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ABSTRACT

The impacts of polarimetric radar data on the estimation of uncertain microphysical parameters are in-

vestigated through observing system simulation experiments when the effects of uncertain parameters on the

observation operators are also considered. Five fundamental microphysical parameters (i.e., the intercept

parameters of rain, snow, and hail and the bulk densities of snow and hail) are estimated individually or

collectively using the ensemble square root Kalman filter. The differential reflectivity ZDR, specific differ-

ential phase KDP, and radar reflectivity at horizontal polarization ZH are used individually or in combinations

for the parameter estimation while the radial velocity and ZH are used for the state estimation. In the process,

the parameter values estimated in the previous analysis cycles are used in the forecast model and in obser-

vation operators in the ensuing assimilation cycle. Analyses are first performed that examine the sensitivity of

various observations to the microphysical parameters with and without observation operator error. The re-

sults are used to help interpret the filter behaviors in parameter estimation. The experiments in which either

a single or all five parameters contain initial errors reveal difficulties in estimating certain parameters using ZH

alone when observation operator error is involved. Additional polarimetric measurements are found to be

beneficial for both parameter and state estimation in general. It is found that the polarimetric data are more

helpful when the parameter estimation is not very successful with ZH alone. Between ZDR and KDP, KDP is

found to produce larger positive impacts on parameter estimation in general while ZDR is more useful in the

estimation of the intercept parameter of hail. In the experiments that attempt to correct errors in all five

parameters, the filter fails to correctly estimate the snow intercept parameter and the density with or without

polarimetric data, seemingly due to the small sensitivity of the observations to these parameters and com-

plications involving the observation operator error. When these two snow parameters are not corrected

during the estimation process, the estimations of the other three parameters and of all of the state variables

are significantly improved and the positive impacts of polarimetric data are larger than that of a five-pa-

rameter estimation. These results reveal the significant complexity of the estimation problem for a highly

nonlinear system and the need for careful sensitivity analysis. The problem is potentially more challenging

with real-data cases when unknown sources of model errors are inevitable.

1. Introduction

The accuracy of numerical weather prediction (NWP)

is subject to two factors: errors in the initial conditions

and deficiencies of the NWP model. A considerable amount

of research has focused on developing more advanced

techniques to minimize the errors in the initial conditions

(Le Dimet and Talagrand 1986; Courtier and Talagrand

1987; Evensen 1994, 2003; Evensen and van Leeuwen

1996; Burgers et al. 1998; Houtekamer and Mitchell 1998;

Anderson 2001; Bishop et al. 2001; Whitaker and Hamill

2002; Tippett et al. 2003; Gao and Xue 2008; Liu et al.

2007). Among these studies, the ensemble Kalman fil-

ter (EnKF) techniques are thought to be attractive be-

cause of their ability to make effective use of prediction
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models and to deal with complex and highly nonlinear

processes in the assimilation process. Previous studies

using the EnKF method have achieved encouraging

levels of success for applications at large scales through

the convective scale (e.g., Houtekamer et al. 2005;

Whitaker et al. 2004; Snyder and Zhang 2003; Tong and

Xue 2005, hereinafter TX05; Xue et al. 2006, hereinafter

XTD06).

On the other hand, the deficiencies in the NWP

models, which are commonly and broadly referred to as

model error, have received less attention until recently,

because the characteristics of model error are little known

and its statistical properties are poorly understood (Dee

1995; Houtekamer et al. 2005). Model error can arise

from many sources such as insufficient resolution in

time and/or space, misrepresentation of the physical and

subgrid-scale processes, and the use of nonphysical

model boundaries and/or external forcing.

Certain EnKF studies have shown that model error

can dominate the error growth in data assimilation cycles

and must be parameterized to prevent the filter from

diverging from its true state (Houtekamer et al. 2005).

One way to account for model error within the EnKF

system is to add the so-called additive error to the model

state by assuming an error model (Lawson and Hansen

2005). Houtekamer et al. (2005) used additive errors by

assuming a model error covariance that has the same

functional form as the forecast error covariance used in a

three-dimensional variational data assimilation (3DVAR)

system. Their experiments using a global model showed

that the added model errors increased the ensemble

spread to the level of ensemble mean error. Hamill and

Whitaker (2005) performed several experiments to ac-

count for the model error due to unresolved scales using a

global spectral model. They compared the two most popu-

lar methods for parameterizing model error–covariance

inflation and additive error models. Additive error was

randomly sampled from the time series of the difference

between two runs at different resolutions. Their results

performed at the global scale show that the additive error

model outperformed the covariance inflation method and

produced more accurate analyses. The ability of the ad-

ditive error approach in increasing the space spanned

by the existing ensemble perturbations is an advantage

but the added errors are usually flow independent and

therefore inconsistent with the actual flow.

Difficulties can arise when we attempt to apply these

methods to the convective scale, where model error is

very flow and situation dependent. For this reason, the

estimation of tunable model parameters, which often

have a profound impact on the forecast, using the data

assimilation scheme appears to be an attractive alter-

native or addition to the aforementioned methods for

dealing with convective-scale model error. Early work

using adjoint-based parameter estimation can be found

in fields such as hydrology, which solves the problem of

aquifer identification (e.g., Yakowitz and Duckstein

1980). In meteorology, such studies include the estima-

tion of nudging coefficients using the four-dimensional

variational data assimilation (4DVAR) method (Zou

et al. 1992), statistical model error parameters using

a maximum-likelihood method (Dee and da Silva 1999),

and the estimation of a wind stress coefficient using the

extended Kalman filter method (Hao and Ghil 1995).

The relative importance of optimal parameter values

versus optimal initial conditions of state is discussed by

Zhu and Navon (1999) using a 4DVAR system of a full-

physics global spectral model. Their results show that

the impacts of optimal parameters on the forecast persist

even after the impacts of the optimal initial conditions

have been lost. A comprehensive review of parameter

estimation studies in meteorology and oceanography up

to the mid-1990s can be found in Navon (1997).

Anderson (2001) proposed using EnKF for the si-

multaneous estimation of parameters and state. Several

studies have since shown that EnKF is capable of suc-

cessfully estimating parameters through the data as-

similation process and may therefore help improve the

subsequent forecast (Annan et al. 2005a,b; Annan and

Hargreaves 2004; Hacker and Snyder 2005; Aksoy et al.

2006a,b). More recently, Tong and Xue (2008a,b, here-

inafter TX08a and TX08b, respectively) applied the

EnKF method to the estimation of fundamental micro-

physical parameters in a storm-scale model. In TX08a,

parameter identifiability is addressed through an in-

vestigation of correlation fields and a detailed sensitivity

analysis. TX08b performed simultaneous estimation of

up to five microphysical parameters using simulated ra-

dar data and found, as in Aksoy et al. (2006b), that

a single imperfect parameter can be successfully esti-

mated while the accuracy of estimation declines as the

number of error-containing parameters increases. An-

other common conclusion of both studies is that the pa-

rameter estimation is beneficial in reducing errors in

both estimated parameters and state. The studies also

indicate that the parameter estimates are sensitive to the

filter configuration and significant nonlinearities exist

between model parameters and state variables, so that an

attempt to improve one parameter may influence the

estimates of other parameters.

The matter of simultaneous parameter and state es-

timation is further complicated when the very same pa-

rameters to be estimated are involved in the forward

observation operators that link the model state to the

observations. In past studies, either the parameters to be

estimated were not involved in the observation operators,
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or the observation operators were assumed to be perfect.

In the case of radar reflectivity–related observations, the

model microphysical parameters also appear in the ob-

servation operators. While TX08b estimates the micro-

physical particle size distribution (PSD) parameters

from simulated reflectivity data, the observation oper-

ators were assumed to be perfect (i.e., correct parameter

values were used in the operators). In that study, diffi-

culties were encountered when estimating multiple PSD

parameters and this arose from the fact that the re-

sponses to errors in different parameters compensate

each other in terms of the observed radar reflectivity,

causing solution nonuniqueness. This result suggests

that additional constraints provided by polarimetric ra-

dar measurements may help improve the well posedness

of the problem (Jung et al. 2008a,b, hereinafter JZX08

and JXZS08, respectively). JXZS08 showed the positive

impacts of directly assimilating simulated polarimetric

variables on state estimation in a perfect-model scenario.

In this paper, extending the earlier studies of TX08a

and TX08b that performed simultaneous PSD parame-

ter and state estimation from reflectivity only and as-

suming perfect observation operators, and the studies

of JZX08 and JXZS08 that assimilated simulated po-

larimetric radar data with a perfect model, we perform

simultaneous state and parameter estimation from sim-

ulated polarimetric radar data whose observation oper-

ators also contain PSD parameter error. We attempt to

quantitatively assess how additional polarimetric data

can improve the parameter and state estimation using

the EnKF approach. The forecast model, the EnKF as-

similation system, and the design of the observing system

simulation experiments (OSSEs) are first described in

section 2, which also includes a discussion of the char-

acteristics of the parameters to be estimated. Section 3

discusses the results of the sensitivity analysis and section

4 examines the impacts of polarimetric radar data on the

parameter and state estimation. Throughout this paper,

only simulated radar data are used. A summary and con-

clusions are given in section 5.

2. Model and experimental design

a. Forecast model and filter configuration

Similar to the OSSE studies of TX08a,b, JZX08, and

JXZS08, a truth simulation is created using the Ad-

vanced Regional Prediction System (ARPS; Xue et al.

2000, 2001, 2003) for a supercell storm. ARPS is a fully

compressible and nonhydrostatic atmospheric prediction

model; its prognostic variables include three velocity

components (u, y, and w), the potential temperature (u),

the pressure (p), and the mixing ratios of water vapor,

cloud water, rainwater, cloud ice, snow aggregate, and hail

(qy, qc, qr, qi, qs, and qh, respectively) with the Lin et al.

(1983, hereinafter LFO83) ice microphysics scheme. The

turbulence kinetic energy is another prognostic variable

used by the 1.5-order subgrid-scale turbulence closure

scheme. The ARPS model is also used for the sensitivity

analysis and in the state and parameter estimation.

The configurations of the forecast model and assimi-

lation system used here are very similar to those used in

Tong and Xue (2005, 2008a,b), except for one major

modification: the forward observation operator for re-

flectivity uses the approach developed in JZX08 instead.

The capabilities of assimilating polarimetric data were

developed in JZX08 and JXZS08, although the data are

used for parameter estimation here. The size of the en-

semble is 80 and no covariance inflation is applied. The

effects of terminal velocity are assumed to have been

removed from the radial velocity data in this study.

The sounding of the 20 May 1977 Del City, Oklahoma,

supercell storm (Ray et al. 1981) is used for the truth

storm simulation. The CAPE for this sounding is

3300 J kg21. The grid spacing is set to 2 km horizontally

and 0.5 km vertically. The dimension of the model do-

main is 64 3 64 3 16 km3 and a virtual polarimetric

Weather Surveillance Radar-1988 Doppler (WSR-88D)

is located at the southwest corner of the domain. The

storm is initiated by a 4-K ellipsoidal thermal bubble with

a 10-km horizontal radius and a 1.5-km vertical radius

centered at x 5 48 km, y 5 16 km, and z 5 1.4 km. The

time step for the model integration is 6 s with 3 s for

the acoustically active model equation terms. These

configurations are essentially the same as those used in

TX05, TX08a, and JZX08.

The ensemble square root filter (EnSRF) proposed by

Whitaker and Hamill (2002) is employed, in which the

observations are serially assimilated. With this EnSRF,

all observations are assumed to be uncorrelated. This

appears to be reasonable as JXZS08 has shown that the

error correlation between properly simulated ZH and

polarimetric data is insignificant. More detailed in-

formation on the filter implementation can be found in

XTD06 and TX08a.

Following TX08a, and TX08b, spatially smoothed

stochastic perturbations with standard deviations of

2 m s21 for the velocity components (u, y, and w), 2 K

for the potential temperature (u), and 0.6 g kg21 for the

mixing ratios of the hydrometeors (qy, qc, qr, qi, qs, and

qh) are added to the initially horizontally homogeneous

first guess defined by the Del City sounding to initialize

the ensemble members at t 5 20 min of model time. The

perturbations are added at the grid points located within

6 km horizontally and 3 km vertically of the observed

reflectivity. As in the previous studies of TX08a,b, the
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pressure is not perturbed. The covariance localization

radius is set to 6 km.

An 80-min assimilation window is used with the first

analysis at 25 min of model time and the last at 100 min.

Radar volume scan data are available and assimilated

every 5 min. Reflectivity data from the entire domain,

including the nonprecipitating regions, are assimilated

and used to update all of the state variables while the

radial velocity data, from regions where the reflectivity is

greater than 10 dBZ, are used to update the wind vari-

ables (u, y, and w) only. It is found in our experiments that

updating the thermodynamic and microphysical variables

using radial velocity does not further improve the anal-

ysis, and this was mainly due to some degradation during

the earlier assimilation cycles when reliable covariance

between those variables and the radial velocity was not

established. While for the same reason, the covariance

between the reflectivity and the velocity variables would

also be unreliable during the early cycles, the degradation

effects using reflectivity to update the velocity variables

were found to be smaller. Given the difficulty in de-

termining the optimal delay time for the cross-updating,

we chose to use the current simpler settings.

b. Simulation of observations

Detailed information on the forward observation

operators that link model state variables with the po-

larimetric radar variables can be found in JZX08; these

operators are used to generate error-free observations.

The error models described in Xue et al. (2007) and

JXZS08 are used to generate simulated observation

errors with slightly different error statistics. In this study,

we assume that a basic quality control process has been

applied to the observations prior to the assimilation. The

effect is achieved by limiting the modeled reflectivity

error samples to within 5 times their standard deviation,

which corresponds to 10 dBZ (larger error samples are

dropped). To accommodate this change while keeping

the error standard deviations (SDs) at a level similar to

that in JXZS08, the correlated and uncorrelated parts of

the error for the reflectivity are increased to 40% and

2.7% of the truth reflectivity, respectively. The resultant

error distribution is similar to that in Xue et al. (2007,

solid line in their Fig. 1) except for a shorter tail on the

negative end (not shown). Therefore, the effective error

SDs of the simulated observations are 1 m s21 for Vr,

about 2 dBZ for the reflectivity at the horizontal polari-

zation (ZH), close to 0.2 dB for the differential reflectivity

(ZDR), and 0.58 km21 for the specific differential phase

(KDP). The same SDs are specified in the filter for the

corresponding observations. The reflectivity difference

ZDP is not examined here since it exhibits the highest

correlation to ZH among the polarimetric variables

(JXZS08); hence, is believed to contain the least in-

dependent information.

c. Parameters to estimate

The LFO83 scheme used in the ARPS model is a single-

moment five-class (cloud water, cloud ice, rainwater,

snow, and hail) bulk microphysics scheme, in which the

PSD is described by an exponential function with a fixed-

intercept parameter. The water amount of the hydrome-

teors in each category is represented by the corresponding

mixing ratio, and it changes through interactions with the

other categories. Such interactions include condensation

or deposition, collection, breakup, freezing, evaporation

or sublimation, melting, and precipitation sedimentation.

PSD-related parameters including the bulk density and

intercept parameter of the PSD of each category explicitly

appear in the equations for the microphysical processes

and can greatly influence the magnitude and relative im-

portance of those processes. Briefly, the intercept pa-

rameter is the product of the total number concentration

and the slope parameter of the exponential distribution

[see Eqs. (1)–(6) in LFO83]. Significant uncertainties exist

because these parameters, which vary significantly both in

time and space in nature, are usually predefined as con-

stants in single-moment microphysics schemes. TX08a

demonstrated through sensitivity analysis that the errors

in the intercept parameters and the bulk densities con-

siderably influence the storm evolution. In this study, the

same set of parameters is selected for parameter estima-

tion under the assumption of imperfect observation op-

erators; these parameters are the intercept parameters for

rain (n0R), snow (n0S), and hail (n0H), and the bulk den-

sities for snow (rS) and hail (rH).

d. Parameter estimation procedure

The parameters to be estimated are given (incorrect)

first-guess values at the beginning of the assimilation

cycles; they are then perturbed for each of the ensemble

members to form an ensemble of parameter values.

Their values are updated during the EnKF assimilation

cycles. The update of these parameters in the early as-

similation cycles when the errors in the estimated state

are still very large is found to hurt rather than help pa-

rameter estimation; the estimated parameter values

easily drift away from the truth, because the covariance

between the parameters and the observations at this

early stage is very unreliable. Since the success of the

parameter estimation and the convergence rate depend

on the filter performance of the previous assimilation

cycles and the error is cumulative, larger error in the

early cycles can significantly slow down the parameter

estimation process (TX08a). As the error in the esti-

mated state can usually be significantly reduced in the

542 M O N T H L Y W E A T H E R R E V I E W VOLUME 138



first two to three cycles, we delay the parameter esti-

mation until 40 min of model time has elapsed or the

time of the fourth EnKF analysis. During the assimila-

tion period, parameter values estimated in the previous

assimilation cycle are used in the forecast model as well

as the observation operators of the following cycle. To

prevent the collapse of the parameter variance because

of the lack of dynamic error growth in the parameters,

a covariance inflation procedure following Aksoy et al.

(2006b) and TX08b is applied, which restores the pa-

rameter spread to a predefined minimum value after

each analysis cycle, when the prior parameter spread is

smaller than this. For the logarithmically transformed

intercept parameters, this predefined minimum spread is

set to 1 m24; for logarithmically transformed snow and

hail densities, it is set to 0.5 kg m23.

e. Design of parameter estimation experiments

We first perform five sets of single-parameter esti-

mation experiments that examine the capability of the

EnKF when only a single parameter contains error. We

then perform a set of experiments in which five parame-

ters are unknown. However, our main focus is on the

improvement that can be obtained by using additional

polarimetric data. Following TX08b, the radial velocity is

not used in the parameter estimation due to its small re-

sponse to the change in parameter values as well as the

fact that it is not a direct function of hydrometeors. The

radial velocity data are used for state estimation, however.

In the single-parameter estimation experiments, one

of the five parameters starts with an incorrect first-guess

value while in the five-parameter experiments all five

parameters start out incorrectly. In the experiments

where the parameter error is involved in the observation

operators, the forecast and the analysis trajectory are

found to be very sensitive to the initial perturbations of

the parameters. To increase the robustness of our esti-

mation, we perform five parallel experiments that only

differ in the sampling of the initial parameter pertur-

bations; the same was also done in Aksoy et al. (2006b).

As in TX08b, we sample the random perturbations in

the log domain [with 10 log(x) transform], which avoids

negative values of the intercept parameters and bulk

densities. With this procedure, unrealistically small or

large parameter values can occur occasionally, causing

forecast instability. Such experiments were rerun using

reduced large and small time step sizes of 2 and 0.5 s,

respectively. Table 1 lists the true and first-guess values

of the parameters. Because the Gaussian random per-

turbations are sampled in the log space, the ensemble

mean of the parameters after they have been converted

back to their original space is usually not the same as the

ensemble mean in the log space. As in TX08b, the pa-

rameter estimation is performed in the log space of the

parameters while the ensemble prediction uses their

values in the original scale.

Within the first few cycles, when the error covariance

is still poor, the errors in the estimated parameters often

grow to be so large as to prevent successful estimation in

later cycles and can cause instability in the model in-

tegration. To avoid this problem, we constrain the pa-

rameters within their respective lower and upper

bounds, which are the same bounds used in the sensi-

tivity experiments (see Table 1).

A data selection procedure developed by TX08b is

used here. At each analysis time, 30 observations are

chosen based on the correlation between the estimated

parameter and the prior estimate (model version) of the

ZH, ZDR, and KDP observations, when only one of the

observation types is used for parameter estimation.

When more than one of the observation types is used, 15

observations from each dataset are chosen based on their

correlation. Therefore, 30 total observations are used

when one or two data types are used and 45 observa-

tions are employed when all three types are used in the

parameter estimation. For polarimetric variables, data

TABLE 1. Microphysical parameters and their uncertainty ranges used in the sensitivity experiments, and their initial guesses as used in the

parameter estimation experiments.

Parameter ( pi)

Rain

intercept

(n0R, m24)

Snow

intercept

(n0S, m24)

Hail

intercept

(n0H, m24)

Density

of snow

Density of

hail

(rS, kg m23) (rH, kg m23)

Control (assumed true) values of parameter pi
t 8 3 106 3 3 106 4 3 104 100 913

Parameter values used in the sensitivity test

Lower bound 3 3 106 5 3 105 4 3 102 20 400

Upper bound 8 3 107 1 3 108 4 3 106 400 913

Three initial guesses used in the

single-parameter estimation

expts

3 3 106 7 3 105 4 3 103 50 400

2 3 107 3 3 107 4 3 105 300 700

8 3 107 1 3 108 4 3 106 400 750

Two initial guesses used in the five-parameter

estimation expts

3 3 106 7 3 105 4 3 105 50 400

2 3 107 3 3 107 4 3 106 300 700
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thresholding is found to be necessary, as in JXZS08. For

ZDR and KDP, the thresholds are 0.05 dB and 0.058 km21,

respectively; data values lower than the thresholds are

discarded. These are lower than those used in JXZS08 to

allow for the use of more observations. Even though the

data subjected to smaller thresholds tend to be noisier,

the information they contain on the microphysics, espe-

cially in regions where polarimetric signatures are weak,

can still be helpful.

3. Sensitivity analysis

a. Response function

Before we performed the parameter estimation, we

first carried out a set of sensitivity experiments to ex-

amine if the model output, in the form of polarimetric

variables, was sensitive to the PSD parameters to be

estimated. This issue is ultimately related to the identi-

fiability of each parameter with given observations

(Yakowitz and Duckstein 1980; TX08a).

Table 1 lists the uncertainty ranges and initial guesses

used in our sensitivity and parameter estimation experi-

ments, respectively; these values were also used in

TX08a,b. These choices are based on observed ranges of

values although they are not necessarily all-encompassing

(Joss and Waldvogel 1969; Houze et al. 1979; Mitchell

1988; Gunn and Marshall 1958; Gilmore et al. 2004;

Pruppacher and Klett 1978; Brandes et al. 2007).

The sensitivity analysis procedure follows TX08a.

First, EnKF data assimilation cycles are performed us-

ing perfect model parameters. The EnKF analyses are

performed every 5 min with the first and last analysis

being at 25 and 100 min. Forty ensemble members are

used and the covariance inflation factor is 15%. We note

that the analyzed storm using this configuration is very

similar to that obtained using 80 members with no in-

flation, which is used in later parameter estimation ex-

periments. Other configurations are as described in

section 2a. Five-minute forecasts are then launched

from the ensemble mean analyses with one of the PSD

parameters set to an ‘‘incorrect’’ value sampled within

its uncertainty range (Table 1). This is done for 16

analysis cycles for several sampled values for the in-

dividual parameters. These 5-min forecasts are used to

calculate the response function, J, as defined in TX08a:

Jy(ps) 5
1

s2
y

�
M

m�1
[y

m
(ps)� yo

m]2, (1)

where p denotes the parameter and the superscript s is

either w for an incorrect value or t for a true value. With

pt, the correct parameter value is used in the observation

operator. Here, ym
o denotes the mth observation (limited

to regions where the reflectivity is greater than 0 dBZ)

and ym(p) is a prior estimate based on the model fore-

cast. The observations consist of ZH, ZDR, and/or KDP;

sy is the SD of the observation error.

The response functions for each type of observation

are averaged over the 16 cycles for each incorrect value

of a given PSD parameter. Since we are interested in the

change in the model response to the error in the pa-

rameter, we compute the response function difference

(RFD), RFDs 5 Jy(ps) � Jy,c(pt), where the bar rep-

resents the average over the assimilation cycles. Essen-

tially, RFDt is the same as DJy in TX08a, where the true

parameter value is used in the response function calcu-

lation. Here, Jy,c(pt) is the response function calculated

from the forecasts of the control experiment with the

truth parameter value.

The difference between RFDt and RFDw presents

some hints about the amount of error that can be at-

tributed to the error in the observation operator. In the

Kalman filter update equation, xa 5 xb 1 K[y 2 H(xb)],

the amount of correction made to the analysis background

is proportional to observation innovation y 2 H(xb), which

is the quantity in the square brackets in Eq. (1). When

the observation operator H involves error, the amount

of correction can be over- or underestimated, leading

to additional errors in the final estimate. Here, xb is the

background state vector (usually forecast from previ-

ous cycle), xa is the analyzed state vector, and K is the

Kalman gain. Therefore, RFDt represents the total root-

mean-square (RMS) difference between the forecast and

the observations (relative to the total RMS difference

between the forecast and the observations in the control

experiment) if the forecast is projected into the obser-

vations without error while RFDw represents the total

RMS difference the filter would see in the presence of both

forecast and observation operator error. When RFDw

is larger than RFDt, the observation operator error acts

to amplify the total error when measured against the

particular observation.

Another practical significance of the sensitivity anal-

ysis is its ability to rank the relative importance of model

parameters so that more important ones can be chosen

for estimation. A higher sensitivity implies that the pa-

rameter in question has a greater impact on the forecast

than that with a smaller sensitivity (Navon 1997).

b. Results of sensitivity experiments

Before discussing the response function, we first ex-

amine the sensitivity of the simulated radar measure-

ments to the parameters. For illustration purpose, we

sample the observation points near the convective core

at three difference levels (0.4, 2.1, and 10.7 km). The ZH,

544 M O N T H L Y W E A T H E R R E V I E W VOLUME 138



ZDR, and KDP values calculated using the default and

the upper and lower bound value of the PSD parameters

are listed in Table 2. Radar measurements are sensitive

to n0R more than to n0H and n0S considering the rela-

tively narrow uncertainty range as compared with those

of n0H and n0S. In addition, ZH changes more than 10

dBZ when n0R increases from 3 3 106 to 8 3 107 m24,

while ZDR and KDP decrease almost by 2 dB and 28 km21,

respectively. The differences should be large when

the rainwater mixing ratio is larger than that sampled

here.

Generally, ZH is more sensitive to the PSD parameters

of snow and hail than are either ZDR or KDP (Table 2).

In our sensitivity experiments, n0H ranges from 4 3 102

to 4 3 104 m24. The corresponding difference in ZH is

nearly 30 dBZ, while ZDR varies by only about 0.2 dB

for the 2.1-km sample. While KDP is insensitive to n0H, it

varies between 2.06 and 1.458 km21 for the uncertainty

range of rH given in Table 2. When only dry snow and

dry hail coexist at 10.7-km altitude, ZDR changes very

little with respect to the change in n0S while the change

in ZH is larger than 10 dBZ. However, these values can

vary in wider ranges depending on the absolute and

relative amounts of hydrometeors at each location.

From a response function point of view, a necessary

condition for a parameter to be identifiable is that it has

a unique minimum within its bounds and the response

function has to be sensitive to the parameter (TX08a). To

investigate the parameter identifiability with polarimetric

radar data, we plot RFDt and RFDw against the deviation

of the parameter values from their truth in Fig. 1.

With respect to reflectivity observations, both the

RFDt and RFDw curves are concave with their minima

located at or near the zero deviation points of individual

parameters (Figs. 1a and 1b); it is therefore very likely

that the truth value can be found by using reflectivity

observations when only one of the parameters has error.

For ZDR, the RFD w.r.t. n0S exhibits very small sensitivity

for positive deviations, indicating potential difficulty in

estimating n0S in that range. The RFDs of n0R and n0H

have clear concave shapes with their minima at zero de-

viation (Figs. 1c and 1d), while the bulk densities, rS and

rH, show rather small sensitivities. The RFDs w.r.t. KDP

are even smaller (Figs. 1d and 1f) for all parameters and

no unique minimum is apparent for n0S and rS due to the

lack of sensitivity w.r.t. to positive deviations.

The parameter identification problem is more complex

in the presence of observation operator errors. When the

PSD parameters are involved in the observation operators,

incorrect parameter values result in under- or overcor-

rection to the parameter, which can lead to larger analysis

errors. In other words, a large difference between RFDw

and RFDt indicates a large impact of the parameter error

through the observation operator. Generally, these dif-

ferences are moderate for moderate sensitivity and very

small when the overall sensitivity is small, but they can be

very large when the total sensitivity is large (e.g., n0H and

rS for ZH; see Fig. 1).

The problem becomes even more complicated when

multiple observation datasets are used due to complex

nonlinear interactions within the filter. For example, the

RFD for KDP might be too small for successful estima-

tion of n0H while the estimation of n0H using ZH might

also be challenging due to the large difference between

RFDw and RFDt. However, when KDP and ZH are used

together, the estimation can be successful, as we will see

in section 4. While the sensitivity results are not sufficient

to determine if certain parameters can be estimated

successfully, they can still provide useful guidance for

interpreting the estimation results.

4. Results of parameter estimation

a. Results of single-parameter estimation

We first investigate the impacts of polarimetric data

on the estimation of individual PSD parameters. Such

TABLE 2. The simulated polarimetric radar measurements using the control lower, and upper bounds of PSD parameter values for samples

taken at three levels near the convective core.

Height (km) Mixing ratios (g kg21) Parameter Parameter values ZH (dBZ) ZDR (DB) KDP (8 km21)

0.4 qr 5 2.59, qs 5 0.0, and qh 5 0.0 n0R (m24) 3 3 106 55.2 3.63 2.93

8 3 106 51.9 3.06 1.96

8 3 107 44.2 1.71 0.76

2.1 qr 5 1.75, qs 5 0.0, and qh 5 1.35 n0H (m24) 4 3 102 78.6 1.28 1.45

4 3 104 63.6 1.29 1.45

4 3 106 49.6 1.49 1.45

2.1 qr 5 1.75, qs 5 0.0, and qh 5 1.35 rH (kg m23) 400 67.0 1.32 2.06

575 65.6 1.31 1.79

913 63.6 1.29 1.45

10.7 qr 5 0.0, qs 5 2.74, and qh 5 0.14 n0S (m24) 5 3 105 43.2 0.11 0.03

3 3 106 38.0 0.12 0.03

1 3 108 32.0 0.15 0.03
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estimation assumes that one of the microphysical pa-

rameters is the dominant source of error. Because PSD

parameters can change over several orders of magni-

tude, following TX08b, we perform the parameter esti-

mation in the logarithmic space of these parameters.

Because we take the average over a number of ‘‘paral-

lel’’ experiments (see section 2e), we define the ‘‘nor-

malized absolute error’’ (NAE) as follows:

NAE
i
5

1

N
�
N

k51

jp
i,k
� pt

ij
pt

i

, (2)

where pi,k is the ensemble mean of the ith parameter in

linear space for kth experiment out of a total of N.

Figure 2 show the NAEs of estimated parameters

from single-parameter experiments. These errors are

averaged over five parallel experiments that start from

three different initial guesses. The experiment names

are made up of the parameter name, and the coefficient

and exponent of the initial guess of the intercept pa-

rameter or the first two digits of the bulk density shown

in Table 1. Observations used in the parameter estima-

tion are indicated after an underscore (_). For example,

experiment N0r36_ZhKdp estimates n0R from an initial

guess of 3 3 106 m24 using both ZH and KDP data. In

most cases, the reflectivity data alone can reduce the

initial parameter errors (thick solid gray) but the results

are not as good as those of TX08b obtained with perfect

observation operators. As observed in TX08b, the pa-

rameter value can depart far from the truth in the first

one or two cycles (e.g., Figs. 2a, 2b, 2d, 2e, 2g, 2h, and 2k)

and oscillates (around its truth values in log space). The

FIG. 1. (a),(c),(e) The response function difference RFDt 5 Jy(pt)� Jy,c(pt) calculated with

correct parameter values and (b),(d),(f) RFDw 5 Jy(pw)� Jy,c(pt) with incorrect parameter

values in the radar observation operators, for (a),(b) reflectivity data, (c),(d) differential re-

flectivity data, and (e),(f) specific differential phase data. The parameter deviations are in

logarithmic space.
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error in the final estimate is larger than the initial error

in such experiments as N0h43, N0h45, and Rhos05.

Generally, an increase in the NAE is observed in the

later cycles of the intercept parameters (e.g., Figs. 2a–e)

while the bulk densities converge to their truth values

(except for Rhos05). These results are quite different

from those of TX08b, where all parameters eventually

converge to their truth values in their single-parameter

experiments that use only reflectivity data.

Figure 2 shows that the estimation of the intercept

parameters is generally improved when KDP is used in

addition to ZH (solid black curves in Fig. 2). For n0R, the

NAEs stay lower than those of experiments using ZH

alone (thick solid gray) at most times (Figs. 2a–c). Figure 3

shows the ensemble mean analysis RMSEs of the state

variables from experiments N0r_Zh (thick solid gray),

N0r_ZhKdp (solid black), and N0r_Zdr (dashed black).

They are averaged over 15 experiments that start from

three initial guesses (corresponding to Figs. 2a–c), with

each initial guesses having five parallel experiments with

different initial ensemble parameter perturbations. In

this case, the benefits of KDP to the estimation of state

are rather small because the state obtained with ZH

alone is already rather good. The overall RMSE levels of

the state are lower than those in Figs. 4 and 5, which are

for experiments estimating n0S and n0H, respectively. In

Figs. 2d–f, the NAE of n0S experiences a clear reduction

in the later cycles when KDP is used in addition to ZH,

and the estimated qs (Fig. 4e) and qi (not shown) are

improved in response. The positive impacts of KDP on

the estimation of n0H may not be apparent from Fig. 2.

However, significant improvement is obtained in the

FIG. 2. The time evolution of the NAE of the ensemble mean of the estimated parameter

values from single-parameter estimation experiments, for (a)–(c) n0R, (d)–(f) n0S, (g)–(i) n0H,

(j)–(l) rS, and (m)–(o) rH when the parameter estimation is performed using ZH alone (thick

solid gray), both ZH and KDP (solid black), and ZDR alone (dashed black). Each experiment

name starts with the parameter name and is followed by the coefficient and the exponent of the

initial guess of the intercept parameter [(a)–(i)] or the first two digits of the bulk density

[(j)–(o)] presented in Table 1. The NAEs are averaged over the five parallel experiments that

have the same initial guesses but different realizations of the initial parameter ensemble.
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state estimation (Fig. 5). It is believed that the smaller

variability of the NAEs during the assimilation cycles

(Figs. 2g–i), and the significantly smaller NAEs com-

pared to that of N0h45_Zh (Fig. 2h), contribute to the

large improvement in the analysis of the state. Addi-

tional use of KDP in the estimation of bulk densities

yields slightly smaller errors in the parameter estimation

but exhibits little impact on the state estimation (not

shown).

The largest benefit of the polarimetric data is obtained

in the estimation of n0H when ZDR is used alone without

reflectivity data in the parameter estimation. The NAEs

exhibit a steady trend of reduction in general with the

exception of the large deviation found in the early as-

similation cycles in N0h43_Zdr (black dashed) while the

NAEs of N0h_Zh (thick solid gray) show large oscilla-

tions with time (Figs. 2g–i). The estimation of all of the

state variables, including microphysical variables as well

as dynamic and thermodynamic variables is significantly

improved as the parameter estimation improves (Fig. 5).

However, the use of ZDR alone in the parameter es-

timation has a negative impact on both the state and

parameter estimation for the other four parameters

(Figs. 2, 3d, and 4).

The reason why ZDR outperforms ZH in the estima-

tion of n0H may be explained by the sensitivity analysis.

In section 3, it is found that the difference between

RFD(nw
0H) and RFD(nt

0H) for reflectivity (solid lines

with square symbols in Figs. 1a and 1b) is larger while

those for ZDR have similar shapes and magnitudes (solid

lines with squares in Figs. 1c and 1d). As discussed in

section 3, the amount of correction made to the forecast

is proportional to the difference between the observations

and the forecast projected to the observation space using

the observation operator. Therefore, a large (RFDw 2

RFDt) implies that the analysis may deteriorate due to

the large uncertainty in the observation operators and

hence in the observed quantities themselves.

Similar to TX08a, we examine the error correlations

to help us understand the filter behavior for the pa-

rameter estimation of n0H. This is because the adjust-

ment to the parameters is accomplished based on error

covariance, the dimensional version of the correlation in

the filter. Figure 6 shows the time series of the correlation

FIG. 3. The ensemble-mean forecast and analysis RMS errors averaged over points at which the

true reflectivity is greater than 10 dBZ for (a) y, (b) w, (c) the perturbation potential temperature

(u9), and mixing ratios of (d) rainwater (qr), (e) snow (qs), and (f) hail (qh), for experiments where

n0R alone contains error and is estimated. The experiments use ZH data alone (thick solid gray),

both ZH and KDP data (solid black), or ZDR data alone (dashed black). The RMS errors are

averaged over 15 experiments that start from three initial guesses presented in Table 1 and five

initial perturbation realizations for each initial guess. The vertical straight-line segments in the

curves correspond to the reduction or increase in RMS errors by the data assimilation.
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coefficient between parameter n0H and the prior esti-

mates of ZH for one of the five parallel experiments

named N0h46_Zh (dotted), and that between n0H and

ZDR of the corresponding experiment N0h46_Zdr. The

coefficients are averaged over the 30 observations used

in the parameter estimation. The correlation coefficient

is calculated from the parameter ensemble and the

model version (prior estimate) of the observations (ZH

FIG. 4. As in Fig. 3, but for n0S.

FIG. 5. As in Fig. 3, but for n0H.

FEBRUARY 2010 J U N G E T A L . 549



or ZDR) from the forecast ensemble. The correlation

coefficient in experiment N0h46_Zdr keeps increasing

during its early cycles and stays high during the rest of

the cycles. On the other hand, the correlation coefficient

in N0h46_Zh drops rapidly in the first two cycles. It

bounces back in the next two cycles but oscillates dur-

ing the remaining cycles and stays lower than that of

N0h46_Zdr. Since nonlinear feedback exists between

the parameter and state estimations during the assimi-

lation cycles, large error in the parameter estimation due

to weak correlation leads to poor state estimation and

slow convergence or even parameter estimation failure.

Even though ZDR for ice hydrometeors is indepen-

dent of the intercept parameter for single hydrometeor

types under the Rayleigh assumption, it, however, be-

comes intercept-parameter dependent when more than

one species coexist and each contributes to ZDR in dif-

ferent ways [see Eqs. (12)–(16) in JZX08]. We show

later (in Fig. 8) that the ZDR data selected are mostly

from areas where dry snow and dry hail coexist. In the

single-parameter estimation experiment for n0H, ZDR is

determined by three free parameters (n0H, qh, and qs),

and the covariance between n0H and ZDR can be cap-

tured by the filter. When only dry hail and dry snow

coexist, the ZDR value varies between two values boun-

ded by those of dry hail and dry snow at the end de-

pending on their relative amounts, which would make

ZDR a better performer than reflectivity in estimating

hail-related quantities. On the other hand, increases in qs

and qh change the reflectivity in the same direction, and

the estimation using reflectivity would be harder. There-

fore, ZDR can be more effective in estimating n0H.

From Figs. 7 and 8, we can see that the ZH observa-

tions used in N0h46_Zh are clustered around a few lo-

cations (Figs. 7a,b and 8a,b) while the ZDR observations

used in N0h46_Zdr are scattered over a wider area (Figs.

7c,d and 8c,d). Observations from the same spatial re-

gions of a storm are likely to carry similar information

on the storm. Repeated application of the observations

with similar information content tends to accelerate the

reduction of the parameter spread. The covariance in-

flation procedure used to prevent the collapse of the

spread can lead to oscillations and overadjustments

(TX08b). In N0r46_Zh, the parameter spread falls to the

predefined minimum SD after two cycles while it takes

seven cycles in N0r46_Zdr (Fig. 9). We also notice that

many of the ZH observations are taken from the region

where at least three phases (rain, hail, and melting hail)

contribute to ZH. At 45 min, many of the ZH data cho-

sen are below 4 km, which is about the 08C level (Fig. 7b).

At 90 min they are mostly near the extended hail core

region, possibly near a strong updraft (Fig. 8b). On the

contrary, many of the ZDR observations are taken from

the region where dry hail dominates over snow (Figs. 7d

and 8d). From these results, the spatial distribution of the

observations used for parameter estimation appears to

also affect the estimation, and this may depend on the

data selection method used. The most effective data se-

lection method deserves further study.

The mean estimated parameters in logarithmic form

from the single-parameter estimation experiments are

presented in Table 3, together with the true values given

in parentheses. The mean values are computed from the

15 experiments with three different initial guesses for

each parameter (see Table 1) and are averaged over the

last five cycles. All five parameter estimates are more

accurate when both ZH and KDP are used in the pa-

rameter estimation than when only ZH is used. In the

case of n0H, the best estimate is obtained using ZDR data

alone. The mean parameter values in a logarithmic

form, averaged over five runs are 51.2, 46.7, and 48.0 for

N0h43_Zdr, N0h45_Zdr, and N0h46_Zdr, respectively;

they are 57.5, 55.8, and 53.8 for N0h43_Zh, N0h45_Zh,

and N0h46_Zh, respectively; while the truth is 46. The

n0H averaged over runs with different initial guesses is

56.0 for N0h_Zh and 49.1 for N0h_Zdr (Table 3). After

being converted to the linear domain, these values cor-

respond to a factor of 6 difference; 56.0 is about 5 times

larger than 49.1 in terms of their linear values. We point

out that N0h_Zdr produces a more stable estimate of

n0H than N0h_ZhKdp because in the former the estimated

parameter shows smaller spread among the experiments

with different realizations (not shown) and has almost no

oscillation during the assimilation cycles (see Fig. 2) even

though the averaged values in Table 3 appear to be sim-

ilar. As a result, the state estimation of N0h_Zdr exhibits

significant improvement over that of N0h_ZhKdp.

Since we are interested in how much the polarimetric

data can further improve not only the parameter but also

FIG. 6. The time evolution of the absolute values of the corre-

lation coefficient between parameter n0H and the model’s prior

estimates of ZDR from one of the five parallel experiments named

N0h46_Zdr (solid) and those between n0H and ZH from the cor-

responding experiment N0h46_Zh (dotted), averaged over the 30

observations used in the parameter estimation.
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the state estimation, we calculate the percentage im-

provement in the state variables according to the fol-

lowing formula:

Improvement(%) 5
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where «c is the RMSE of the corresponding reference

experiment without polarimetric data and N is the num-

ber of experiments averaged over. This improvement is

further averaged over the last five assimilation cycles.

The percent improvements of single-parameter esti-

mation experiments N0r_ZhKdp, N0s_ZhKdp, N0h_Zdr,

Rhos_ZhKdp, and Rhoh_ZhKdp over their respective ref-

erence experiments N0r_Zh, N0s_Zh, N0h_Zh, Rhos_Zh,

and Rhoh_Zh are summarized in Table 4. The im-

provements are rather small in the estimations of n0R,

n0S, rS, and rH because the estimations performed using

ZH alone are already very good. As a result, a 21%

improvement found in qs of N0r_ZhKdp may be in-

significant as shown in Fig. 3e, where the RMSEs of all of

the experiments are relatively low. The improvements

found in qi (not shown) and qs of N0s_ZhKdp and all

state variables of N0h_Zdr seem to be more significant.

It is interesting that larger improvements are found in

physically related variables. For example, relatively large

improvements are found in qi and qs of N0h_ZhKdp

while qi is connected to qs by autoconversion, accretion,

and growth of Bergeron processes. A similar explanation

can be applied to the improvement found in the state

variables of N0h_Zdr. All microphysical variables

(qc, qr, qi, qs, and qh) attain significant improvement by

improving the n0H estimate. These variables are closely

linked through complex microphysical processes where

large hail values are found. Therefore, improving one

variable can lead to the better estimation of physically

closely linked variables.

FIG. 7. Vertical column maximum (a) ZH and (c) ZDR shown in the horizontal plane and

column maximum (b) ZH and (d) ZDR in the y direction shown in the vertical x–z plane, of the

truth simulation at 45 min (shading and thin solid contours). Solid squares indicate the loca-

tions of the observations that were used in the single-parameter estimation experiments

N0h46_Zh [ZH observations in (a) and (b)] and N0h46_Zdr [ZDR observations in (c) and (d)].

The data points are projected onto the horizontal x–y plane in the left panels and onto the

vertical x–z plane in the right panels. Thick dotted contours at intervals of 2 g kg21 represent

the hail mixing ratio through the vertical velocity maximum.
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The best results for certain parameters or state vari-

ables are obtained with somewhat different combina-

tions of polarimetric measurements. Based on our

results, the combined use of ZH and KDP appears to be

a good choice when estimating one of n0R, n0S, rS, or rH,

while the use of ZDR alone is recommended for the es-

timation of n0H.

In our ‘‘control experiments,’’ the same incorrect pa-

rameter values are used in all ensemble members but are

not corrected. Our recent studies have shown that in-

troducing microphysical parameter perturbations helps

when microphysics errors exist. Physics diversity has

also been found to be beneficial for mesoscale EnKF ana-

lyses (Meng and Zhang 2007, 2008; Zhang and Snyder

2007). To see if introducing parameter perturbations

improves the state estimation, even without parameter

estimation, we repeated the control experiments with

the three wrong values of n0H (54 3 103, 4 3 105, and

4 3 106 m24; see Table 1) with the perturbations to n0H

added to these values among the ensemble members.

Contrary to our expectations, the state estimation

actually deteriorates in these experiments with the pa-

rameter perturbations. We suspect that this is because

the parameter errors are rather large, and adding

FIG. 8. As in Fig. 7, but for 90 min.

FIG. 9. The time evolution of the ensemble mean parameter value (thin solid black) and the

1 standard deviation (1sn0H
) ensemble width (or spread; thin dotted black) of the estimated pa-

rameter after the analysis from one of the five parallel single-parameter estimation experiments

for n0H using (a) ZH and (b) ZDR. The true parameter value is shown as a gray dashed line.
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additional perturbations further increases the errors in

some members, making the overall model error too

large for the filter to give a good state estimation.

Nonlinearity associated with such large errors might be

another reason that causes suboptimality of the filter.

To test the above hypothesis, we looked at the case of

smaller parameter error, where n0H 5 2 3 104 m24. In

this case, perturbing n0H actually improves the state es-

timation significantly (thick dashed black in Figs. 10a–d)

compared with those of the no-perturbation experiment

(thick solid gray). The ensemble spread of qs and qh

keeps growing quickly during the forecast (thin dashed

black) in the perturbed-parameter experiment while the

growth rate of the spread in the no-perturbation ex-

periment decreases with time (thin dashed gray). The

larger spread in the former better reflects the presence

of the parameter error in the system, leading to about

a 50% average improvement in the state estimation. For

the small error case, parameter estimation using ZDR

alone (thick solid black) is found to give an additional

7.4% of improvement averaged over all variables over

the perturbed-parameter experiment, with the largest

improvement being 27.8% in qh. This additional im-

provement may seem rather small. However, the biggest

benefit is expected during forecasts when the estimated

n0H is used.

b. Results of five-parameter estimation

In this section, we examine the filter performance when

five parameters are estimated simultaneously. Again,

errors and estimated PSD parameters are averaged over

160 experiments, as described in section 2e (Table 1).

Figure 11 shows the NAEs of the ensemble mean es-

timated parameters from the five-parameter estimation

experiments. Five-parameter estimation experiments

reveal difficulties in estimating all five parameters si-

multaneously in the presence of observation operator

error. The initial error level is overlaid for easier com-

parison (dashed gray). When ZH is used alone (thick

solid gray), the NAEs of n0R, n0S, and rS experience

rapid error growth in the first one to two cycles (Figs. 11a,

11b, and 11d, respectively). These NAEs decrease sig-

nificantly in the next several cycles but increase again in

later cycles. The errors of n0S and rS remain above the

initial error level during all assimilation cycles except for

a temporary drop at 85 min for rS. This result is quite

different from that of TX08b, which used perfect ob-

servation operators. In their study, ZH alone was able to

reduce the errors in all five parameters below their ini-

tial errors most of the time.

A positive impact of the polarimetric data is observed

in the estimation of n0R, n0H, and rS during the later as-

similation cycles, no matter which additional polarimetric

parameter is used (Figs. 11a, 11c, and 11d). When either

ZDR (dotted black) or KDP (dashed black) is used or

TABLE 3. The mean-estimated parameter values in logarithmical

form for single-parameter estimation experiments, averaged over

15 experiments with three different initial guesses presented in

Table 1 and five different perturbation realizations for each initial

guess, over the last five cycles (80–100 min of model time). Their

truth values in logarithmical form are given inside the parentheses.

Obs used in parameter

estimation

n0R

(69.0)

n0S

(64.8)

n0H

(46.0)

rS

(20.0)

rH

(29.6)

ZH 68.6 65.0 56.0 20.3 29.4

ZDR 73.2 66.2 49.1 18.0 28.8

ZH and KDP 69.1 64.8 49.2 19.9 29.4

TABLE 4. The percentage improvement of state estimation for single-parameter estimation experiments (N0r_ZhKdp, N0s_ZhKdp,

N0h_Zdr, Rhos_ZhKdp, and Rhoh_ZhKdp) over their respective reference experiments (N0r_Zh, N0s_Zh, N0h_Zh, Rhos_Zh, and

Rhoh_Zh) without polarimetric data. The percentage improvements are ensemble means of those computed from 15 experiments as in

Table 3 and over the last five cycles (80–100 min of model time).

Variables

Improvement (%)

N0r_ZhKdp N0s_ZhKdp N0h_Zdr Rhos_ZhKdp Rhoh_ZhKdp

u 9.0 1.7 33.5 0.7 2.0

y 10.4 0.8 36.3 0.3 2.3

w 13.2 1.2 47.2 0.7 2.3

u9 13.2 2.7 35.4 0.8 1.1

p9 19.4 2.0 29.3 0.1 2.2

qv 6.7 0.8 38.3 20.6 1.2

qc 11.0 5.0 50.5 0.8 3.8

qr 13.9 20.1 65.0 1.6 2.3

qi 18.9 23.2 50.7 1.9 5.3

qs 21.4 30.6 62.4 1.1 1.9

qh 12.8 1.7 67.7 0.7 3.2

Avg 13.6 6.3 46.9 0.7 2.5
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when both ZDR and KDP are used (solid black) in addition

to ZH in the estimation of n0H, and rS, the error grows

much slower after 80 min; the error, however, grows

rapidly when ZH is used alone. The most significant

positive impact of the polarimetric data is found with the

estimation of n0H, whose error level is significantly lower

in all cases that use polarimetric data (Fig. 11c).

As in the single-parameter estimation experiments,

KDP is slightly more beneficial than ZDR in general but

ZDR produces a better estimation of n0H than does KDP.

Smaller errors in the estimated parameters during the

assimilation cycles help improve the state estimation

while smaller errors at the end should improve the

subsequent forecast.

For the estimated state, the best results are obtained

when both ZDR and KDP are used for parameter esti-

mation (solid lines in Fig. 12). The RMSEs of experi-

ments para5_ZhZdr and para5_ZhKdp (not shown) are

slightly larger than those of para5_ZhZdrKdp but

smaller than those of para5_Zh (dashed lines), with the

exception of qs because of the poor performance of

para5_ZhZdrKdp in the estimation of n0S. A tendency

of the error to increase is found in most state variables in

para5_Zh during the later assimilation cycles in re-

sponse to the error increases in n0R, n0S, n0H, and rH; this

error increase is much weaker and the errors stay lower

in para5_ZhZdrKdp in all state variables except for qs.

Even though the observation operator error adds an

extra layer of complication to the parameter estimation,

the positive impacts of parameter estimation on state

estimation are clear, even with the failures in estimating

n0S and rS. This is seen by comparing the state variable

errors with those of the no-estimation experiments (thick

solid gray in Fig. 12) where the initial ‘‘incorrect’’ pa-

rameter values are kept throughout the assimilation cy-

cles. In the latter experiments, the state variable errors

increase significantly after 65 min of model time, pre-

sumably because the parameter errors now dominate.

The improvement amounts of para5_ZhZdr, para5_

ZhKdp, and para5_ZhZdrKdp over para5_Zh computed

from Eq. (3) are summarized in Table 5. We can see in

Table 5 that the improvements are larger in w, qr, qy, and

qh and smaller (actually negative) in qs. This is in general

consistent with the finding of JXZS08. The improvement

due to polarimetric data is greatest (between 28% and

35%) in qh here, while it was greatest in qr in JXZS08. No

negative impacts were found in any of the state variables

in JXZS08. The poor performance in estimating qs is

understandable, since polarimetric signatures related to

the low-density dry snow are generally very weak.

The spatial distribution of the observations used in one

of the five-parameter estimation experiments is shown

in Fig. 13 as an example. As in the single-parameter es-

timation experiments, the ZH observations used to esti-

mate n0H in para5_Zh are concentrated into two general

areas in the precipitation region (black dots in Figs. 13a,

13c, and 13e) while the ZH (black dots), ZDR (triangles),

and KDP (squares) data in para5_ZhZdrKdp (Figs. 13b,

13d, and 13f) are selected from a broader region. In-

terestingly, the ZH data are mostly selected from the

lower levels, ZDR mostly from the upper levels, and KDP

mostly from the middle levels. For example, the corre-

lation coefficients between n0H and ZH averaged over 30

observations used in para5_Zh range between 0.6 and 0.7,

while those for ZH, ZDR, and KDP averaged over 15 ob-

servations are between 0.61 and 0.68, 0.75 and 0.81, and

0.63 and 0.72, respectively, for para5_ZhZdrKdp at 90 min.

The ensemble spreads of the observations used in the

parameter estimation are generally smaller than the as-

sumed observation error. Still, parameter estimation seems

to work, partly because only observations showing high

correlations are used.

FIG. 10. As in Fig. 3, but for (a) u, (b) qr, (c) qs, and (d) qh, for experiments N0h24 averaged over five parallel

experiments. The RMS errors of the no-parameter-estimation experiment with the same incorrect initial-guess value

of n0H (52 3 104 m24) in all members are shown in thick solid gray, and the no-parameter-estimation experiment with

n0H perturbed around the above initial guess of n0H are shown in thick dashed black. The RMS errors of the exper-

iment when the parameter estimation is performed using ZDR are shown in thick solid black for comparison. The

ensemble spreads of the corresponding experiments are shown in thin lines with the corresponding line patterns.
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c. Results of three-parameter estimations

Figure 11 shows that the errors in the estimated n0S

and rS are almost always larger than their initial errors.

This suggests that it may be better not to estimate n0S

and rS, but to keep their initial values. To test this hy-

pothesis, we perform 10 additional experiments starting

from incorrect values in all five parameters but esti-

mating only three of them or n0R, n0H, and rH. Two sets

of initial guesses are used; they are (n0R, n0S, n0H, rS,

and rH) 5 (3 3 106 m24, 7 3 105 m24, 4 3 105 m24,

50 kg m23, and 400 kg m23) and (3 3 106 m24, 3 3

107 m24, 4 3 105 m24, 300 kg m23, and 400 kg m23).

The estimated mean parameter values and spreads com-

puted from 10 such experiments are shown in Fig. 14. In

experiments para3_ZhZdr (dotted black), para3_ZhKdp

(solid black), and para3_ZhZdrKdp (dashed black),

with the help of polarimetric variables, the mean n0H

and rH converge nicely to their truth values and exhibit

a clear tendency toward rapidly decreasing in spread

during the middle to later cycles. Meanwhile, the pa-

rameters in para3_Zh (thick solid gray) show large os-

cillations and stay away from the truth, and the spreads

remain high. The n0R estimation is most successful with

additional KDP data. The mean estimated parameter

values averaged over the 10 experiments and over the

FIG. 11. The time evolution of the NAE of the mean parameter values from five-parameter

estimation experiments for (a) n0R, (b) n0S, (c) n0H, (d) rS, and (e) rH for the experiments

para5_Zh (thick solid gray), para5_ZhZdr (dotted black), para5_ZhKdp (dashed black), and

para5_ZhZdrKdp (solid black). The initial error level is shown in dashed gray. The average

NAE is calculated from the 160 experiments with 32 different initial guesses consisting of the

combinations of five parameters with 2 initial guesses each, as shown in Table 1, where five

parallel runs with different realizations of the initial parameter perturbations are carried out for

each initial guess.
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last five cycles are more accurate than those of para5_Zh,

when polarimetric variables are used, except for n0R in

para3_ZhZdr and para3_ZhZdrKdp (Table 6). Com-

pared to experiment para5_Zh, the largest improvement

by not estimating n0S and rS is achieved in n0H. The

positive impacts of the polarimetric data are also greatest

in the n0H estimation. For example, the estimated n0H in

para5_Zh contains about 2200% error in linear space

while the estimate in para3_ZhKdp contains only about

17% error; for reference, the average initial error is about

5000% of the assumed truth in linear space.

The state estimation is also improved when the pa-

rameter estimation is improved by not estimating the

snow-related parameters (Fig. 15). The RMSEs of

para3_Zh (black dashed) are generally smaller than

those of para5_Zh (thick solid gray), except for qi, and

the RMSE differences increase with time. The per-

centage improvement over para5_Zh in para3_Zh av-

eraged over 11 model state variables is 23.4%, with

a largest improvement of 42% found in qh, w, qr, and qs

each experience about a 30% improvement.

The RMSEs are further reduced significantly by po-

larimetric data in the parameter estimation (Fig. 15).

The qs estimation is no longer hampered by the addi-

tional KDP data (solid black) but rather experiences

a large RMSE reduction compared to Fig. 12e. When ZH

is used alone (black dashed), after a large reduction

during the first 20 min of the assimilation cycles (not

shown in the plots), the RMSEs start increasing between

FIG. 12. As in Fig. 3, but for simultaneous estimation of five parameters for experiments

para5_Zh (dashed black) and para5_ZhZdrKdp (solid black). The RMS errors of the no-

parameter-estimation experiments with the initial guesses of the parameters kept throughout

the assimilation cycles are shown in thick solid gray for comparison. The RMS errors are av-

eraged over 160 experiments as in Fig. 11.

TABLE 5. The percentage improvement in state estimation for

experiments para5_ZhZdr, para5_ZhKdp, and para5_ZhZdrKdp

over experiment para5_Zh, averaged over 160 experiments with 32

different initial guesses with five parallel runs for each initial guess,

and over the last five cycles (80–100 min of model time). The prefix

‘‘para5_’’ is omitted from the experiment names.

Variables

Improvement (%)

ZhZdr ZhKdp ZhZdrKdp

u 8.9 9.7 12.1

y 7.6 9.6 10.5

w 12.7 12.2 16.9

u9 8.2 6.6 11.5

p9 7.0 2.9 7.7

qy 15.2 18.5 19.4

qc 9.3 12.0 13.3

qr 21.8 22.3 25.9

qi 20.1 2.4 3.7

qs 211.0 22.9 211.6

qh 33.5 28.5 34.9

Avg 10.3 11.1 13.1
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40 and 70 min mostly because of the poor estimation of

n0R during the early cycles and the poor estimation of

n0H between 45 and 60 min (Figs. 14a and 14c). Because

the accuracy of the estimated state as well as the estimated

parameters depends on the history of the estimation, large

errors in the early assimilation cycles, regardless of their

source, impact the state and parameter estimation pro-

cess. On the contrary, continuous error reductions

throughout the assimilation cycles are seen in all state

variables in para3_ZhKdp, except for qi (Fig. 15).

FIG. 13. (a),(b) Vertical column maximum ZH on an x–y plane, and (c),(d) column maximum

ZH in the y direction on an x–z plane and (e),(f) in the x direction on a y–z plane, from the truth

simulation at 40 min. Black dots in the left panels indicate the locations of ZH observations

used in five-parameter estimation experiment para5_Zh, and the black dots, triangles, and

squares in the right panels represent the ZH, ZDR, and KDP observations, respectively, that

were used to estimate n0H in experiment para5_ZhZdrKdp. Initial parameter values for this

experiment are (n0R, n0S, n0H, rS, and rH) 5 (3 3 106 m24, 7 3 105 m24, 4 3 105 m24,

50 kg m23, and 400 kg m23).
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In the early cycles between 40 and 45 min, experiment

para3_Zh produces a comparable estimate of n0R but a

better estimate of n0H than does para3_ZhKdp (Figs. 14a

and 14c). However, the state estimation of para3_Zh is

generally poorer than that of para3_ZhKdp. This seem-

ingly contradictory result can be explained by the com-

pensating model responses described in TX08b. The

increase in n0R compensates for the decrease in n0H in

terms of reflectivity. When the problem is insufficiently

constrained by the data, multiple solutions can exist.

The use of microphysical information contained in ad-

ditional polarimetric data on hydrometeor types and

PSDs appears to help alleviate the solution nonunique-

ness problem.

The gross improvement produced by the polarimetric

data in the three-parameter estimation experiment with

five incorrect parameter values can be assessed more

easily by reviewing Table 7. Statistically, the overall

errors in the analysis are approximately cut in half. All

state variables exhibit fairly large improvements ranging

from 29.9% to 66.4%. The best analysis is obtained by

using KDP data in addition to ZH, which is consistent

with the parameter estimation results shown in Fig. 14.

This appears reasonable because the KDP data seem to

provide different information content than ZH since

they are selected mostly from discrete regions of the

storm while much of the ZDR data seem to overlap ZH in

location (Fig. 13). The combinations of hydrometeor

types and dominant species vary with location within the

storm. Observations selected from a specific part of

a storm can be more effective in correcting the errors

associated with the dominant hydrometeor types at that

location. Observations taken at the same location tends

to be less effective in reducing the ambiguity in the

FIG. 14. The mean-estimated (left) parameter and (right) spread for (a),(b) n0R, (c),(d) n0H,

and (e),(f) rH for three-parameter estimation experiments para3_Zh (thick solid gray), para3_

ZhZdr (dotted black), para3_ZhKdp (solid black), and para3_ZhZdrKdp (dashed black). The

horizontal thick dotted gray lines in the left panels indicate the truth parameter values. In these

experiments, n0R, n0H, and rH were estimated while n0S and rS were kept at their incorrect

initial values throughout the assimilation cycles. The mean and spread are computed from 10

experiments starting from two sets of imperfect parameter values (n0R, n0S, n0H, rS, and rH) 5

(3 3 106 m24, 7 3 105 m24, 4 3 105 m24, 50 kg m23, and 400 kg m23) and (3 3 106 m24,

3 3 107 m24, 4 3 105 m24, 300 kg m23, and 400 kg m23).
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parameters although different types of observations with

small correlations (hence different information content)

can still be very helpful. Another interesting point is that

when not estimating snow-related parameters, qs expe-

riences the second largest improvement in para3_ZhZdr

and para3_ZhZdrKdp and the third largest improve-

ment in para3_ZhKdp. The exact reason for this behavior

is difficult to ascertain. It could be due to still-present

nonuniqueness problems and/or strong nonlinearity of

the system. Because the estimation of the snow-related

parameter further increases its error, not estimating it at

all yields better overall results.

Finally, in the three- and five-parameter estimation

experiments, when the polarimetric data are used alone,

individually or together, without ZH, the estimated states

are generally not as good as those using ZH alone. These

results are not presented here.

5. Summary and conclusions

We have investigated the impacts of additional po-

larimetric data on correcting errors in PSD-related

fundamental parameters in a model microphysics scheme

through observing system simulation experiments. Such

errors also affect the observation operators of all radar

observations except radial velocity (in our case at least

where reflectivity weighting for radial velocity is ig-

nored). These parameters, namely, the intercept pa-

rameters of rain (n0R), snow (n0S), and hail (n0H), and

the bulk densities of snow (rS) and hail (rH), are esti-

mated, individually or all together, simultaneously with

the model state using a sequential ensemble square root

Kalman filter. The polarimetric data considered include

TABLE 6. As in Table 3 but for five-parameter experiment

para5_Zh and three-parameter estimation experiments para3_Zh,

para3_ZhZdr, para3_ZhKdp, and para3_ZhZdrKdp, in which n0S

and rS were kept at their incorrect initial values throughout the

assimilation cycles while other three parameters were estimated.

The experiments start from two sets of parameter values, namely,

(n0R, n0S, n0H, rS, and rH) 5 (3 3 106 m24, 7 3 105 m24, 4 3

105 m24, 50 kg m23, and 400 kg m23) and (3 3 106 m24, 3 3

107 m24, 4 3 105 m24, 300 kg m23, and 400 kg m23). Their truth

values in logarithmical form are given inside the parentheses.

Expt

n0R

(69.0)

n0S

(64.8)

n0H

(46.0)

rS

(20.0)

rH

(29.6)

para5_Zh 71.4 74.4 59.7 23.2 28.4

para3_Zh 69.1 71.9 50.5 22.4 28.5

para3_ZhZdr 72.1 71.9 45.8 22.4 29.4

para3_ZhKdp 69.0 71.9 46.7 22.4 29.4

para3_ZhZdrKdp 72.6 71.9 45.5 22.4 29.3

FIG. 15. As in Fig. 3, but for experiments para3_Zh (black dashed) and para3_ZhKdp (solid

black). The RMS errors are averaged over 10 experiments starting from two sets of initial

parameter values as given in the caption of Fig. 14. The RMS errors of experiment para5_Zh

are shown in thick solid gray for comparison.
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the differential reflectivity ZDR and specific differential

phase KDP. To obtain more robust results, single-, five-,

and three-parameter estimations are repeated with dif-

ferent initial guesses and different initial ensemble

perturbations for each parameter, and the mean and

standard deviation statistics are computed and com-

pared. Compared to the earlier parameter estimation

work of TX08b, this study includes the effects of ob-

servation operator error and examines the impacts of

additional polarimetric data. In JXZS08 the impacts of

simulated polarimetric data are examined in the absence

of any parameter error. Based on the authors’ knowl-

edge, no previous parameter estimation study has ad-

dressed the issue of parameter error within the observation

operators.

Generally, the reflectivity, ZH, observations alone

can effectively reduce the error in n0R, n0S, rS, and rH

when only one parameter contains error, even in the

presence of observation operator error; they, however,

perform poorly when estimating n0H. The KDP, in ad-

dition to ZH, is found to help further reduce the errors

in the intercept parameters and improve the state esti-

mation through improved parameter estimation. Add-

ing KDP has almost no impact on the estimation of snow

and hail densities and their related state variables, be-

cause the estimation with reflectivity alone is already

very successful. The best estimation of n0H is obtained

when ZDR is used alone (for parameter estimation)

while its estimation using KDP and ZH is also better than

that using ZH alone.

Our results reveal some difficulties in simultaneously

estimating all five parameters that contain error. Unlike

TX08b, who assumes perfect observation operators, our

five-parameter estimation experiments show that the

errors in n0S and rS are increased during the assimilation

cycles by the parameter estimation to above their initial

levels with or without using polarimetric data (for pa-

rameter estimation). However, the positive impacts of

polarimetric data on the state estimation are clear when

ZDR or KDP, or both ZDR and KDP, are used along with

ZH in the parameter estimation. When all five parame-

ters contain initial errors, both the parameter and state

estimations are improved when n0R, n0H, and rH are

estimated without n0S and rS. Moreover, the positive

impacts of polarimetric data are further increased

compared to the case when all five parameters are esti-

mated. This behavior can be understood from the fact

that the polarimetric signature of snow is very weak and

the sensitivity of the polarimetric measurement to the

corresponding parameters is also small.

Since it is suggested by previous studies (Aksoy et al.

2006b, TX08b) that a larger ensemble size leads to better

parameter estimation, we performed additional five-

parameter estimation experiments with a doubled en-

semble size of 160. When compared to their 80-member

counterparts, the estimated states are improved in general

except for experiment para5_ZhKdp, which shows com-

parable results in a statistical sense. Some of the parameter

estimations, however, experience deterioration in some

experiments, while larger improvements in other param-

eters seem to more than compensate for the negative ef-

fects of these parameters on the state estimation.

We point out that the accuracies of the state and PSD

parameters estimated through the EnKF system may dif-

fer when different polarimetric measurements are used.

Certain combinations of polarimetric measurements may

yield a better-estimated state but with less accurate pa-

rameter values than other combinations. This variability

also exists among the state variables and estimated pa-

rameters. A better understanding of the combined im-

pacts can help optimize the assimilation (or estimation)

system although in practice nonlinear interactions in the

model, which are abundant in the complex microphysical

processes, can make it difficult to delineate the effects of

one source of input data or parameter value on another.

While the sensitivity studies performed here and in

TX08a,b are helpful, more effective approaches may be

needed to further improve our understanding.

In this study, simulated polarimetric variables are

used in parameter estimation but not in state estimation.

It is shown in JXZS08 that the impacts of polarimetric

data are rather small when the state estimation is al-

ready very good with conventional radar data. In such

a case, updating the state using polarimetric data only

increases the computational cost. The use of additional

polarimetric data for parameter estimation seems to be

most beneficial and it also provides an indirect positive

impact on the state estimation.

TABLE 7. The percentage improvement of the state estimation

for three-parameter estimation experiments para3_ZhZdr, para3_

ZhKdp, and para3_ZhZdrKdp over experiment para3_Zh. The

prefix ‘‘para3_’’ is omitted from the experiment names.

Variables

Improvement (%)

ZhZdr ZhKdp ZhZdrKdp

u 42.9 46.9 42.5

y 42.6 49.5 42.2

w 49.0 56.1 49.5

u9 45.7 50.0 45.6

p9 36.4 43.3 36.7

qy 40.2 46.5 36.1

qc 46.4 52.0 44.5

qr 57.6 63.0 54.5

qi 29.9 45.1 29.9

qs 60.0 61.6 55.9

qh 64.3 66.4 57.8

Avg 46.8 52.8 45.0
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It is suggested that limitations of the current data se-

lection method may partially be responsible for the poorer

performance of the reflectivity-alone experiments. Re-

flectivity observations tend to be selected from a few

clustered locations while polarimetric variables are scat-

tered in a wider area so that the microphysical in-

formation can be provided by different combinations and/

or compositions of hydrometeors. Imposing a minimum

distance between observations or a data-thinning process

may help alleviate the data-clustering problem.

In this work, the covariance inflation for the state is

not applied following TX08a, who reported that the

difference in the analysis RMS errors induced by co-

variance inflation is smaller than that caused by different

realizations of the initial ensemble. We performed extra

experiments where the state covariance inflation was

included and saw only a small impact. Our use of larger,

80-member ensembles also helps reduce the need for

covariance inflation.

Although more realistic OSSE scenarios that include

both forecast model and observation operator errors are

tested in the study, the performance of the estimation

system in real-data scenarios remains a question re-

quiring further research. While the polarimetric data are

believed to contain much useful information about the

microphysics, the use of a single-moment microphysics

scheme based on an assumed exponential PSD may limit

the ability of polarimetric data in helping estimate the

intercept parameters. If a two-moment microphysics

scheme is used where both the mixing ratios and the

total number concentration are predicted, the intercept

parameter no longer has to be specified. In this case, our

goal would be changed to the estimation of both the

mixing ratios and the total number concentrations that

are now state variables. The increased number of state

variables needing estimation may demand more obser-

vational information and the polarimetric observations

may become a more valuable addition to the radial ve-

locity and reflectivity observations of nonpolarimetric

Doppler radars. The impacts of polarimetric data on full

microphysical state estimation when a two-moment mi-

crophysics scheme is used will be examined in the fu-

ture.
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