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ABSTRACT

The performance of ensemble Kalman filter (EnKF) analysis is investigated for the tornadic supercell on

29–30 May 2004 in Oklahoma using a dual-moment (DM) bulk microphysics scheme in the Advanced Re-

gional Prediction System (ARPS) model. The comparison of results using single-moment (SM) and DM

microphysics schemes evaluates the benefits of using one over the other during storm analysis. Observations

from a single operational Weather Surveillance Radar-1988 Doppler (WSR-88D) are assimilated and a po-

larimetric WSR-88D in Norman, Oklahoma (KOUN), is used to assess the quality of the analysis.

Analyzed reflectivity and radial velocity in the SM and DM experiments compare favorably with in-

dependent radar observations in general. However, simulated polarimetric signatures obtained from analyses

using a DM scheme agree significantly better with polarimetric signatures observed by KOUN in terms of the

general structure, location, and intensity of the signatures than those generated from analyses using an SM

scheme.

These results demonstrate for the first time for a real supercell storm that EnKF data assimilation using

a numerical model with an adequate microphysics scheme (i.e., a scheme that predicts at least two moments of

the hydrometeor size distributions) is capable of producing polarimetric radar signatures similar to those seen

in observations without directly assimilating polarimetric data. In such cases, the polarimetric data also serve

as completely independent observations for the verification purposes.

1. Introduction

Microphysical processes within clouds strongly in-

fluence the evolution of convective systems, yet many

complex microphysical processes and their effects are

not fully understood. In numerical weather prediction

(NWP) models, processes associated with the initiation,

growth, breakup, evaporation, and fallout of precipitation

particles, as well as many other processes, are parame-

terized using bin (spectral) or bulk parameterization

schemes. Because of the complexity and incomplete un-

derstanding of these processes, many uncertainties exist

in their parameterization. For real-time NWP models

including microphysical parameterization, bulk micro-

physical parameterization (BMP) is exclusively used over

bin schemes to limit computational cost.

BMP schemes are based on a gross representation of

particle size distributions (PSDs) for each hydrometeor

species, whereas bin schemes attempt to represent PSDs

explicitly. In BMP schemes, PSDs are assumed to have
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a specified functional form. A well-known functional

form based on observed rain drop size distributions

(DSDs) is a generalized gamma distribution (e.g., Ulbrich

1983; Milbrandt and Yau 2005a),

Nx(D) 5 N0xDa
x e2l

x
D, (1)

which has three free parameters: the intercept param-

eter N0, the shape parameter a, and the slope param-

eter l. In this equation, N(D) is the number density as

a function of particle diameter D and subscript x refers

to one of the hydrometeor species. Single-moment (SM)

BMP schemes typically fix N0, set a 5 0, and predict l,

which is a function of the mass content that is directly

predicted (e.g., Lin et al. 1983; Cotton et al. 1986). Many

dual-moment (DM) BMP schemes predict mass content

and total number concentration allowing N0 and l to vary

while holding a constant (e.g., Ziegler 1985; Ferrier 1994;

Meyers et al. 1997; Milbrandt and Yau 2005a,b). It is also

possible to predict a as an additional free parameter by

predicting an additional moment, such as the radar re-

flectivity factor (the 6th moment of the PSD). Schemes

that treat a in this manner are called three-moment (TM)

schemes (e.g., Milbrandt and Yau 2005b). Because each

free parameter requires a prognostic equation for each

microphysical species, computational costs increase sig-

nificantly when moving to a multimoment (MM) BMP

scheme.

In recent decades, a rapid increase in computing power

has motivated efforts to improve BMP schemes by adding

more hydrometeor species, including more microphysical

processes, and/or predicting more free PSD parameters

(e.g., Ferrier 1994; Ferrier et al. 1995; Milbrandt and Yau

2005a,b; Morrison et al. 2005; Koenig and Murray 1976).

Studies have shown that schemes allowing two and three

independently varying PSD parameters produce simu-

lated convective storms that are more consistent with

observations than SM schemes that predict only one free

parameter; the largest improvement is often found when

moving from an SM to a DM scheme, although im-

provement has also been noted when moving from a

DM to a TM scheme (Milbrandt and Yau 2006; Jung

et al. 2010, hereafter JXZ10; Dawson et al. 2010). In

these studies, supercell thunderstorms simulated using

a multimoment microphysics scheme showed a more

realistic reflectivity structure, particularly in the forward-

flank region, and more realistic cold pool strength. Be-

cause the DM scheme predicts the total mass and the

total number concentration independently, it is capable

of simulating drop growth (shrinking) during accretion

or diffusion (evaporation) while keeping the number

concentration constant, or the number concentration

changes during aggregation or breakup while the total

mass remains constant. More importantly, the DM

scheme allows size sorting because of differential sed-

imentation that results in larger mean sizes at lower

levels than at upper levels. Those processes cannot be

simulated with an SM scheme because the total mass

and the total number concentration are always mono-

tonically related. For more details, the reader is re-

ferred to Milbrandt and Yau (2005a).

Whereas the studies mentioned above suggest that

a DM scheme may simulate storms more realistically

than an SM scheme, initializing model states when using

a DM scheme poses additional challenges. Convective-

scale state estimation is severely underconstrained by

observations, even when using radar data. Because the

DM scheme doubles the number of microphysical vari-

ables compared to the SM scheme, the problem be-

comes more challenging, as the DM scheme significantly

increases the number of state variables to be estimated

while relying on the same number of observations. Xue

et al. (2010, hereafter XJZ10) found slower error re-

duction rates during data assimilation (DA) cycles when

both the truth simulation and the corresponding observ-

ing system simulation experiments (OSSEs) used a DM

scheme as compared to an SM scheme using its own truth

simulation and the corresponding OSSEs.

In recent years, the ensemble Kalman filter (EnKF)

has enjoyed encouraging success in meteorological data

assimilation from global to convective scales (Evensen

1994; Evensen and Leeuwen 1996; Burgers et al. 1998;

Houtekamer and Mitchell 1998; Anderson 2001; Bishop

et al. 2001; Whitaker and Hamill 2002; Evensen 2003;

Tippett et al. 2003; Snyder and Zhang 2003; Dowell et al.

2004; Tong and Xue 2005, hereafter TX05; Xue et al.

2006, hereafter XTD06; Jung et al. 2008b, hereafter

JXZS08; Dowell et al. 2011; Dawson et al. 2012). The

EnKF method is especially useful at the convective scale

because no adjoint model is needed for the complex and

highly nonlinear microphysical processes that occur at

convective scales. XJZ10 demonstrated the capability

of an EnKF system to estimate multiple moments of

PSDs with simulated single-polarization Doppler radar

observations.

In XJZ10, the Advanced Regional Prediction System

(ARPS) EnKF system was able to estimate all state

variables associated with the Milbrandt and Yau (2005a)

DM scheme reasonably well when both reflectivity and

radial velocity were assimilated either in a perfect model

scenario or in the presence of certain model errors.

However, XJZ10 suggested that the same level of per-

formance may not be achieved when significant model

and/or other sources of error exist. When a problem is

significantly underconstrained by observations, the large

model error may limit the ability of the filter to develop
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reliable multivariate covariance, leading to filter di-

vergence. Much research is still required to determine

the ability of an EnKF system to estimate all state var-

iables necessary to initialize a multimoment microphysics

scheme using real data.

The primary goal of this paper is to demonstrate, for

the first time in a real data case, that the EnKF DA

method is able to estimate model states associated with

a two-moment microphysics scheme (i.e., both mixing

ratios and total number concentrations) and that the

estimated states can provide simulated polarimetric ra-

dar signatures that match real radar observations. With

an SM scheme, the system is fundamentally incapable

of simulating such signatures, as shown in JXZ10 with

simulated data. An enhanced version of the XJZ10 EnKF

DA system with a DM scheme is applied to a real tor-

nadic supercell storm case. Specifically, we select the

tornado outbreak that occurred on 29–30 May 2004

in central Oklahoma. Analyses using SM and DM mi-

crophysics schemes are directly compared. For a more

stringent comparison, we assimilate observations from

only one Weather Surveillance Radar-1988 Doppler

(WSR-88D) while using observations from both another

operational WSR-88D and a research polarimetric radar

for independent verification.

The rest of this paper is organized as follows: a brief

overview of the tornado outbreak case is first given in

section 2. In section 3, we briefly describe the forecast

model, EnKF assimilation system, and design of our ex-

periments. We also introduce the radar observations used

for data assimilation and verification. We discuss the as-

similation results obtained using DM and SM schemes

and verify them against radar observations in section 4.

Finally, section 5 includes a summary and conclusions.

2. Overview of the 29–30 May 2004 tornado
outbreak

During the late afternoon and evening of 29 May 2004

an enduring supercell thunderstorm traversed central

Oklahoma, spawning 18 tornadoes. The storm lasted for

nearly 12 h, during which time it traveled almost 300

miles from western Oklahoma to the Oklahoma–Arkansas

border (Fig. 1). Briefly, an upper-level low pressure sys-

tem moved out of the Rockies into the southern plains

on the afternoon of 29 May (not shown). A dryline de-

veloped in the southern plains, passing through the central

Panhandle area in the early morning of 29 May, and

moved into far western Oklahoma by 0000 UTC 30 May.

By this time, a surface front had advanced from Colorado

into western Oklahoma, catching up to the dryline in

Kansas. The convective available potential energy (CAPE)

in the 0000 UTC 30 May Norman, Oklahoma, sounding

was moderate (2344 J kg21) and convective inhibition

(CIN) was relatively low (262 J kg21).

By early afternoon, several convective storms formed

along the dryline near the western border of Oklahoma

and quickly moved northeastward. A few smaller storms

at the southern end of a line of storms merged and grew

into a strong supercell storm by 2300 UTC in western

FIG. 1. Reflectivity greater than 40 dBZ at 0.58 of KTLX (thick solid contours) between

2303 UTC 29 May and 0701 UTC 30 May 2004. The location of KTLX is marked with a radar

symbol. The thick dashed rectangle denotes the analysis domain. The number of tornadoes by

county associated with this storm is shown in the parentheses next to the county names.
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central Oklahoma (Fig. 1). This supercell storm pro-

duced a number of tornadoes, large destructive hail, and

damaging winds as it moved eastward.

This case garnered the attention of a number of

studies, some still ongoing, because it occurred during

the Thunderstorm Electrification and Lightning Experi-

ment (TEKEX; MacGorman et al. 2008). Bluestein et al.

(2007) and Kumjian and Ryzhkov (2008) examined spe-

cific polarimetric signatures during the mature stage of

the storm based on radar observations. Hu (2005) and

Tong (2006) attempted to analyze and predict this storm

using three-dimensional variational data assimilation

(3DVAR) and EnKF, respectively. Hu (2005) noticed

the significant position error of the storm during the

assimilation and forecasting process and attempted to

introduce a phase-correction procedure to reduce this

error. The results of Tong (2006) using data from one or

two WSR-88Ds and an SM scheme showed a good fit

between and the analyses and observations. Neverthe-

less, forecasts that started from the final analyses de-

teriorated quickly. Tong (2006) speculated that model

errors, most likely those associated with microphysics and

resolution, were responsible for the large forecast er-

rors. Some aspects of the analyses were not verified

because of the lack of direct observations. More de-

tailed descriptions of the storm initiation, evolution,

and associated tornadoes of the event can be found in

Hu (2005).

3. Experiment design

a. Prediction model

Predictions during the EnKF cycles are performed

using the Advanced Regional Prediction System (Xue

et al. 2000; 2001; 2003), which is a fully compressible,

nonhydrostatic atmospheric model. ARPS predicts the

three velocity components u, y, and w, potential tem-

perature u, pressure p, water vapor mixing ratio qy, as

well as microphysical state variables. Microphysical var-

iables may include mixing ratios of cloud water, rainwa-

ter, ice, snow, and graupel and/or hail (qc, qr, qi, qs, qg,

and/or qh, respectively), their total number concentra-

tions (Ntc, Ntr, Nti, Nts, Ntg, and/or Nth), and reflectivity

factor (Ztr, Zti, Zts, Ztg, and/or Zth) depending on the

number of moments predicted by the selected micro-

physics scheme. In this study, the double-moment mi-

crophysics schemes of Milbrandt and Yau (2005a,b; MY

scheme) are used for our comparison study. For a single-

moment microphysics scheme, the commonly used Lin

et al. (1983) scheme was employed. The intercept pa-

rameter values for rain, snow, and hail size distributions

used in this study are 8.0 3 105 m24, 3.0 3 106 m24, and

4.0 3 104 m24, respectively. Here, the rain intercept pa-

rameter was reduced from the default 8.0 3 106 m24

following Snook and Xue (2008).

The basic EnKF configurations are largely inherited

from the OSSEs described in XJZ10. The particle size

distributions for all categories are assumed to be expo-

nential for SM and DM schemes; shape parameters

in the gamma PSDs are set to zero in the forward ob-

servation operator. The graupel category is turned off

for the DM scheme as was done in XJZ10. Turning off

graupel has two primary advantages. First, it may alle-

viate the tendency of microphysics schemes to over-

predict graupel–hail in the supercell storm simulation

(Milbrandt and Yau 2006). Second, the DM scheme

doubles the number of microphysical variables predicted,

inevitably leading to increased uncertainty in the analysis,

as discussed earlier. By turning off graupel, we reduce the

number of microphysical-state variables. Our test ex-

periments with idealized supercell simulations show that

eliminating graupel does not significantly impact storm

evolution.

An analysis domain measuring 180 3 120 3 16 km3 is

used with a horizontal grid spacing of 1 km and 40 ver-

tical levels. Vertical grid stretching is applied such that

the vertical spacing varies from 100 m at the surface to

700 m at the model top. Full model physics are used,

including the National Aeronautics and Space Admin-

istration (NASA) Goddard Space Flight Center (GSFC)

longwave and shortwave radiation parameterization,

stability-dependent surface-layer physics, a two-layer

soil model initialized with the National Centers for

Environmental Prediction (NCEP) Eta Model analysis,

and 1.5-order turbulent kinetic energy (TKE)-based

subgrid-scale turbulence parameterization (see Xue et al.

2001 for details). Although TKE and soil variables

are predicted, they are not updated, as in our earlier

OSSE studies. Updating soil variables will require

future research.

External ensemble boundary conditions are created

using the scaled lagged average forecasting (SLAF) tech-

nique (Ebisuzaki and Kalnay 1991; Hou et al. 2001; Kong

et al. 2006). First, the Eta Model analyses at 1800 UTC 19

May and 0000 UTC 30 May are interpolated in time and

space to a 3-km horizontal resolution grid at hourly in-

tervals. The area of the 3-km grid is 900 km 3 900 km (not

shown). Next, ARPS 3DVAR analyses are performed

using the interpolated Eta grids as a background and all

available rawinsondes and surface observations, including

those from the Oklahoma Mesonet, at hourly intervals.

ARPS forecasts are then initiated from these analyses and

run until 0000 UTC 30 May. Various combinations of

these forecasts and the analysis valid at 0000 UTC are

utilized to create 60 initial conditions. Finally, ensemble
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forecasts on the 3-km grid are launched starting from

the ensemble initial conditions and run until 0100 UTC.

Ensemble boundary conditions for ensemble analyses over

the assimilation window are produced using these ensem-

ble forecasts. The 3-km initial conditions at 0000 UTC

provide the initial background ensemble and the 3-km

ensemble forecasts supply perturbed boundary condi-

tions for the 1-km EnKF analyses.

b. Data assimilation procedure

The fundamental configuration of the EnKF analysis

is adopted from JXZS08 and XJZ10. Model-state var-

iables are estimated using an ensemble square root

filter (EnSRF) algorithm based on that of Whitaker

and Hamill (2002). A full description of the square root

filter and its implementation in the ARPS EnKF system

can be found in XTD06. The forward observation op-

erator developed in Jung et al. (2008a, hereafter JZX08)

and modified in XJZ10 the total number concentrations

available with the DM scheme is used to assimilate radar

reflectivity (ZH, where H is horizontal polarization) and

radial velocity (Vr) collected by the Oklahoma City,

Oklahoma, WSR-88D (KTLX). Briefly, the scatter-

ing amplitudes of rain computed using T-matrix codes

(Waterman 1969; Vivekanandan et al. 1991) at a uni-

form drop size interval are fitted to a power-law function

of the drop size for reflectivity. For ice, the Rayleigh

scattering approximation is utilized. The presence of wet

snow and wet hail in the melting layer is accounted for

by defining a water fraction in the melting snow or hail.

This melting ice model allows for continuously varying

density and dielectric constants throughout the melting

process. For radial velocity, the forward observation

operator for radial velocity defined in XTD06 is used.

A 60-member ensemble is initialized on the 1-km grid

at 0000 UTC 30 May by adding spatially correlated

perturbations to the initial conditions interpolated from

the 3-km ensemble forecasts described in section 3a.

A two-dimensional (2D) recursive filter (Purser et al.

2003; Barker et al. 2003) is applied horizontally with

a decorrelation length scale of 6 km, and a homogeneous

Gaussian filter (Huang 2000; Liu and Xue 2006) with

a length scale of 3 km is applied vertically to three-

dimensional (3D) fields with random Gaussian distributed

perturbations to generate smoothed, spatially correlated

initial perturbations. The standard deviations of the final

perturbations added to each variable are 2 m s21 for u, y,

and w; 1 K for u; and 0.2 g kg21 for the mixing ratios of

hydrometeors (qy, qc, qr, qi, qs, and qh). Only positive

perturbations are produced for u, qy, qc, qr, qi, qs, and

qh. Perturbations are added to u, y, and u in the entire

domain and to w and mixing ratios qy, qc, qr, qi, qs, and qh

at grid points located within 4 km horizontally and 2 km

vertically of significant observed reflectivity (where ZH

exceeds 30 dBZ). At the initial time in this experiment,

the number concentrations were diagnosed using the

perturbed mixing ratios and their default intercept pa-

rameters, using the DM scheme to maintain a degree of

consistency with mixing ratios. In this way, Nt is guaran-

teed to be nonzero when q is nonzero. If instead both q

and Nt had been perturbed independently, some combi-

nations could have occasionally been assigned values that

would lead to instability. As an example, the initial state

of select fields in ensemble member 1 is shown in Fig. 2.

During the forecast, the shape parameters of the

gamma PSDs for rain and hail are perturbed as an en-

semble as in XJZ10 for both SM and DM experiments.

The shape parameter for rain varies from 0 to 3, while

that of hail changes from 3 to 0 sequentially—both at

constant intervals of 0.05—giving rise to 60 values that are

used in the ensemble.

The cutoff radius used in the covariance localization

function (Gaspari and Cohn 1999) is set to 6 km in all

directions. A multiplicative inflation (Anderson 2001;

TX05) factor of 15% is applied to all model states except

number concentrations because inflating the number

concentration can sometimes have a negative impact on

the filter performance in the early cycles because of their

large dynamic ranges and large spreads. Filter divergence

due to underdispersion is typically much more serious in

real data experiments. Similar to Dowell and Wicker

(2009), additive noise is found to help maintain en-

semble spread during data assimilation. We apply addi-

tive noise every 5 min during a 55-min data assimilation

window. Again, a 2D recursive filter and a homogeneous

Gaussian filter are used to produce smoothed additive

noise, but with a 12-km length scale in both the horizontal

and the vertical directions; small length scales were found

to produce worse results with a DM scheme and cause

forecast instability in some members.

Additive noise is added only to u, y, and u, with their

standard deviations being 0.5 m s21, 0.5 m s21, and

0.5 K, respectively, for the SM experiment (EXP_SM)

and 0.75 m s21, 0.75 m s21, and 0.75, respectively, for

the experiment using a DM scheme (EXP_DM). We

observed faster spread reduction in EXP_DM and, con-

sequently, decided to use more additive noise. In this

study, the additive noise is added everywhere. It is found

that the noise added upstream of the storm helps to

maintain the spread within the storm but can lead to

too large a spread downstream of the storm where the

spread is already quite large. For the purpose of this

study, the spread downstream of the storm is of less

concern. Overall, we found that adding the noise ev-

erywhere worked better for this case, and our assimi-

lation of reflectivity data everywhere, as was first found
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in TX05, helps to suppress spurious storms that may

develop out of the noise. XJZ10 showed that perturb-

ing the shape parameter of gamma PSDs of rain and

hail within the forecast ensemble, as previously described,

helped improve PSD state estimation. The above inflation

configurations were found to produce the best results after

numerous experiments.

The assimilation of KTLX data on the 1-km grid starts

at 0005 UTC 30 May. It is performed every 5 min until

0100 UTC. Reflectivity data from the entire domain and Vr

from regions where observed reflectivity is greater than

5 dBZ are assimilated. As in TX05, the assimilation of re-

flectivity data in nonprecipitation regions is found to help

suppress the spurious convection that may develop in the

model. All state variables, except pressure, are updated

when analyzing either ZH or Vr data. Observation errors in

the filter are assumed to be 3 dBZ for ZH and 2 m s21 for Vr.

c. Radar observations

As previously mentioned, radar reflectivity and radial

velocity data (ZH and Vr) from the Oklahoma City radar

are assimilated. The WSR-88D at Vance Air Force Base

(KVNX), which is located in northwestern Oklahoma,

also provided coverage of the storm. These data and

data from the polarimetric WSR-88D located in Nor-

man (KOUN) are used for independent verification.

Verification of analyzed thunderstorms represents a

major challenge because most state variables are not di-

rectly observed. XJZ10 and JXZ10 showed that reflectivity

alone is insufficient for determining the quality of esti-

mated microphysical states because the state dependency

of reflectivity is not unique. A given reflectivity value can

correspond to an unlimited number of combinations of

state variables involved in its calculation. Additional po-

larimetric radar measurements may help evaluate the

performance of an analysis; therefore, the reflectivity

of the horizontal polarizations (ZH), differential re-

flectivity (ZDR), specific differential phase (KDP), and

cross-correlation coefficient (rhv) measured by KOUN

are used for verification. KOUN Vr data are not used

because multiple folding occurred with the data because

of a low Nyquist velocity, which made unfolding difficult.

We employ a quality control procedure that is included

in the ARPS package to despeckle and remove ground

clutter from reflectivity data and to unfold aliased radial

velocity data. Observations are interpolated to the loca-

tion of the model grid horizontally, but remain on the

radar elevation levels vertically (see XTD06; XJZ10). To

produce the data at the analysis times at 5-min intervals,

data from the same elevation at the two nearest times are

interpolated to the analysis time (Tong 2006). An addi-

tional quality check is added to the polarimetric data

based on the value of rhv; the measured ZDR and KDP

values are flagged as bad when rhv is smaller than 0.8.

4. Results

a. Verification of EnKF analyses against WSR-88D
observations

Figure 3 shows the differences between analyzed

ensemble mean reflectivity and radial velocity from

FIG. 2. Initial fields of ensemble member 1 for (a) reflectivity (dBZ), (b) rainwater mixing ratio (g kg21), (c) hail

mixing ratio (g kg21), and (d) potential temperature (K) after the perturbations are added at z 5 2 km MSL.

1462 M O N T H L Y W E A T H E R R E V I E W VOLUME 140



EXP_DM and EXP_SM at the end of the assimilation

window, projected to the lowest elevation of the KTLX

(0.468), and the corresponding KTLX observations.

Projection is performed to enable direct comparison.

The analyzed radial velocity and reflectivity in both

experiments show a good fit with observations in the

shape, structure, and intensity of these fields indicated

by small differences between the posterior ensemble

mean and observations within the storm in general.

The filter does experience some difficulty in retrieving

sharp gradients in the observed values of reflectivity

and radial velocity in both EXP_SM and EXP_DM.

Small differences in radial velocity are found near two

velocity couplets (Figs. 3c,e). Relatively larger differences

in reflectivity are shown near the hook echo and in the

southern edge of the forward flank (Figs. 3d,f). The filter

does not perform well where the background state con-

tains a displacement error when a sharp gradient is pres-

ent because the collection of small displacement errors

can lead to a less reliable covariance structure. Ensemble

mean reflectivity is on average lower than observations in

EXP_SM while reflectivity is slightly overestimated near

the reflectivity core in EXP_DM. Still, overall differences

are rather small in both fields. This degree of fit with ob-

servations is achieved at all levels (not shown). Although

a good fit of the analysis to the observations in terms of

the assimilated quantities is expected with a well-behaved

analysis system, obtaining the results shown in Fig. 3 was

FIG. 3. KTLX observed (a) radial velocity and (b) reflectivity; (c),(d) As in (a),(b), but for posterior ensemble mean

minus observation for EXP_SM at the 0.468 elevation angle valid at 0100 UTC 30 May. (e),(f) As in (c),(d), but for

EXP_DM.
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not trivial when the DM scheme was used. Many experi-

ments were performed to arrive at the ‘‘optimal’’ config-

uration of the EnKF system that is used in this study.

To quantitatively evaluate the performance of the

EnKF analyses and forecasts, taking account of obser-

vation errors, the root-mean-square innovations (RMSI)

and consistency ratios following Dowell and Wicker

(2009) are averaged over the KTLX volume at each

analysis time (Fig. 4). These scores are computed for all

points where the observed or simulated ensemble mean

reflectivity is greater than 15 dBZ; this criterion includes

spurious echo regions in the statistics. The RMSI usually

decreases rapidly within the first few cycles; therefore, we

only present statistics after the fifth analysis cycle, by

which time they have largely stabilized (Figs. 4a,b). The

dashed curves represent the RMSI of the ensemble

mean forecasts, the solid lines represent the RMSI of

the ensemble mean analyses, and the black and gray

curves represent EXP_DM and EXP_SM, respectively.

In Fig. 4a, the 5-min velocity forecast of EXP_SM is

slightly better than that of EXP_DM, while the ana-

lyzed radial velocity is nearly the same. On the other

hand, the 5-min forecast reflectivity of EXP_DM is better

in the later assimilation cycles, while the analyzed re-

flectivity of EXP_SM is consistently lower than that of

EXP_DM by about 0.6 dBZ (Fig. 4b). In general, the

RMSIs are of comparable magnitude in EXP_SM and

EXP_DM during the assimilation window; the increase

of innovation during forecast periods is also similar be-

tween the two. During intermediate and later cycles, the

RMSIs of radial velocity decrease below 2 m s21 in the

analyses, but quickly increase to approximately 6 m s21

in the 5-min forecasts. Similar behavior is seen in re-

flectivity when the analysis reduces the forecast RMSIs

by 3–4 dBZ.

Another useful index that can assess the behavior of

data assimilation is the consistency ratio (Dowell et al.

2004; Dowell and Wicker 2009). This value should

be close to 1 when forecast ensemble variance (squared

ensemble spread) is a good approximation to the fore-

cast error variance. The consistency ratios are compa-

rable for EXP_DM and EXP_SM, ranging from 0.3

to 0.5 for radial velocity and from 0.3 to 0.7 for reflec-

tivity (Figs. 4c,d). While these consistency ratios are well

below 1, these results are not atypical, given that un-

derdispersion is commonly observed in real data studies

FIG. 4. The RMSIs for (a) radial velocity and (b) reflectivity for ensemble mean analyses (solid lines) and ensemble

mean forecasts (dotted lines) with an SM (gray lines) and DM (black lines) scheme, and the consistency ratios for (c)

radial velocity and (d) reflectivity for ensemble forecasts calculated against KTLX observations. Statistics are only

computed where either observed or analyzed reflectivity is greater than 15 dBZ. Note that because of the overlay

of curves from two experiments, we plot the analysis and forecast curves separately, instead of the often used

‘‘sawtooth’’ diagrams (e.g., Dowell et al. 2004).
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at the convective scale (Dowell and Wicker 2009; Aksoy

et al. 2009). Despite the spread deficiency, the filter

showed no clear sign of divergence, at least during the

assimilation period examined. Additive noise was

found to help maintain or increase consistency ratios

with time, as indicated by the increasing trend seen in

Figs. 4c,d. Efforts to further increase the consistency

ratio by adding more additive noise or using a larger

covariance inflation factor resulted in increased RMSIs

and computational instability during the forecast in some

members. Increasing observation error variance in-

creased the ensemble spread but also RMSIs. The

comparable overall diagnostics shown in Fig. 4, including

the magnitude and trend of RMSIs and consistency ra-

tios, and the supercell structure shown in Fig. 3 indicate

that the two experiments are reasonably configured for

our comparison purposes.

We expect a larger ensemble spread in EXP_DM than

in EXP_SM, as EXP_DM has more degrees of freedom.

Since we observe a faster spread reduction in EXP_DM

in the observation space, we computed the ensemble

spread of each model-state variable. The results indicate

that in general, the three dimensionally averaged ensem-

ble spreads of state variables in EXP_DM are consistently

higher than those in EXP_SM. For example, ensemble

spreads averaged over the area where Z . 15 dBZ for qc,

qr, qi, qs, and qh are 0.24 3 1022, 0.71 3 1022, 0.15 3 1022,

0.51 3 1022, and 0.72 3 1022 g kg21, respectively, at

300 s of model time but 0.28 3 1022, 0.75 3 1022, 0.81 3

1026, 0.36 3 1025, and 0.54 3 1025 g kg21, respectively,

for EXP_SM. The ensemble spread of hail in EXP_SM

at 300 s is almost three orders of magnitude smaller than

that in EXP_DM. The same trend continues to the end

of the assimilation window. Ensemble spreads of wind

variables are also higher in EXP_DM than in EXP_SM.

Although the spreads of the mixing ratios are generally

found to be higher in EXP_DM, the combination of the

mixing ratio and the total number concentration results

in a smaller ensemble spread in reflectivity in DM_EXP.

This is reasonable, as reflectivity is directly constrained

by observations, and in the light of the fact that more

degrees of freedom can be adjusted by the filter so as to

better match the final solution with the observations.

When this happens to all or most members, the spread

can be smaller.

Because reflectivity and radial velocity data from

KTLX were assimilated, a good match between the

analyses and KTLX observations is expected. A much

more stringent test is the fit of the analyses to independent

observations. Figure 5 compares the analyzed reflectivity

and radial velocity against KVNX observations that are

not assimilated. The analyzed reflectivity is found to be

consistent with KVNX observations (Figs. 5b,d,f), with

larger differences found in the small cells north of the

main storm. These cells are closer to KVNX, and there-

fore, KTLX observation is not available at this height.

This could explain the larger differences in both re-

flectivity and radial velocity in those two cells (Figs. 5c–f).

The differences in analyzed radial velocities are larger

than those in reflectivity in the main storm (note that the

two radars actually measure different components of

the wind because of their differing viewing angles,

while reflectivity measured by the two S-band radars is

a measurement of the same quantity). For example, the

differences are larger near the two small-scale cyclonic

circulations found in KVNX radial velocity observa-

tions, which are labeled C1 and C2 (Fig. 5a). Two cir-

culations are too weak and broad in the EXP_SM and

EXP_DM analyses, which do not exhibit any outbound

velocity in the circulation region (KVNX is located at

approximately X 5 75 km and Y 5 155 km). Never-

theless, the radial velocity field of EXP_DM is generally

better than that of EXP_SM in the high-reflectivity re-

gion where Z . 50 dBZ within the main storm, although

the size of small-scale features is still overestimated. The

large error near the location of those two vortices in

Fig. 5 is partly due to a small displacement of vortices

with respect to KTLX. Although time interpolation was

applied to get the observed radial velocity at the time of

analysis, their positions are still slightly different from

each other. The inbound component of analyzed wind in

the northern portion of the forward flank in the main

storm and in the small storm located north of the main

stormis underestimated in both EXP_SM and EXP_DM.

The inaccuracy of the analyzed wind in the split storm can

be largely attributed to the fact that the cross-beam

component of wind with respect to the KTLX radar is

dominant in this region (not shown). As suggested by

Dowell et al. (2004) and Tong (2006), the ensemble

Kalman filter often has difficulty retrieving the cross-

beam component of the wind from single Doppler ra-

dar radial velocity observations for real cases.

The vertical profiles of RMSI with respect to KVNX

observations averaged over points at which observed

reflectivity is greater than 15 dBZ for EXP_SM (gray

lines) and EXP_DM (black lines) at the end of assim-

ilation cycles show that EXP_DM has consistently

smaller RMSIs for radial velocity below the fifth ele-

vations (Fig. 6). Between the sixth and twelfth eleva-

tions, EXP_SM displays a smaller RMSI. Above that,

no reflectivity higher than 15 dBZ is found. The verti-

cal profiles at 55 min are similar to those at 60 min in

EXP_SM. The larger RMSIs for reflectivity found in

EXP_DM at the lower elevations are due, in part, to

larger differences in the storm located north of the main

storm (Fig. 5f). On the other hand, greater uncertainty in
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Vr is partly responsible for the larger RMSIs for Vr at the

upper levels because of the relatively larger radar res-

olution volume and a certain portion of missing data

at 116 km and farther, which caused some issues during

the dealiasing and interpolation. Nevertheless, EXP_SM

and EXP_DM are generally comparable in terms of

RMSIs.

At the upper levels, the analyzed reflectivity field as

viewed by KTLX is still reasonably good, except near

areas of high-reflectivity gradients (Figs. 7d,f). The re-

flectivity in the bounded weak echo region (BWER) is

too high in EXP_SM (yellow area in Fig. 7d) while the

intensity of the high-reflectivity wall surrounding it is

underestimated in EXP_DM (larger green area in Fig.

7f). At this tilt, the analyzed radial velocity fields show

relatively good agreement with the observations in both

experiments, in general, except in the areas of strong

inbound winds (Figs. 7c,e).

For real data experiments, diagnostics are usually

performed in the observation space. Because the true

state is unknown, the quality of an analysis can only be

evaluated using observations. The innovation can be

a useful measure of an error when an observation is

a direct measurement of a state variable, such as that of

pressure or wind. When the observation is an indirect

measurement involving multiple state variables, such

as that for radar reflectivity, interpretation of the in-

novation is not straightforward, as illustrated in XJZ10

for the mixing ratio and total number concentration of

rain. In that study, the filter performance in identifying

FIG. 5. As in Fig. 3, but for KVNX at the 0.58 elevation angle that provides independent observations. Two cyclonic

circulations are labeled C1 and C2 and are pointed at by arrows.
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correct errors in individual fields was significantly de-

graded when the state estimation was underconstrained

by the observations. A similar problem was noted for

multiple parameter estimation in Tong and Xue (2008),

where the responses in terms of reflectivity to errors in

different parameters can offset one another. Polarimetric

radar measurements can help evaluate the quality of the

analysis by providing independent information, espe-

cially information on PSDs.

b. Comparison with KOUN polarimetric variables

In supercell storm simulations, PSDs of hydrometeors

affect the structure, dynamics, and evolution of storms

(JXZ10). Therefore, it is important for successful fore-

casts to properly initialize the PSDs and, at the same

time, have a prediction model that is capable of accu-

rately evolving the PSDs. The DM and TM schemes are

designed to predict the evolution of PSDs, allowing dif-

ferent degrees of freedom within the PSD model. Veri-

fication of model PSDs is difficult, however, because of

the lack of direct PSD observations, at least in three di-

mensions.

A number of polarimetric signatures in supercell

storms and the means by which they form were docu-

mented in the observational studies of Kumjian and

Ryzhkov (2008, 2009, 2010) and Romine et al. (2008).

JXZ10 showed that most of these signatures could be

simulated in a numerical model when a DM scheme is

used even though a single sounding was used to define

the storm environment. However, they reported that

certain polarimetric signatures, including the ZDR arc

and midlevel ZDR and rhv rings, could not be properly

simulated when an SM microphysical scheme was used.

Because polarimetric data and reflectivity from KOUN

are not assimilated in our study, it is possible to include

them as independent data for evaluating the quality of

state estimation or verification. Radar scans obtained

between 0058:04 and 0102:54 UTC are composited to

create a 3D volume scan for KOUN. To directly com-

pare observed and analyzed polarimetric variables, the

forward observation operator described in JZX08 and

Jung (2008) is utilized to convert model states into ob-

served quantities.

In the KOUN 0.58 tilt, two reflectivity cores are found:

one in the forward-flank region and one in the rear-flank

region (Fig. 8a). Both reflectivity cores are reproduced

quite well in EXP_SM and EXP_DM (Figs. 8b,c). A

comparison of KOUN reflectivity to that from KTLX

(Fig. 3b) suggested that KOUN reflectivity is about

3 dBZ higher than the reflectivity of KTLX because of

miscalibration. However, ZDR bias was found to be

small and thus did not require any correction. The iso-

lated echo east of the main storm in the KOUN data is

suspected to be a second trip echo (M. Kumjian 2011,

personal communication). The fact that time interpolation

was not applied to the KOUN data may also be partly

responsible for the reflectivity differences.

In general, the ZDR and KDP patterns in EXP_SM

do not match those in the observations, despite good

agreement in reflectivity. On the contrary, polarimetric

signatures of EXP_DM compare favorably with ZDR

and KDP patterns in the observations. The ZDR arc,

FIG. 6. The vertical profiles of RMSI of ensemble mean analyses with respect to KVNX radar

for (a) radial velocity and (b) reflectivity of EXP_SM (gray lines) and EXP_DM (black lines) at

3300 s (dotted lines) and 3600 s (solid lines). RMSIs are averaged at each elevation angle over

points at which the observed reflectivity is .15 dBZ.
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a region of high ZDR near the surface in the southern part

of the forward flank, provides evidence of a relatively

high ratio of large raindrops resulting from a size-sorting

mechanism (Kumjian and Ryzhkov 2008) (Fig. 8d). As

shown in JXZ10, for an idealized simulation, EXP_DM is

able to retrieve the ZDR arc signature in this real data case

(Fig. 8f). The ZDR value in EXP_DM is generally higher

than in the observations, although the peak value in the

ZDR arc is slightly lower than in the observations. The

ZDR maximum in EXP_DM is located north of the ob-

served maximum, although the overall pattern suggests

that the DM scheme is able to simulate the size-sorting

process properly (see JXZ10 for more details). Excessive

size sorting due to the fixed shape parameter is discussed

in Milbrandt and Yau (2005a) and may be responsible for

the rather higher ZDR values in the forward-flank area.

This excessive size sorting may be alleviated by using

a diagnostic relation for the shape parameter without

increasing the number of state variables in the future. On

the other hand, the ZDR patterns are significantly differ-

ent from the observations in EXP_SM (Fig. 8e). The

elongated low ZDR band enclosed by a dashed circle is

due to the presence of hail (Fig. 9c). The ZDR arc is absent

in EXP_SM.

Despite some observation void in the high KDP re-

gion, such a region is generally collocated with the re-

gion of high reflectivity, which is located north of the

observed ZDR maximum (Fig. 8g). The analyzed KDP

core in EXP_DM is located several kilometers north-

west of the observed KDP core (Fig. 8i), but it is still

collocated with analyzed reflectivity cores. The analyzed

KDP cores are collocated with reflectivity in EXP_SM

FIG. 7. As in Fig. 3, but at elevation angle of 5.118.
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(Fig. 8h), but the values are too high, partially because

of the reduced rain intercept parameter. Reducing the

intercept parameter increases the assumed median vol-

ume diameter of raindrops where larger drops induce

a larger differential phase.

In Fig. 8j, low rhv is found in the observations in the

region of inflow and to its northwest. The low rhv values

at low levels can be attributed to a combination of hail

and light debris carried by the inflow (Kumjian and

Ryzhkov 2008). Light debris is not simulated by our

prediction model or our polarimetric radar data simu-

lator, which may explain the lack of low rhv values in the

inflow region of our experiments. However, a rhv re-

duction around the periphery of the updraft due to hail

in EXP_DM is apparent in Fig. 8l (see Fig. 9 for rain-

water and hail mixing ratios). The simulated rhv of

EXP_DM is generally higher than the observed value

because of the simplified model of ice particles, in-

dependent treatment of each precipitating type, and

lack of nonmeteorological effects within the model. Fur-

ther discussion of the limitations of simulated rhv can be

found in JXZ10. Therefore, simulated rhv can only be

viewed qualitatively. Considering the limitations of the

radar simulator, areas of rhv reduction due to meteoro-

logical factors, which are the presence of rain, hail, and

a melting hail mixture, and the resonance effect of large

melting hail, are found at approximately the correct lo-

cations near observed low rhv regions for EXP_DM.

However, the lower rhv region is found in the forward

flank, farther east and north of the observed low rhv

regions, in EXP_SM, a finding that differs greatly from

observations. For a more detailed discussion on how

FIG. 8. (a)–(c) Reflectivity (ZH; dBZ), (d)–(f) differential reflectivity (ZDR; dB), and (g)–(i) differential phase (KDP; 8 km21). ( j)–(l)

Cross-correlation coefficient (rhv) for the (left) KOUN, (middle) EXP_SM, and (right) EXP_DM at 0.58 tilt, valid at 0100 UTC 30 May.

For EXP_SM and EXP_DM, ensemble analysis means are used to create simulated polarimetric variables at the observation points.

Features of interest are enclosed by dashed circles in some panels.
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polarimetric signatures are simulated within a numeri-

cal model, the reader is referred to JXZ10.

c. Comparison between EXP_SM and EXP_DM

In the previous section, we showed that the overall

pattern and intensity of ZDR, KDP, and rhv in EXP_DM

agreed relatively well with observations while EXP_SM

exhibited ZDR and KDP signatures and a rhv pattern that

was different than that of observations. These results

indicate that the DM scheme appears to be simulating

microphysical processes more accurately than the SM

scheme. In this section, we compare certain model-state

variables of EXP_SM and EXP_DM, emphasizing the

differences in microphysical fields using the two schemes.

Because of the lack of direct measurement of state vari-

ables, we have to rely on our understanding of storm

dynamics, thermodynamics, and microphysics, along with

polarimetric data, to help us assess the quality of the

analyses.

In Fig. 9, the analyzed low-level (z 5 1.5 km) rain-

water and hail mixing ratios at the end of the assimila-

tion period, along with horizontal wind and reflectivity,

are presented. Figure 8 showed that both EXP_SM and

EXP_DM show good agreement between analyzed

reflectivity and KOUN observations. The RMS differ-

ence at the end of assimilation, averaged over all grid

points at which reflectivity exceeds 15 dBZ, is approxi-

mately 7 dBZ in both experiments. That difference is

higher than the RMS differences calculated against

KTLX or KVNX, largely because the anomalous echo

northeast of the main storm observed by KOUN, but not

KTLX or KVNX.

Despite the similarity in the analyzed reflectivity, the

patterns of analyzed microphysical variables vary greatly

between EXP_SM and EXP_DM (Fig. 9). In both ex-

periments, the high-reflectivity core can be attributed to

the rainwater content at lower levels (Figs. 9a,b), as those

cores are collocated with the area of a high rainwater

mixing ratio. Hail in EXP_SM is present in a much lower

amount and over a narrower area than in EXP_DM. In

contrast, the hail mixing ratio is higher in EXP_DM

than in EXP_SM and contributes significantly to the

high reflectivity. The relatively large difference in hori-

zontal wind at z 5 1.5 km above mean sea level (MSL)

is found mostly in the rear-flank and inflow regions.

The southerly wind in the rear-flank region and the cy-

clonic circulation C1 are weaker, while C2 is stronger

in EXP_DM.

FIG. 9. (a),(b) Rainwater mixing ratio (shading; g kg21), horizontal wind (vectors; m s21), and (c),(d) hail water mixing ratio (g kg21) for

the ensemble mean of (a),(c) EXP_SM and (b),(d) EXP_DM at 0100 UTC at z 5 1.5 km MSL. Reflectivity (thick solid contours at intervals

of 20 dBZ, starting from 20 dBZ) is overlaid on each plot. Two cyclonic circulations from Fig. 5 are labeled C1 and C2 in (a),(b).
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The difference between the SM and DM schemes is

obvious from the rain intercept parameters, N0r, com-

puted from EXP_DM (Fig. 10) at z 5 100 m above

ground level (AGL), where the rain intercept parameter

used in EXP_SM is log(8.0 3 105) 5 5.9. The log(N0r)

values are smaller than 5.5 in most areas in EXP_DM.

This implies that the raindrops would be larger than

those in EXP_SM for the same rainwater mixing ratio.

The lower intercept parameters collocated with the area

with high ZDR values in the ZDR arc suggests that large

raindrops are responsible for this signature in EXP_DM.

Although the intercept parameter computed from

EXP_DM displays the PSD shifts toward smaller or

larger drops compared to the SM results, it is not an

absolute measure of the particle size. Figure 11 shows

the mean-mass diameter [see Eq. (8) of JXZ10] of

raindrops at z 5 2 km and hailstones at z 5 6 km along

with their mixing ratios. In EXP_SM, the particle size is

a monotonic function of its mixing ratio. Therefore,

large drops exist only in the areas with a high mixing

ratio, as shown in Figs. 11a,c. In Figs. 11b,d, it is clear

that raindrops are indeed larger in EXP_DM than in

EXP_SM in the high-reflectivity regions at the lower

levels. In contrast to EXP_SM, the smaller size of hail-

stones is associated with a higher hail mixing ratio in

EXP_DM. The mismatch between the hail mixing ratio

contours and hailstone size shading in the forward flank

suggests that a smaller number of large hailstones exist

in the vicinity of updrafts, while a large number of smaller

hailstones are being carried away.

The distribution of hydrometeors at z 5 8 km also

differs greatly between EXP_SM and EXP_DM (Fig. 12),

similar to the results seen in Fig. 9. In EXP_SM, the

amounts of hail and snow are comparable where ZH .

40 dBZ at this height, with hail contributing significantly

FIG. 10. Rain intercept parameter [shading; log10(N0r)] for the

ensemble mean of EXP_DM at z 5 100 m AGL at t 5 3600 s of

model time. Ensemble mean analysis ZDR (solid contours at in-

tervals of 0.5 dB, starting from 3 dB) is overlaid. The small in-

tercept parameter values are found in the ZDR arc.

FIG. 11. Mean-mass diameters (shading; mm) of (a),(b) raindrops at z 5 2.5 km and (c),(d) hailstones at z 5 6 km

MSL computed from the ensemble mean analysis for (a),(c) EXP_SM and (b),(d) EXP_DM at 0100 UTC. (a),(c)

Rainwater mixing ratio (solid contours at intervals of 1.0 g kg21, starting from 1.0 g kg21) and (b),(d) hail water

mixing ratio (solid contours at intervals of 2.0 g kg21, starting from 2.0 g kg21) is overlaid on each plot.
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to the reflectivity maximum. The localized high hail

content found in the vicinity of updrafts can be attributed

to the large size assumption in the SM scheme. However,

in EXP_DM, hail is dominant in a much wider area,

where ZH . 40 dBZ while the snow content increases

downstream. This is reasonable because the hailstones

can be much smaller to represent growing ice particles

by riming in EXP_DM, as shown in Fig. 11. Without in

situ observations, it is difficult to say with certainty how

good or bad those state estimates are. However, a high

concentration of hail in EXP_DM is shown in the up-

draft region, which is inferred from the location of

BWER, with a main region of hail growth to the left of

the updraft (e.g., Miller et al. 1988). The maximum mean-

mass diameter of the hail at this level is approximately

2.1 mm in EXP_DM.

Weygandt et al. (2002) and Dowell et al. (2004, 2011)

found it difficult to retrieve low-level features, such as

the cold pool, from radar data. This can be partly at-

tributed to the lack of radar data near the surface be-

cause of the earth curvature effect and model errors

associated with resolution and model physics. Further-

more, Dowell et al. (2011) demonstrated that the per-

turbation temperature near the surface is very sensitive

to the reflectivity data assimilation algorithm and to the

ensemble spread in temperature, suggesting low confi-

dence in the analyzed cold pool. In fact, the SM and DM

experiments show somewhat different low-level features,

but the results are inconclusive given the lack of ob-

servations near the surface, so they are not shown

here.

5. Summary and discussion

Supercell thunderstorms are known to exhibit many

distinct polarimetric signatures that are associated with

size distributions, shapes, phase composition, and orien-

tations of particles that exhibit large natural variability

within a storm as a result of storm dynamics and micro-

physics. Use of a single-moment (SM) microphysics

scheme substantially limits the capability of a numeri-

cal weather prediction model to simulate the observed

variability in particle size distributions (PSDs) for super-

cell storms, although such schemes are widely used pri-

marily because of their lower computational costs. Two- or

higher-moment microphysics schemes, on the other hand,

are capable of simulating observed PSD variability to

a certain extent. However, some issues need to be

addressed, including increased computational cost, in-

troduction of new uncertainties into the microphysics

parameterization, and a more seriously underconstrained

situation within model-state estimation due to an in-

creased degree of freedom. In this paper, an effort was

made to address the latter issue with a real thunder-

storm case using an ensemble Kalman filter (EnKF)

method.

FIG. 12. (a),(b) Snow water mixing ratio (shading; g kg21) and (c),(d) hail water mixing ratio (g kg21) for the

ensemble mean of (a),(c) EXP_SM and (b),(d) EXP_DM at 0100 UTC at z 5 8 km MSL. Reflectivity (thick solid

contours at intervals of 20 dBZ, starting from 20 dBZ) is overlaid on each plot.
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The 29–30 May 2004 central Oklahoma tornado out-

break case is selected to investigate the ability of EnKF

to estimate state variables that are associated with a

double-moment (DM) microphysics scheme. The anal-

ysis results are then compared with those obtained using

a single-moment (SM) scheme and verified against data

from WSR-88Ds at Oklahoma City (KLTX) and Vance

Air Force Base (KVNX), as well as data from an exper-

imental polarimetric WSR-88D in Norman, Oklahoma

(KOUN). The analyzed reflectivity fields from the ex-

periments using SM and DM schemes (EXP_SM and

EXP_DM, respectively) compare well in general with

observed reflectivity, both for observations that are as-

similated and observations from independent radars.

When projected to the radial directions of KVNX, the

analyzed velocity field exhibits rather large differences

from KVNX observations of radial velocity, which were

not assimilated. This is likely associated with difficulties

in retrieving the cross-beam component of the wind from

a single radar. Nonetheless, the radial velocity field of

EXP_DM matches slightly better with KVNX observa-

tions, at least at the lower levels, than that of EXP_SM.

Although EXP_SM exhibits smaller RMSIs at the upper

levels, the result is less trustworthy because of larger un-

certainties due to large resolution volume and some miss-

ing data in the KVNX observations used for verification.

Polarimetric data can be very useful in the verification

of convective-scale modeling studies because they con-

tain additional information on the properties of hydro-

meteors, including their PSD, shape, phase composition,

and orientation. A comparison between simulated po-

larimetric variables from the analyses and the corre-

sponding observations revealed that the analyzed ZDR is

missing a key signature of a supercell storm and that KDP

values are too high in the experiment using an SM scheme,

despite good agreement in reflectivity. On the contrary,

polarimetric signatures in the experiment using a DM

scheme compare rather well with observations in terms of

the general shape, location, and intensity of the signatures.

Although the analyzed reflectivity fields in EXP_SM

and EXP_DM are comparable, the dominant form of

hydrometeor species in the analyses is different at both

the lower and upper levels. Near the surface where snow

is absent, EXP_DM produces more hail than EXP_SM,

which significantly contributes to the reflectivity max-

ima. At the upper levels where rainwater is absent, hail

is dominant in EXP_DM, while snow dominates in

EXP_SM.

A set of experiments has been performed using the

MY SM scheme during our study. However, the high

hail bias present in the MY scheme is aggravated by

reflectivity assimilation and leads to an even larger hail

bias. Therefore, we did not present the results here. We

concluded that more sensitivity experiments may be

needed for that scheme.

The results of this study indicate that a properly

designed EnKF system based on a DM microphysics

scheme is able to estimate the increased number of mi-

crophysical fields associated with the scheme reasonably

well for a real data case, even in the presence of signifi-

cant uncertainties from many sources. In fact, the model

DSDs agree better with DSDs inferred from the polari-

metric signatures of a supercell when using a DM rather

than an SM scheme; that is large raindrops in the south-

ern edge of the forward flank near the surface and a large

number of small hailstones or graupel around updrafts

at the upper levels. We realize that the conclusions made

here are based on a single real data case; therefore, more

robust conclusions require the investigation of many ad-

ditional cases. As the first attempt to examine the ability

of an EnKF data assimilation system to correctly analyze

polarimetric signatures using a DM microphysics scheme,

we believe that many of the findings in this study are very

meaningful.
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