat-
ing  Level  II  radar  data  with  and  without  GLM-derived
water vapor pseudo-observations for a group of severe con-
vective storms. The GLM and radar assimilation experiments

yielded short-term forecast improvements that were superior
to  those  of  a  control  run  assimilating  no  data,  with  results
on  a  par  with  previous  studies  assimilating  pseudo-GLM
observations (Fierro et al., 2015, 2016).

Kong et al. (2020)  was  the  first  study to  use  an  EnKF
method to directly assimilate real GOES-R lightning observa-
tions.  In  their  proof-of-concept  study,  the  capabilities  to
assimilate  GLM  FED  data  were  implemented  into  the
NCEP  operational  EnKF  DA  system  (Gridpoint  Statistical
Interpolation,  GSI, Kleist  et al.,  2009a)  and  tested  for  a
mesoscale convective system (MCS). FED observation opera-
tors  based  on  graupel  mass  or  graupel  volume  were  used,
and the results were compared to a control experiment that
did not assimilate any data. The direct assimilation of FED
observations was shown to noticeably improve the analysis
and prediction of the MCS for up to several hours. Akin to
the indirect methods, EnKF FED DA is effective in identify-
ing  and  properly  initializing  regions  of  intense  convection,
which  helps  improve  shorter-term forecasts  of  high-impact
convective events. Direct and indirect adjustments to graupel
and other model state variables through the ensemble covari-
ances  helped  produce  more  balanced  analyses  and,  thus,
improved forecasts.

EnKF  methods  derive  background  error  covariance
from an ensemble of forecasts. The hybrid ensemble-varia-
tional  (EnVar)  DA  technique  employs  a  combination  of
ensemble-derived  covariances  and  static  covariances  (typi-
cally  used  in  3DVar)  to  help  alleviate  the  problems  with
covariance matrix rank deficiency and other issues (Hamill
and  Snyder,  2000; Lorenc,  2003; Etherton  and  Bishop,
2004; Buehner et al., 2010). Hybrid EnVar capabilities have
been implemented within the NCEP operational GSI (Kleist
et al.,  2009b)  DA framework and are  used operationally  in
the Global Data Assimilation System (GDAS, Hamill et al.,
2011; Kleist  and  Ide,  2015),  the  regional  North  American
Mesoscale  (NAM)  Data  Assimilation  System  (Wu  et al.,
2017), and the Rapid Refresh (RAP, Benjamin et al., 2016)
DA system (Pan et al.,  2014; Hu et al.,  2017). For both the
NAM and RAP, the operational EnVar DA systems borrow
ensemble perturbations from the GDAS EnKF although cou-
pling EnVar with one’s own EnKF system is most desirable
and has been tested earlier for prototype RAP configurations
(Pan et al., 2014, 2018; Pu et al., 2016; Lu et al., 2017).

An earlier effort geared toward lightning data assimila-
tion  (LDA)  using  the  hybrid  ensemble-variational  DA
method can be found in Apodaca et al. (2014). In their study,
pseudo-GLM data (derived from the ground-based lightning
network) was assimilated using a hybrid EnVar DA method
and applied to mesoscale models in which deep convection
cannot be explicitly resolved. Their operator started with an
approximate  calculation  of  vertical  velocity  obtained  from
the  Nonhydrostatic  Mesoscale  Model  core  of  the  Weather
Research  and  Forecasting  system  (WRF-NMM),  using  a
reduced  version  from  the  nonhydrostatic  continuity  equa-
tion.  Although the operator can analyze some updrafts  that
are linked to other state variables through the continuity equa-
tion, the relative coarser grid resolution (e.g., 9 km in their

264 ASSIMILATING FED IN GSI VARIATIONAL DA FRAMEWORK VOLUME 41

 

  



study) is not suitable for convective scale DA.
Toward the eventual goal of operational implementation

at  NCEP,  the  convective-scale  EnKF  DA  capability  for
GLM  FED  data  in Kong  et al. (2020)  was  implemented
within  the  operational  GSI  EnKF  framework.  Given  that
hybrid EnVar is the current method of choice for the two oper-
ational  regional  forecasting systems (NAM and RAP),  it  is
naturally desirable to implement and test hybrid EnVar DA
capability  for  FED  data  within  the  GSI  framework.  This
study aims at validating the correctness and evaluating the per-
formance of  the new implementation.  In contrast  to EnKF,
EnVar obtains its analysis by minimizing a cost function, as
in 3DVar. In fact, it builds upon the GSI 3DVar framework
using  the  extended  control  variable  algorithm  of Lorenc
(2003). The 3D version of EnVar is referred to as En3DVar
(Liu and Xue, 2016).

Specifically, this study includes three overarching goals:
1) to implement GLM FED DA capabilities into the opera-
tional GSI EnVar that is coupled with GSI EnKF, 2) to com-
pare  the  performances  of  FED  DA  using  EnKF  and
En3DVar to see whether comparable results can be obtained
between En3DVar and EnKF, and 3) to evaluate the benefit
of  FED  DA  to  short-range  forecasts  of  a  supercell  storm
case. Apart from lightning and precipitation, we also evaluate
the ability of FED DA to improve the updraft helicity track
forecast  for  the  supercell  storm  case,  which  is  commonly
used as a proxy for tornado prediction in operational centers
(Kain et al., 2008; Sobash et al., 2016).

 2.    Assimilation methods and procedures

 2.1.    The EnKF and DfEnKF algorithm

The  EnKF  within  GSI  uses  a  scalable  implementation
of  the  ensemble  square  root  filter  (EnSRF, Whitaker  and
Hamill, 2002), which updates state variables and pre-calcu-

lated  observation  priors  independently  (Anderson  and
Collins, 2007). The scalable implementation is equivalent to
the traditional algorithm that updates state variables and recal-
culates  observational  priors  when  using  linear  observation
operators, and it can produce qualitatively similar results as
the traditional EnKF for practical NWP applications (Ander-
son and Collins, 2007). For more detailed information about
the  updating  equations  of  the  GSI  EnKF  algorithm,  the
reader is referred to Kong et al. (2020).

To  facilitate  a  more  direct  comparison  between  EnKF
and  pure  En3DVar  (PEn3DVar)  that  uses  100%  ensemble
covariance  (as  in  EnKF),  a  deterministic  EnKF  (DfEnKF)
algorithm, introduced by Kong et al. (2018), is also adopted
here. In DfEnKF, an additional deterministic forecast (sepa-
rate from the ensemble members) is updated using the same
EnKF  equation  that  is  used  to  update  the  ensemble  mean.
The updated state becomes the initial condition for the deter-
ministic forecast of the next cycle. The En3DVar is a deter-
ministic  algorithm  as  well;  it  updates  a  single  background
forecast variationally, utilizing the same ensemble perturba-
tions  as  DfEnKF  from  a  (one-way)  coupled  EnKF  system
(e.g., Fig. 1 of Pan et al., 2014). Given that pure En3DVar is
one-way coupled with the EnKF, as is DfEnKF, the results
between PEn3DVar and DfEnKF could be similar but not nec-
essarily  the  same.  First,  for  EnKF/DfEnKF,  observations
are  assimilated  serially  (one  after  another),  while  for
PEn3DVar, all observations are assimilated globally (at the
same time). Analyses could be different when the observation
operator is nonlinear. Second, for EnKF and DfEnKF, local-
izations are conducted between the model and the observation
space,  while  for  En3DVar,  localizations  are  conducted
purely in the model space.

 2.2.    The En3DVar algorithm

The hybrid En3DVar algorithm based on the extended
control variable method of Lorenc (2003) is used in GSI, in
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Fig. 1. Flow diagram of the EnKF (middle), 3DVar, and DfEnKF and En3DVar (bottom) DA experiments versus the
control run (top). The spin-up ensemble forecasts from 2100 UTC through 2200 UTC include 40 members. FED DA
occurs  between 2200 and 2300 UTC with  5-minute  cycles,  and a  deterministic  forecast  is  launched from the final
ensemble  mean  analysis  at  2300  UTC  and  runs  to  0500  UTC.  The  CTRL  experiment  continues  the  ensemble
forecasts  through  2300  UTC  without  DA,  and  a  single  deterministic  forecast  continues  from  the  ensemble  mean
forecast at 2300 UTC.

FEBRUARY 2024 KONG ET AL. 265

 

  



which the full-rank static background error covariances and
the  rank-deficient  ensemble  covariances  are  combined
through the introduction of a set of extended control vectors.
The analysis increment is given by 

δxa = xa− xb = δx1+δx2 , (1)

δx1 δx2where  and  are the analysis increments related to the
static  and  ensemble  background  error  covariances,  respec-
tively. 

δx2 =

N∑
i=1

(
x′b,i ◦αi

)
, (2)

αi x′b,i
√

N −1 x′b,i = xb,i−
x̄b x̄b =

1
N

∑N

i=1
xb,i

◦
δxa

where  is the extended control variable (vector);  is a
vector of ensemble perturbations (for the i-th member) nor-
malized by , N being the ensemble size. 

 are the ensemble perturbations, and  is

the  ensemble  mean.  denotes  the  schur  product. The  total
analysis increment  is obtained by minimizing the follow-
ing cost function: 
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1/β1 1/β2

B
A
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where  and  are the weights given to the static and
ensemble  background  error  covariances,  respectively.  A
hybrid solution is derived by setting  or  to values
between 0 and 1.  is the static background error covariance
matrix and  is the matrix used to localize the ensemble back-
ground error covariance.  is the observation innovation vec-
tor,  is the linearized observational operator, and  is the
(diagonal)  observation  error  covariance  matrix.  When  the
weight for the static (ensemble) background error covariance
is  0,  the  hybrid  algorithm  degenerates  to  pure  En3DVar
(pure 3DVar).

B

In  this  study,  temperature-dependent  background  error
profiles  for  hydrometeor  mixing  ratios,  proposed  by Liu
et al. (2019), are adopted when constructing the static back-
ground error  to  generate  more  reasonable  graupel  incre-
ments.

As in Kong et al. (2018), the hybrid En3DVar system is
one-way coupled with EnKF; noting that with one-way cou-
pling, it is easier to separate En3DVar from EnKF when com-
paring  their  relative  performance  and  understanding  their
respective behaviors. In general, little difference is expected
between  one-way  and  two-way  coupled  EnKF-En3DVar
when  the  DA  cycles  are  run  for  a  short  period  (Pan  et al.,

2014). For long, continuously cycled DA systems, however,
two-way coupling is strongly recommended since divergence
between  the  EnKF  and  En3DVar  systems  can  occur  with
time in a one-way coupling mode (Pan et al., 2014).

 2.3.    The FED observation operator

The tuned FED observation operator used in this study
is  based  on  graupel  mass  instead  of  graupel  echo  volume
[Kong et al. (2020)]. The graupel-volume-based FED observa-
tion  operator  cannot  be  easily  used  in  a  variational  frame-
work, because of the zero gradient of the cost function that
is realized when differentiated with respect to the graupel mix-
ing ratio. This is because the graupel volume is no longer sen-
sitive to the graupel mixing ratio once its value exceeds the
threshold  (e.g.,  0.5  g  kg–1)  used  to  define  the  graupel  vol-
ume. The FED observation operator based on graupel mass
(GM in kg) from Kong et al. (2020) is given by 

FED = 1.044 × 10−8 (GM) . (5)

This operator has been tuned through sensitivity experi-
ments and the coefficient has been multiplied by a factor of
0.5  compared  to  the  original  operator  used  in Allen  et al.
(2016). Similar  to  Mansell (2014)  and Allen  et al. (2016),
the graupel mass within each grid cell is summed over a vol-
ume spanning the vertical depth of the model and covering
a 15 × 15 km2 horizontal area that is centered on the observa-
tion pixels, so that the lightning occurring in the vicinity of
a  typical  GLM  pixel  (8  ×  8  to  12  ×  12  km2)  can  be
accounted for.

B

Through the observation operator, information on light-
ning observations can be transferred in the variational analysis
to the graupel mixing ratio due to its direct linkage with the
FED observations. Other state variables (water vapor mixing
ratio, temperature, vertical velocity, etc.) are linked through
the  ensemble-derived  background  error  covariances.  When
a pure static background error covariance is used in 3DVar,
only  the  graupel  mixing  ratio  is  directly  updated  by  FED
observations  (due  to  lacking  cross-variable  correlations  in
the  static  background  error  covariance ),  although  other
state variables can respond to the FED DA during the forecast
period  through  either  microphysical  or  thermodynamical
adjustments.

The  implementation  of  the  FED  observation  operator
involves  the  integration  of  the  graupel  mass  field  over  a
fixed area (15 × 15 km2 in our case) centered on the observa-
tion. The number of model columns being used for integration
is  determined  adaptively  based  on  model  resolution.  For
example, a 5 × 5 region would be used for horizontal integra-
tion on a 3-km model grid and 15 × 15 for the 1-km model
grid used here.

 3.    Simulation setup and experimental design

 3.1.    GOES-R GLM-FED data and their processing

The FED observations were derived from the GOES-16
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level-2  GLM  data,  which  are  provided  in  20-sec  packets
with  an  8–12  km  pixel  resolution  over  the  contiguous
United States (CONUS, Goodman et al., 2013). The level-2
data include three different primary lightning metrics — i.e.,
the flashes, groups, and events — which are governed by spe-
cific  parent-to-child  relationships  (Goodman  et al.,  2013;
Bruning et al., 2019). Similar to Kong et al. (2020), the light-
ning  observations  are  mapped  onto  10-km  grid  pixels  to
obtain the FED observations, with the number identification
of  the  groups  and  flashes  being  tracked  to  each  matching
event. The number of events is directly used to calculate the
FED,  which  by  definition  increases  by  increments  of  one
for each flash on each pixel (in contrast to flash source densi-
ties). More details on the FED data processing can be found
in Kong et al. (2020).

 3.2.    Forecast model setup and initialization of ensembles

The Advanced Research WRF (ARW) model is used in
this  study,  which is  a  three-dimensional  compressible  non-
hydrostatic  NWP  model  (Skamarock  et al.,  2008).  The
model uses a 600 × 600 grid with 1-km horizontal grid spacing
on a single domain and has 53 stretched vertical grid levels
with a model top set at about 21 km.

Similar to the configurations of Kong et al. (2020), 40 ini-
tial ensemble members are generated based on the deviations
of  the  2100 UTC analyses  of  the  NCEP operational  Short-
Range Ensemble Forecast system (SREF, which has 26 mem-
bers with a 16-km horizontal resolution) from the 3-h North
American Model (NAM) forecast (with a 12-km horizontal
grid  spacing)  valid  at  the  same  time.  The  deviations  are
reduced by 25% (determined through experimentation), and
their  negative  versions  are  combined  to  produce  a  total  of
40  perturbations.  Following Tong  and  Xue (2008), Snook
et al. (2012), and Johnson et al. (2014), added a set of addi-
tionally  smoothed  small-scale  random perturbations  with  a
Gaussian  distribution  to  the  horizontal  components  of  the
wind field, potential temperature, and humidity fields to intro-
duce  convective-scale  perturbations.  The  initial  ensembles
are then advanced one hour to 2200 UTC, with the same sur-
face and boundary parameterizations and 6-class Thompson
bulk  microphysical  scheme  (Thompson  et al.,  2008).  More
details  on  the  physics  options  can  be  found  in Kong  et al.
(2020).

 3.3.    Design of data assimilation experiments

As  mentioned  in  section  2c,  the  graupel-mass-based
observation  operator  from Kong  et al. (2020)  was  used  in
this study. The assimilation of GLM FED data using 3DVar,
EnKF,  and  pure  En3DVar  methods  are  evaluated  against
each  other.  Their  results  are  also  compared  with  a  control
experiment (CTRL) that does not assimilate any data. Since
the purpose of this study is to validate the correctness of the
implementation of FED DA within the GSI variational DA
framework,  only  3DVar  and  pure  En3DVar  (instead  of
hybrid  En3DVar)  are  tested.  More  detailed  information
about different DA experiments is provided in Table 1.

FED  observations  are  assimilated  in  5-min  intervals

log(P/Pref)

log(P/Pref)

log(P/Pref)

over  a  1-h  period  in  all  DA  experiments  as  in Kong  et al.
(2020). To help suppress spurious storms in the background,
zero FED observations are also assimilated. A 0.95 adaptive
posterior  inflation  that  relaxes  the  posterior  spread  to  the
prior  spread  (Whitaker  and  Hamill,  2012; Kotsuki  et al.,
2017; Maldonado et al., 2020) is used to help maintain ensem-
ble spread. The FED operator is a vertical integral of graupel
mass, and, like the GLM FED observations, has no inherent
vertical  location.  Nevertheless,  we  need  to  specify  the
height of the FED observation for vertical covariance localiza-
tion  in  EnKF  (which  uses  observation-space  localization).
The  FED  observation  is  assigned  to  an  assumed  height  of
6.5 km in the EnKF (Allen et al., 2016; Kong et al., 2020),
which generally  falls  within the mixed-phase region where
most  lightning  is  initiated.  This  is  not  needed  in  En3DVar
because  localization  is  conducted  in  the  model  instead  of
observation  space.  Similar  to Allen  et al. (2016)  and Kong
et al. (2020), the horizontal and vertical localization radii in
the  EnKF  are  set  to  15  km  and –4  in  space
(~32  km  on  average).  With  the  large  vertical  localization
radius,  there  is  effectively  no  vertical  localization,  and  the
FED observations are allowed to influence the whole vertical
depth. The actual spatial spreading of analysis increments is
governed  by  the  ensemble  covariance  (Kong  et al.,  2020).
This  is  confirmed  by  a  single  observation  experiment,
where  results  are  found  to  be  insensitive  to  the  specified
height  of  the  FED  observation  (results  not  shown).  In
3DVar and hybrid En3DVar, the decorrelation length scale
for the static background error covariances B is set to 6 km
in the horizontal and to 1.5 grid points in the vertical (tuned
through experiment), which are larger than those used in Hu
et al. (2020). Because the graupel mass observation operator
is integrated over a 15 × 15 km2 column, the FED observation
does influence a  much larger  area than that  implied by the
decorrelation length scale of B.  The horizontal and vertical
decorrelation  length  scales  used  to  localize  the  ensemble
covariances in En3DVar are 4.1 km and –1.1 in 
space, respectively, which are equivalent to the cut-off radii
of 15 km and –4 in  used in EnKF based on Pan
et al. (2014). Considering that the flash rates from the GLM
are overall smaller than those detected by very-high frequency
ground-based LMA (Rison et al.,  1999) networks for high-
flash-rate  storms  (Carey  et al.,  2019),  a  small  observation
error of 0.5 flashes min–1 pixel–1 is used in this study [as in
Kong et al. (2020)]. Moreover, initial sensitivity experiments
revealed  that  setting  an  observation  error  smaller  than  0.5
flash min–1 pixel–1 can result in observation overfitting and
numerical instability during model integration.
 

Table 1. Descriptions of the DA experiments.

Experiment Use of background error covariance

CTRL (no DA) N/A
EnKF 100% ensemble covariance

DfEnKF 100% ensemble covariance
3DVar 100% static & 0% ensemble covariance

PEn3DVar 0% static & 100% ensemble covariance

FEBRUARY 2024 KONG ET AL. 267

 

  



For  the  DA  experiments,  the  first  analysis  is  made  at
2200 UTC 1 May 2018, or 1 h into the spinup ensemble fore-
casts from the perturbed initial conditions (Fig. 1). After the
1-h DA period, a 6-h forecast is made from the final analysis
to examine the impact of lightning DA on storm forecasts.

 3.4.    Case overview

A  severe  weather  event  occurred  in  north  central
Kansas and southern Nebraska in the afternoon and evening
of 1 May 2018. Multiple supercells spawned nearly a dozen
tornadoes,  including  a  long-track  EF-3,  across  the  state  of
Kansas. The storms were mainly influenced by a stationary
front over north-central Kansas (Figs. 2a–d), with favorable
wind shear and cold air aloft coupled with an abundant supply
of low-level moisture advected from the Gulf of Mexico by

a low-level jet. A dryline extending southward from the sta-
tionary front across west-central Kansas also triggered scat-
tered thunderstorms. The convective inhibition (CIN) values
of the 1200 UTC and 1900 UTC soundings from the NWS
site  of  Dodge  City,  Kansas  (DDC)  were  253  J  kg–1 and
4 J kg–1, respectively. The changes in boundary-layer thermo-
dynamics (reduction in inhibition via erosion of the cap by
solar heating) coupled with a progressive destabilization of
the  environment  (60  hPa  mixed  layer  CAPE at  1900  UTC
exceeding  2000  J  kg–1)  allowed  some  cumulus  turrets  to
develop along the stationary front and along portions of the
dry line in central Kansas. At 2100 UTC, a line of semi-dis-
crete storms developed along the stationary front (Fig.  2a).
These  cells  within  the  line  progressively  moved  eastward
while intensifying into severe-warned storms by 2200 UTC
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Fig.  2. Locations of  the fronts  [reproduced based on the surface analysis  from the storm prediction center  (SPC)],
overlaid with the composite reflectivity observations (dBZ) remapped from the WSR-88D radars (shaded contour) on
(a) 2100 UTC 1 May, (b) 2200 UTC 1 May, (c) 0000 UTC 2 May, and (d) 0600 UTC 2 May 2018, respectively.
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(Fig. 2b). Our DA focuses on the period with frequent light-
ning activity between 2200 UTC to 2300 UTC 1 May. Isolated
supercell storms developed over the next few hours, produc-
ing  several  tornadoes,  strong  wind  events,  and  reports  of
hail up to the size of softballs (10-cm diameter).

 4.    Results

 4.1.    Convergence  of  the  3DVar/En3DVar  cost  function
and computational costs of different DA methods.

The convergence of the quadratic cost function is evalu-
ated first to validate the correctness of the FED DA procedure
in the variational DA framework. Since the observation opera-
tor is linear, the double-loop procedure that is usually used
to  linearize  a  nonlinear  observation  operator  (such  as  for
reflectivity)  is  not  needed  here.  Only  one  outer  loop  (with
50  maximum  iterations)  is  used  in  this  study. Figure  3a
shows the value of the cost function as a function of iterations
in the first FED DA cycle for both cases. Pure 3DVar con-
verges slightly faster than PEn3DVar. Overall, 15 iterations
are  sufficient  for  convergence  in  both  3DVar  and
PEn3DVar. In our study, 50 iterations are used for all the vari-
ational  DA  experiments  to  secure  convergence  of  the  cost
function.

The  computational  costs  of  different  DA  schemes  are
also compared in Fig.  3b.  Overall,  the computation cost  of
EnKF is 60% higher than 3DVar and both are much lower
than PEn3DVar, for which the cost function evaluation and
minimization consume most of the computational time. The
EnKF computation/analysis is performed in the observational
space, and thus the computational cost is proportional to the
number  of  observations.  The  observational  density  of  the
two-dimensional FED data is much less than the three-dimen-

sional radar data. If FED data are assimilated together with
3D radar  data in EnKF, the additional  cost  incurred by the
FED DA becomes negligible. For EnVar, the computational
cost  is  proportional to the length of the state vector,  which
includes  the  much  larger  extended  state  vector α [see  Eq.
(2)].

 4.2.    Single-point observation experiment

xa− xb

To demonstrate  the  direct  impacts  of  lightning  DA on
the analyses of hydrometeor fields, single point experiments
(with grid column x=230, y=360 being the closet to the center
of the single observation pixel) are conducted and compared
between DfEnKF and pure En3DVar that uses 100% ensem-
ble  covariance  (PEn3DVar).  Vertical  cross-sections  of  the
analysis increments [  in Eq. (1)] for the mixing ratios
of rain, snow, and graupel are made through the single obser-
vation point. As in Kong et al. (2020), the horizontal localiza-
tion  radius  for  the  DfEnKF  is  15  km  (15  km  is  the  zero
point) and the vertical localization scale is 4 in logP space.
Since  the  vertical  localization  radius  is  very  large  (about
32 km on average in the vertical), the effective vertical loca-
tion is not considered in our DA experiments. To ensure simi-
lar  localization  scales  being  used  in  both  PEn3DVar  and
EnKF, equivalent recursive filter length scales based on Pan
et al. (2014) are used for localization, which is about 4.11 km
in horizontal and 1.10 in logP space for PEn3DVar.

As  shown  in Fig.  4,  the  magnitude  and  horizontal
extent of the analysis increment of the hydrometeors of grau-
pel,  snow,  and  rainwater  for  PE3DVar  (Fig.  4b)  are  much
larger than DfEnKF (Fig. 4a). The differences in the analysis
increments probably arise from the localization and the vol-
ume integration of the graupel mass in the observation ope-
rator.  To eliminate the influence caused by horizontal inte-
gration of the graupel mass in the FED observation operator,
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Fig. 3. (a) Value of the cost function as a function of iteration loops for both the 3DVar and PEn3DVar runs (there is
only one outer loop, with 50 iterations in the loop) in the first analyses and (b) the computational cost (wall time in
seconds) of 3DVar, EnKF, and PEn3DVar.
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the horizontal integration is arbitrarily turned off and the ver-
tical integration remains unchanged. In other words, the inte-
gration is conducted only over a single grid column with a
1 × 1 km2 area and multiplied by a factor of 15^2 (i.e., the
full area) to achieve a similar physical meaning as the original
operator. The observation operator is only modified to help
understand  the  problem,  and  the  original  version  was  used
for  the  experiments  discussed  in  the  following  sections.
After turning off the horizontal integration in the observation
operator, the horizontal extension of the analysis increment
from  DfEnKF  (Fig.  4c)  and  PEn3DVar  (Fig.  4d)  becomes
very similar. Thus, the horizontal integration in the observa-
tion operator is the major cause for the difference in the analy-

sis increment between DfEnKF and En3DVar under the influ-
ence of different localization strategies.

 4.3.    Sensitivity  of  DfEnKF  and  En3DVar  analyses  to
different localization scales

To  further  understand  the  impacts  of  the  difference  in
localization and integration volume in the observation opera-
tor, sensitivity experiments are conducted to assimilate single
FED observation with different horizontal and vertical local-
ization scales. Unlike En3DVar, for which localization is con-
ducted in the model space, EnKF needs the height information
of  the  observation  to  conduct  localization  between  the
model and observation space. Following Allen et al. (2016)
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Fig. 4. Vertical cross sections of the mixing ratio increments (g kg–1) of rain (shading, starting from 0.02 with 0.02 g
kg–1 interval), snow (purple contours, start from 0.4 with 0.4 g kg–1 interval), and graupel (green contours, start from
0.4 with 0.4 g kg–1 interval) after the first analysis of (a, c) DfEnKF and (b, d) PEn3DVar using (a, b) the original
observation operator and (c, d) the modified observation operator, respectively. The cross-section passes through the
observation point (x=230 km, y=360 km).
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and Kong et al. (2020),  the  FED observations  are  assigned
to  a  height  of  6.5  km  for  DfEnKF  DA.  When  the  vertical
localization radius is small (0.2 in logP space), the difference
between  DfEnKF  and  PEn3DVar  is  most  obvious.  As  is
shown in Fig.  5a,  with  a  small  vertical  localization  radius,
the  analysis  increments  of  the  graupel  field  for  DfEnKF
only  exist  in  the  levels  around  6.5  km,  while  the  analysis
increment of PEn3DVar is more extended in vertical, since
the  localization  of  En3DVar  is  conducted  in  model  space.
When increasing the vertical location radius but keeping the
horizontal  localization  the  same,  the  difference  between
En3DVar and DfEnKF becomes smaller  (Figs.  5b, c, f, g).
Furthermore,  when  the  horizontal  localization  radius  is
increased  to  a  very  large  value  (e.g.,  2000  km  cutoff  for
DfEnKF),  the  difference  between  DfEnKF  and  PEn3DVar

becomes very small. Without localization in both the horizon-
tal  and  vertical  directions,  DfEnKF  and  PEn3DVar  can
obtain similar analysis increments (Figs. 5d, h).

 4.4.    Comparisons  of  EnKF,  DfEnKF,  3DVar,  and
PEn3DVar

To evaluate  how well  the  analyses  match the observa-
tions after 1-h DA, the FED observation operator is applied
to the final analysis of the DA experiments, and the simulated
FEDs  are  compared  with  the  FED  observations.  For  the
FED  analyses  after  1-h  DA,  EnKF,  DfEnKF,  and
PEn3DVar are all able to better capture the observed discrete
FED  cores  corresponding  to  the  three  main  storm  cells,
which  are  more  consistent  with  the  observations  than
3DVar or CTRL (Fig. 6). The distribution of the FED field
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Fig.  5. Vertical  cross sections of  the mixing ratio increment (g kg–1)  of  rain (shading,  starting from 0.02 with 0.02 g kg–1

interval),  snow (purple  contours,  start  from 0.4  with  0.4  g  kg–1 interval),  and graupel  (green contours,  start  from 0.4  with
0.4 g kg–1 interval)  after  the first  analysis  of  (a–d) DfEnKF with horizontal  localization of  (a–c)  15 km, (d)  2000 km and
vertical localization radii of (a, b) 0.2, 1, (c, d) 4 in logP space, and (e–h) PEn3DVar with a horizontal recursive filter length
scale  of  (e–g)  4.11  km  and  (h)  547.72  km  and  vertical  localization  of  (a)  0.05,  (b)  0.27,  and  (c,  d)  1.10  in  logP space,
respectively. The cross-section passes through the observation point (x=230 km, y=360 km).
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from  CTRL  is  too  linear  and  there  are  obvious  location
errors.  3DVar  produces  a  poorer  FED  analysis  with  more
small-magnitude  FEDs  relative  to  EnKF,  DfEnKF,  and
PEn3DVar  as  well  as  the  observations,  which  is  expected
since  3DVar  only  updates  the  graupel  field  instead  of  the
whole model state as in EnKF/DfEnKF and PEn3DVar during
DA.

To  quantitatively  assess  the  performance  of  different
DA experiments, the root-mean-square innovations (RMSI)
of  FED analyses  and  forecasts  within  the  1-h  DA window
and the  follow-up 1–4 h  FED forecasts  for  CTRL,  3DVar,
EnKF, DfEnKF, and PEn3DVar are displayed in Fig. 7. Over-
all, EnKF performs best and has fewer spurious FED areas rel-
ative  to  the  other  DA  methods  (figure  not  shown).  Within
the DA cycles, taking the average of ensemble forecasts to
obtain ensemble means can lead to weaker FED values, thus
reducing the chance of overestimation (producing less spuri-
ous storms, figures not shown) in the EnKF analyses and fore-
casts  relative  to  DfEnKF  and  PEn3DVar  (which  does  not
involve  ensemble  mean).  3DVar  has  a  smaller  RMSI  than
CTRL during DA but increases quickly during the 1-h fore-
casts  after  the  DA.  The  lack  of  consistent  updating  of  all
state variables is believed to be the main reason for this.

To quantitively evaluate how well different DA experi-
ments capture the structure and intensity of the storms, the
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Fig. 6. (a) 1-min FED observations (units: flash min–1 pixel–1) and FED forecasts from (b) CTRL; analyses (after 1-h DA)
from (c) 3Dvar, (d) EnKF, (e) DfEnKF, and (f) PEn3DVar.
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PEn3DVar, respectively.
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0–4 h forecasts of composite reflectivity fields from different
experiments are verified against WSR-88D composite reflec-
tivity  using  the  equitable  threat  score  (ETS; Mason,  2003)
with a 5-km neighborhood radius in Fig. 8. For the threshold
of  20  dBZ (Fig.  8a),  EnKF  outperforms  DfEnKF  and
PEn3DVar, apparently because EnKF generates fewer spuri-
ous  storms  than  DfEnKF  and  PEn3DVar  (figures  not
shown).  Both DA methods produce overall  better  forecasts
than  3DVar,  which,  in  turn,  still  outperforms  CTRL  (in
terms of ETS). For the threshold of 35 dBZ (Fig. 8b), EnKF
produces the best  0  to  1-h forecast.  The ETSs of  DfEnKF,
PEn3Dvar,  and 3DVar are similar and drop quickly during
the first 0.5 h of the forecast. For 1 to 3 h, the DA experiments
do not exhibit substantial improvements over CTRL.

Updraft helicity (UH; Kain et al., 2008) is an integrated
measure  of  updraft  rotation  in  supercells,  and  UH  swaths
have been shown to be a good proxy for tornado track fore-
casting (Clark et al.,  2012).  To evaluate how well  different
DA experiments predict rotating updrafts and tornadic poten-
tial,  the  accumulated  swaths  of  the  2–5  km  UH  from  the
0–2-hr forecasts of the velocity fields are compared with the

locations of the official Storm Prediction Center (SPC) tor-
nado  and  hail  reports.  As  can  be  seen  in Fig.  9,  EnKF,
DfEnKF,  and pure  En3DVar perform similarly  overall  and
outperform both the CTRL and 3DVar in terms of capturing
the  three  different  high  UH  swaths  in  southern  Nebraska
and north central Kansas that are consistent with the tracks
of tornado and hail reports. The ensemble-based DA methods
(EnKF/DfEnKF or En3DVar) all help improve the forecast
location  of  rotating  updrafts,  and  thus  are  able  to  provide
more accurate prediction of potential severe weather threats
for this case.

 5.    Summary and conclusions

In  this  study,  the  capability  to  assimilate  GOES-R
GLM  data  within  the  GSI  hybrid  ensemble-variational
(EnVar)  system  for  convection-allowing  NWP  was  devel-
oped.  Real GOES-R GLM FED data are assimilated into a
convection-resolving WRF model for a supercell storm case
over the Great Plains of the United States using the hybrid
En3DVar  method,  EnKF,  as  well  as  the  DfEnKF  and,
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Fig.  8. 5-km  neighborhood  ETSs  of  the  supercell  composite  reflectivity  analyses  and  forecasts  verified
against  (a)  20  dBZ and  (b)  35  dBZ within  1-h  of  DA  (corresponding  to –1  to  0  h  after  DA)  and  0–4  h
composite  reflectivity  forecasts  after  DA  for  experiments  CTRL,  3DVar,  EnKF,  DfEnKF,  and  PE3DVar,
respectively.
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3DVar methods. The FED observation operator based on grau-
pel  mass  from Kong  et al. (2020)  is  used  for  the  assimila-
tion. One-minute FED rates are assimilated every 5 min for
a  1-h  period  and  4-h  deterministic  forecasts  are  produced
from the final analyses of each DA method.

DA  experiments  using  EnKF,  DfEnKF,  3DVar,  and
hybrid En3DVar are performed, and their performances are
evaluated  and  compared  against  each  other  as  well  as
against  a  control  run  (CTRL)  that  does  not  assimilate  any
data.  Objective  verifications  employing  neighborhood ETS
are performed for simulated FED and reflectivity. The main
findings from this evaluation are summarized as follows:

●  Single-point experiments are conducted and compared
between  DfEnKF  and  pure  En3DVar  at  uses  100%
ensemble covariance (PEn3DVar). Without applying
vertical localization in both En3DVar and EnKF, the
magnitudes and horizontal extents of the analysis incre-
ments of the hydrometeors of graupel, snow, and rain-
water for PE3DVar are much larger than EnKF. The
differences  in  the  analysis  increments  are  mainly
caused by the localization and the horizontal/vertical
integration of the graupel mass in the observation oper-
ator.

●  The analyses after 1-h DA and the ensuing 4-h forecasts

of  FED  in  EnKF,  DfEnKF,  3DVar,  and  PEn3DVar
are  compared  with  those  of  CTRL as  well  as  GLM
FED observations. All DA experiments generally cap-
ture  the  three  discrete  FED cores  better  than  CTRL
in  the  analyses.  The  high  FED  values  in  CTRL
appear more linear in structure and lack discrete FED
core structures as observed.

●  The  root-mean-square  innovation  (RMSI)  values  of
FED analyses and forecasts within the 1-h DA window
and  the  follow-up  1–4  h  FED  forecasts  for  CTRL,
3DVar,  EnKF,  DfEnKF,  and  PEn3DVar  are  com-
pared. Overall, pure En3DVar that uses 100% ensem-
ble  covariance  has  a  similar  performance  as  EnKF/
DfEnKF. 3DVar has a smaller RMSI than CTRL dur-
ing DA but increases quickly during the 1-h forecasts
after  the  DA.  The  lack  of  consistent  updating  of  all
state variables is believed to be the main reason.

●  The  0 –4  h  forecasts  of  composite  reflectivity  fields
from different experiments are verified against WSR-
88D  composite  reflectivity.  Overall,  all  DA  experi-
ments  produce higher  ETSs than CTRL; EnKF pro-
duces  slightly  higher  ETSs  than  DfEnKF  and
PEn3Dvar, and both are much larger than 3DVar for
the threshold of 20 dBZ.

 

(a) CTRL (b) 3DVar (c) EnKF

(d) DfEnKF (e) PEn3DVar

100oW 98oW 96oW 94oW100oW 98oW 96oW 94oW

46oN

45oN

44oN

43oN

42oN

41oN

40oN

46oN

45oN

44oN

43oN

42oN

41oN

40oN

100oW 98oW 96oW 94oW

Longitude

L
a

ti
tu

d
e

 

Fig.  9. The  0–2-h  forecast  for  the  2–5  km updraft  helicity  (m2 s–2)  for  the  supercell  case  from (a)  CTRL,  (b)  3DVar,  (c)
EnKF, (d) DfEnKf, and (e) PEn3DVar, respectively, overlaid with tornado reports (inverted triangle) and hail reports (green
circles) during the same time period.
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●  The 0–2 h accumulated swaths of 2–5 km UH in the
supercell DA experiments are compared with SPC tor-
nado reports. EnKF, DfEnKF, and PEn3DVar all per-
form  similarly  and  outperform  both  CTRL  and
3DVar  in  terms  of  capturing  the  three  high  UH
swaths in central Kansas matching the observed tor-
nado tracks.

In summary,  the experiments  that  assimilate  FED data
using EnKF, 3DVar, and En3DVar are all better at capturing
the intensity  and distribution of  storms in  the  analyses  and
forecasts in terms of FED, reflectivity, and updraft helicity,
relative to CTRL that does not assimilate FED data. Overall,
PEn3DVar  produces  comparable  results  to  EnKF,  whereas
3DVar  performs  the  worst  among  all  DA  methods  tested.
This suggests that the flow-dependent cross-variable correla-
tions  used  in  ensemble-based  DA  experiments  (EnKF,
En3DVar) play an important role in generating physically con-
sistent  analyses  of  unobserved  state  variables,  leading  to
improved forecasts.

Despite encouraging results obtained thus far within the
operational  GSI  DA  framework,  more  systematic  testing
and evaluations are warranted with more cases. The current
operators  assumed  a  linear  relationship  between  FED  and
graupel mass or graupel volume and the operators were origi-
nally derived based on simulation data sets. The relationship
between the total flash rate and graupel mass is not necessarily
linear (e.g., Fig. 5a in Allen et al., 2016), and there may be
large  variability  in  the  graupel  mass  scaling  coefficient
across  different  convective  regimes. Kong  et al. (2022)
recently  developed  a  new  nonlinear  operator  for  the  GLM
FED observations,  which can be tested and compared with
the  old  operator  using  variational  DA  methods  in  future
work.  Furthermore,  the  GLM  FED  data  would  eventually
need to be assimilated in conjunction with other operationally
available  data,  such  as  radar  and  GOES-R  ABI  radiance
data.  The  sensitivity  of  data  impact  on  the  microphysics
parameterization  scheme  should  also  be  investigated  as  it
directly  affects  thunderstorm  prediction.  In  addition,  the
new  DA  methods  can  also  be  implemented  in  Joint  Effort
for DA Integration (JEDI, which is an innovative, next-gener-
ation  U.S.  DA  system)  and  tested  with  the  target  Rapid
Refresh  Forecast  System  (RRFS,  the  next-generation  U.S.
ensemble  weather  forecast  system)  configurations.  We  are
hopeful that after more intensive testing, such DA capabilities
can be transitioned into operations in the near future.
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