
Development of a Hybrid En3DVar Data Assimilation System and Comparisons
with 3DVar and EnKF for Radar Data Assimilation with Observing

System Simulation Experiments

RONG KONG AND MING XUE

School of Meteorology, and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

CHENGSI LIU

Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

(Manuscript received 8 June 2017, in final form 14 November 2017)

ABSTRACT

A hybrid ensemble–3DVar (En3DVar) system is developed and compared with 3DVar, EnKF, ‘‘de-

terministic forecast’’ EnKF (DfEnKF), and pure En3DVar for assimilating radar data through perfect-model

observing system simulation experiments (OSSEs). DfEnKF uses a deterministic forecast as the background

and is therefore parallel to pure En3DVar. Different results are found between DfEnKF and pure En3DVar:

1) the serial versus global nature and 2) the variational minimization versus direct filter updating nature of the

two algorithms are identified as the main causes for the differences. For 3DVar (EnKF/DfEnKF and

En3DVar), optimal decorrelation scales (localization radii) for static (ensemble) background error co-

variances are obtained and used in hybrid En3DVar. The sensitivity of hybridEn3DVar to covarianceweights

and ensemble size is examined. On average, when ensemble size is 20 or larger, a 5%–10% static covariance

gives the best results, while for smaller ensembles, more static covariance is beneficial. Using an ensemble size

of 40, EnKF and DfEnKF perform similarly, and both are better than pure and hybrid En3DVar overall.

Using 5% static error covariance, hybrid En3DVar outperforms pure En3DVar for most state variables but

underperforms for hydrometeor variables, and the improvement (degradation) is most notable for water

vapor mixing ratio qy (snowmixing ratio qs). Overall, EnKF/DfEnKF performs the best, 3DVar performs the

worst, and static covariance only helps slightly via hybrid En3DVar.

1. Introduction

To improve the accuracy of numerical weather pre-

diction (NWP) at the convective scale, active research has

been carried out in the past two decades to assimilate

radar observations into numerical models. The assimila-

tion of radar data using the traditional three-dimensional

variational data assimilation (3DVar) approach or en-

semble Kalman filtering (EnKF) has been shown to im-

prove the prediction of convective systems (Hu et al.

2006a, b; Kain et al. 2010; Snook et al. 2011; Sun et al.

2014). More recently, the hybrid data assimilation (DA)

approach that combines 3DVar and EnKF methods has

been found to have some advantages over pure EnKF or

pure 3DVar for large-scale DA (e.g., Buehner et al.

2010a, b, 2013; Clayton et al. 2013) and mesoscale DA

(Li et al. 2012; Zhang et al. 2013; Pan et al. 2014).

3DVar is attractive for radar DA because of its rela-

tively low computational cost and the ability to include

weak equation constraints (Gao et al. 1999) to the cost

function (Gao et al. 2004; Xiao et al. 2005; Hu et al.

2006b). However, the observation operator of radar

reflectivity (Z) data is complicated; it involves multiple

hydrometeor species and is highly nonlinear. Without

additional physical constraints, the problem of assimi-

lating reflectivity data within a 3DVar framework is

underdetermined and/or nonunique. For this reason,

indirect assimilation of Z is most commonly employed

so far when using the 3DVarmethod, such as the use of a

complex cloud analysis scheme (Hu et al. 2006a).

EnKF is an alternative method that has enjoyed in-

creasing popularity in convective-scaleDA, since its first

application to radar DA by Snyder and Zhang (2003). In

EnKF, flow-dependent background error covariances

are derived from an ensemble of forecasts and used to

update the state variables. EnKF allows for direct use ofCorresponding author: Ming Xue, mxue@ou.edu
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nonlinear observation operators and is more suitable

for a NWP model with complex parameterizations. The

benefits of EnKF for convective-scale NWP and radar

DA had been demonstrated in many studies (Tong and

Xue 2005; Xue and Martin 2006; Xue et al. 2006; Jung

et al. 2008; Tong and Xue 2008; Aksoy et al. 2009, 2010;

Dowell et al. 2011; Snook et al. 2011; Stensrud et al.

2013; Snook et al. 2015). Zhang et al. (2011) and

Stensrud et al. (2013) review some of the progress in

recent years.

Although flow-dependent background error co-

variances can be approximated from ensemble forecasts

in EnKF, the estimated covariance matrix is usually rank

deficient because of the much smaller ensemble size

compared to the degrees of freedom of NWP models

(Houtekamer and Mitchell 1998; Hamill et al. 2000).

Using much larger ensembles can help alleviate the

problem but the computational cost can become pro-

hibitively high. Covariance localization is commonly used

to alleviate the rank-deficient problem (Hamill et al.

2001), but it has its own issues, such as preventing the use

of distant correlations that are physically meaningful, or

introducing imbalance into the background error cross

correlations (Lorenc 2003; Houtekamer and Mitchell

2005; Kepert 2009; Greybush et al. 2011).

An alternative approach that can help alleviate the

rank-deficiency problem is the so-called hybrid method;

in which a weighted average of ensemble-derived flow-

dependent background error covariance and the typical

static flow-independent variational background error

covariance is used. This strategy was first proposed

by Hamill and Snyder (2000) while Lorenc (2003)

proposed a computationally efficient implementation

through introducing a set of extended control variables

preconditioned on the ensemble covariance.

The advantages of the hybrid algorithms over tradi-

tional EnKF and 3DVar were first demonstrated using

simulated observations and for the simple models

(Hamill and Snyder 2000; Etherton and Bishop 2004;

Wang et al. 2007), and the hybrid algorithm generally

has more benefit when the ensemble size is small. The

applications of hybrid algorithms to real cases are

mostly at the large scales (Buehner et al. 2010a, b, 2013;

Clayton et al. 2013) and mesoscales (Li et al. 2012;

Zhang et al. 2013; Pan et al. 2014). For convective-scale

radar DA, the development and testing of hybrid

ensemble–variational (EnVar) algorithm have been

more limited. Gao et al. (2013) first reported pre-

liminary results comparing hybrid En3DVar, 3DVar,

and EnKF for assimilating simulated radar data for a

supercell storm. EnKF was found to outperform hybrid

En3DVar with equal weights assigned to the static

and ensemble covariances for the analyzed dynamic

variables but underperform hybrid En3DVar for hy-

drometeor variables when assimilating data from single

radar. When assimilating data from two radars, the hy-

brid method produced the best analyses for most model

variables. Gao et al. (2014) further examined the de-

pendency of the relative performance of hybrid

En3DVar for different ensemble sizes and covariance

weights, and they found that smaller ensemble sizes

would benefit from a higher weight for the static co-

variance, consistent with earlier findings with larger-

scale applications. In Gao et al. (2016), similar to Li

et al. (2012), an ensemble of the 3D variational DA

approach was taken in which the En3DVar system is

run multiple times to provide the ensemble perturba-

tions rather than running a parallel EnKF system. The

sensitivities of supercell analyses to the inclusion of a

mass continuity constraint, microphysics errors, and

reflectivity assimilation were examined, again in an

observing system simulation experiment (OSSE) frame-

work. The assimilation of reflectivity data was found to

accelerate storm spinup and have a small positive impact

on wind analyses.

While interesting results have been obtained with the

above studies through developing and testing hybrid

algorithms for radar DA, further improvements and

investigations are still needed. For example, the EnKF

system used in Gao et al. (2013, 2014) was an experi-

mental version of EnKF DA, and the 3DVar used con-

stant background error variances for all state variables

and empirical spatial correlation scales. If the back-

ground error covariances are further optimized for

3DVar and EnKF is optimally tuned in terms of co-

variance localization and inflation, would the relative

performance of the 3DVar, EnKF, and En3DVar

change? Also, in principle, when En3DVar uses 100%

ensemble-derived covariance, its analysis should be

identical to that of EnKF under linearity and Gaussian

error assumptions; will their analyses actually be very

close? If not, what are the sources of differences? In

what situations does the static covariance in the hybrid

algorithm help, if at all, for convective storms?

In this study, the above questions will also be

addressed in anOSSE framework, under the assumption

of a perfect prediction model. In the OSSEs, the truth is

known, enabling a quantitative assessment of different

algorithms. Based on the OSSEs, any difference be-

tween EnKF and En3DVar algorithms can be more

easily investigated, and the potential benefits of hybrid

En3DVar over traditional 3DVar and EnKF can be

better demonstrated, if they do exist. This is necessary

before applying hybrid DA to the real cases where many

possible, unknown sources of error make understanding

the performance of the algorithms difficult. From a
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broader perspective, it is also helpful for algorithm im-

provements in the future, and providing a better initial

condition for operational numerical prediction of con-

vective weather systems.

The hybrid En3DVar algorithm based on the ex-

tended control variable approach of Lorenc (2003) is

implemented within the ARPS 3DVar framework (Gao

et al. 2004). The En3DVar system is coupled with a

mature EnKF DA system that has been developed and

tested for radar data DA over the past decade to form a

coupled EnKF–hybrid En3DVar system. To facilitate

the most fair and direct comparison between EnKF and

pure En3DVar, we formulate an alternative EnKF al-

gorithm in which an additional deterministic forecast is

produced each cycle which is updated in the same

manner as the ensemble mean background in the EnKF,

and we call this algorithm DfEnKF (because of the use

of deterministic forecast), and DfEnKF will be directly

compared with pure En3DVar. We aim to answer some

of the questions posed in the earlier paragraph.

The rest of this paper is organized as follows. In sec-

tion 2, we introduce various DA algorithms (EnKF,

DfEnKF, and En3DVar) as well as the design of the

OSSE experiments. In section 3, pure En3DVar is first

compared with DfEnKF and the reasons for their dif-

ferences are investigated. Sensitivity experiments are

conducted to obtain the optimal localization radii, op-

timal background error decorrelation scales, and opti-

mal hybrid weights for EnKF/pure En3DVar, 3DVar,

and hybrid En3DVar algorithms, respectively. Finally,

optimally configured hybrid En3DVar, 3DVar, and

EnKF are intercompared. The summary and conclu-

sions are presented in section 4, with some additional

discussion.

2. Assimilation algorithms and experimental
design

a. The EnKF system

The EnKF system used in this study was initially de-

veloped for the ARPS model, as originally described in

Tong and Xue (2005), Xue et al. (2006), and Tong and

Xue (2008). The ensemble square root filter (EnSRF)

algorithm of Whitaker and Hamill (2002) is used, which

updates the ensemble mean and ensemble perturbations

without perturbing the observations. FollowingWhitaker

and Hamill (2002) and Xue et al. (2006), the EnSRF

analysis equations are briefly described in the following.

The ensemblemean forecast is first updated by Eq. (1)

below:

xa 5 xb 1K[y2H(xb)], (1)

where

K5 [r
s
+(PbHT)](HPbHT 1R)21. (2)

In the equations, xa and xb are the ensemble mean

analysis and background forecast state vectors, re-

spectively; y is the observation vector; H is the obser-

vation operator; H is the tangent linear observation

operator; K is the Kalman gain; Pb is the background

error covariance; R is the observation error covariance

matrix; and PbHT and HPbHT are the background error

covariances defined between the grid points and obser-

vation points, and between the observation points, re-

spectively, and are evaluated directly from the ensemble

background states xbk (k is the index of ensemble mem-

ber) and their observation counterparts, H(xbk), called

observation priors. A distance-dependent localization

function (Gaspari and Cohn 1999) is used for the lo-

calization of the ensemble covariance; rs+ denotes a

Schur product of the correlation matrix rs.

The ensemble perturbations, denoted by superscript

prime, are updated by

x0ak 5 x0bk 2 ~KH(xbk)
0 (3)

and

H(xbk)
0 5H(xbk)2H(xb) , (4)

where ~K is the ‘‘reduced’’ Kalman gain that is equal toK

amplified by a factor following Whitaker and Hamill

(2002) and the actual formula can be found in Xue et al.

(2006). The final analyses for the ensemble members are

xak 5 xa 1 x0ak . (5)

For more detailed descriptions related to the calculation

of ensemble mean and ensemble covariance, please re-

fer to Xue et al. (2006).

b. The DfEnKF algorithm

For the convective scale, the ensemble forecast mean

tends to smooth out detailed convective-scale structures

that are important. Therefore, the mean of ensemble

forecasts may not necessarily be the best representation

of convective storms (Yussouf et al. 2013). In En3DVar

cycles, the background forecast is a deterministic fore-

cast starting from the En3DVar analysis of the previous

cycle. To facilitate more direct comparison of the EnKF

results with those of En3DVar, and to potentially im-

prove the results of EnKF, we developed an alternative

implementation of EnKF, in which a separate set of

analysis and forecast is run that uses a deterministic

forecast xbd in place of the ensemble mean background
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forecast xb in the ensemble mean update in Eq. (1), to

obtained analysis xad:

xad 5 xbd 1K[y2H(xbd)] . (6)

The deterministic forecast is started from this version

of EnKF analysis, and we call this EnKF formulation

DfEnKF, where Df denotes deterministic forecast.

Figure 1 shows the flow charts of the DfEnKF and

En3DVar DA one-way coupled with EnKF. Similar to

En3DVar, DfEnKF can be treated as an independent

algorithm that borrows the ensemble covariance from

the EnKF, and updates its single background field based

on the EnKF mean update equation (the EnSRF algo-

rithm is used here).

It is worth noting that our DfEnKF algorithm is dif-

ferent from the so-called deterministic EnKF (DEnKF)

proposed by Sakov and Oke (2008), which modifies the

original EnKF perturbation updating equations by using

only half of theKalman gainmatrix and avoids perturbing

the observations. Given that we use the EnSRF algorithm

that does not perturb observations, our DfEnKF algo-

rithm is also a deterministic EnKF algorithm.

We point out here that one may choose to replace the

ensemble mean analysis of the regular EnKF with the

analysis of DfEnKF so that the ensemble perturbations

are effectively defined around the DfEnKF analysis;

doing so results in a ‘‘two-way-coupled’’ DfEnKF and

EnKF systems, as in a two-way-coupled En3DVar–

EnKF system. In this paper, we choose one-way

coupling to keep the algorithms more independent so

that performances of different algorithms can be more

clearly compared. If better analysis can be obtained

from En3DVar and DfEnKF than EnKF, the overall

performance can be improved by replacing the ensem-

ble mean of EnKF with the En3DVar or DfEnKF ana-

lyses (i.e., allowing for the two-way interactions).

c. The En3DVar system

The hybrid En3DVar DA algorithm is implemented

within the existing ARPS 3DVar variational framework

(Gao et al. 2004). The hybrid En3DVar algorithm is

based on the extended control variable method of

Lorenc (2003) although the actual formulations follow

Liu and Xue (2016) more closely. The combined use of

the full-rank static background error covariance and the

rank-deficient ensemble covariance in En3DVar is

achieved through the extended state vectormethod. The

analysis increment is given by

Dxa 5 xa 2 xb 5b
1
Dx

1
1b

2
Dx

2
, (7)

b2
1 1b2

2 5 1, (8)

whereDx1 andDx2 are the analysis increments related to

the static and ensemble background error covariances,

FIG. 1. Flowchart of the cycles in one-way coupling between EnKF and DfEnKF and EnKF and En3DVar analysis schemes, where BEC

represents the background error covariance. The ensemble perturbations are updated by the EnKF.
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respectively; and b2
1 and b2

2 are the weights given to the

static and ensemble covariances, respectively:

Dx
1
5 Uv , (9)

B5UUT , (10)

Dx
2
5 �

N

i51

(x0
bi+ai

) , (11)

a5

2
664
a
1

..

.

a
N

3
775 , (12)

where v is the traditional variational control variable

(vector) preconditioned on the square root of the 3DVar

static background error covariance B; U is the square

root of B; x0
b is a matrix of ensemble perturbations

normalized by
ffiffiffiffiffiffiffiffiffiffiffiffi
N2 1

p
, which has N state vectors;

x0
bi 5 xbi 2 xb whose dimension is n; and N and n are the

ensemble size and the dimension of state vector, re-

spectively. The open circle symbol (+) denotes the Schur
product:

a5

2
4C0

⋱
C0

3
5~a . (13)

Here ~a is a new control vector related to the extended

control vector a, an n3 n correlation matrixC is used to

localize the ensemble covariance, and C0 is the corre-

sponding decomposed matrix that satisfies C5C0C0T. A
hybrid solution is derived by setting b1 or b2 to values

between but not equal to 0 and 1.

The analysis increment in Eq. (7) is obtained via

minimizing the following cost function:

J(v, ~a)5
1

2
vTv1

1

2
~aT~a

1
1

2

"
b
1
HUv1b

2
H�

N

i51

(x0
bi+C

0~a
i
)1 d

#T

3R21

"
b
1
HUv1b

2
H�

N

i51

(x0
bi+C

0~a
i
)1 d

#
, (14)

where d is the observation innovation vector. Additional

details can be found in Liu and Xue (2016).

In this study, as is typically done, the En3DVar is

coupled with EnKF to form a coupled EnKF–En3DVar

system, where the EnKF system provides ensemble

perturbations to En3DVar for flow-dependent co-

variance, while En3DVar itself updates a single back-

ground forecast to obtain a single new analysis. Figure 1

illustrates the one-way coupling between EnKF and

En3DVar. With two-way coupling, the analysis of

En3DVar is used to replace the ensemble mean analysis

of EnKF [i.e., xa from Eq. (7) is used to replace xa in Eq.

(1)]. As mentioned earlier, in this paper, we choose to

stick with one-way coupling to keep the algorithmsmore

separate (so that they are not too mingled) for com-

parison purposes.1 When the ensemble-derived co-

variance is used at 100% without static covariance, the

En3DVar is referred to as pure En3DVar. When static

and ensemble covariances are used in combination,

the algorithm is referred to as hybrid En3DVar. Full

ensemble covariance localization is implemented in

all three directions via the correlation matrix in the

extended control variable term in the cost function.

The readers are referred to Liu and Xue (2016) for

discussions on related terminology. The static back-

ground error covariances for the hydrometeors adopt

temperature-dependent vertical profiles we recently

proposed to improve variational analyses of hydrome-

teors from reflectivity observations.

d. The prediction model and truth simulation for
OSSEs

In this study, the nonhydrostatic ARPS (Xue et al.

2000, 2001, 2003) is used as the prediction model for

EnKF and En3DVar DA cycles. The En3DVar algo-

rithm developed is compared with 3DVar and EnKF via

perfect-model OSSEs. Simulated radial velocity and

reflectivity data from a single Doppler radar are assim-

ilated for a tornadic supercell storm. A sounding derived

from that of the 20 May 1977 in Del City, Oklahoma

(Ray et al. 1981), supercell storm case is used to define

the storm environment. The Lin et al. (1983) ice mi-

crophysics parameterization is used.

Themodel configurations follow closely those of Tong

and Xue (2005). Specifically, the model grid size is 353
35 3 35; and the grid resolutions are 2 km and 0.5 km in

the horizontal and vertical directions, respectively. The

storm in the truth simulation is triggered by an elliptical

thermal bubble with a 4-K maximum temperature per-

turbation, and the bubble is located at 24, 16, and 1.5 km

in the x, y, and z directions. The horizontal and vertical

radii of the bubble are 10 km and 1.5 km, respectively. A

constant wind of (3, 14) m s21 is subtracted from the

original sounding so that the supercell could remain

within the simulation domain. The storm is simulated up

1 For the relatively short period of DA cycles presented in this

paper, the two coupling systems generally will not diverge from

each other much; for long periods of DA cycles, two-way coupling

is recommended.
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to 2h with an evolution similar to those documented in

Tong and Xue (2005). For EnKF, a distance-dependent

localization function following Gaspari and Cohn (1999)

is used to localize the ensemble covariance, while the

covariance localization in En3DVar is realized through

recursive filters applied to the extended control variable

term of the cost function [corresponding to the second

term on the right-hand side of Eq. (14)], to realize similar

localization effects in the En3DVar algorithm. When the

vertical model grid is stretched, the vertical localization

realized through the recursive filter in the En3DVar al-

gorithm is usually asymmetric; to avoid this complication

when comparing the EnKF and En3DVar algorithms, we

choose to utilize a vertically uniform grid, which is also

used in the OSSEs of Tong and Xue (2005).

e. Simulation of the radar observations

The radial velocity yr and reflectivity Z data are simu-

lated based on the model velocity and mixing ratios of hy-

drometeor fields, respectively, with the following formula:

y
r
5u sinf cosm1 y cosf cosm1w sinm , (15)

Z
e
5Z

er
(q

r
)1Z

es
(q

s
)1Z

eh
(q

h
) , (16)

Z5 10 log
Ze

10 . (17)

Here, f and m are the azimuth and elevation angles of

radar beams; u, y, and w are the model velocity compo-

nents in the observational space that are interpolated

from the truth simulation grid; Ze is the equivalent radar

reflectivity factor, which contains contributions from the

mixing ratios of rain qr, snow qs, and hail qh, respectively;

andZ (in dBZ) is the reflectivity factor and is the quantity

assimilated. The actual reflectivity formula for the indi-

vidual components follow those given in Tong and Xue

(2005). The default values of the intercept parameters of

the size distributions of the hydrometeors in the Lin et al.

(1983) are used, as in Tong and Xue (2005). Equations

(15)–(17) are also the observation operators for radial

velocity and reflectivity data in the DA systems.

One WSR-88D is assumed to be located at the origin

(i.e., the southwest corner) of the simulation domain,

and its data are simulated based on the truth simulation.

Unbiased and normal distributed random errors with

standard deviations of 3 dBZ and 1m s21 are added to

the simulated reflectivity and radial velocity data, re-

spectively. The same error standard deviations are also

specified in theDA. The simulated reflectivity and radial

velocity observations are collected on 14 elevation levels

ranging from 0.58 to 19.58 based on volume cover-

age pattern 11 (VCP11) in precipitation mode. The

maximum radar coverage is 230km. Radial velocity data

are assimilated only in regions where truth reflectivity is

greater than 15 dBZ in the analysis domain, while re-

flectivity data in precipitation regions (values $5 dBZ)

only are assimilated.

f. Design of assimilation experiments

The simulated storm cell is well developed after

25min of model integration. Same as Tong and Xue

(2005), the unbiased and Gaussian-distributed random

perturbations are added to the sounding-defined first-

guess field to generate the initial ensemble perturba-

tions. The standard deviations are 2K for potential

temperature u; 2m s21 for velocity components u, y, and

w; and 0.6 gkg21 for mixing ratios of water vapor and

hydrometeor fields, respectively. Previous studies have

shown that adding random perturbations to the whole

domain would introduce a lot of noise into the model

fields (Snyder and Zhang 2003; Dowell et al. 2004).

Different from Tong and Xue (2005), the perturbations

of u, y, w, and u are confined to the regions with observed

reflectivity higher than 0dBZ, and hydrometeor per-

turbations are confined to regions with reflectivity

higher than 15 dBZ. The radial velocity and reflectivity

observations are assimilated every 5min for one hour,

with the first assimilation performed at 30min of the

truth simulation time. Experiments with different com-

binations of localization radii and recursive filter length

scales in horizontal and vertical directions are first tested

to obtain the optimal localization radii and recursive

filter length scales for EnKF andEn3DVar, respectively.

To obtain more physical hydrometeor analyses,

height-dependent (or in a more general form tempera-

ture dependent) static background error profiles for

different hydrometeors are used in 3DVar, and in hybrid

En3DVar (for the static background error). Specifically,

the background error of snow at the low levels (,4 km)

is set to values two orders of magnitude smaller than the

error at other levels (set to 0.6 g kg21), which ensures

small analysis increments of snow at the lower levels

(below freezing levels). The background error of rain-

water at higher levels (.8 km) are set to values one

order of magnitude smaller than default value of

0.6 g kg21 to help prevent unphysical rainwater analysis

increments at the upper levels. For levels between 4 and

8km, 1/5 of the default value (i.e., 0.1 g kg21) is used in

this study to suppress analysis increment of rainwater

but still allow for the existence of supercool water close

to and higher than the freezing level. The background

error of hail is 0.6 g kg21 at all levels; considering that

hail can fall below the freezing level (Liu et al. 2016).

This strategy of using height or temperature-dependent

hydrometeor background error profiles within 3DVar

is a subject of a separate paper, and is therefore only

briefly described here.
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We perform five types of experiments that are named

same as the methods they use (Table 1). The first three

types are 3DVar, EnKF, and DfEnKF that use the stand-

alone static background error covariance B and ensemble

covariance Pb, respectively. The remaining two types are

the pure En3Dvar that uses 100% ensemble covariance

and the hybrid En3DVar that uses a combination of the

static and ensemble covariance, respectively. Perfor-

mances ofDfEnKFand pureEn3DVar are compared, and

the reasons for differences are investigated though sensi-

tivity experiments. Hybrid En3DVar with different com-

binations of ensemble members and ensemble covariance

weights are tested to see the sensitivity of the hybrid

analysis to these factors. Finally, Hybrid En3DVar is

comparedwith 3DVar, EnKF, and pureEn3DVar to see if

hybrid En3DVar has any advantage over other methods.

3. Results of assimilation experiments

To evaluate the performance of algorithms in differ-

ent experiments, we define a mean error that is the av-

erage of the RMSEs of both the analysis and 5-min

background forecast at all analysis times scaled by the

background RMSE at the beginning of the assimilation

window (at 25min). The actual error formulation is

«5
1

2(N1 1)«
0

�
N

t50

(«
bt
1 «

at
) , (18)

where « is the mean error; «bt and «at are the gridpoint

average of the RMSEs at time t for a certain variable

from the background and the analysis fields, respectively;

«0 is the gridpoint average of the RMSEs at the begin-

ning of the assimilation window, which are the same for

all experiments; and N is the total number of assimila-

tion cycles. The RMSEs are calculated only over grid

points where the truth reflectivity is higher than 15dBZ.

We refer to the mean error defined in Eq. (18) as the

mean scaledRMSE for a specific variable. An additional

average can be calculated over all variables to give an

overall mean RMSE.

a. Comparison of DfEnKF and pure En3DVar
results

1) OPTIMAL LOCALIZATION RADII FOR DFENKF
AND ENKF

In EnKF, a Gaussian-like fifth-order piecewise poly-

nomial of Gaspari andCohn (1999) is used for covariance

localization. Sensitivity experiments with different com-

binations of the horizontal and vertical cutoff radii of

localization that range from 1km to 20 (15) km in hori-

zontal (vertical) with a 1-km interval are conducted for

DfEnKF. As indicated in Fig. 2, the optimal localization

radii for different variables are similar except for hail

mixing ratio, and on average the combination of 15 and

6km for horizontal and vertical cutoff radii yields the best

result in terms of theminimal analysis and forecast errors.

Similarly, Sobash and Stensrud (2013) found that ;12–

18-km horizontal and ;3-km vertical localization cutoff

radii were beneficial for their EnKF experiments with 50

ensemble members and a 3-km grid resolution. On the

‘‘optimal’’ localization radii, some discrepancies between

this and previous studies are worth mentioning. For ex-

ample, Tong and Xue (2005) noted that a localization

radius of 6km produced the best result with 100 ensemble

members, but their optimal radii were obtained based on

the assumption that the horizontal and vertical localiza-

tion radii were the same.

Sensitivity experiments show that the optimal locali-

zation radii for EnKF are almost the same as those for

DfEnKF, so the optimal localization radii of DfEnKF

are adopted as the common optimal localization radii

for both EnKF and DfEnKF in later experiments.

Unlike DfEnKF that uses a fifth-order Gaussian-like

polynomial function and a Schur product [see Eq.(2)] to

localize the ensemble covariance, En3DVar uses a re-

cursive filter in each coordinate direction to mimic a

TABLE 1. Descriptions of the assimilation methods.

Method Use of background error covariance Background updating Ensemble size

3DVar Static background error

covariance

Update background field deterministically —

EnKF Background error covariance

derived from ensemble background

forecasts

Updates ensemble mean background and

ensemble perturbations using EnKF algorithm

40

DfEnKF Using ensemble covariance from

an EnKF system

Update a single deterministic background

forecast using EnKF mean updating algorithm

40

Pure En3DVar Using 100% ensemble covariance

from an EnKF system

Update a single deterministic background

forecast using variational algorithm

40

Hybrid En3DVar Using weighted average of ensemble

covariance and static 3DVar covariance

Update a single deterministic background

forecast using variational algorithm

10, 20, . . . , 100
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second-order autoregressive function (that is close to

Gaussian) for the localization. To investigate the source

of difference between pure En3DVar and DfEnKF, the

optimal localization radii of DfEnKF are also used by

pure En3DVar in this section. The recursive filter length

scale SRF and the cutoff radius of DfEnKF localization

SGC can be roughly converted from each other based on

the following equation:

S
RF

5
ffiffiffiffiffiffiffiffiffi
0:15

p
S
GC

/
ffiffiffi
2

p
, (19)

which is given as Eq. (4) in Pan et al. (2014). The

equivalent recursive-filter length scales for localiza-

tion in En3DVar are therefore 4.11 km in the hori-

zontal and 1.64 km in the vertical, corresponding

to the 15- and 6-km cutoff localization radii, re-

spectively. In next section, the optimal localiza-

tion radii of En3DVar will be determined by similar

sensitivity experiments and En3DVar will be com-

pared with other algorithms with their own optimal

localization radii.

FIG. 2. The scaled RMSEs for different state variables as defined in Eq. (18) and averaged over all variables (ave), for DfEnKF

experiments with different combinations of horizontal and vertical cutoff radius (km). The blue dot in each panel indicates the location of

minimum scaled RMSE for the corresponding variable and the magenta asterisk indicates the minimum value across all the variables.
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2) SINGLE-OBSERVATION EXPERIMENTS WITH

DFENKF, PURE EN3DVAR, AND 3DVAR

Single-observation experiments are often used to ex-

amine the correctness of newly developed DA systems,

and the effects of spatial spreading of observation in-

novation by the background error covariance (Hu et al.

2006b; Zhu et al. 2013). The flow-dependent nature of

the ensemble covariance in pure En3DVar andDfEnKF

can be revealed by single-observation experiments. In

our experiments, a single radial velocity observation is

taken at a model grid point near the updraft region

(as indicated by the upward vector in Fig. 3). The single-

observation test uses background ensemble forecasts from

the fourth cycle of a cycled EnKF experiment. En3DVar

uses the localization radii that are equivalent to the optimal

localization configurations of DfEnKF.

For the single radial velocity DA experiment, the anal-

ysis increment of u wind is positive (negative) to the left

(right) of the updraft for both pureEn3DVar andDfEnKF

(Figs. 3c and 3d), which is more consistent with the true

increment (which is the truth minus background) in

Fig. 3a, while for 3DVar, the analysis increment is a flow-

independent ellipse that is not realistic (Fig. 3b). Similarly,

for single reflectivity observation assimilation, the analysis

increments of the hail mixing ratio for En3DVar and

DfEnkF are similar and show flow-dependent structures

while that of 3DVar is again elliptical (Fig. 4). An impor-

tant point to note is that 3DVar creates the hail mixing

ratio increment symmetrically above and below the

FIG. 3. Vertical cross sections of (a) the truth minus background, and the analysis increment (analysis minus

background) of u wind (m s21) when assimilating radial velocity at a single point, using (b) 3DVar, (c) pure

En3DVar, and (d) DfEnKF, respectively. Horizontal convergence and upward motion are indicated by the hori-

zontal and vertical black arrows, respectively.
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observation point, with the increment extending way be-

low the freezing level, which in this case is unrealistic. In

En3DVar and DfEnKF, the flow-dependent covariance is

aware of the temperature dependency of hail distributions.

Another point worthmentioning is that radial velocity

assimilation only updates the wind fields (u, y, w) and

reflectivity assimilation only updates hydrometeors (qr,

qs, qh) in 3DVar. In EnKF and En3DVar, however, all

model prognostic variables can be updated via back-

ground error cross correlations; this is an important

advantage for algorithms utilizing the ensemble-derived

background error covariances.

3) OSSE COMPARISONS BETWEEN DFENKF AND

PURE EN3DVAR

In this section, the performances of EnKF, DfEnKF,

and pure En3DVar are compared by assimilating both

radial velocity and reflectivity data every 5min for 1 h.

When using the optimal localization radii of DfEnKF,

DfEnKF clearly outperforms pure En3DVar in terms of

smaller RMSEs, especially for snow and some of the

other hydrometeor variables (Fig. 5). Only pressure p

has larger errors in some of the earlier cycles when using

DfEnKF (Fig. 5), but pressure is more sensitive to

acoustic noises, as pointed out by Tong and Xue (2005).

To see how well the precipitation fields are analyzed,

the reflectivity components from individual hydrome-

teor mixing ratios are calculated according to

Z
x
5 10 log

10
(Z

ex
) , (20)

where Zex is the equivalent reflectivity; x represents r, s,

or h for rain, snow, and hail, respectively; Zx is the

corresponding reflectivity in dBZ and is introduced

here for convenience only; and the total reflectivity

Z5 10 log10(Zer 1Zes 1Zeh), is not equal to the sum of

Zr, Zs, and Zh. Horizontal cross sections of the analyzed

reflectivity and contributions to reflectivity from snow and

FIG. 4. Vertical cross sections of (a) truthminus background, and analysis increment (analysisminus background)

for hail mixing ratio (g kg21) when assimilating a single reflectivity observation at the red dot location, using

(b) 3DVar, (c) En3DVar, and (d) DfEnKF, respectively.
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hail at 8kmAGL (the level where the differences between

pureEn3DVar andDfEnKFaremost apparent at the 10th

cycle, i.e., 2210 UTC) are depicted in Fig. 6. The spatial

extent of the analyzed snow (hail) from pure En3DVar is

somewhat underestimated (overestimated), while those

from DfEnKF agree better with the truth. The intensities

of updraft and downdraft fromEn3DVar at 8kmAGLare

also underestimated while those from DfEnKF are much

closer to the truth. Considering that DfEnKF and pure

En3DVar use the same background error covariance

derived from the EnKF ensemble (at 100% in pure

En3DVar), both are based on a deterministic background

forecast configured the same way, and the background

error covariance localization radii are configured equiva-

lently, the two algorithms should theoretically yield very

similar results. Why are the results of En3DVar worse,

especially for snow, then? The reasons for the differences

will be investigated in detail in the following section.

FIG. 5. RMSEs of the background forecasts and analyses of state variables verified in regions with true reflectivity higher than 15 dBZ

(solid lines), assimilating both radial velocity and reflectivity data using EnKF (cyan lines), DfEnKF (blue lines), and pure En3DVar

(magenta lines) algorithms.
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b. An analysis of the differences between DfEnKF
and pure En3DVar

Possible reasons for the differences between DfEnKF

and pure En3DVar include the following: serial versus

global nature of the algorithms, and high nonlinearity

of the observational operator of reflectivity that can

cause differences between filter update and variational

minimization. Sensitivity experiments are conducted to

investigate the impact of the above sources.

1) SERIAL VERSUS GLOBAL NATURE OF

ALGORITHMS

To compare DfEnKF and pure En3DVar under a lin-

ear observation operator condition, only radial velocity

FIG. 6. (left) Truth and analyzed fields at 8 km AGL of (a)–(c) total reflectivity (Z) and reflectivity calculated from mixing ratio of

(d)–(f) snow (Zs) and of (g)–(i) hail (Zh) from (middle) DfEnKF and (right) pure En3DVar at the 10th cycle (2210 UTC). Vertical

velocity contours are overlaid in the top panels together with the minimum and maximum values.
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data are assimilated. In such a case, DfEnKF clearly

outperforms pure En3DVar for most of the state vari-

ables except for water vapor mixing ratio qy when using

the optimal localization radii of DfEnKF (i.e., 15km in

horizontal and 6km in vertical) (Fig. 7). The analyses and

forecasts of snow mixing ratio in DfEnKF are again

better than those of pure En3DVar.

In DfEnKF, the observations are assimilated serially,

while observations in En3Dvar are assimilated globally

(or simultaneously). To reduce the effect of the order in

which data are assimilated, the horizontal (vertical) lo-

calization radius is decreased from 15 (6) km to 3 (3) km.

This significantly reduces the overlap of the influence

regions from neighboring observations (given the 2-km

interval of radar data in horizontal and about 18 eleva-
tion interval in vertical). When no influence regions

from different observations overlap, simultaneous as-

similation of all observations should yield the same

FIG. 7. RMSEs of the forecasts and analyses of state variables verified in regions with true reflectivity higher than 15 dBZ fromDfEnKF

(blue and black contours) and pure En3DVar (magenta and red contours) when assimilating only radial velocity data with the (horizontal,

vertical) localization radii being (15, 6 km) (blue and magenta contours) and (3, 3 km) (black and red contours), respectively.
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result as assimilating one observation at a time, because

the assimilation of a prior observation does not affect

the assimilation of the following observations.

After significantly decreasing the localization radii, the

results of DfEnKF and pure En3DVar become very close

(Fig. 7), suggesting the serial versus global nature of the

two algorithms is a major cause of the differences in the

results of DfEnKF and pure En3DVar when assimilating

radial velocity data (for which the observation operator is

linear). We point out here that with the reduced non-

optimal localization radii, the error levels are clearly

higher for all variables than when optimal radii are used

(Fig. 7); despite that, data assimilation using either

method is still able to decrease error in individual state

variables, and the analyzed storm is reasonable

(not shown).

2) EFFECTS OF NONLINEAR REFLECTIVITY

OBSERVATIONAL OPERATOR IN EN3DVAR

AND DFENKF ALGORITHMS

To isolate the effect of nonlinearity in the reflectivity

observation operator, only reflectivity data are assimi-

lated in the next set of experiments (Fig. 8). The differ-

ences between DfEnKF and pure En3DVar are more

obvious compared to the analyses that assimilate radial

velocity data only. To reduce the impact of data assimi-

lation sequence, localization radii are again decreased in

the same way as earlier for radial velocity data. Unlike

the radial velocity case, the differences betweenDfEnKF

and pure En3DVar are still quite obvious even with the

reduced localization radii (Fig. 8). This suggests that the

nonlinear nature of the reflectivity observation operator

is another significant contributor to the differences seen

between DfEnKF and pure En3DVar.

To further examine this issue, another single obser-

vation test is performed at the time of the second anal-

ysis cycle when the analysis differences from the two

experiments become large. The background of DfEnKF

at the second cycle is used as the background of pure

En3DVar also. A single reflectivity observation is

placed at a grid point where the analysis difference be-

tween DfEnKF and pure En3DVar is most apparent for

snow mixing ratio. To better capture the difference,

relative error are calculated based on the background,

analyzed, and true reflectivity (or equivalent reflectiv-

ity) at the given point. The relative error is defined as

h5
Zx 2Zt

Zt
, (21)

where h is the relative error (%), and Zx is the total

reflectivity or equivalent reflectivity for analysis

(x5 a) and forecast (x5 b), respectively. As is shown

in Table 2, the relative error of the background re-

flectivity at the observation point (Zb) is 35.2%, which is

greatly reduced to 1.8% and 1.9%, respectively, after the

assimilation of the single reflectivity data by pure

En3DVar and DfEnKF. The relative errors of analyzed

equivalent reflectivity (Za
e) from pure En3DVar and

DfEnKF are 13.6% and 14.3%, respectively, with a small

difference of 0.7% only. However, when examining the

analyzed equivalent reflectivity components from differ-

ent hydrometeor species, the relative error differences for

snow and hail from DfEnKF and pure En3DVar are

much larger (37.0% for Za
e of snow and 9.0% for Za

e of

hail), indicating that the differences in the algorithms are

creating significant differences in the analyses of indi-

vidual hydrometeor fields. Unlike EnKF, for which the

analysis is obtained via direct filter update, analysis of

En3Dvar is obtained through variational minimization,

which tends to adjust hail more than snow because the

reflectivity is more sensitive to hail than to snow in the

reflectivity observation operator. In variational algo-

rithms, the sensitivity of the cost function to the control

variables has a large effect on the amount of adjustment

to the individual variables in the minimization process.

Variables with small sensitivity may receive little adjust-

ment before the minimization iteration is terminated.

c. Comparison of hybrid En3DVar with EnKF,
DfEnKF, and 3DVar with their optimal
configurations

1) OPTIMAL LOCALIZATION RADII FOR

EN3DVAR AND OPTIMAL BACKGROUND

ERROR DECORRELATION SCALES FOR 3DVAR

Because of the differences found in the results ob-

tained with DfEnKF and pure En3DVar in the previous

sections, the optimal localization radii of DfEnKF are

not necessarily the optimal radii of pure En3DVar. To

obtain optimal analysis with pure En3DVar, 30 3 20

combinations of horizontal and vertical recursive filter

length scales that range from 0.27 to 8.10 km in the

horizontal (corresponding to 1- to 30-km cutoff radius of

DfEnKF), and from 0.27 to 5.40 km in the vertical

(corresponding to 1- to 20-km cutoff radius) are tested to

determine the optimal radii in both horizontal and ver-

tical directions. According to the error statistics shown in

Fig. 9, the recursive filter length scale of 6.75km (25-km

cutoff) in horizontal and 3.24 km (12-km cutoff) in ver-

tical yield the lowest mean error averaged across all

variables. The optimal horizontal cut off radii in terms of

the errors of individual fields are close to the overall

optimal cutoff radius, but in the vertical direction, the

optimal radii for individual fields are either the same or

larger than the overall cutoff radii (Fig. 9), although
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further error decrease for vertical cutoff radii beyond

the overall optimal radius is generally small. In this

study, the optimal radii are chosen based on the error

averaged across all variables.

The optimal background error decorrelation scales

for 3DVar are determined the same way. Background

error decorrelation scales are first transformed to cutoff

radii of EnKF based onEq. (19) to keep the experiments

of finding optimal cutoff radii (for EnKF) and length

scales (for pure En3DVar and 3DVar) more consistent.

According to Fig. 10, there is more variation in the

optimal scales based on errors of difference variables,

especially for the horizontal scale. Based on errors av-

eraged across all variables, background error decorre-

lation scales of 4.05 km [equivalent to 15-km cutoff

based on Eq. (19)] in the horizontal and 1.35 km (5-km

cutoff) in the vertical yield the best results. These scales

are therefore chosen as the optimal scales for 3DVar

experiments.

In the remaining hybrid En3DVar experiments, the

optimal localization radii obtained for pure En3DVar

and the optimal background error decorrelation scales

FIG. 8. As in Fig. 7, but when assimilating reflectivity data only.
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obtained for 3DVar will be applied to the flow-

dependent ensemble covariance and static covariance,

respectively.

2) OPTIMAL HYBRID WEIGHTS AS A FUNCTION OF

ENSEMBLE SIZE

To determine the optimal hybrid weights in hybrid

En3DVar as a function of ensemble size, 10 3 10 ex-

periments with different combinations of ensemble size

(from 10 to 100 with an increment of 10) and the weight

given to the static background error covariance (from

0 to 1 with an increment of 0.1) are performed. Pure

En3DVar and 3DVar correspond to experiments with

the static error weight set to 0 and 1, respectively.

As indicated in Fig. 11, pure 3DVar underperforms

both pure and hybrid En3DVar in terms of the largest

scaled RMSEs. When the ensemble size is 30 or larger,

hybrid En3DVar with a 5%–10% static B performs the

best in analyses and forecasts of u, y, u, p, and qy (with a

couple of exceptions for u and qy). When the ensemble

size is 50 or larger, pure En3DVar (with 0% static B)

performs the best in w and all hydrometeor variables.

When the ensemble size is only 10 or 20, some variables,

including y, u, cloud water mixing ratio qc, and qy, re-

quire 50% or larger static weight to achieve the smallest

error. For cloud ice mixing ratio qi, pure En3DVar al-

ways has the smallest error.
In terms of the average error across all variables,

hybrid En3Dvar with a ;5%–10% (60%) static back-

ground error gives the best results when the ensemble

size is larger (smaller) than 20. Errors of pure and hy-

brid En3DVar increase quickly when the ensemble

sizes falls below 40. These results indicate that an en-

semble size of 30 or larger is needed for the hybrid

system to benefit significantly from the ensemble error

covariances, and in that case only around 5% of static

covariances is beneficial. For variables directly linked

to convection (w and hydrometeors), the advantage of

static B is not obvious, especially when the ensemble

size is 50 or larger.

3) COMPARISONS OF HYBRID EN3DVAR WITH

ENKF, DFENKF, AND 3DVAR WITH

RESPECTIVE OPTIMAL CONFIGURATIONS

Comparisons are made among the analyses and

forecasts from 3DVar, EnKF, DfEnKF, pure, and hy-

brid En3DVar with their own optimal configurations

(including localization/decorrelation scales and co-

variance weights). In all cases, the ensemble size used is

40, and this choice is guided by the results of section 3c(3),

and is also consistent with many of our previous studies

with EnKF for radar assimilation (e.g., Xue et al. 2006;

Snook et al. 2011). Basically, we want to choose an en-

semble size that can produce decent EnKF analyses

without excessive costs, and answer the question if their

analyses can be further improved by including some

static background error via hybrid En3DVar.

The RMSEs are calculated only over grid points where

the true reflectivity exceeds 15dBZ, as have been done

earlier. Figure 12 shows that 3DVar performs the worst

with RMSEs much larger than others. EnKF and

DfEnKF have similar error levels and both outperform

pure and hybrid En3DVar for most of the variables in

almost all cycles, with the exception being with p in the

earlier cycles. As discussed earlier, the pressure analysis is

more sensitive to acoustic noise that may affect the re-

liability of the cross covariance between pressure and

radar observations; we therefore give its error less weight

in our performance assessment. Among the variables, qy
seems to benefit from the hybrid covariance the most as

the error levels of hybrid En3DVar are lower than pure

En3DVar and close to EnKF (and DfEnKF). The dif-

ference between EnKF (or DfEnKF) and pure (or hy-

brid)En3DVar is the largest for qs. As discussed in section

3b, their differences are mainly caused by the serial versus

global nature of the algorithms and the variational mini-

mization versus direct filter updating (which is sensitive to

nonlinearity). In a variational framework, it is muchmore

difficult to adjust mixing ratio of dry snow by reflectivity

assimilation because the gradient of the reflectivity

TABLE 2. Comparison of single reflectivity observation assimilation between pure En3DVar and DfEnKF. HereZt ,Zb,Za indicate the

true, background, and analyzed reflectivity in dBZ, respectively; Zb
e , Z

a
e represent the background and analyzed equivalent reflectivity in

mm6m23; and Za
er , Z

a
es, and Za

eh are the equivalent reflectivity components for rain, snow, and hail, respectively.

Background or analyzed

reflectivity and equivalent

reflectivity

Relative error (%) (Zx 2Zt)/Zt , x5 a or b
Difference of

relative error between pure

En3DVar and DfEnKFPure En3DVar DfEnKF

Background Zb 5 10 log10Z
b
e (dBZ) 35.17% 0%

Analysis Za 5 10 log10Z
a
e (dBZ) 1.78% 1.88% 0.1%

Za
e 5Za

er 1Za
es 1Za

eh (mm6m23) 13.59% 14.26% 0.67%

Za
er (mm6m23) 0% 0% 0%

Za
es (mm6m23) 54.73% 17.71% 37.02%

Za
eh (mm6m23) 4.53% 13.50% 8.97%
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operator to dry snow is much smaller than those to hail

and rain. In other words, when hail and dry snow coexist,

the adjustment to hail tends to dominate, making cor-

rection to errors in dry snow more difficult.

Vertical cross sections of analyzed reflectivity and winds

from 3DVar, EnKF, DfEnKF, and pure and hybrid

En3DVar after 1-h of DA cycles are shown in Fig. 13 to-

gether with the truth. The maximum reflectivity analyses

from 3DVar and hybrid En3DVar are 67.7 and 70.3dBZ,

which are less than those from the truth and EnKF (about

71dBZ), indicating that both hybrid En3DVar and 3DVar

underestimate the intensity of the reflectivity core (e.g.,

reflectivity exceeding 70dBZ). The maximum vertical

velocity from EnKF, DfEnKF, and pure and hyrbrid

En3DVar are over 25ms21, which are much larger than

that from3DVar (18.8ms21) and closer to that of the truth

(27.1ms21). Some spurious reflectivity is foundoutside the

truth storm region in the analyses of 3DVar and hybrid

FIG. 9. The mean scaled RMSEs as defined in Eq. (18) for different state variables and averaged over all variables (ave), which are

obtained based on pure En3DVar experiments with 303 20 combinations of horizontal and vertical length scales after being transformed

to cutoff radii of EnKF based on Eq. (19). The blue dot in each panel indicates the location of minimum scaled RMSE for the corre-

sponding variable and the magenta asterisk indicates the minimum value across all the variables.
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En3DVar, which can be caused by the assimilation of

error-containing reflectivity observations (whose errors

can exceed 3dBZ). In EnKF, DfEnKF, and pure En3D-

Var, spurious perturbations in the background forecasts

can be effectively suppressed through flow-dependent

background error correlations if zero reflectivity is assim-

ilated, as was pointed out by Tong and Xue (2005).

To examine the quality of analyzed hydrometeor

fields, we compare the reflectivity components from

individual hydrometeor mixing ratios according to

Eq. (20). According to Fig. 14, the contribution to

equivalent reflectivity from analyzed rainwater mix-

ing ratio qr from different algorithms are very similar

and close to that of truth. For hail, 3DVar and hybrid

En3DVar underestimate the hail reflectivity at the

reflectivity core region, contributing to the underes-

timation of maximum analyzed total reflectivity

noted earlier. For snow, EnKF and DfEnKF obtain

FIG. 10. The mean scaled RMSEs as defined in Eq. (18) for different state variables and averaged over all variables (ave), which are

obtained based on 3DVar experiments with 20 3 20 combinations of horizontal and vertical decorrelation length scales after being

transformed to EnKF’s cutoff radii based on Eq. (19) (to be consistent with Fig. 9). The blue dot in each panel indicates the location of

minimum scaled RMSE for the corresponding variable and the magenta asterisk indicates the minimum value across all the variables.

192 MONTHLY WEATHER REV IEW VOLUME 146



better analyses than pure En3DVar, hybrid En3DVar,

and 3DVar. The contribution of snow to total re-

flectivity is, however, much smaller than that of hail,

making correction to its error more difficult in a varia-

tional framework.

Overall, EnKF, DfEnKF, and pure En3DVar

give similar reflectivity or precipitating hydrometeor

analyses that are very close to truth. There is some

benefit to bring in 5% or so static error covariance into

En3DVar to form a hybrid algorithm when verified

within precipitation regions, but some spurious reflec-

tivity can appear in the clear-air regions (Fig. 14) that

can degrade the overall analyses, similar to the

3DVar case.

FIG. 11. The gridpoint average of the scaled RMSEs as defined in Eq. (18) for different variables and averaged over all variables (ave),

which are obtained based on hybrid En3DVar experiments with different combinations of ensemble sizes and hybrid weights. The black

dots indicate locations of the optimal weights for different ensemble sizes.
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4. Summary and conclusions

In this study, a hybrid En3DVar system was developed

based on the ARPS variational framework and is applied

to the assimilation of simulated radar data for a supercell

storm. Radar radial velocity and reflectivity data were

assimilated every 5min for 1h. Differences between

EnKF and pure En3DVar are first investigated to better

understand the difference among different algorithms.

DfEnKF, which updates a single deterministic back-

ground forecast using the EnKF mean updating algo-

rithm, is introduced to have an algorithm-wise parallel

comparison between EnKF and pure En3DVar. 3DVar,

EnKF, DfEnKF, and pure and hybrid En3DVar are

tuned to obtain their optimal configurations before they

are compared. The experiments performed and related

conclusions are summarized as follows:

d Single-point radial velocity or reflectivity data assim-

ilation experiments show that pure En3DVar and

DfEnKF produce similar flow-dependent analysis in-

crements that depict flow-dependent structures while

3DVar produces isotropic analysis increments that are

not necessarily physical.
d Differences are found in the analyses of DfEnKF and

pure En3DVar when both use the same effective

localization scales even though they are supposed to be

the same for linear and Gaussian problems. The serial

versus global nature of the algorithm is shown to be

responsible for the analysis differenceswhen assimilating

FIG. 12. The gridpoint average of theRMSEs over the regionwhere true reflectivity is higher than 15 dBZ for 3DVar, EnKF,DfEnKF, and

pure and hybrid En3DVar (5% weight given to static B).
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radial velocity whose observation operator is linear. The

variational minimization versus direct filter update na-

ture of the algorithms is responsible for the analysis

differences when assimilating reflectivity whose obser-

vation operator is highly nonlinear. As a variational

algorithm, pure En3DVar tends to adjust hail more than

snow, because the analysis results are controlled to a

large extent by the sensitivity of reflectivity with respect

to individual hydrometeor (i.e., the gradient of the

reflectivity operator with respect to the hydrometeor

state variables). The EnKF/DfEnKF algorithm relies on

the background error covariances for analysis updating.
d For 3DVar, optimal decorrelation scales for static

background error covariances are obtained via sensi-

tivity experiments, and the optimal localization radii

for ensemble background error covariances are simi-

larly obtained for EnKF/DfEnKF and En3DVar.

These optimal configurations are then used to construct

hybridEn3DVar. The sensitivity of hybrid En3DVar to

covarianceweights and ensemble size is then examined.
d It is found that when the ensemble size is 30

or larger, a 5%–10% weight for static covariance

produces the smallest mean errors for u, y, u, p, and qy
fields. For w and hydrometeor fields, 0% static co-

variance performs the best when the ensemble size is

50 or larger. On average, when the ensemble size is 20

or larger, a 5% or 10% static covariance gives the

best results while for smaller ensembles a larger static

covariance with a ;50% weight produces somewhat

better results. Using an ensemble size of 40, EnKF

and DfEnKF perform similarly, and both are better

than pure and hybrid En3DVar overall. Using 5%

static error covariance, hybrid En3DVar outper-

forms pure En3DVar for most variables except the

hydrometeor variables; the improvement is the larg-

est for qy and the degradation is most notable for qs.

In a sense, the extra static error covariance does

not help for hydrometeor variables. Overall, in

the current perfect OSSE framework, EnKF and

DfEnKF perform similarly and are the best, while

3DVar performs the worst. En3DVar with or without

static background error covariance does not perform

as well as EnKF/DfEnKF, and static covariance only

helps slightly via hybrid En3DVar.

FIG. 13. Vertical cross sections of the reflectivity field overlaid with thewind vector at the end of the 1-hDAwindow from (a) truth, and the

analyses of (b) 3DVar, (c) pure En3DVar, (d) DfEnKF, (e) pure En3DVar, and (f) hybrid En3DVar with 5% static covariance.
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FIG. 14. Vertical cross sections of the reflectivity (in dBZ) calculated based on the

mixing ratio analyses of rain (Zr), snow (Zs), and hail (Zh) from truth, analyses of

3DVar, EnKF, DfEnKF, and pure and hybrid En3DVar, respectively.
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Finally, we note that the conclusions obtained here are

based on the assumption of a perfect predictionmodel. In

the future, we will compare hybrid En3DVar against

EnKF and 3DVar under imperfect-model conditions and

will apply the algorithms to real cases afterward.
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