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ABSTRACT: In a prior study, GOES-R Geostationary Lightning Mapper (GLM) flash extent density (FED) data were
assimilated using ensemble Kalman filter into a convection-allowing model for a mesoscale convective system (MCS) and a
supercell storm. The FED observation operator based on a linear relation with column graupel mass was tuned by multiplying a
factor to avoid large FED forecast bias. In this study, new observation operators are developed by fitting a third-order polyno-
mial to GLM FED observations and the corresponding FED forecasts of graupel mass of the MCS and/or supercell cases. The
new operators are used to assimilate the FED data for both cases, in three sets of experiments called MCSFit, SupercellFit, and
CombinedFit, and their performances are compared with the prior results using the linear operator and with a reference simula-
tion assimilating no FED data. The new nonlinear operators reduce the frequency biases (root-mean-square innovations) in the
0–4-h forecasts of the FED (radar reflectivity) relative to the results using the linear operator for both storm cases. The operator
obtained by fitting data from the same case performs slightly better than fitting to data from the other case, while the operator
obtained by fitting forecasts of both cases produce intermediate but still very similar results, and the latter is considered more
general. In practice, a more general operator can be developed by fitting data frommore cases.

SIGNIFICANCE STATEMENT: Prior studies found that assimilation of satellite lightning observation can benefit
storm forecasts for up to 4 h. A linear lightning observation operator originally developed for assimilating pseudo-satellite
lightning observations was tuned earlier through sensitivity experiments when assimilating real lightning data. However,
the linear relation does not fit the model and observational data well and significant bias can exist. This study develops new
lightning observation operators by fitting a high-order polynomial to satellite lightning observations and model-predicted
quantities that directly relate to lightning. The new operator was found to reduce the frequency biases and root-mean-square
innovations for lightning and radar reflectivity forecasts, respectively, up to several hours relative to the linear operator. The
methodology can be applied to larger data samples to obtain a more general operator for use in operational data assimilation
systems.

KEYWORDS: Convective storms/systems; Lightning; Satellite observations; Data assimilation

1. Introduction

Accurate initial conditions play a crucial role in improving
the skill of numerical weather prediction (NWP; Stensrud and
Fritsch 1994). In the absence of convective-scale data assimila-
tion (DA), the initial conditions of storm-scale NWP often
lack small-scale information that causes the commonly known
spinup problem in the forecast. New observation types with
high spatial and temporal resolutions, such as those of weather
radars and new-generation geostationary satellites, can pro-
vide more detailed information at the convective scales than
most conventional observations. In the recent decades, many
studies have shown the benefit of radar DA using variational
or ensemble-based methods for improving short-range weather
forecasting (e.g., Xue et al. 2003; Gao et al. 2004; Tong and
Xue 2005; Xue et al. 2006; Jung et al. 2008; Aksoy 2010; Aksoy
et al. 2009; Kain et al. 2010; Dowell et al. 2011; Gao et al. 2013;

Liu and Xue 2016; Wang and Wang 2017; Kong et al. 2018; Liu
et al. 2019; Liu et al. 2020; Kong et al. 2021).

Considering that radars do not have coverage over vast
oceanic regions and suffer from beam blockage in mountainous
terrain, work aimed at assimilating high-resolution satellite data
in a more systematic manner has received heightened attention
in recent years. Research focusing on satellite DA has primarily
focused on three different satellites datasets, which are 1) satellite
infrared and microwave radiances (Eyre et al. 1993; Derber and
Wu 1998; Chevallier et al. 2004; Vukicevic et al. 2004; McNally
et al. 2006; Vukicevic et al. 2006; Chen et al. 2008; Geer et al.
2010; Geer andBauer 2011; Guerbette et al. 2016; Kazumori et al.
2016; Geer et al. 2018; Geer et al. 2019); 2) the cloud water path
(CWP) and vertically integrated liquid (VIL) retrievals (Minnis
et al. 2008a,b; Minnis et al. 2011; Jones et al. 2013; Chen et al.
2015; Jones and Stensrud 2015; Jones et al. 2018); and 3) the
atmospheric motion vectors derived from cloud measurements
(AMVs; Wu et al. 2014; Wu et al. 2015; Zhang and Pu 2018).
Many of these studies examined impacts on tropical cycloneCorresponding author: Ming Xue, mxue@ou.edu
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predictions. The assimilation of satellite data is one of the most
significant reasons for global NWP improvements in recent dec-
ades. Infrared and microwave radiances have been effectively
assimilated in the operational systems of the European Centre
for Medium-Range Weather Forecasts (ECMWF; Bauer et al.
2010; Geer et al. 2017; Geer et al. 2018) and NOAA/National
Centers for Environmental Prediction (NCEP; Zhu et al. 2016).
Certain radiances in cloudy regions have also been assimilated
although the effectiveness is limited by the inability of global
models in accurately predicting clouds (Zhu et al. 2016).
Advances have also been made in the forecasting of storm-scale
precipitation and severe weather events by directly assimilating
infrared radiance (in cloudy regions) into convection-allowing
NWP models (Zhang et al. 2016; Honda et al. 2018; Jones et al.
2018; Minamide and Zhang 2018; Zhang et al. 2018; Sawada et al.
2019; Jones et al. 2020). In addition to the above three satellite
datasets, the GLM on board the GOES-16/-17 R-series satellites
provide total lightning data products with high spatial (roughly
8-km pixel) resolution and at 20-s time level over the Americas
and adjacent ocean regions (Goodman et al. 2013). Despite their
availability, the GLM lightning data are not yet assimilated into
operational NWPmodels.

In recent years, more efforts have been made to assimilate
lightning data into NWP models. Many of them use indirect
assimilation method where proxy observations are created
using lightning data then assimilated or the lightning data are
used to adjust other model variables. For example Stefanescu
et al. (2013) use convective available potential energy (CAPE)
as a proxy between lightning data and model variables. Fierro
et al. directly increase the water vapor mixing ratio at locations
of lightning observations using a nudging method (Fierro et al.
2012, 2014) or impose water saturation within a fixed level
above the lifted condensation level (Fierro et al. 2016, 2019)
and Lightning data can be used to create pseudo-observations
of water vapor mixing ratio (Fierro et al. 2019; Hu et al. 2020),
vertical velocity (Z. X. Chen et al. 2020; Gan et al. 2021; Xiao
et al. 2021), and radar reflectivity (Liu et al. 2017; Y. Chen et al.
2020) which are then assimilated. Direct assimilation of lightning
data involves the development and utilization of an observation
operator that links the lightning observation with model states.
Apodaca et al. (2014) and Apodaca and Zupanski (2018) linked
lightning data to vertical velocity of the global forecast model
while Mansell (2014) and Allen et al. (2016) built the linkage
with model graupel field and used an ensemble Kalman filter
(EnKF) for data assimilation. Most of these studies assimilated
lightning data derived from the ground-based lightning networks.

Before actual GLM data became available, efforts were
made to assimilate simulated GLM FED data (Mansell 2014)
or pseudo-GLM FED data derived from ground-based light-
ning detection networks (e.g., the ground-based lightning
mapping array, Allen et al. 2016). Flash extent density (FED;
with the unit of flashes per minute per pixel, hereinafter
flashes min21 pixel21) is the total number of flashes that occur
within a grid cell over a given period (Lojou and Cummins
2005). Please refer to Bruning et al. (2019) for detailed descrip-
tions and derivations of the GLM FED data. Mansell (2014)
was the first to apply the EnKF method to the assimilation of
lightning data, using simulated pseudo-GLM FED observations.

Allen et al. (2016) later applied that EnKF system to two real
storm cases, assimilating pseudo-GLM FED observations de-
rived from a ground-based lightning mapping array (LMA;
Rison et al. 1999). In both studies, FED observation opera-
tors that linearly related FED to total graupel mass or total
graupel volume within the FED pixel column were used. The
operators were originally developed based on a linear fit to
output data from cloud model simulations that contain explicit
electrification physics (Mansell et al. 2002).

With the availability of operational GOES-16/-17 GLM data
over the past 5 years, studies have been carried out to assimilate
actual data and examine their impacts on storm-scale predictions.
For example, Fierro et al. (2019) and Hu et al. (2020) assimilate
the pseudo-observation for water vapor mass retrieved from
GLM lightning observations using a 3DVAR algorithm devel-
oped at National Severe Storms Laboratory (NSSL; Gao et al.
2004, 2016). These studies, while not directly assimilating light-
ning data themselves, but pseudo-observations derived from
lightning data, were already showing the benefit of assimilating
GLM data for improving shorter-term (#6 h) storm forecasts.
Compared to the 3DVar method, the ensemble Kalman filter
(EnKF; Evensen 2003) can analyze all model state variables even
when a very limited number of parameters are measured,
because of the flow-dependent cross covariances that can be
calculated between the observation prior and model state
variables. For example, radar reflectivity can update all state
variables within a cloud model including all hydrometeors
(Tong and Xue 2005). Similarly, total lightning flash rate
can update all model state variables using EnKF as long as
relationship can be found between the observed flash rate
and certain model state variables and the relationship is
commonly known as the observation operator.

In Kong et al. (2020), the linear FED observation operators
based on column graupel mass or graupel volume tested in Allen
et al. (2016) were implemented within the EnKF algorithm of
the GSI DA system of NCEP (Parrish and Derber 1992; Kleist
et al. 2009) and tested with real GLM FED data for a mesoscale
convective system (MCS) case that occurred over the central
United States. In their study, 1-min FED rates were assimilated
at 5-min intervals over a 1-h period to initialize the MCS on a
convection-allowing 3-km grid. The GLM FED assimilation was
shown to be effective in adjusting not only the model state that is
directly related to FED observation in the observation operator
(graupel mixing ratio), but also other model state variables
(such as mixing ratios of water vapor, cloud water, cloud
ice, and the temperature, pressure, and wind fields) through
the cross-correlation between observation prior and model
states (see Figs. 8 and 9 in Kong et al. 2020). The FED DA
was found to noticeably improve the analysis and prediction of
the MCS for up to several hours (∼4 h). Both graupel-mass and
graupel-volume-based operators were found to produce simi-
lar results. However, sensitivity experiments showed that a fac-
tor of 1/2 multiplied to the original linear FED observation
operators of Allen et al. (2016) yielded best results. Otherwise,
the predicted FED had significant high bias. In fact, original
linear fit of operator in Allen et al. (2016) has significant scat-
ter, and there was also apparent storm type dependency. More
accurate operators could be obtained by relaxing the linear
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relation assumption and allowing for nonlinear relations.
Moreover, the amount of graupel predicted by an NWP model
is often sensitive to the microphysics scheme used. To reduce
systematic bias associated with the observation operator, we pro-
pose in this study to derive new operators by fitting observed
FED data to model-simulated graupel mass using high-order
polynomials. Doing so takes into account biases in simulated
graupel mass as well as any reduced efficiency of GLM total
lightning detection in optically deep storms. This approach does
assume that the modeled storms are reasonably similar to real
storms, and short-range forecasts with convective-scale DA can
usually serve such a purpose. As a proof of concept, reasonably

accurate short-range forecasts of anMCS from the control exper-
iment of Kong et al. (2020) that assimilated GLM FED data, as
well as forecasts for a supercell storm case obtained using a simi-
lar procedure are used as forecast dataset to perform the non-
linear polynomial fit. Developing and testing the new operators
based on the relatively weak convection in the MCS case and the
strong convection in the supercell case enable the operators to
include information spanning both ends of the convective
spectrum. EnKF DA experiments similar to the control ex-
periment in Kong et al. (2020) are performed using the new
operators and the results are compared to those of the con-
trol experiment of Kong et al. (2020).

(c) 0000 UTC 13 Jul, 2018                                            (d) 0000 UTC 2 May, 2018
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FIG. 1. Locations of the fronts (blue and red contours) and the dryline (orange contour), overlaid with the composite
reflectivity observations (dBZ) remapped from WSR-88D (shaded contours) at 0000 UTC 13 Jul 2018 and 0000 UTC
2 May 2018 for the (a) MCS and (b) the supercell storm cases, respectively. (bottom) The pre-storm soundings used
for (c) the MCS case and (d) the supercell case. For the MCS case, the thermodynamic profile has 3104 J kg21 CAPE.
The sounding comes from data collected during the 0000 UTC 13 Jul 2018 OAX (Omaha, NE), radiosonde launch
[red dot in (a)]. For the supercell case, the thermodynamic profile has 4093 J kg21 CAPE, and the sounding comes
from data collected during the 0000 UTC 2 May 2018 Topeka, KS, radiosonde launch [red dot in (b)]. In both cases the
black line corresponds to temperature, the blue line corresponds to dewpoint, and the green line corresponds to the
moist adiabatic followed by a parcel averaged over the lowest level of the sounding.
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The rest of this paper is organized as follows. Section 2
describes the DA method, the forecast model and simulation
setup, as well as the experimental design. In section 3, the FED
observation data and storm cases are discussed. Section 4
describes the GLM lightning observation and the processing
of FED data. In section 5, development of the new observation
operators is described. The DA experiments that use the nonlin-
ear observation operators are compared with the results using
linear observation operator in section 6. A summary and conclu-
sions are presented in section 7.

2. Case description and observational data

The two storm cases in this study were well observed by the
Next Generation Weather Radar (NEXRAD) operational
Weather Surveillance Radar-1988 Doppler (WSR-88D) radar
network (Doviak et al. 2000) and the GOES-R GLM instru-
ment. The two storm cases are briefly introduced below.

a. Case 1: 12 July 2018 MCS

This MCS occurred over parts of South Dakota and south-
ern Minnesota on 13 July 2018. As is shown in Fig. 1, the
storms are linked to a southwest–northeast (SW–NE)-oriented
stationary front. The mixed layer convective available potential

energy (CAPE) at 1300 UTC at OAX (Omaha, Nebraska)
was 3104 J kg21, providing a thermodynamic pre-storm envi-
ronment favorable for deep, mixed phase moist convection.
Initially, before about 2100 UTC, storms developed as a scat-
tered field of cumulus congestus, which later developed into a
well-organized west-southwest–north-northeast (WSW–NNE)-
oriented MCS around 0000 UTC (Fig. 1a). The MCS persisted
for more than 6 h, producing copious rainfall exceeding
103 mm in some places (not shown). The radar observations
from 0000 to 0600 UTC 13 July 2018 showed radar echoes
composed of stratiform precipitation alongside scattered convec-
tive areas, with the stratiform echoes covering a large area and
accounting for a large portion of the rainfall (not shown). The
domain maximum FED from 2300 UTC 12 July to 0600 UTC
13 July ranges from 5 to 35 flashes min21 pixel21 (andmaximum
reflectivity of 52 to 65 dBZ) with a time-averaged value of
17.9 flashes min21 pixel21 (59.7 dBZ, Fig. 2; see section 4 for
processing of FED observation). No severe weather event was
reported for this storm.

b. Case 2: 1 May 2018 supercell storm event

The supercell storms in this case occurred in north central
Kansas and south Nebraska during the afternoon and evening
hours of 1 May 2018. The supercells were associated with a
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FIG. 2. Domain maximum (a) FEDs (flashes min21 pixel21) and (b) reflectivity (dBZ) during 1-h DA window
(i.e., 21 to 0 h after DA) and 0–6-h forecasts afterward (solid lines) and the corresponding time average (dashed
lines) for the MCS (blue) and supercell (magenta) cases, respectively.

TABLE 1. Lightning data assimilation experiments, here GM is the graupel mass (in kg) summed over a 15 3 15 km2 area.

Expt name Description

NoDA Do not assimilate any data
K2020 (Control Expt) Assimilate FED data using the observation operator tuned based on sensitivity experiments

(Kong et al. 2020)
MCSFit Assimilate FED data using the observation operator based on the third-order polynomial fit

between the FED observations and 0–6-h free forecasts after DA in experiment K2020 for the
MCS case

SupercellFit Assimilate FED data using the observation operator based on the third-order polynomial fit
between the FED observations and 0–6-h free forecasts after DA in experiment K2020 for the
Supercell case

CombinedFit Third-order polynomial fitting between the FED observations and 0–6-h free forecasts after DA
in experiment K2020 for both the MCS and the supercell cases
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stationary front and a dryline in the southwest portions of the
domain (Fig. 1b). The mixed layer CAPE at 0000 UTC at
TOP (Topeka, Kansas) was 2179 J kg21 with strong wind
shear providing an environment supportive for severe storms.
Scattered storms started to develop at about 2000 UTC 1 May
2018 and began to exhibit classic supercellular characteristics
by about 2200–3000 UTC. By 2246 UTC, the storm produced
a weak and short-lived tornado. A longer-tracked tornado
formed later on at 0008 UTC 2 May 2018 and passed through
parts of Ellsworth, Saline, and Ottawa county of Kansas. The
tornado dissipated at around 0055 UTC, but the storms per-
sisted for several additional hours. In addition to tornadoes,

many of the storms produced strong wind ($27 m s21) and
large hail ($2.5 cm) reports. The domain maximum FED
(reflectivity) from 2300 UTC 1 May to 0500 UTC 2 May
ranges from 14 to 44 flashes min21 pixel21 (62 to 71 dBZ)
with the time-averaged value of 26.2 flashes min21 pixel21

(65.6 dBZ), which are notably larger than those reported
for the MCS case (Fig. 2).

c. GLM lightning observation and their processing

The GLM Level-II data are provided on a geostationary
latitude–longitude grid, which include a wide variety of optically
derived variables associated with lightning (Goodman et al. 2013;
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FIG. 3. Flow diagram of the (bottom) EnKF DA experiments vs (top) the no-DA run. The spinup ensemble forecasts
from 2100 to 2300 UTC (2200 UTC) for the MCS (supercell) case include 40 members. FED DA occurs between 2300
(2200) and 0000 (2300) UTC with 5-min cycles for the MCS (supercell) case, and deterministic forecast is launched from
the final ensemble-mean analysis at 0000 (2300) UTC and run to 0600 (0500) UTC for the MCS (supercell) case. The
CTRL experiment continues the ensemble forecasts through 0000 (2300) UTC without DA for the MCS (supercell) case,
when deterministic forecast continues from the ensemble-mean forecast at 0000 (2300) UTC for the MCS (supercell)
case.
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FIG. 4. (a) The observed FED and the FED simulations using the graupel-mass based observation operator fromAllen
et al. (2016, A2016 in our study), and the first- (MCSFit_1stOrder, SupercellFit_1stOrder, CombinedFit_1stOrder), third-
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run for the MCS (MCSFit_1st/3rdOrder), supercell (SupercellFit_1st/3rdOrder), and the combination of two cases (Com-
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Rudlosky et al. 2019; Rudlosky and Virts 2021). Flash density is
defined as the number of flashes occurring within a grid cell over a
given time interval. To account for the areal extent of flashes in
the flash density calculations, GLM-level optical “events” and the
parent ID of each flash must be considered (Lojou and Cummins
2005; Bruning et al. 2019). Similar to Kong et al. (2020), the
GLM lightning observations are remapped onto a 10-km grid
before being assimilated, where the footprint is slightly larger
than those used in (Mansell 2014) to alleviate gaps between adja-
cent pixels.

3. Data assimilation setup

a. DA method

A scalable implementation of the ensemble square root filter
(EnSRF;Whitaker and Hamill 2002) that produces similar analy-
sis as traditional EnSRF (a variant of EnKF) and updates both
the state vectors and observation operators is used in GSI EnKF
(Anderson and Collins 2007). Detailed information about the up-
date equations of GSI EnKF can be found in Kong et al. (2020).

b. Forecast model setup and initialization of ensembles

The Advanced Research WRF (ARW, Skamarock et al.
2008) model (version 3.8.1) is used for the simulations, which
use a 3003 300 (5003 500) grid with a 3-km (1-km) horizontal
grid spacing for the MCS (supercell) storm case and 53
stretched vertical levels (with a model top at about 21 km). Fol-
lowing Kong et al. (2020), deviations of the 2100 UTC initial
conditions (analyses) of the operational Short-Range Ensemble
Forecast (SREF) from the North American Model (NAM) 3-h
forecast valid at 2100 UTC are calculated, scaled by 75%, and
then inverted to obtain a 40-member initial ensemble for the
MCS (supercell) case. The scaling value was determined by sen-
sitivity experiments. Since the resolutions of both SREF and
NAM are larger than 10 km, additional smoothed, Gaussian-

distributed small-scale perturbations are added to the horizontal
velocity, humidity, and potential temperature fields at the initial
time to introduce convective-scale perturbations to the initial
ensemble (Tong 2008; Snook et al. 2012; Johnson et al. 2014).
The readers are encouraged to consult Kong et al. (2020)
for more detailed information about generation of the initial
ensembles. The land surface model, PBL, and microphysics
(6-class Thompson bulk microphysics) schemes used are the
same as those used in Kong et al. (2020). Each initial ensem-
ble member is first integrated forward for 2 h (1 h) until
2300 UTC spin up the model fields on the 3- or 1-km grid
before DA cycles start.

c. Design of data assimilation experiments

As noted earlier, the main goal of this study is to develop
and test nonlinear observation operators for the assimilation
of GOES-R GLM FED data. The new observation operators
are developed based on the nonlinear fit between FED obser-
vations and model forecasts of FED, from control experiments
using the tuned linear operator as in Kong et al. (2020). The
control experiment is labeled K2020 in this study and is run for
both MCS and supercell cases.

New observation operators are developed based on third-or-
der polynomial regressions between the FED observations and
0–6-h FED forecasts of K2020. Only graupel-mass-based FED
observation operators are developed and tested. This is because
graupel volume is calculated only when graupel mixing ratio ex-
ceeds a fixed, specified threshold (e.g., 0.5 g kg21). As a result,
the FED estimated based on graupel volume is a discontinuous
function of graupel mixing ratio. This poses an issue in a varia-
tional DA framework, where discontinuous observation operator
can lead to poor convergence of the cost function. Although
Kong et al. (2020) showed that the two operators performed
similarly for ensemble assimilation, the graupel-mass-based
FED observation operator is also a better choice than the

FIG. 5. The boxplots of the sorted first guess [i.e., H(x)] minus sorted observations (y) of the FED fields (flashes min21 pixel21) for
control experiment K2020, first-, and third-order polynomial fits for (a) the MCS, (b) supercell, and (c) combination of the two cases.
Boxes represent the 25th–75th percentiles (bottom and top edges in blue) range or IQR with a red line indicating the median. The
whiskers (dashed lines) represent the 25th percentile minus 1.5 times the IQR and the 75th percentile plus 1.5 times the IQR, extending
to the most extreme data point in this data range with outliers (red crosses).

MONTHLY WEATHER REV I EW VOLUME 1502096

Unauthenticated | Downloaded 01/04/23 07:47 PM UTC



graupel-volume-based operator for EnKF. Since the former
operator is linear function of graupel mixing ratio, the pertur-
bations of the observation priors (needed when calculating the
Kalman gain) are normally distributed if the background errors
are normally distributed. While for the latter operator, the distri-
butions of the observation priors are very non-Gaussian, even if
the background errors are Gaussian. Detailed information on the

fitting procedure is given in section 5. The DA experiments that
use the new operators based on data fitting for the MCS case,
supercell case, and the combined data of the two cases are
labeled as MCSFit, SupercellFit, and CombinedFit, respectively.
These experiments are compared with control experiment
K2020 and with an experiment not assimilating any data
(NoDA). More details on the experiments are given in Table 1.
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FIG. 6. Horizontal cross sections of (a),(e),(i),(m),(q) 1-min FED observations (units: flashes min21 pixel21),
and FED forecasts from (b),(f),(j),(n),(r) NoDA; (c),(g),(k),(o),(s) K2020; and (d),(h),(l),(p),(t) CombinedFit af-
ter (a)–(d) 0-, (e)–(h) 1-, (i)–(l) 2-, (m)–(p) 3-, and (q)–(t) 4-h free forecasts following the 1-h cycled DA period
(valid from 0000 to 0400 UTC 13 Jul 2018) for the MCS case.
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Following Kong et al. (2020), 1-min FED observations are as-
similated every 5 min over a 1-h period, a 6-h free forecast from
the final ensemble-mean analysis is then launched. The first analy-
sis is at 2300 UTC 12 July (2200 UTC 1May) for theMCS (super-
cell) case, which is after a 2-h (1-h) integration of the initial
ensemble (Fig. 3). The height of the FED observations is assumed
to be 6.5 km for the vertical covariance localization purpose. The
horizontal and vertical localization radii are 15 km and 24 in
log(P/P0) space (∼32 km on average), respectively. The FED ob-
servation error is set to 0.5 flashes min21 pixel21. To help main-
tain the ensemble spread after DA, a 0.95 adaptive posterior
inflation that relaxes the posterior ensemble spread to 95% of the
prior ensemble spread (Whitaker 2012) is applied in each DA
cycle. The settings follow Kong et al. (2020) exactly.

4. Development of nonlinear FED observation operators

a. The linear observation operator used in the
control experiment

The graupel-mass-based linear observation operator with the
optimal tuning factor from Kong et al. (2020) is used in the con-
trol experiment of this study. This operator can be expressed as

FED 5 1:044 3 1028(GM), (1)

where GM is the graupel mass (in kg). Compared to the original
formula of Allen et al. (2016), a factor of 1/2 has been multiplied
in (1). Similar to Mansell (2014) and Allen et al. (2016), the grau-
pel mass is summed over a volume spanning the vertical depth of
the model domain and covering a 153 15 km2 area in horizontal
dimensions centered on the observation pixels. The FED priors
that involve horizontal and vertical integrations are calculated
first on the model grid then interpolated to the observation loca-
tions. In our FED DA using the EnSRF algorithm, both the
model state variable that is directly related to the FED observa-
tion in the observation operator [graupel mixing ratio based on
Eq. (1)] and the model fields that are not directly related to the
FED observation via its operator (such as, three-dimensional

wind fields, temperature, pressure, hydrometeor mixing ratios of
water vapor, rain, snow, cloud water, and cloud ice) can be
updated via flow-dependent background error covariances,
as discussed earlier in Introduction.

b. Development of the nonlinear observation operator

In this section, new nonlinear FED observation operators
are developed based on FED observations and model fore-
casts of the MCS and supercell storm cases. A pair of control
experiments using the tuned linear operator from Kong et al.
(2020) are first performed to assimilate FED observations
every 5 min for 1 h and then produce 6-h free forecasts from
the ensemble-mean analyses for both the MCS and supercell
cases. The model predicted FEDs every 5 min in the 6-h fore-
casts are used to obtain polynomial fit with observed FED
data, for the MCS and supercell cases individually, and for the
combined data of the two cases. The model FED is calculated
by integrating the predicted graupel over the model depth
and cover a 15 3 15 km2 area then interpolating it to the ob-
servation locations.

With our procedure, systematic observation error or bias,
and systematic discrepancies between model and observations
can in principle be statistically accounted for, similarly to the
practice of using observations to calibrate parameters in a
computer model (Kennedy and O’Hagan 2001). Because of
factors (such as spatial displacement errors) that are difficult
to account for, point-by-point fitting between FED observations
and graupel masses is difficult. In fact, attempt was made to do
so, very large scatter was encountered that made close fitting
difficult. To deal with this problem, the FED observations and
calculated graupel masses are first aggregated. Data aggrega-
tion, which reduces the dimensions (degrees of freedom) of the
data, is a common practice in climate model calibration to poten-
tially reduce uncertainties of the calibrated parameters (Chang
et al. 2014). The aggregated one-dimensional FED observations
and graupel masses are then sorted in ascending order before be-
ing fitted to each other, under the assumption that the probability
distribution function of the less accurate data (the simulated
FED in our case) equals to that of the more accurate data (the
observed FED, Rosenfeld et al. 1993; Anagnostou et al. 1999;
Ebert 2001). New observation operators are then developed
based on the third-order nonlinear fits of the sorted FED obser-
vations and model graupel masses. Since the FED observations
are dominated by zero values (about 95% in both cases), the
zero FED observations and the corresponding graupel masses
(after sorting) are discarded to facilitate the regression process.

The new operators developed based on data of the MCS,
supercell, and combination of two cases are, respectively,

FED 5 21:173 3 10228 (GM)3 1 1:211 3 10218 (GM)2

1 4:005 3 1029 (GM) 1 0:733; (2)

FED 5 23:762 3 10228 (GM)3 1 2:860 3 10218 (GM)2

1 2:971 3 1029 (GM) 1 0:269; (3)

FED 5 22:988 3 10228 (GM)3 1 2:511 3 10218 (GM)2
1 2:833 3 1029 (GM) 1 0:720, (4)
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Here GM is, again, the graupel mass (in kg) over a 153 15 km2

area in the horizontal centered on the observation pixels.
The zeroth-order intercepts in the third-order polynomial
fits for MCSFit, SupercellFit, and CombinedFit are 0.733, 0.269,
0.720 flashmin21 pixel21, respectively. To avoid introducing spuri-
ous graupel analysis in clear-air region duringDA, a zero-intercept
linear function is applied for small graupelmass values (i.e., GM,

53 108 kg). The final observation operators (piecewise continuous
functions) for theMCS, supercell, and combined cases are

FED 5

{
6:047 3 1029 (GM) (GM , 5 3 108 kg)
Eq: (2) (GM $ 5 3 108 kg)

, (5)

FED 5

{
4:845 3 1029 (GM) (GM , 5 3 108 kg)
Eq: (3) (GM $ 5 3 108 kg)

, (6)

FED 5

{
5:453 3 1029 (GM) (GM , 5 3 108 kg)
Eq: (4) (GM $ 5 3 108 kg)

: (7)

In Fig. 4a, the original linear operator of Allen et al. (2016)
(labeled A2016) and the tuned version of Kong et al. (2020)

(labeled K2020) are plotted together with newly fitted ones
using first- and third-order polynomials. The FEDs given by
K2020 are notably larger than the observations for both cases
while those given by A2016 are twice as large (Fig. 4a). The
third-order polynomial curves match the observations very well
throughout the observation range, while the first-order curves
do not fit observations well for larger values. The nonlinear fits
for the MCS and supercell case are similar for lower FED val-
ues (e.g., ,8 flashes min21 pixel21, Fig. 4a) but different at
larger magnitudes. The combined fit (CombinedFit_3rdOrder)
is much closer to the supercell fit (SupercellFit_3rdOrder) be-
cause the supercell case contains more points with larger FED
values compared to the MCS case (Fig. 4b), providing more
constraints to the fitting at the larger value end. The estimated
FEDs from the first-order polynomial fits for both single and
combined cases are much closer to the observations relative to
K2020 but are generally smaller than those from the third-order
fits for higher FED values.

Figure 5 shows the box-and-whisker plots (Massart et al.
2005) of the deviations of the sorted FED simulations (i.e.,
the observational priors of FED) from the sorted observa-
tions for K2020, MCSFit_1stOrder (or SupercellFit_1stOrder),
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FIG. 8. Performance diagrams of the 0–4-h FED forecasts (with a 5-min interval) from (a),(c) K2020; (b),(d) Combined-
Fit for thresholds of (a),(b) 1 and (c),(d) 5 flashes min21 pixel21, respectively, for the MCS case. Performance of different
forecasting times are indicated by different colors and the sizes of the circles represent the times within the specified fore-
cast intervals (larger marker size represents longer forecast time). The shaded contour represents the critical success index.
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and MCSFit_3rdOrder (or SupercellFit_3rdOrder), respectively,
for the MCS (supercell) case and the combination of two storm
cases. The interquartile range (IQR, distance between the 25th
and 75th percentiles) and the median from the third-order fits
are slightly smaller than those from the first-order fits, and both
are obviously smaller than the unfitted estimation (K2020) both
for the individual and combined cases, which is indicative of
greater error reduction for the nonlinear fits. The number of out-
liers for the third-order fits are fewer than those from the first-

order fits. Based on these results, the observation operators using
third-order polynomial fits are used in the new DA experiments,
whose results are compared with those using the original obser-
vation operator of K2020.

5. Results using different observation operators

In this section, we examine the results of EnKF analyses
and subsequent forecasts from the experiments that use the
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new FED observation operators (MCSFit, SupercellFit and
CombinedFit) and the K2020 operator, for the two storm
cases, with NoDA experiments used as reference. The results
of the DA experiments are evaluated in terms of FED and ra-
dar reflectivity observations. See Table 1 for the list of experi-
ments evaluated.

a. Case 1: 12 July 2018 MCS

To directly compare simulated and observed FED rates, ob-
servation operators are applied to the analyses and 0–4-h fore-
casts of the graupel mass mixing ratio fields to obtain the
observation priors and posteriors. Overall, all DA experiments
(shown for K2020 and CombinedFit in Fig. 6) produce similar
FED analyses after 1-h DA and show obvious improvements
over the NoDA case in terms of the areal coverage and inten-
sity of the analyzed FED rates (Figs. 6a–d). MCSFit has simi-
lar FED values as CombinedFit and is therefore not shown.
The FED rates in 1–4-h forecasts of CombinedFit are smaller
than those of K2020 and are in closer agreement with observa-
tions (Figs. 6e–t). K2020 forecasts overestimate the FED rates
in intense convective regions relative to CombinedFit. Both
CombinedFit and K2020 outperform NoDA in better captur-
ing the FEDs associated with the northeastern portion of the
MCS.

The root-mean-square innovations (RMSIs; where innova-
tion is difference from observations) of the analyzed FED dur-
ing the DA period (21 to 0 h) and the FED during the 0–4-h
forecasts from experiments K2020, MCSFit, SupercellFit, and
CombinedFit are plotted in Fig. 7. Relative to NoDA, all DA
experiments reduce the errors of the forecast FED. Relative
to K2020, MCSFit, SupercellFit, and CombinedFit reduce the
RMSIs of the FED forecasts by about 25%. MCSFit performs
slightly better than CombinedFit and SupercellFit in terms of
the FED forecast RMSIs for this MCS case, apparently be-
cause MCSFit uses the operator fitted to data of the MCS case
while the other two use operators fitted to supercell data also.
The differences among the three experiments are much smaller
compared to control experiment K2020. For the MCS case,
most FED observations are less than 15 flashes min21 pixel21

(Fig. 4b), and the fitting curves among MCSFit_3rdOrder,
SupercellFit_3rdOrder, and CombinedFit_3rdOrder are not sig-
nificantly different for small FEDs (,15 flashes min21 pixel21,
Fig. 4a), resulting in small difference in experiments MCSFit,
SupercellFit, and CombinedFit. For generality, only Combi-
nedFit will be considered in the remaining evaluations.

The performance diagrams (Roebber 2009) of FED fore-
casts up to 4 h at 5-min intervals against GLM FED observa-
tions are shown in Fig. 8 for K2020 and CombinedFit. For the
lower FED threshold of 1 flash min21 pixel21 (Figs. 8a,b),
CombinedFit performs similarly to K2020, with the frequency
biases of 3–4-h forecasts of K2020 being slightly closer to
unity. The critical success indices (CSI) of 2–4-h FED forecasts
of CombinedFit are slightly larger than those of K2020. For
the higher threshold of 5 flashes min21 pixel21, CombinedFit
clearly outperforms K2020 in terms of lower frequency biases
(closer to unity), especially for.1-h FED forecasts.

To evaluate how well different DA experiments capture
the structure and intensity of the storms, the 0–4-h reflectivity
forecasts are compared with radar observations. Overall, all
DA experiments are able to produce the observed west-
southwest–east-northeast-oriented precipitation band of the
MCS. All DA experiments produce reflectivity forecasts
much closer to the observations relative to NoDA. NoDA
fails to capture the reflectivity echoes in the northeastern part
of the MCS. The areal coverage of the MCS from CombinedFit
is larger than K2020 and is more consistent with the observa-
tions, especially for the northeast precipitation band in 1–4-h
forecasts (Fig. 9).

Figure 10 shows the RMSIs of composite reflectivity fields
from different experiments. CombinedFit produces somewhat
smaller RMSIs than K2020, and both produce notably smaller
RMSIs than NoDA, especially for reflectivity forecasts after
2 h, after which NoDA fails to capture the reflectivity echoes
over the northeastern portions of the MCS (Fig. 9), leading
to much larger RMSIs. Compared to the RMSIs of FED
shown in Fig. 7, the improvement in reflectivity RMSIs of
CombinedFit over K2020 is much smaller, suggesting that the
large FED RMSIs of K2020 were mostly due to biases associ-
ated with the old linear operator while the forecast reflectiv-
ities are more similar.

b. Case 2: 1 May 2018 supercell storm

For the supercell storm case, the FED analyses and fore-
casts from NoDA, K2020, and CombinedFit are compared in
Fig. 11. As can be seen, both intensity and areal coverage of
FED analyses of CombinedFit (Fig. 11d) at the end of 1-h
DA are similar to those of K2020 (Fig. 11c), and both are
much smaller than those of NoDA (Fig. 11b) and are closer
to observations (Fig. 11a). The assimilation of zero FEDs in
DA experiments help suppress the overprediction of FED in
NoDA. For the 0.5–4-h forecasts, the maximum FED values
(shown in panels of Fig. 11) from CombinedFit are smaller or
much smaller than those of K2020 and in better agreement
with observations. Relative to K2020 and CombinedFit,
NoDA (that also employs the same linear operator as K2020
for FED simulation) overpredicts the FED rates, and the
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FIG. 10. RMSIs of 0–4-h composite reflectivity forecasts (dBZ) from
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FIG. 11. Horizontal cross sections of (a),(e),(i),(m),(q),(u) 1-min FED observations (units: flashes min21 pixel21),
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overall structure of the storms resembles that of a bow echo
more instead of the individual supercellullar storm cells seen
in the observations (e.g., in Figs. 11f,j,n). The areal coverages
of the FED forecasts of CombinedFit are also smaller than
those of K2020 and also more consistent with observations.
MCSFit significantly underestimates the FED forecasts for
the simulation of high FEDs (e.g.,.15 flashes min21 pixel21),
and the differences between SupercellFit and CombinedFit
are small and, thus, only the results of CombinedFit are shown
in Fig. 11. As has been discussed earlier, CombinedFit_
3rdOrder is much closer to SupercellFit_3rdOrder relative to
MCSFit_3rdOrder, since the supercell case contains more
points with larger FED values compared to the MCS case
(Fig. 4b), providing more constraints to the fitting and
more similar FED estimates at the larger value end.

The RMSIs of the FED analyses during DA cycles and 0–4-h
forecasts for NoDA, K2020, MCSFit, SupercellFit, and
CombinedFit are shown in Fig. 12 for the supercell case.
Again, all DA experiments produce notably smaller RMSIs
than NoDA, underlining the positive impacts of FED DA on
storm forecasts. Additionally, the DA experiments that utilize
the new observation operators (MCSFit, SupercellFit and
CombinedFit) produce much smaller RMSIs than K2020 using
the old linear operator, especially for FED forecasts (Fig. 12).
The new operators reduce the RMSIs of 0–4-h FED forecasts
by about 25% relative to using the original linear operator.
The RMSIs of CombinedFit lie between those of SupercellFit
and MCSFit most times during the forecast, although they are
the lowest between 1.5 and 2 h, and the highest for about 10
min near around 3.7 h (Fig. 12) but the differences are gener-
ally small. The results indicate a small level of sensitivity to the
data used to fit the operator. Given that CombinedFit is more
general, we will again focus the remaining evaluations for the
supercell case on CombinedFit.

The performance diagrams of 0–4-h FED forecasts from ex-
periments K2020 and CombinedFit verified against FED obser-
vations are plotted in Fig. 13 for the supercell case. For both

low and high thresholds (i.e., 1 and 5 flashes min21 pixel21),
CombinedFit produces the least frequency bias (with values
closer to unity), especially for the 2–4-h FED forecasts.

The composite reflectivity forecasts of NoDA, K2020, and
CombinedFit are compared against radar observations in Fig. 14.
Relative to DA experiments K2020 and CombinedFit, as with
the FED forecasts shown earlier, NoDA produces storms that
are less isolated in nature and more like a bow echo in the central
part of plotting domain that do not match observations. For the
reflectivity analyses at the end of 1-h DA, CombinedFit produces
more intense convection in terms of reflectivity (.45 dBZ) com-
pared to K2020 and is in better agreement with observations.
The smaller FED rates analyzed in CombinedFit relative to
K2020 (Fig. 11) result in more graupel mass being added into the
model during DA in K2020 and, therefore, producing overall
more vigorous storms at the final analysis time (cf. Figs. 14c,d).
The relatively weak storms analyzed in K2020, however, develop
quickly during the first few hours of forecast, resulting in similar
storm forecasts as in CombinedFit in later hours. However, Com-
binedFit produces fewer spurious storms relative to K2020 and
NoDA (cf. magenta ellipses in Figs. 14r,s,tu,v,x). The FED esti-
mated in CombinedFit is smaller than that from K2020, resulting
in more effective suppression of spurious FED relative to K2020
over the northern portion of the domain (not shown), since less
correction to the background forecast (which is more accurate) is
needed when zero FEDs are assimilated in CombinedFit relative
to K2020.

Figure 15 shows the RMSIs of the composite reflectivity
field for different experiments for the supercell case. The
RMSIs for K2020 and CombinedFit are again notably smaller
than those of NoDA, indicating the ability of GLM FED DA
in improving supercell storm forecasts in terms radar reflectiv-
ity also. Different from the reflectivity forecasts of the MCS
case where the RMSIs of K2020 and CombinedFit are similar
(Fig. 12), for this supercell case, CombinedFit further reduces
the RMSIs by about 23% in the reflectivity forecasts beyond
the initial 0.5 h of forecast, compared to K2020. The large im-
pact of the new operator in this supercell case is presumably
because supercell storms have large variability in intensity
(see Fig. 4). There are more high flash rates in the supercell
and the linear operator has larger errors at high flash rates
(Fig. 4). The new nonlinear operator therefore not only im-
proves the forecasts of FED but also reflectivity.

In summary, employing the new nonlinear operator (Com-
binedFit) reduces the biases in FED forecasts compared to
the linear tuned operator used in K2020 for both the MCS
and supercell storm cases for up to 4 h into the forecast. The
errors in forecast reflectivity are also significantly smaller with
the new operator for the supercell case, although the differ-
ences are much smaller for the MCS case where convection is
generally weaker. The performance differences between
MCSFit, SupercellFit, and CombinedFit are small for both
cases and therefore the nonlinear operator obtained by fitting
FED observations to aggregated forecast graupel mass data
are preferred for general applications. The same procedure
can be used to obtain an even more general operator by fitting
data from a large number of cases in the future.
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FIG. 12. RMSIs of the FED analyses and forecasts (flashes
min21 pixel21) within 1-h DA (corresponding to 21 to 0 h after
DA) and 0–4-h FED forecasts from experiments NoDA, K2020,
MCSFit, supercellFit, and CombinedFit for the supercell case.
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6. Summary and conclusions

In this study, new observation operators are developed to as-
similate GOES-R GLM FED data into a convection-allowing
NWPmodel. The new operators are developed based on third-
order polynomial fit between FED observations and forecasts
of graupel mass of an MCS and a supercell storm case initial-
ized from cycled FED DA using linear operator. The choice of
the forecasts used to do the fitting is mainly for convenience in
this proof of concept. In more general practice, a large sample
of forecasts starting from best initial conditions possible (e.g.,
those that assimilate radar data also) should be used. The same
version of model (especially with the same microphysics)
should be used since the fitting procedure also plays a role of
bias correction. In this study, the forecasts used for the fitting
are produced from initial conditions obtained after FED ob-
servations are assimilated over a 1-h period at 5-min intervals,
using a tuned linear FED observation operator (denoted
K2020) from Kong et al. (2020). Both observed FEDs and
forecast graupel masses are sorted according to their values
before fitting. The sorting alleviates the impact of mismatches
in location due to spatial displacement errors, which can be

very large in convection-allowing models. The fitting is per-
formed for the MCS and supercell data alone, and for the com-
bined data of the two cases, leading to three operators labeled
MCSFit, SupercellFit and CombinedFit. The same names are
used to denote the three DA experiments using the corre-
sponding operators, and the experiments are run for the MCS
and supercell cases using the same DA configuration of Kong
et al. (2020). The DA experiments with the new operators are
compared with the control run K2020 that used the linear op-
erator as well as an experiment not assimilating any FED data
(NoDA). Forecasts up to 4 h are evaluated against FED and
radar reflectivity observations, through both subjective com-
parisons of their fields and the root-mean-square innovations
(RMSIs). Performance diagrams of FED forecasts are also
shown to assess additional aspects of the forecasts, including
frequency biases. The major findings are summarized as
follows:

• All FED DA experiments produce improved (0–4 h) FED
forecasts relative to the experiment that does not assimilate
any data. Assimilating FED data helps to better capture
the FED analyses/forecasts over the northeastern portions
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FIG. 13. Performance diagrams of the 0–6-h FED forecasts (with a 5-min interval) from (a),(c) K2020; (b),(d) Combined-
Fit for thresholds of (a),(b) 1 and (c),(d) 5 flashes min21 pixel21, respectively, for the supercell case. Different forecasting
times are indicated by different colors and the sizes of the circles represent the times within the specified forecast intervals
(larger marker size represents longer forecast time). The shaded contours indicate critical success index.
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of the MCS and the individual supercell storm cells than the
experiment that does not assimilate any data. The control
run using the original linear FED operator (K2020) signifi-
cantly overestimates the FED rates in intense convection re-
gions relative to using the fitted operators for both storm
cases. The DA experiments that use the operators fitted based
on single or combined cases do not have much difference for
the MCS case; while for the supercell case, SupercellFit is
more similar to the CombinedFit relative to the MCSFit, since
the supercell case contains more points with larger FED
values compared to the MCS case, providing more con-
straints to the fitting and more similar FED estimates at
the larger value end.

• RMSIs of the 0–4-h FED forecasts after DA are compared in
experiments K2020, MCSFit (SupercellFit), and CombinedFit
for both the MCS and supercell storm case. When compared
with NoDA, all the DA experiments greatly reduce the errors
in FED forecasts, underscoring the positive impacts of FED
DA on lightning forecasts. Relative to K2020, the nonlinear
operator experiments MCSFit/SupercellFit and CombinedFit
all reduce the RMSIs of the 0–4-h FED forecasts by about
25% for both storm cases. The RMSI differences between
MCSFit, SupercellFit and CombinedFit remain small. For
generality, only CombinedFit will be considered in the re-
maining evaluations.

• The performance diagrams of the 0–4-h FED forecasts verified
against the FED observations were also compared between
experiments K2020 and CombinedFit. For lower threshold
(i.e., 1 flash min21 pixel21), CombinedFit performs similarly
to K2020. For higher threshold (5 flashes min21 pixel21), how-
ever, CombinedFit was shown to clearly outperform K2020 in
terms of frequency bias values being closer to unity (i.e.,
unbiased).

• For the MCS case, all experiments are able to produce the
west-southwest–east-northeast-oriented precipitation band.
Both DA experiments produce reflectivity forecasts that are
in notably better agreement with the observations relative to
NoDA. The areal coverage of the MCS from CombinedFit is

larger than K2020 and is more consistent with the observations,
especially for the northeastern precipitation band at 1–4-h
forecasts. For the reflectivity analyses, CombinedFit produ-
ces more intense convection in terms of higher reflectivity
values (.45 dBZ) relative to K2020 and is noticeably closer
to the observations. Smaller FED estimation in CombinedFit
relative to K2020 results in more graupel mass being added
into the domain during the DA leading to overall more
vigorous storms. Meanwhile, CombinedFit produces fewer
spurious storms relative to K2020 as well as NoDA.

• Assimilating FED observations using the linear operator
greatly reduces the RMSIs of the composite reflectivity field
relative to NoDA. Using the new fitted operator further re-
duces the RMSIs in the reflectivity forecasts. Especially for
the supercell storm case, the RMSIs of the 0.5–4-h reflectivity
forecasts are reduced by 23%. More accurate FED simula-
tion (corresponding to less amount of FED to be corrected
by zero FED) results in more effective suppression of the
spurious storms in the analyses and the forecasts relative to
using the old linear operator.

In summary, this proof-of-concept study provides a new way
to develop the nonlinear lightning observation operator. Em-
ploying the new nonlinear operator (CombinedFit) reduces the
biases and RMSIs in the 0–4-h forecasts of the FED and reflec-
tivity fields relative to using the tuned linear operator (K2020)
for both the MCS and supercell storm cases. The performance
differences among the DA experiments that use the operators
fitted for the MCS case, supercell case, and the combination of
two cases are not significant. The operator fitted for the super-
cell case is much closer to the combined fit, since the supercell
case contains more points with larger FED values compared to
the MCS case, providing more constraints to the fitting and
more similar FED estimates at the larger value end. Thus, the
observation operator based on the combined fitting curve is rec-
ommended for more general applications.

Despite some of the encouraging results that have been
documented in this work with the new methodology to de-
velop nonlinear FED operators, there still exist some nonne-
gligible degrees of variability in the regression coefficients
across different types of convective modes. More research is
thus needed to develop the operator across a wider sample of
cases covering all storm types to obtain a more general opera-
tor. It is hoped that through additional complementary studies,
the rich storm-scale information provided by the GOES-R
sensors can be better leveraged toward a more systematic us-
age of total lightning data in operational NWP undertakings.
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