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Abstract 

The US National Weather Service plans to upgrade the entire operational radar 

network to polarimetric capability early in the next decade. The goal of this dissertation 

is to develop methodologies that use polarimetric radar data in mesoscale data 

assimilation systems with the ensemble Kalman filter (EnKF). To directly assimilate 

polarimetric radar variables into numerical weather prediction models, two sets of 

comprehensive polarimetric radar simulators are developed. The observed quantities 

considered include reflectivities at horizontal and vertical polarizations (ZH and ZV, 

respectively), the differential reflectivity ZDR, the specific differential phase KDP, and 

the cross-correlation coefficient ρhv. The simulators are applied to a simulated squll-line 

system and a supercell storm. Simulated fields exhibit realistic polarimetric signatures 

that include ZDR and KDP columns, ZDR arc, mid-level ZDR and ρhv rings, and hail 

signatures along with the bright band signature in the stratiform region and deep 

reflectivity core in the convective region. These simulators are proven to be useful for 

validating model microphysics by 1) detecting a problem with the treatment of melting 

processes and 2) manifesting the limitation of a single-moment microphysics scheme in 

handling the mechanisms closely linked to the size sorting of precipitation particles.  

The simpler but more efficient version of the polarimetric simulators is 

incorporated into the EnKF data assimilation system to define the observation operators. 

Various experiments are performed to: (1) assess the impact of assimilating additional 

polarimetric variables in the EnKF system based on a single-moment scheme, (2)  

simultaneously estimate fundamental microphysical parameters and atmospheric state in 

the presence of observation operator error due to uncertainty in the microphysical 
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parameters, (3) evaluate the capability of the EnKF system to retrieve model state 

variables using both conventional and polarimetric radar data when a double-moment 

microphysics scheme is used.  

The results based on observing system simulation experiments assuming either a 

perfect or imperfect prediction model show that the storm analysis is improved when 

polarimetric variables are assimilated in addition to ZH or in addition to both ZH and 

radial velocity Vr. The additional polarimetic data are more helpful when state and/or 

parameter estimation is not very successful using conventional radar data alone. The 

positive impact of polarimetric data is found in all state variables at all levels and more 

significant improvement is obtained in microphysical variables when the model error 

originating from the uncertain microphysical parameters is relatively large. The 

polarimetric variables are generally more beneficial to the analysis of rain water- and 

hail-related variables, and of the vertical velocity among the wind comonents.  

It is also suggested that the polarimetrc variable that contains the most 

independent information content has the largest positive impact on the analysis. 

Between ZDR and KDP, ZDR is found to produce a larger positive impact in perfect model 

experiments because ZDR is less correlated with ZH than KDP is. In the microphysical 

parameter estimation experiments, KDP is generally more useful where the data are 

mostly selected from discrete regions of the storm while many of ZDR data seem to 

overlap ZH in location. The microphysical information provided by additional 

polarimetric radar data appears to help alleviate the solution non-uniqueness problem. 

This research is, to our knowledge, the first to directly assimilate (simulated) 

polarimetric radar data into a numerical weather prediction model.  
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Chapter 1     Introduction and Overview 
 

1.1 Background and Motivation 

Because the atmosphere is a chaotic system, the predictability of numerical 

weather prediction (NWP) is limited by small errors in model initial conditions; they 

amplify with time, leading to divergence far from the true state (Lorenz 1963; 

Hohenegger and Schar 2007). Therefore, considerable efforts have been made to find a 

more accurate representation of the current state of atmosphere to initialize numerical 

models. Currently, the four-dimensional variational method (4DVAR) and the ensemble 

Kalman filter (EnKF) are the two leading advanced data assimilation (DA) techniques 

that can provide “optimal” initial conditions that best fit the observations and the 

forecast model, subject to their respective uncertainty. These methods can take 

advantage of model dynamic equations when assimilating observations distributed in 

space and time.  

For convection-resolving NWP, the microphysics scheme is one of the most 

important physical processes and has a profound impact on the forecast. Caya et al. 

(2005) compared performance between the 4DVAR and the EnKF when they are used 

to assimilate simulated radar data using a cloud model with warm rain microphysics; 

they showed that, in general, the 4DVAR produces better analyses in the early 

assimilation cycles, while the EnKF performs better in the later cycles [In that study, 

simulated radial velocity Vr and rainwater mixing ratio q instead of reflectivity Z were 

assimilated, and the initial guess had no knowledge of the convective storm]. 

Considering the complexity and highly nonlinear nature of microphysical processes 
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when ice species are involved, the EnKF method, which uses the full nonlinear model to 

propagate the ensemble states, appears to be more attractive, while the linearization 

required by 4DVAR in the minimization process often encounter difficulties (e.g., Xu 

1996).  

Radar is currently the only platform that can provide observations with high 

temporal and spatial resolutions suitable for convective storm initialization. Very 

encouraging results have been obtained by several studies with EnKF and simulated 

Doppler radar data in recent years. Studies by Snyder and Zhang (2003) and Zhang et al. 

(2004), using radial velocity data with a warm rain microphysics scheme, and Tong and 

Xue (2005b) and Xue et al. (2006), using both radial velocity and reflectivity with a 3-

ice microphysics, show that the model state variables can be accurately retrieved using 

the EnKF method under the perfect model assumption although serious degradation of 

the filter performance can be encountered in real data assimilation where model error 

inevitably exists. The results of Dowell et al. (2004) show that the wind field retrieved 

using the EnKF from real single Doppler radar observations is generally comparable to 

that obtained by conventional dual Doppler wind analysis for a supercell storm case. 

More recently, there have been efforts to correct model error using the EnKF 

method, where the model errors originate from uncertainties in the model parameters 

(Aksoy et al. 2006a, b; Tong and Xue 2008b, a). In the EnKF framework, the 

parameters to be estimated are treated in a similar manner as the model state variables 

are; they are estimated simultaneously with state variables during the assimilation 

cycles. These studies, in which the only source of model errors is in these parameters 

and in which the observation operators do not contain error, show that the EnKF is 
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generally effective in retrieving these uncertain parameters and that parameter 

estimation is beneficial to state estimation. 

Even though the EnKF method has shown great promise for storm-scale DA 

with simulated reflectivity and radial velocity data from conventional radars, such data 

may not be sufficient for fully determining the microphysical states in real-data cases 

where significant model error may degrade the filter's ability to develop reliable 

covariance. This is especially true when the microphysics involves many cloud and 

hydrometeor species and many uncertain parameters. Therefore, additional observations 

available from polarimetric radar (PR) can be very helpful, especially when they 

contain microphysical information such as the density, phase, shape, and drop size 

distributions (DSDs) of hydrometeors.  

The benefit of polarimetric data has been well demonstrated in quantitative 

rainfall estimation  (e.g., Seliga and Bringi 1976; Ryzhkov et al. 1998; Zrnic and 

Ryzhkov 1999) and precipitation type classification (e.g., Straka 1993; Vivekanandan et 

al. 1999). Since PR data contain microphysical information, it is hypothesized that they 

can be used to improve the state estimation of microphysical fields, and hence, 

subsequent forecasts resulting from such initial conditions. 

The direct assimilation of PR data into NWP models has not gained much 

attention until recently. This is partly due to the lack of PR data from operational 

weather radars, and partly because techniques and methods for effectively assimilating 

such data need development. A good understanding on the PR data by the NWP 

community has been generally lacking and observation operators needed for the direct 

assimilation did not exist. To our knowledge, the only paper in the archived literature 
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that uses PR data for model initialization is that of Wu et al. (2000), which assimilated 

using a 4DVAR technique rain and ice water mixing ratios pre-derived from the 

reflectivity and differential reflectivity. However, the planned polarimetric upgrade of 

the US WSR-88D network later this decade and the PR data now available from the 

WSR-88D PR upgrade prototype, the KOUN radar, and from the recently established 

Oklahoma Testbed of the NSF Engineering Research Center (ERC) for Collaborative 

Adaptive Sensing of the Atmosphere (CASA) (Brotzge et al. 2005) provide important 

motivations for research in this direction. 

1.2 Dissertation Overview 

The goal of this study is to develop an atmospheric state and parameter 

estimation system based on the ensemble Kalman filter method that makes effective use 

of polarimetric radar data, and to investigate the impact of additional polarimetric 

variables on convective storm analysis and forecasting. Because of the unavailability of 

forward observation operators for polarimetric variables that are complete and efficient 

enough for DA use, a set of observation operators are first developed. As this is the first 

study that directly assimilates polarimetric data into the model, simulated data are used 

through OSSEs (Observing System Simulation Experiments), and the impacts of the 

additional PR data are examined. The Advanced Regional Prediction System (ARPS) is 

used throughout this study to provide truth simulations and within the EnKF DA. The 

particular EnKF algorithm used is the ensemble square-root filter (EnSRF) (Whitaker 

and Hamill 2002). 
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In Chapter 2, we describe a radar simulator for polarimetric variables that we 

developed based on the parameterization and fitting of calculations of electromagnetic 

wave propagation and scattering for S-band radars. This simulator provides the forward 

observation operators that are needed when directly assimilating polarimetric variables, 

including reflectivity, differential reflectivity, specific differential phase, and co-polar 

cross-correlation coefficient. The behavior of the simulator is demonstrated by 

simulating radar observations for a multicell squall line and a supercell storm. This 

simulator provides the forward observation operators used in various data assimilation 

experiments throughout this dissertation. 

Chapter 3 discusses the impact of assimilating additional polarimetric 

observations on convective storm analysis in an OSSE framework. A new error model 

is introduced for characterizing the errors of conventional and polarimetric radar 

variables. The necessity of PR data thresholding prior to assimilation to minimize the 

impact of noise is also discussed. The improvements obtained by assimilating 

polarimetric measurements in addition to reflectivity or in addition to both reflectivity 

and radial velocity data are quantitatively assessed. 

In Chapter 4, we investigate the impact of polarimetric data on the simultaneous 

estimation of uncertain model microphysical parameters and atmospheric state where 

those uncertain parameters are also involved in the observation operators. This implies 

that the polarimetric data are used to correct both model error and observation operator 

error where the sources of error are from the incorrect microphysical parameters. The 

microphysical parameters to be estimated are the intercept parameters of the 

exponential DSD of rainwater, snow, and hail, as well as the densities of snow and hail, 
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because these parameters have large uncertainties and have profound impact on the 

convective-scale forecast. The polarimetric data are believed to be especially valuable 

for such parameter estimations because of their information content. Sensitivity 

analyses are performed to help understand the EnKF behavior in the presence of 

observation operator error. The improvement obtained by using additional polarimetric 

data in parameter estimation is also quantitatively assessed. 

A more general PR emulator is developed in Chapter 5 based on rigorous 

scattering calculations using the transition matrix (T-matrix) method for PR variables. 

This emulator is able to simulate polarimetric radar measurements at weather radar 

frequency bands and can take as input the prognostic variables of high-resolution model 

simulations using one-, two-, or three-moment (SM, DM, and TM, respectively) 

microphysics schemes, which were recently implemented in the ARPS. The new 

emulator is tested at 10.7 cm of wavelength with a model-simulated supercell storm 

using a DM scheme, and the emulator is found to simulate unique polarimetric 

signatures reported in the observational studies while the SM simulations could not 

reproduce signatures closely linked to the size sorting of precipitation drops in the storm. 

Various potential practical applications of the PR simulator are also discussed. 

Results in Chapter 5 suggest that supercell thunderstorms simulated using a two- 

or higher-moment microphysics scheme is more realistic. Motivated by these results, 

we explore in Chapter 6 the capability of the EnKF system in estimating state variables, 

including both the water/ice mixing ratios (third moment of DSD) and the total number 

concentrations (zeroth moment of DSD), which are also state variables when using a 

DM scheme. Several sets of experiments are performed to test the performance of the 
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EnKF system in the presence of model errors in both forecast model and observation 

operator. The impact of PR data on an analysis employing a DM scheme is also 

investigated.  

Chapter 7 summarizes the dissertation and outlines a future study where the 

current EnSRF system will be extended to real-data scenarios employing a DM scheme. 
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Chapter 2 1    Observation Operators for Reflectivity and Polarimetric 
Variables 

 

2.1 Introduction 

Modern data assimilation (DA) techniques such as 3D and 4D variational data 

assimilation (3DVAR and 4DVAR, respectively), and ensemble Kalman filter (EnKF) 

methods are able to assimilate observations directly using the forward observation 

operators that link the model state variables to the observations (Kalnay 2002). The goal 

of DA is to minimize, subject to the constraint of observation uncertainty, the difference 

between the observations and the analysis projected to the observation space using the 

observation operator. The forward operators also play a role of observation simulator in 

the Observing System Simulation Experiments (OSSEs) in generating simulated 

observations (e.g, Xue et al. 2006). The observation operators can also be used to verify 

model prediction against indirect, often remote-sensed, observations (e.g., Otkin et al. 

2007). 

For Doppler weather radars like the Weather Surveillance Radar-1988 Doppler 

(WSR-88D), the radial velocity and equivalent radar reflectivity factor (hereafter 

reflectivity) data are the two key measurements that can be assimilated into NWP 

models (e.g., Hu et al. 2006a; Hu et al. 2006b). The observation operators for the radial 

velocity and reflectivity link the model velocity components to the observed radial 

velocity and the model hydrometeor fields to the observed reflectivity, respectively 

                                                 

1 This chapter is an extended version of our paper: Jung, Y., G. Zhang, and M. Xue, 2008: Assimilation 
of simulated polarimetric data data for a convective storm using ensemble Kalman filter. Part I: 
Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev.,136. 2228-2245. 
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(Tong and Xue 2005b; Xue et al. 2006). They also should take into account other 

effects that are necessary for realistic observation, such as the Earth curvature effect or 

the radar beam pattern (Tong and Xue 2005a; Xue et al. 2006). 

For reflectivity, the observation operator also depends on the microphysical 

parameterization schemes used in NWP model. Smith et al. (1975), Smith (1984), 

Ferrier (1994), Caumont et al. (2006), and Haase and Crewell (2000) all offer formulas 

that calculate reflectivity from liquid and ice phase hydrometeors present in bulk 

microphysics schemes. Various assumptions on the drop size distributions (DSDs) and 

shapes of liquid and ice particles, radar beam pattern and wavelength, and the way that 

backscattering cross sections are computed are involved in developing those formulas 

for radar simulators. Some methods are more sophisticated and computationally 

expensive than others. Among them, Caumont et al. (2006) developed the most general 

simulator with various options for X-, C-, and S-band radars based on Rayleigh, 

Rayleigh-Gans, Mie, and T-matrix scattering methods. However, no continuous melting 

process is considered in these simulators except for Ferrier (1994), which uses the 

mixing ratios of liquid water on wet precipitation particles that are predicted in the 

forecast model. May et al. (2007) is a pulse-based radar emulator that emphasizes the 

simulation of radial velocity and its spectral width.  

Even though reflectivity and radial velocity measurements provide key 

information on convective storms, they are not sufficient to fully describe microphysical 

states. One of the reasons is that the number of observations is usually much smaller 

than the degrees of freedom of the forecast model or even the microphysics model alone. 

This means that we need to determine more model variables with fewer observations. 
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The other reason has to do with many uncertainties in the bulk microphysics schemes. 

The microphysics represents one of the most important physical processes at the 

convective scale. The microphysical processes depend to a large extent on the phase, 

shape, orientation, density, and DSDs of microphysical species involved, many of 

which are not fully understood. These properties also directly affect radar measurements 

within each radar sampling volume. Additional observational parameters available from 

polarimetric Doppler radars, including differential reflectivity and differential phase 

measurements can be very helpful here as they contain information about the density, 

shape, orientation, and DSDs of hydrometeors (Doviak and Zrnic 1993; Bringi and 

Chandrasekar 2001).  

Some polarimetric radar simulators already exist in the literature (Brandes et al. 

1995; Brandes et al. 2004b; Zhang et al. 2001; Vivekanandan et al. 1994; Ryzhkov et al. 

1998; Huang et al. 2005). However, they are either incomplete in terms of utilizing all 

available model parameters and state variables or are too expensive for use within DA 

systems. Within a DA system, the simulation needs to be performed for each 

observation, and repeated within a variational minimization scheme. Some of the 

previous studies have focused on single-phase hydrometeor concentration. Brandes et al 

(1995; 2004b), Zhang et al (2001) offer the expressions for rain. Vivekanandan et al. 

(1994) and Ryzhkov et al. (1998) propose formulae that can be applied to ice particles 

ranging from ice crystals to snow aggregates. Because of the lack of sufficient 

understating of the polarimetric measurements for ice and mixed phases because of their 

complex behaviors and non-linear interactions, general expressions that are applicable 

to each of the hydrometeor categories are generally unavailable. More recently, Huang 
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et al. (2005) proposed a more complete polarimetric radar simulator in which a full 

radar scattering model is used to simulate polarimetric radar signatures from the data of 

a model-simulated storm. Such simulators are, however, too expensive for DA use.   

In this study, we develop a set of the observation operators consistent with a 

commonly used three-ice microphysics scheme. The polarimetric variables include 

reflectivities at the horizontal (ZH) and vertical (ZV) polarizations, differential 

reflectivity (ZDR), reflectivity difference (Zdp), specific differential phase (KDP), and the 

cross-correlation coefficient at zero lag ( ρhv (0)). These operators are applicable to the 

S-band radar at about 10.7 cm of wavelength and can be extended in the future possibly 

for other wavelengths. Having such a system of our own enables us to adjust and 

enhance the simulator to fit our data assimilation needs, and in response to the changes 

with the microphysics parameterization used in the assimilation and prediction model. 

In fact, these operators are used in Chapter 3 to test the impact of simulated polarimetric 

observations on the storm analysis. 

In section 2.2, the prediction model used to create the simulation datasets is 

briefly described. The forward observation operators for the polarimetric radar variables 

associated with microphysics schemes with varying degrees of assumptions are then 

developed in section 2.3. These observational operators are then applied to a simulated 

squall line and a supercell storm in section 2.4. Conclusions and discussions are given 

in section 2.5. 
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2.2 The model and convective storm simulations 

The Advanced Regional Prediction System (ARPS, Xue et al. 2000; 2001; 2003) 

is used to produce convective storm simulations, of a squall and a supercell, that are 

used to test our radar emulator.  The reflectivity-related formulas are also closely related 

to the microphysics scheme used in the model. Briefly, ARPS is a fully compressible 

and nonhydrostatic atmospheric prediction model. The model state vector consists of 

three velocity components u, v, w; potential temperature θ; pressure p; and the mixing 

ratios for water vapor, cloud water, rainwater, cloud ice, snow aggregate, and hail (qv, qc, 

qr, qi, qs, and qh, respectively) when the ice microphysics scheme based on Lin et al. 

(1983, hereafter LFO83) is used. The model also predicts the turbulence kinetic energy 

which is used by the 1.5-order subgrid-scale turbulence closure scheme. 

An idealized two-dimensional squall-line system is initiated by a 4-K ellipsoidal 

thermal bubble with a 10-km horizontal radius and a 1.4-km vertical radius, and the 

bubble is centered at x = 400 km, z = 1.4 km in the 700 ×19.2 km2 physical domain. 

The horizontal grid spacing is 200 m and the vertical grid has a uniform 100-m grid 

spacing in the lowest 3 km, which then increases to 853 m at the model top. The 

simulation is run for 12 h with the analytic thermodynamic sounding defined by 

Weisman and Klemp (1982), where the potential temperature and temperature are 343 

and 213 K, respectively, at the 12-km-high tropopause, and the surface potential 

temperature is 300 K. The mixed-layer mixing ratio is 15 g kg-1, the upper limit of 

relative humidity is 95 %, and the mixed layer depth is 1.2 km. The environmental wind 

profile has a constant shear of 17.5 m s-1 in the lowest 2.5 km and a constant wind speed 

of -2.5 m s-1 above 2.5 km. These configurations are similar to those used in Xue (2002), 
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with the main differences being the wind profile and horizontal resolution. This 

specified environmental condition generally supports long-lived squall lines that 

sometimes develop a trailing stratiform precipitation region (Thorpe et al. 1982; 

Rotunno et al. 1988). 

For a more intense, isolated supercell storm simulation, ARPS is initialized with 

the environmental sounding of the 20 May 1977 Del City, Oklahoma, supercell storm 

(Ray et al. 1981). The CAPE of the sounding is 3300 J kg-1 and the storm is initiated by 

an ellipsoidal thermal bubble with same characteristics as that of the squall-line case 

except for a vertical radius of 1.5 km. The bubble is centered at x = 48 km, y = 16 km, 

and z = 1.4 km. The physical domain is 64×64×16 km3 with a horizontal spacing of 2 

km and a vertical separation of 0.5 km. Open conditions are used at the lateral 

boundaries and free-slip conditions at the top and bottoms of domain. A constant wind 

of u = 3 m s-1 and v = 14 m s-1 is subtracted from the original sounding to keep the 

storm near the center of the domain. These configurations are essentially the same as in 

the truth simulation of Tong and Xue (2005b), which also briefly describes the initial 

evolution of the simulated storm. This simulation serves as the truth simulation for the 

polarimetric data assimilation experiments in Chapter 3. A polarimetric WSR-88D radar 

is assumed at the southwest corner of the domain, the same location as that assumed in 

Tong and Xue (2005b). 

2.3 The observation operators and simulation of observations 

As discussed earlier, a set of forward observation operators that link model state 

variables with the polarimetric radar variables is required to assimilate the latter into a 
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numerical model. These operators, together with the radar scanning configurations, ray 

path, and beam pattern weighting, make up a complete radar simulator. This chapter 

focuses on the observation operator development. For these operators, a consistency is 

maintained between the DSD-related parameters of hydrometeors within the operators 

and within the prediction model. The specific polarimetric radar variables to be 

considered include reflectivity, differential reflectivity, reflectivity difference, specific 

differential phase, and the cross-correlation coefficient. 

2.3.1 The shape, orientation, and drop size distribution of hydrometeors 

The model state variables are projected into the observation space using the 

observation operators. In this study, we assume that radar observations are taken and 

available on the original radar elevation levels vertically but are already interpolated 

onto horizontal model grids, as is done in Xue et al. (2006), which describes the power-

gain-based sampling method used in the vertical direction in detail. In the single-

moment bulk ice microphysics scheme of LFO83 used in the ARPS, a constant density 

is assumed for each species and the DSDs of the species are modeled by exponential 

distributions with fixed intercept parameters (n0) and variable slopes (Λ). In practice, 

the slope Λ for each species is diagnosed from the corresponding specified intercept 

parameter and the predicted mixing ratio. The intercept parameters for rain, snow, and 

hail used in this study are the default values of n0R = 8×106 m-4, n0S = 3×106 m-4, and n0H 

= 4×104 m-4 (LFO83). 

Additional characteristics that affect the radar observables include the shape, 

orientation and the ice/water fraction of hydrometeors. Unfortunately, these 
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characteristics are not specified or predicted by the model; therefore, assumptions have 

to be made. Observations show that larger raindrops (> 1 mm in diameter) are not 

spherical. Raindrops are normally modeled as oblate spheroids and the oblateness, r, is 

represented by the axis ratio between minor to major axis, which is related to the 

equivalent diameter D given by Green (1975) in an equilibrium model. After solving the 

equilibrium equation and fitting to a polynomial function, Zhang et al. (2001) obtained 

2 2 2

3 3 4 4

1.0148 2.0465 10 2.0048 10
3.095 10 1.453 10

r D D
D D

− −

− −

= − × − ×

+ × − ×
, (2.1) 

where D is in millimeter. This axis ratio relation has recently been revised based on 

observations (Brandes et al. 2002), yielding more spherical shapes for smaller drops (1 

< D < 4 mm). The potential errors associated with more oblate shapes are about 0.15 dB 

and 0.2 dB for ZH and ZDR, respectively, in terms of averaged values (Brandes et al. 

2002). However, the revised formula requires the numerical integration over the DSD in 

the scattering calculations, which significantly increases computational cost while the 

former allows for analytical integration. Although the revised axis ratio is important in 

the quantitative precipitation estimation for light rain with many small drops, it is not 

crucial for assimilation purposes. Also, there is no accepted theory that explains the 

revised axis ratio relation. Therefore, we use the equilibrium shape in (2.1) in this study. 

We also assume that the mean and the standard deviation (SD) of the canting angle are 

0º, as suggested by observations (Hendry and McCormick 1976), although some 

observational and theoretical studies suggest that the standard deviation of the canting 

angles of rain drops is likely not 0° but less than 10° (Beard and Jameson 1983; Bringi 

and Chandrasekar 2001; Ryzhkov et al. 2002). Assuming 0°  SD can lead to the 



 16

overestimation of KDP and ZDR by less than 6%, this could be tolerated considering the 

large uncertainties in DSD (Ryzhkov et al. 2002). 

The shape of snow can vary greatly in range/complexity and can be modeled as 

oblate to prolate spheroids. Nevertheless, in the simplest form, they can be 

approximated to fall with the  major axis aligned horizontally (Straka et al. 2000). The 

mean canting angle of snow aggregates is assumed to be ο0  and the SD of canting angle 

is assumed to be ο20   in this study. A fixed axis ratio of 0.75 for snow is used for the 

scattering calculation. Also, a fixed density of 100 kg m-3 is assumed for dry snow 

aggregates, consistent with the model parameterization.  

Hailstones are observed in many different shapes and the orientation of falling 

hail is not understood precisely. Yet, ground observations suggest that the majority of 

hailstones have axis ratios of 0.8 with spongy hail having a lower axis ratio of 0.6 to 0.8 

(Knight 1986; Matson and Huggins 1980) and usually wobble and tumble while they 

fall. Dry hailstones are considered to have random orientations. Therefore, we assume 

that the axis ratio of hailstones is 0.75 and hailstones fall with their major axes aligned 

horizontally with a mean canting angle of ο0 , although some studies (Aydin and Zhao 

1990; Vivekanandan et al. 1993) use other canting angles that are not widely used. As a 

hailstone melts while falling, meltwater forms a torus around equator and stabilize these 

wobbling and tumbling motions. The SD (or σ) of canting angle is therefore 

parameterized as a function of the fractional water content in melting hail, according to 

60 (1 )= −o
wcfσ , where fw  is the water fraction within water-hail mixtures (see more 
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later) and c is a coefficient equaling 0.8 except for very low mixing ratios of the mixture 

(qrh).  This allows dry (wet) hailstones to have large (small) SD of canting angles.  

When the hail mixing ratio is low, we expect more small hail, therefore more 

spherically shaped particles, leading to smaller ZDR. A fixed axis ratio, assumed in our 

model, can lead to high ZDR for low hail mixing ratio when hail is in the melting phase. 

To take into account the size dependence of the axis ratio, we set a critical value of qrh 

(0.2 g kg-1), below which the constant c is decreasing as a function of qrh, thus, 

effectively reducing ZDR. This gives the same effect by assuming more spherical hail for 

low hail mixing ratios. When qrh < 0.2 g kg-1, it is therefore assumed that 4 rhc q= . As 

in the ARPS model, the hail is assumed to have a fixed density of 913 kg m-3. Our hail 

model, although different in configuration, is consistent with observed Oklahoma 

hailstones, which show a general trend of decrease in axis ratio with increasing size 

until reaching a value of about 0.75 (Knight 1986 ). 

2.3.2 Melting ice (snow-hail) model 

As the snow aggregate melts, the water forms a thin layer on the surface of snow 

aggregate and/or distributes either evenly or nonuniformly within the snow aggregate, 

effectively forming snow aggregate-liquid water mixture, where the snow aggregate 

itself is a mixture of solid ice and air. We allow continuous melting of low-density dry 

snow to rain in the melting layer where both rain and snow mixing ratios are nonzero. 

We denote the mixing ratio of the rain-snow mixture as qrs. Within qrs, a fraction, fw, is 

water and a fraction, fs, is snow, and of course, fw + fs = 1. However, as with most 

microphysics schemes in use today, the LFO83 microphysics scheme used in the ARPS 
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does not allow or track species in the mixture form. For example, the melt part of snow 

aggregate is immediately removed from qs and added to qr. Therefore, the amount and 

composition of mixture-form species have to be modeled in a way that allows for 

realistic radar observation simulations.  

In this study, we model the rain-snow mixture in the following way. First, as 

mentioned earlier, the mixture is assumed to exist only when qs and qr coexist. We 

assume that the fraction of rain-snow mixture reaches a maximum when the snow and 

water mixing ratios are equal and decreases to zero when one of the two vanishes. 

Furthermore, we assume this fraction, denoted as F, is the same for snow aggregates 

and rainwater. The fraction F is then given by  

[ ]0.3min( , )= max s r r sF F q /q q /q , (2.2) 

where Fmax  is the maximum fraction of snow or rainwater mixing ratio existing in the 

mixture form, or the maximum value of F. In this study, we set Fmax = 0.5. A power of 

0.3 is taken of min( , )s r r sq /q q /q . In the case that qs decreases linearly downward and 

rainwater increases linearly upward through the melting layer, the F profile has a 

bracelike shape, with its value peaking near the middle of the melting layer where qs = 

qr; otherwise the function has a triangular shape with an apex in the middle. With more 

realistic model-simulated profiles of mixing ratios, this gives parabolically shaped 

profiles of mixtures, which is reasonable (thick dashed lines in Figs. 2.5a and 2.6a). 

Once F is determined, the mixing ratio of rainwater in the mixture form is then 

Fqr, and that in the pure water form is (1 – F)qr. For snow aggregates, the 

corresponding mixing ratios are Fqs and (1 – F) qs. The total mixing ratio of the mixture 

is then qrs = F (qr + qs) and within this mixture, the water fraction is  
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  fw = (Fqr ) / (Fqr + Fqs ) = qr / (qr + qs ) . (2.3) 

According to (2.3), the water fraction (fw) within the snow-water mixture increases from 

0 to 1 as snow completely melts after descending through the melting layer while fs 

decreases from 1 to 0; this behavior is reasonable.  

A fixed density of 100 kg m-3 is assumed for the dry snow aggregate. However, 

the snow aggregate density varies during melting. The density of wet snow aggregates 

increases from 100 kg m-3 to 1000 kg m-3 as the fraction of the melted portion increases 

from 0 to 1. At the very early stage of melting, the size of the snow aggregate does not 

change much with increasing fw so that the density increases slowly. As melting 

progresses, fw further increases, the snow particle collapses inducing the shrinkage of 

the particle, and the density increases more rapidly. To simulate this melting process as 

the snow aggregate particles descend, the density of melting snow aggregate is 

parameterized as a quadratic function of fw: 

  ρm = ρs (1− fw
2 ) + ρw fw

2 , (2.4) 

which is used in our reflectivity calculations.  

A dry snow aggregate is a mixture of air and ice whose density is 913 kg m-3 and 

a melting snow aggregate is a mixture of air, ice, and water. The dielectric constant for 

melting snow aggregate is calculated with a two-step procedure using the Maxwell-

Garnett mixing formula (Maxwell-Garnett 1904). In the first step, the ice is considered 

within the enclosure of air. Because it is reasonable to assume that the melting starts 

from the surface of ice particle, the air-ice mixture (snow aggregate) is considered 

within the enclosure of meltwater in the second step.  
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A similar melting model is used for hail with corresponding density and 

dielectric constant for hail. The density of wet hail increases from 913 kg m-3 to 1000 kg 

m-3. The dielectric constant for melting hail is calculated with the ice in the water matrix.  

2.3.3 Observation operators 

Reflectivities in linear scale at horizontal (Zh) and vertical (Zv) polarizations are 

obtained as integrations over the DSD weighted by the scattering cross section 

depending on density, shape, and DSD.  For rain, dry snow, dry hail, rain-snow mixture, 

and rain-hail mixture, we have (Zhang et al. 2001) the following: 

4
2 2

24

4 ( ) 2h,x a b a b
w

Z n D A f B f C f f dD
K
λ

π
⎡ ⎤= + +⎣ ⎦∫  (mm6 m-3) and   (2.5) 

4
2 2

24

4 ( ) 2v,x a b a b
w

Z n D B f A f C f f dD
K
λ

π
⎡ ⎤= + +⎣ ⎦∫  (mm6 m-3),  (2.6) 

where  

( )2 22 84 1cos 3 4cos 2 cos 4
8

− −= = + +A e eσ σφ φ φ , 

( )2 22 84 1sin 3 4cos 2 cos 4
8

− −= = − +B e eσ σφ φ φ , 

and 

( )282 2 1sin cos 1 cos 4
8

C e σφ φ φ −= = − , 

and x can be r (rain) and rs (rain-snow mixture), ds (dry snow), rh (rain-hail mixture), 

or dh (dry hail). Here af  and bf  are backscattering amplitudes for polarizations along 

the major and minor axes, respectively. Here φ  is the mean canting angle and σ  is the 

standard deviation of the canting angle. As defined in section 2.3.1,   φ = 0o is assumed 
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for all hydrometeor types and 20σ = o for snow and 60 (1 )wcfσ = −o  for hail. Here c = 

0.8, where qrh ≥ 0.2 g kg-1 and c = 4qrh otherwise. The latter is to make the hail shape 

more spherical for low mixing ratios, as discussed in section 2.3.1. Here ...  represents 

an ensemble average over canting angles and n(D) defines the DSD and is the number 

of particles per unit volume of air and increment diameter.  

Integration over DSD can be easily performed if the backscattering amplitudes 

are expressed in the power-law form of the particle size D (mm):  

xa
a xaf Dβα= (mm)   and        (2.7) 

xb
b xbf Dβα= (mm),        (2.8) 

Here af  and bf  are the magnitudes of af  and bf , respectively.  

For rain, we first calculate the scattering amplitude of oblate rain drops with the 

dielectric constant of water evaluated at 10 ºC based on the T-matrix method following 

Zhang et al. (2001). We perform a new fitting because their coefficients produce 

negative differential reflectivity for small drops. The scattering amplitudes from the T-

matrix and the fitting results are plotted in Fig. 2.1. New fits generally agree well with 

those in Zhang et al. (2001) and with the T-matrix results over the entire range, except 

for the slightly larger values at the larger drop end. In (2.7) and (2.8), αra = αrb = 

4.28×10-4, βra = 3.04, and βrb = 2.77 for rain are adopted from the T-matrix calculation 

and fitting results. 
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Fig. 2.1. Backscattering amplitudes as a function of the effective diameter of particle 
along (a) the major axis and (b) the minor axis. 

 

For snow and hail, we calculate the scattering amplitudes as a function of the 

dielectric constants, which is a function of fw, and fit the results to the power-law 

functions given in (2.7) and (2.8). The resultant αs and αh for snow and hail are obtained 

based on the Rayleigh scattering approximation for oblate spheroids, and fitted to 

polynomial functions of fw: 

2 3 4(0.194 7.094 2.135 5.225 ) 10−= + + − ×rsa w w wf f fα ,  

2 3 4(0.191 6.916 2.841 1.160 ) 10−= + − − ×rsb w w wf f fα ,  

2 3 4 5

6 3

(0.191 2.39 12.57 38.71 65.53 56.16

18.98 ) 10 , and
rha w w w w w

w

f f f f f

f

α
−

= + − + − +

− ×      
 

2 3 4 5

6 3

(0.165 1.72 9.92 32.15 56.0 48.83

16.69 ) 10 . (2.9)
rhb w w w w w

w

f f f f f

f

α
−

= + − + − +

− ×                                                                            
  

 
The βs for snow and βh for hail are equal to 3 at both polarizations. The equations in 

(2.9) give αdsa = 0.194×10-4 and αdsb = 0.191×10-4 for dry snow, and αdha = 0.191×10-3 

and αdhb = 0.165×10-3 for dry hail. The scattering amplitudes from Rayleigh scattering 

approximation and the fitting results as a function of fw are plotted in Fig. 2.2. As 
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discussed in section 2.3.2, melting is likely to start from the surface so that the 

backscattering amplitude increases more rapidly in the early stage of melting and the 

slope gradually decreases. Snow shows a lower slope for the low fraction of water than 

that of hail. This is consistent with our density model given in (2.4).   
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Fig. 2.2. Backscattering amplitudes as a function of the fraction of water within the 
mixture along the major axis (solid) and the minor axis (dashed) for (a) rain-snow and 
(b) rain-hail mixtures. 

 

In the current study, the non-Rayleigh scattering effect, which is known to be 

important for large hailstones with a diameter larger than 10 mm for a S-band radar, is 

neglected due to the high computational demand by the T-matrix calculation. Instead, 

the Rayleigh scattering approach is used for the simplicity and efficiency necessary for 

the data assimilation purpose. The limitation of this assumption is the overestimation of 

the radar cross section for large hailstones and, therefore, the somewhat overestimation 

of reflectivity. The non-Rayleigh scattering effect will be included in the new forward 

operator discussed in Chapter 5, which utilizes the full T-matrix scattering calculation. 
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After performing integration over the exponential DSD, (2.5) and (2.6) yield 

simple forms of rain reflectivities at horizontal and vertical polarizations, as follows 

(Zhang et al. 2001): 

4 2
(2 1)

24

4 (2 1)rara 0R
h,r r ra

w

nZ
K

βλ α β
π

− += Λ Γ +  (mm6m-3)   (2.10) 

and 

4 2
(2 1)

24

4 (2 1)rbrb 0R
v,r r rb

w

nZ
π K

βλ α β− += Λ Γ +  (mm6m-3), (2.11) 

where λ is the radar wavelength, which is approximately 10.7 cm for the WSR-88D 

radars, The defaults value for the intercept parameter for rain in the LFO08 

microphysics scheme is n0R = 8×106 m-4, but other values can be used (see discussion in 

Tong and Xue 2008b). The slope parameter Λr can be diagnosed from the rain mixing 

ratio once the intercept parameter is specified. Here Kw = 0.93 is the dielectric factor for 

water, Γ(…) is the complete gamma function.  

Integrals for other species in the same way are straightforward. For 

completeness, they are listed below:  

( )
4

7 2 20
24

2880 2x
h,x x xa xb xa xb

w

nZ A B C
K
λ α α α α

π
−= Λ + +  (2.12) 

and 

( )
4

7 2 20
24

2880 2x
v,x x xa xb xa xb

w

nZ B A C
K
λ α α α α

π
−= Λ + + .  (2.13) 
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The reflectivities in the linear scale for different species are combined to give 

logarithmic reflectivity at the horizontal and vertical polarizations (ZH and ZV, 

respectively) and differential reflectivity (ZDR) as 

( )1010log= + + + +H h,r h,rs h,ds h,rh h,dhZ Z Z Z Z Z  (dBZ), (2.14) 

( )1010 log= + + + +V v,r v,rs v,ds v,rh v,dhZ Z Z Z Z Z  (dBZ), and (2.15) 

,
10 10

,

10 log 10log
⎛ ⎞+ + + +⎛ ⎞

= = ⎜ ⎟⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠

h,r h,rs h,ds h,rh h dhh
DR

v v,r v,rs v,ds v,rh v dh

Z Z Z Z ZZZ
Z Z Z Z Z Z

 (dB). (2.16) 

The reflectivity difference, another useful polarimetric variable, is defined as  

= −dp h vZ Z Z   (mm6 m-3). (2.17) 

While ZDR contains the information about the shape of hydrometeor such as the axis 

ratio, Zdp was proposed to handle mixed-phase precipitation concentration as dry ice 

phases tend to have less polarization signatures (Seliga and Bringi 1976; Straka et al. 

2000; Golestani et al. 1989; Tong et al. 1998; Zrnic and Ryzhkov 1999). With the 

reflectivity difference, the dry snow and hail contributions are minimized so that rain is 

better represented. A power of 0.2 is taken of Zdp in our data assimilation experiments 

so that (Zdp)0.2 has a more normal-like distribution. Doing so also reduces the dynamic 

range of data and, therefore, (Zdp)0.2 is more appropriate than Zdp for the assimilation 

purpose.  

The specific differential phases for rain, rain-snow aggregate mixture, dry snow 

aggregate, hail-snow mixture, and dry hail are calculated, following Zhang et al. (2001), 

from  

[ ]180
DP,x k a b

λK n(D)C Re f f dD
π

= −∫  (° km-1),                               (2.18) 
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22cos 2 cos 2kC e σφ φ −= = .  

As above, integral of (2.18) over DSD can be simplified for rain as following: 

( 1)180 ( 1)rk
DP,r 0R rk r rkK n βλ α β

π
− += Λ Γ +  (° km-1),                               (2.19) 

where nondimensional coefficients αrk = 1.30×10-5 and βrk = 4.63 for rain. We can find 

the αxk for KDP from (2.9) to be αxa - αxb for rain-snow aggregate and rain-hail mixture. 

Here αdsk = 0.3×10-6 for dry snow and αdhk = 0.26×10-4 for dry hail. βxk values for ice 

species and water-ice mixtures are equal to 3. Because KDP calculation involves f  

while reflectivities involve 2f  [note that the power of D is 4.63 for rain and 3 for ice 

particles in (2.7) and (2.8), where the mass of the spherical particle is proportional to D3 

while reflectivity is often assumed to be proportional to D6 in the Rayleigh regime], KDP 

is more linearly proportional to the rainfall rate (Zrnic and Ryzhkov 1999; Bringi and 

Chandrasekar 2001). 

The specific differential phases for different species are combined in the same 

manner as the reflectivity to give the total KDP: 

= + + + +DP DP,r DP,rs DP,ds DP,rh DP,dhK K K K K K .                               (2.20) 

The cross-correlation coefficient is defined as 

{ }
, , , , ,

1/ 2

, , , , , , , , , ,

,hv r hv s hv h hv rs hv rh
hv

h r h s h h h rs h rh v r v s v h v rs v rh

Z Z Z Z Z

Z Z Z Z Z Z Z Z Z Z
ρ

+ + + +
=

⎡ ⎤ ⎡ ⎤+ + + + + + + +⎣ ⎦ ⎣ ⎦
 (2.21) 

where the numerator is given as a product of two orthogonal co-polar components of the 

radar return and computed as 



 27

( )[ ]dDffFffEDn
K

Z xbaba
w

xhv ∫ ++= ,0
22

24

4

, ||||2||||)(
||

4 ρ
π

λ  

(mm6m-3), (2.22) 

where 

( )282 2 1sin cos 1 cos 4
8

E e σφ φ φ −= = −   and 

( )24 4 81cos sin 3 cos 4
8

F e σφ φ φ −= + = + .  

Here 0,xρ = 1.0 for rain and dry snow, and 0.97 for dry hail, but varies as a function of 

its concentration in a range of 0.82 – 0.95 for rain-snow mixture and 0.85 – 0.95 for 

rain-hail mixture. hvρ  is very useful in detecting the melting layer since its value is 

sensitive to the presence of mixture. hvρ  is very high for pure rain while the presence of 

randomly-oriented large wetted hailstones can significantly lower the correlation. 

2.4 Applications to convective storms 

To demonstrate that the observation operators in our radar simulator produce 

reasonable results, they were applied to the 2D squall-line and 3D supercell storm 

simulations, described in section 2.2. In this section, we examine the simulated radar 

fields on the model grid before any simulated observation error is added. The error 

modeling for the polarimetric variables will be discussed in Chapter 3. 

2.4.1 Simulated radar fields for the squall-line case 

The west-east vertical cross sections of reflectivity at horizontal polarization 

(ZH), differential reflectivity (ZDR), reflectivity difference [(Zdp)0.2], and specific 
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differential phase (KDP) at 400 min into the 2D squall-line simulation are shown in Fig. 

2.3. The 0°C isotherm is overlaid on each plot in thick black lines. The squall-line 

system is in its mature stage and propagates slowly eastward while the low level flow is 

from the right. The low level shear vector points rightward therefore the upshear 

direction is toward the left. 

The simulated mature squall line is similar to the multi-cellular squall line discussed by 

Lin et al. (1998) and Fovell and Tan (1998) in which new cells are periodically 

regenerated at the leading edge of the gust front. They reach their maximum intensity 

while propagating rearward, and then weaken as they move into a region of weaker 

convective instability and turn into more stratiform clouds. Figure 2.3a shows that at the 

mature stage, the deepest cell, labeled C2, is located near x = 360 km and its echo top 

reaches nearly 14 km. To its right are two newer cells, labeled C3 and C4, with C3 

trying to establish itself and C4 still in its developing stage.  To the left or rear of the 

deepest cell is a much weaker cell, labeled C1, which has passed through the most 

intense stages and is transitioning into more stratiform clouds (Fig. 2.3a). A deep 

column of high reflectivity of over 65 dBZ in the deepest convective cell, C2, is mainly 

associated with the large hail core extending to 9-km height (Fig. 2.4c). A small local 

maximum of over 70 dBZ at about 4-km height (right below the 0 ºC level above the 

boldface C in Fig. 2.3a) where high rainwater and hail mixing ratios co-exist (Figs. 

2.4a,c). Another local maximum close to the 0 ºC level (Fig. 2.3a) is also associated 

with the coexistence of high hail and rainwater content at that location (Figs. 2.4a,c).  

 



 29

 
 

Fig. 2.3. The west-east vertical cross sections of the simulated (a) ZH, (b) ZDR, (c) Zdp, 
and (d) KDP at 400 minutes into the 2D squall-line simulation.The 0 ºC isotherms are 
shown as thick black lines. A sequence of cells in (a) is labeled C1-C4. 
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Fig. 2.4. As in Fig. 2.3, but for the model mixing ratios (a) qr, (b) qs, and (c) qh. 
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The region of high ZDR (Fig. 2.3b) is located off the hail core (Fig. 2.4c) to its 

right, where rainwater content is significant (Fig. 2.4a). In fact, there is a local 

minimum, as indicated by the ZDR ‘trough’, at the location of low-level hail core (Fig. 

2.3b). The region of significant ZDR is also caped by the 0°C temperature contour (Fig. 

2.3b). This is because that the strongest ZDR signature is associated with rain, whose 

drops become flattened when their sizes increase. Because of the tumbling, statistically, 

hailstones appear mostly spherical to the radar beams, resulting in similar reflectivities 

at horizontal and vertical polarizations. The reflectivity due to hail is large, however, 

and the large and almost equal contributions of Zh,h and Zv,h  to ZH and ZV, respectively, 

reduce the relative importance of Zh,r and Zv,r, resulting in small ZDR values according to 

(2.16). The ZDR values are also significant (1.5 ~ 2.0 dB) in a horizontally elongated 

region below the brightband in the stratiform precipitation region. Again, this is a 

region where rain water dominates, and is below the melting layer (Fig. 2.3a). 

Zdp is insensitive to ice and is highly correlated with Zh,r, showing sensitivity 

only to the oriented oblate raindrops so that it makes a good indicator of the presence of 

water within the rain-ice mixture, which enables the use of the concept of the deviation 

analysis from the rain line (Bringi and Chandrasekar 2001). When analyzed alone, Zdp 

may be less useful because of its high proportionality to reflectivity. Figures 2.3c and 

2.4a show that the (Zdp)0.2 pattern agrees well with the pattern of rainwater mixing ratio 

below the melting layer. Snow and hail that have melted sufficiently can be seen as big 

raindrops to the radar. This is shown as a horizontally elongated enhanced (Zdp)0.2 band, 

which matches well with the bright band in Fig. 2.3a. Among polarimetric variables, 

only (Zdp)0.2 show some signatures above the 0 ºC level in the convective region. Zdp can 
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be of moderate strength in the region with high concentration of hail, where ZH is large 

no matter the hail is dry or wet (Figs. 2.4a,c). However, these are rather weak signals 

considering the dynamic range of raw Zdp observations before we take the power of 0.2.  

The region of high KDP is mostly confined in the convective rain region (Fig. 

2.3d). In fact, its pattern matches that of rainwater mixing ratio very well. This is 

because KDP is not affected much by the presence of hail. Both ZDR and KDP signatures 

are rather weak and essentially uniform above the 0°C level.  

While examining the simulated radar variables, we noticed that in the stratiform 

precipitation region, the actual melting level in the model is significant offset from the 0 

ºC isotherm. The level of maximum brightband found in Fig. 2.3a is almost 1.7 km 

below the 0 ºC isotherm (at about 4.2 km level) and consequently significant ZDR 

signatures is found at lower levels below the bright band. The mixing ratio fields in Fig. 

2.4 show that rainwater does not start to appear until about ~900 m below the 0 ºC level, 

while snow manages to survive below the 0ºC level for a similar depth. Such a 

discrepancy appears odd, for slowly falling snow in the stratiform precipitation region. 

To explain this peculiar behavior, we further investigated the microphysics scheme used 

in this study.  

The Lin microphysics parameterization in the ARPS is based on the code from 

the National Aeronautis and Space Administration (NASA) Goddard Space Flight 

Center (GSFC, Tao and Simpson 1989). Our investigation reveals that the melting in 

this scheme does not occur until several degrees above 0ºC (see Figs. 2.4a,b) because 

the potential cooling associated with the evaporation of water at the surface of ice 

particle exceeds the heating associated with the conduction and convection of heat to 
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the particle from its environment [see Eq. (32) of LFO83]. Although some delay in the 

melting due to evaporative cooling is physical, we believe the amount of delay we are 

observing is too much. For instance, snow and hail do not start to melt until around 7ºC 

at the location of x = 320 km. We tested another implementation of the LFO83 ice 

microphysics scheme by Gilmore et al. (2004b) and found the same behavior. The issue 

is therefore common with the Lin scheme. We found that the single-moment WRF 6-

category microphysics scheme (WSM6, Hong and Lim 2006) and the Rutledge and 

Hobbs (1983) scheme on which WSM6 is based, do not have the same problem because 

they have a somewhat different treatment of the melting processes. However, they have 

other issue. Our initial attempts to modify the Lin scheme in this aspect did not lead to 

satisfactory results, and we will leave this microphysics parameterization issue for 

future studies because our current study is primarily focused on producing realistic 

radar simulations given reasonably realistic microphysical fields. On the other hand, we 

have a good example of how a realistic radar simulator can be used to validate model 

microphysics, and it will be even more valuable when we simulate and predict real 

cases and compare the results against real radar data. 

To further examine the behaviors of our forward observation operators that 

include the melting model, two columns of mixing ratios are extracted at x =362.2 km 

(labeled C in Fig. 2.3a) and 336 km (labeled S) from the simulated squall-line system, 

corresponding to the convective and stratiform regions, respectively. The profiles of 

radar variables are calculated from these mixing ratios and are shown in Figs. 2.5 and 

2.6. The 0°C temperature line is overlaid as a straight line on each plot.  
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Figure 2.5a shows the vertical profiles of qr, qs, qh, qrs and qrh in the convective 

rain. This region shows the highest mixing ratio of hail. The mixed rain-snow mixing 

ratio qrs reaches its maximum where the sum of the coexisting rain and snow mixing 

ratios has a maximum but its peak value is so small as to be hardly identifiable in the 

plot.  

The reflectivity at horizontal polarization incorporating our melting ice (MI) 

model is plotted in Fig. 2.5b as the solid black curve. In between the levels of qr and qh 

maxima, qrh has its maximum, providing high reflectivity values that together with qr 

and qh yields a deep reflectivity core at the convective region. The result of a previously 

used simple linear interpolation (LI) model for melting-layer reflectivity (Jung et al. 

2005) is also shown for comparison (dashed curve in Fig. 2.5b). With this LI model, the 

snow is considered 100% wet at or above air temperature of 0 °C and 100% dry at or 

below air temperature of – 5 °C. In between these two temperatures, the reflectivity is 

calculated as the weighted average of those given by the wet and dry snow formulas, 

with weights defined as linear functions of the temperature. The same method is applied 

to dry and wet hail reflectivity formulas with a corresponding air temperature range of 

2.5 °C and –2.5 °C. When the LI model is used, the reflectivity is more directly linked 

to the temperature and less so to the model microphysics. Figure 2.5b shows that the 

reflectivity thus calculated keeps decreasing with decreasing height below an air 

temperature of 2.5 °C. A maximum value is found close to the 0°C level while in the 

melting model case, the similar local enhancement is found at the deep layer of actual 

melting. Figures 2.5c,d show the differential reflectivity and specific differential phase, 
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which are found to slowly increase to their maximum values near the surface as the 

amount of hail decreases. Their values above 0 °C are small.   
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Fig. 2.5. A modeled vertical profile of total (in both pure and mixture forms) rainwater 
and total snow-hail mixing ratios and the total amount (mixing ratio) of rain and snow 
and rain and hail in a mixture form, and the simulated polarization radar signatures at 
the column labeled C in Fig. 2.3: (a) qr (thick solid), qh (thin solid), qs (thin dashed), qrh 
(thick dashed ), and qrs (dash-dotted); (b) reflectivity from the LI model (dashed), 
reflectivity at horizontal (ZH, solid) polarization from the MI model; (c) ZDR; and (d) 
KDP. Here qrs is on the vertical axis. 
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Fig. 2.6. As in Fig. 2.5, but for column S in Fig. 2.3. 
 

In the stratiform region where the snow mixing ratio is the largest and is found 

at the upper levels, it can be seen that the current melting model produces realistic 

nonpolarimetric and polarimetric radar signatures with a bright band associated with the 

melting layer shown in both ZH and ZDR profiles (Figs. 2.6b,c). The reflectivity increase 

in the melting layer of the MI model is more prominent and shallower than that of the 

interpolation model. The differential reflectivity peak shows slightly below the 

reflectivity peak. These characteristics in reflectivity and differential reflectivity agree 

well with observed profiles (Fig. 8 of Brandes et al. (2004a)) and the composite range-
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height indicator plot (Fig. 13 of Ryzhkov et al. (2005a)). The better handling of the 

radar variables by the MI model is because of the presence of snow-rain and hail-rain 

mixtures and the better representation of their effects on the dielectric constants of 

melting snow and hail. The interpolation model does not take into account the change in 

the dielectric constants directly. 

2.4.2 Simulated radar fields for a supercell storm 

Next, we apply our observation operators to the simulated supercell storm, 

which will also be used in Chapter 3 to test the impact of assimilating additional 

polarimetric variables. Figure 2.7 shows the simulated polarimetric variables at the 2.5-

km altitude at 100 minutes of the storm. The storm splits at around 55 minutes into two 

cells; one moving towards the left of the storm motion vector that ends up near the 

upper-left corner of domain by 100 min and the other (right mover) stays close to the 

center of the model domain (Fig. 2.7a). Reflectivity pattern matches well with the hail 

field and the reflectivity core is collocate with hail maximum in the left-moving storm 

and with the common area in qr and qh maxima in the right-moving storm (Figs. 2.7a,b). 

The ZDR shows a minimum near the reflectivity maxima, collocated with hail cores 

(Figs. 2.7b,c). This is consistent with the ZDR hole observed in the microburst studied by 

Wakimoto and Bringi (1988) and the convective storm studied by Bringi et al. (1986a). 

These observations also show that ZDR values increase rapidly around the ZDR hole and 

reach more representative values for melting ice. As discussed in the squall-line case, 

the KDP field is consistent with that of qr.  
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Fig. 2.7. (a) Horizontal wind (vectors; m s-1) and reflectivity, ZH, (b) rain water qr (thin 
solid contours and shading) and qh (thick dotted at intervals of 1 g kg-1, starting from 0 g 
kg-1), (c) ZDR, and d) KDP, at z = 2.5 km at 100 minutes of the storm.  

 

Figure 2.8 shows the vertical structure of the supercell storm at line AB shown 

in Fig. 2.7, which passes through the updraft core and the weak echo region (WER) in 

the storm. In this case, the reflectivity maximum through the updraft core is found at 

about 4.5 km above ground (Fig. 2.8a) because of a high concentration of hail in 

melting phase there (Fig. 2.8f). The high Reflectivity region exceeding 60 dBZ extends 

to 8.5 km, corresponding to the region of high hail. The fully developed overhang 

signature is consistent with the patterns of hail and snow (Figs. 2.8a,e,f).  
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Fig. 2.8. The west-east vertical cross-sections of simulated (a) reflectivity at horizontal 
polarization (ZH), (b) differential reflectivity (ZDR), (c) specific differential phase (KDP), 
and (d) rain water (qr), (e) snow (qs), and (f) hail (qh) mixing ratios, (g) reflectivity 
difference (Zdp)0.2, and (h) cross-correlation coefficient ρhv  through the updraft core 
(maximum vertical velocity) of the simulated supercell storm at 100 minutes, along line 
AB shown in Fig. 2.7a. It corresponds to y = 28 km. 



 40

0

4

8

12

16

20

8.
0

0 16 32 48 64
0

4

8

12

16

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.0
1.0

0 16 32 48 64
0

4

8

12

16

H
ei

gh
t (

km
)

H
ei

gh
t (

km
)

Distance (km) Distance (km)

g) h)

 

Fig. 2.8. (Coutinued) 
 

It can be seen that our emulator produces reasonably weak reflectivity for dry 

snow compared with that for hail as in the real storm (Figs. 2.8a,d,f). In contrast to the 

reflectivity field, ZDR and KDP remain low at this level in this precipitation core (Figs. 

2.8b,c). The core of the ZDR column (Figs. 2.7c and 2.8b) is located southwest of the 

center of the WER, where the reflectivity hook is located (Fig. 2.7a), similar to those in 

Fig. 2 of Hubbert et al. (1998). The top of ZDR column is bounded by the 0°C line while 

the observational study of Hubbert et al. (1998) shows that it rises above the 0°C line 

because raindrops or water-coated ice particles are carried by a strong updraft. In the 

simulated storm, super-cooled water quickly converts to ice phase so that ZDR quickly 

drops accordingly. The KDP pattern shown in Fig. 2.8c indicates that it has useful 

information content only for heavy rain, as observational and theoretical studies have 

shown earlier (Chandrasekar et al. 1990; Balakrishnan et al. 1989). There is hardly any 

KDP signal in the light-rain region. The maximum values of specific differential phase 

occur where the rainwater mixing ratio is the greatest, between the 3.5-km level and the 

surface (Fig. 2.8c). However, the maximum differential reflectivity appears near the 
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surface because the large hail values at the higher levels reduce the relative contribution 

of rain, as discussed earlier for the squall-line case. Their signatures are very weak at 

high altitudes where the hydrometeor density is low, dielectric constant is small, and 

their effective shapes are spherical.  

The patterns of ZDR and KDP are similar for different physical reasons. The ZDR is 

greater where larger qr is found because more larger drops with more oblate shapes are 

expected there. The KDP is more linearly proportional to the amount of rain as discussed 

in section 2.3.3. Both ZDR and KDP remain low at the middle level to the right of the 

storm where the hail dominates among the hydrometeors (Figs. 2.8b,c,f). The ZDR 

increases towards the surface as most hail completely melts before reaching the ground. 

This behavior is consistent with the ZDR and KDP equations in (2.16) and (2.19) and also 

agrees well with observations (Hubbert et al. 1998; Illingworth et al. 1987; Zrnic and 

Ryzhkov 1999), and with the study of Huang et al. (2005) in which a full radar 

scattering model is used to simulate polarimetric radar signatures of a model-simulated 

storm. For the purpose of data assimilation, simple formulas like those discussed in this 

chapter have to be used. At this time, full scattering calculations are prohibitively 

expensive for data assimilation purposes.  

As in the squall line case, (Zdp)0.2 pattern is highly correlated with the reflectivity 

pattern below melting layer while its signal is much weaker above melting layer (Fig. 

2.8g). The presence of mixture is clear from the pattern of ρhv  (Fig. 2.8h).  ρhv  is very 

high for pure rain near the surface and for pure snow aggregate in the anvil. The 

correlation drops where the melting of ice particles occurs. The lowest correlation core 

is shown in the region with high concentration of hail, yet restricted by the presence of 
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rain water, due to the large number of hailstones in the melting phase. The presence of 

melting layer is clear between 2 and 3.5 km altitude.  

2.5 Summary and conclusions 

In this chapter, the forward observation operators that link model state variables 

with polarimetric radar measurements are developed based on scattering calculations 

with the T-matrix method for rain and the Rayleigh scattering approximation for snow 

aggregates and hail. These operators, together with proper handling of the radar beam 

geometry and beam weighting-functions, form a radar simulator. The operators are 

developed mainly for the purpose of assimilating the corresponding measurements into 

storm-scale numerical models; at the same time, they can be used to verify model 

predictions against radar observations.  

The radar measurements considered include the reflectivities of the horizontal 

and vertical polarizations (ZH and ZV), differential reflectivity (ZDR), reflectivity 

difference (Zdp), specific differential phase (KDP), and the cross-correlation coefficient 

( ρhv ). The work is necessitated by the unavailability of existing observation operators 

for most of the polarimetric variables that are efficient for data assimilation purposes 

and make use of all microphysical information available in a numerical model. Because 

of the lack of information in typical bulk microphysics schemes on the liquid water 

fraction of ice, a new melting model is developed that assumes a function for the water 

fraction based on known rainwater and snow/hail mixing ratios. The effects of varying 

density due to the melting snow and hail are also included. 
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The observation operators developed are tested with a model-simulated mature 

squall-line system that includes both deep convection and stratiform precipitation 

regions, and a supercell storm with high hail content. Realistic nonpolarimetric and 

polarimetric radar signatures are produced in the simulated fields, including a bright 

band and realistic spatial distributions of ZDR and KDP signatures. The simulated radar 

fields suggest a problem with the treatment of snow and hail melting processes in the 

Lin-type microphysics scheme, which will be examined in more depth in the future. 

Our simulated reflectivity seems generally higher than observed one for ice 

phases. This is partly because non-Rayleigh scattering effects have been neglected in 

the calculation. This could have a larger impact in the convective rain than in the 

stratiform rain. The fixed DSD intercept parameter of hail is probably responsible for 

high reflectivity in the stratiform precipitation region where we expect mostly small ice 

particles. The hail intercept parameter is two orders of magnitude smaller than those of 

rain and snow and can lead to high reflectivity. Last, the lack of raindrop breakup, 

which is neglected in our microphysical parameterization, is another source of high 

reflectivity. When the DSD is not properly truncated, a few unrealistically large drops 

can significantly increase reflectivity. 

The observation operators have been implemented in our ensemble Kalman 

filter data assimilation system, and the impact of additional polarimetric measurements 

on the analysis of a supercell storm will be examined in Chapter 3. 
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Chapter 3 2    Assimilation of Simulated Polarimetric Radar Data for a 
Convective Storm Using Ensemble Kalman Filter: Impact of 
Polarimetric Data on Storm Analysis 

 

3.1 Introduction 

For convective-scale NWP, microphysics represents perhaps one of the most 

important physical processes with both direct and indirect influences. The 

microphysical processes depend to a large extent on the phase, density, and the drop 

size distributions (DSDs) of the microphysical species involved. These properties also 

directly affect radar measurements within each radar sampling volume. For these 

reasons, equivalent radar reflectivity factor (hereafter reflectivity) and radial velocity 

measurements from conventional Doppler weather radars are usually insufficient to 

fully describe the microphysical states in a convective storm. Additional observational 

parameters available from polarimetric Doppler radars, including differential 

reflectivity and differential phase measurements can be very helpful here as they 

contain information about the density, shape and DSDs of hydrometeors (Doviak and 

Zrnic 1993; Bringi and Chandrasekar 2001).  

The use of differential reflectivity for meteorological applications, in particular 

for rainfall estimation, was first proposed by Seliga and Bringi (1976); many studies 

have shown that polarimetric measurements can improve precipitation-type 

classification and quantitative rainfall estimates (Straka et al. 2000). Ryzhkov et al. 

(1998) and Vivekanandan et al. (1994) have proposed that polarimetric methods can 

                                                 

2 This chapter is published as: Jung, Y., M. Xue, G. Zhang, and J. M. Straka, 2008: Assimilation of 
simulated polarimetric radar data for a convective storm using ensemble Kalman filter. Part II: Impact of 
polarimetric data on storm analysis. Mon. Wea. Rev., 136, 2246-2260. 
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estimate ice water content more accurately than the one that only uses reflectivity (ZH). 

Wu et al. (2000) used differential reflectivity (ZDR) indirectly (rain and ice mixing ratios 

were derived from reflectivity and ZDR before assimilation) in a cloud-scale four-

dimensional variational data assimilaton (4DVAR) system and obtained somewhat 

encouraging results. Moreover, the planned polarimetry upgrade starting later this 

decade or early next decade (D. Zrnic 2006, personal communication) by the National 

Weather Services (NWS) of the entire operational Weather Surveillance Radar-1988 

Doppler (WSR-88D) radar network will undoubtedly motivate more active research on 

the utilization of polarimetric radar data.  

An accurate estimate of the amounts of hydrometeors and DSDs using 

polarimetric radar data can contribute to the improvement and verification of 

microphysical parameterizations in cloud and mesoscale models. Such estimations can 

also help enhance our understanding of the interactions between microphysics and 

kinematics in severe storms and in the mesoscale system (Straka et al. 2000). 

Polarimetric radars also should be helpful for storm-scale model initialization, 

especially of the microphysical and related thermodynamic fields, through data 

assimilation.  

The accuracy of NWP depends on the model initial condition. The error in the 

initial state grows with time and makes the predicted state diverge from its true state. 

Therefore, a lot of effort has been given to determine more accurate initial conditions 

that can lead to more accurate weather forecasts. Currently, the two most promising 

data assimilation techniques for obtaining the atmospheric initial condition or the best 

estimate of the atmospheric state are the 4DVAR (Le Dimet and Talagrand 1986; 
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Courtier and Talagrand 1987) and the ensemble Kalman filter (EnKF) method (Evensen 

1994; Evensen and Leeuwen 1996; Burgers et al. 1998; Houtekamer and Mitchell 1998; 

Anderson 2001; Bishop et al. 2001; Whitaker and Hamill 2002; Evensen 2003; Tippett 

et al. 2003), because of their ability to make effective use of the dynamic model 

equations and observations distributed in space and time, and to provide the best 

estimate that is also consistent with the prediction model. Because of its ability in 

handling complex, nonlinear, physical processes (e.g., ice microphysics) in the 

assimilation model, and in the forward observation operators (e.g., those for reflectivity), 

the EnKF method appears to be more suitable for convective-scale data assimilation, 

which is the main interest of this study. 

The EnKF technique was introduced into the meteorological community about a 

decade ago and has become very popular in recent years. It is an attractive alternative to 

the more mature 4DVAR method. Very encouraging results have been obtained by a 

number of researchers for large-scale models (e.g., Houtekamer et al. 2005; Whitaker et 

al. 2004). Tests with perfect prediction models with simulated Doppler radar data at the 

convective scale with EnKF have also produced very encouraging success in recent 

studies. The first paper to investigate the potential of EnKF for assimilating Doppler 

radar data was Snyder and Zhang (2003). The study used a cloud model with warm rain 

microphysics and assimilated simulated radial velocity data assumed to be available on 

the model grid. The studies of Tong and Xue (2005b, hereafter TX05)  and Xue et al. 

(2006, hereafter XTD06) further demonstrated that the cloud fields associated with a 

three-ice microphysics scheme (cloud ice, snow aggregates, and hail) can be accurately 

retrieved using the EnKF method. Moreover the inclusion of reflectivity data improves 
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the results even though its observation operator is highly nonlinear. XTD06 also 

removed the assumption that radar data are available on the model grid and used more 

realistic radar-beam-pattern-based forward observation operators.  

More recently, Tong and Xue (2008b; 2008a, hereafter TX08a and TX08b) 

applied the ensemble Kalman filter technique to the problem of simultaneous estimation 

of the atmospheric state of a convective storm and uncertain DSD-related microphysics 

parameters associated with a single-moment microphysics scheme, from radar radial 

velocity and reflectivity data. It was found that the parameter estimation can always be 

successful when only one of the parameters contains error. The difficulty of parameter 

estimation increases when multiple parameters contain error and have to be estimated 

simultaneously. The fact that the errors in some of the parameters produce 

compensating responses in terms of the observed radar reflectivity, causing solution 

nonuniqueness, is believed to be the reason for the difficulties. The study suggests that 

additional polarimetric radar measurements that provide the microphysics and DSD 

information can help alleviate the solution’s nonuniqueness problem. Even when 

microphysics parameter estimation is not performed, the additional polarimetric 

measurements are expected to improve the microphysical state estimation. When the 

microphysics scheme predicts more than one moment (i.e., the mixing ratios), then 

more microphysical state variables (e.g., the total number concentration and reflectivity 

factor, as in the three-moment scheme of Milbrandt and Yau 2005a) have to be 

estimated. If the radial velocity and conventional reflectivity are the only two storm-

scale observations, the full state estimation is likely to be very difficult. 
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In this chapter, we report on the results of our initial efforts in developing 

capabilities to assimilate polarimetric radar data into a storm-scale NWP model, and in 

studying the impact of these variables on the analysis or model state estimation. We 

extended the ensemble Kalman filter data assimilation framework of TX05, XTD06 and 

TX08a, by adding the ability to assimilate differential reflectivity (ZDR), reflectivity 

difference (Zdp), the specific differential phase (KDP), and the correlation coefficient 

 ρhv (0). In Chapter 2, the development of the observation operators for these parameters 

are described, together with an examination of their applications to a simulated squall 

line and supercell storm. These observation operators are used in the EnKF Observing 

System Simulation Experiment (OSSE) system to produce the simulated observation 

and to assimilate the data.  

In section 3.2, the simulation of the radar observations to be used in the OSSEs 

is discussed, together with their error models. The supercell simulation used in the 

Chapter 2 is used as the truth simulation from which error-containing observations are 

generated. It is followed by the design and configurations of the OSSE data assimilation 

experiments. The impact of assimilating additional polarimetric variables is examined 

in section 3.3 based on the OSSE results. In section 3.4, we conclude this study and 

discuss some practical issues in the use of polarimetric radar data for the data 

assimilation purposes. We believe the study reported herein represents the first attempt 

to directly assimilate polarimetric radar data into a numerical model. 
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3.2 Assimilation system and experimental design 

The prediction model and the truth simulation of a supercell storm used for 

OSSEs are described in Chapter 2. In the following, we first describe the simulation of 

the observations from this truth simulation and the error modeling for the reflectivity 

and polarimetric variables. 

3.2.1 Simulation of observations and the error model 

Real observations are usually contaminated by measurement and sampling errors, 

and can contain representativeness error also. In our radar simulator, error-free 

observations are first generated at model grid points using the observation operators 

developed in Chapter 2, with the state variables of the truth simulation as input. The 

results are then brought to the radar elevation levels through interpolation and necessary 

beam-pattern weighting. We assume that the radar data are at the model grid columns, 

which is also an assumption made in XTD06. The effective earth radius model is used 

to take into account the effect of beam bending due to the surface curvature of the earth 

and the vertical change of refractive index (Doviak and Zrnic 1993). A Gaussian beam 

weighting function described in XTD06 is used in the vertical direction to simulate Zh, 

Zv, Vr, and KDP observations on the radar elevation planes. 

Noise is then added to the error-free observations to simulate observation errors. 

Operational polarimetric WSR-88D radars transmit and receive horizontally and 

vertically polarized waves simultaneously, which measures Zh and Zv from the same 

pulses. Because the errors in Zh and Zv are mostly correlated for weather echoes in this 

configuration, the error in ZDR is usually small as a ratio between Zh and Zv. To more 
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realistically model the errors, correlated and uncorrelated random errors having 

Gaussian distributions are added to uncontaminated t
hZ  and t

vZ  in the linear domain 

(before the logarithmic transform) and converted to logarithmic reflectivity, ZH and ZV 

(Xue et al. 2007), so that 

1010 log ( )= + +o t
H h corr hZ Z ε ε    and                              (3.1) 

1010 log ( )= + +o t
V v corr vZ Z ε ε ,                               (3.2) 

where superscripts t and o denote the uncontaminated (truth) and error-containing 

simulated observations, respectively. Here εcorr represents the correlated part of the error 

and εh and εv are uncorrelated errors for Zh and Zv, respectively. They are randomly 

generated Gaussian errors with zero means and standard deviations proportional to the 

(uncontaminated) reflectivity (Zh), as real sampling errors should behave (Doviak and 

Zrnic 1993; Xue et al. 2007).  

Briefly, the actual sizes of the standard deviation (hereafter effective error SD) 

of the error are experimentally determined in the following way. First, errors εcorr, εh and 

εv are simulated by multiplying t
hZ  by a specified factor representing the relative error 

magnitude for each of them, and by a Gaussian-distributed random number with a zero 

mean and standard deviation of one. The errors are then used in (3.1) and (3.2) to give 

o
HZ  and  ZDR

o . These error-containing data are collected over the points where o
HZ  > 0 

dBZ and  ZDR
o  > 0 dB, respectively, for all data sampling times; the effective error SD 

for each dataset are then calculated. To obtain desired levels of SD of data for the 

purpose of data assimilation experiments, these steps are repeated through trials with 

different combinations of εcorr and εh (and εv) until they are obtained. With this error 
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model, errors are Gaussian distributed in the linear domain but become non-Gaussian 

when they are transformed to the log domain. For further details and discussions on the 

error model, the reader is referred to Xue et al. (2007). 

The observations of ZDR
o  and o

dpZ  are generated from o
hZ  and o

vZ . The errors 

in ZDR
o  and o

dpZ  are simply propagated from errors in the reflectivity observations, as in 

the real data. Simulated observations of Vr
o  and KDP

o  are obtained from the error-free 

 Vr
t  and  KDP

t  by adding Gaussian errors of zero mean and specified SDs: 

cos sin cos cos sin  a random error= + + +o
rV u v wα β α β α    and   (3.3) 

 a random error= +o t
DP DPK K .        (3.4) 

In (3.3), we neglected the effect of the hydrometeor terminal velocity, which is also 

done in this chapter when assimilating Vr data. The same is done in XTD06 although 

their more recent studies have included the terminal velocity effect (TX08a).  

We note that in (3.1)-(3.4), only the typical radar sampling error is simulated. 

Other typed of measurement errors associated with mismatched sidelobes, clutter 

contamination, partial beam filling, range effect, etc., are not taken into account in our 

error model. In our radar emulator, the SDs or variances can be specified by the user. 

For operational WSR-88D radars, the reasonable range of the standard deviations of 

reflectivity and differential reflectivity are 1-2 dBZ and 0.1-0.3 dB, respectively 

(Ryzhkov et al. 2005b; Doviak and Zrnic 1993). The standard error of KDP in the range 

of 0.24-0.48° km-1 is expected for lightly filtered estimates of KDP from differential 

phase φDP for operational WSR-88Ds (Ryzhkov et al. 2005b).  The Vr error can be 

assumed to be 1 m s-1 (Doviak and Zrnic 1993). 
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Default error SDs used in our simulation and assimilation experiments are given 

here. The default values of εcorr and εh (and εv) are set to be 36% and 2% of t
hZ  so as to 

yield an effective error SD of about 2 dBZ for o
HZ  and close to 0.2 dB for ZDR

o . 

Gaussian errors with zero mean and SDs of 1 m s-1 for Vr
o  and 0.5° km-1 for KDP

o , 

which is reasonable for a 2-km resolution (Ryzhkov et al. 2005b), are added to t
rV  and 

t
DPK . ( )0.2o

dpZ  error is determined by the errors in o
HZ , and is about 1.0 mm6 m-3. These 

errors approach the large end of errors suggested in the literature. Also, Torres and 

Zrnic (2003) proposed a technique that can significantly reduce statistical errors while 

maintaining the same level of current WSR-88D radar capabilities such as the scan rate. 

We assume large errors in the observations to account for the worst cases. The errors in 

the real observation can be reduced by implementing new techniques in the future, and 

then the impacts could be larger than those shown later in this chapter. The same SDs 

(or their squared version, i.e., the error variances) are specified in the filter for the 

corresponding observations in all experiments presented in this chapter.  

As an example, Fig. 3.1 shows the error-containing (Figs. 3.1b,d,f) observations 

at the lowest radar elevation of 0.5 º that are compared with the error-free observations 

(Figs. 3.1a,c,e), for the simulated supercell storm. Observations below 250 m in height, 

which is the first level of the scalar variables in the model for the 500-m vertical grid 

resolution, are not plotted near the radar at the lower–left-hand corner of each panel. 

With the default SD errors for ZH, ZV, ZDR, and KDP as given above, the overall patterns 

of error-containing observations are not much affected by the errors. Of course, the 

error-containing observation fields appear noisy and the values at specific points differ 
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from the truth values. Some local extrema introduced by the errors, like those at x = 25 

and y = 43 km and at x = 45 and y = 47 km in the reflectivity field, are evident and 

resembles real observations (Fig. 3.1b). In our previous OSSE studies, negative ZH is set 

to 0. This is done here also. 

The errors in ZDR are simply propagated from the errors in reflectivity at 

horizontal and vertical polarizations. Even though a large reflectivity error generally 

leads to a large ZDR error in most cases, their errors are not necessarily strongly 

correlated at every point because of the uncorrelated part of error. The noise in the data 

is particularly noticeable for small values of ZDR and most of this noise is removed in 

our assimilation by data thresholding. Negative ZDR is also set to 0 as we assume that 

the differential attenuation is small for S-band radars at both polarizations, which could 

cause negative ZDR by attenuating ZH more than ZV. Also, the negative ZDR observed 

from hail (Bringi et al. 1986a; Illingworth et al. 1987), either from prolate or conical 

shape particles or three-body scattering (Hubbert and Bringi 1997), is not simulated in 

this study; they are less important because they will most likely fall below our 

threshold. We also note here that setting the negative value to zero is also a form of data 

thresholding; we believe doing so is desirable and can be done with real data also. 

We keep the negative values of KDP in the error-containing field (Fig. 3.1f). An 

SD of 0.5° km-1 that is used here is quite large considering the dynamic range of data. 

However, the fact that KDP error does not scale with the signal (as those of reflectivity 

do) means that the signal-to-noise ratio of KDP is actually high in heavy precipitation 

regions. 
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Fig. 3.1. Simulated (a),(c),(e) error-free and (b),(d),(f) error-containing observations at 
the 0.5º elevation at 100 min of the supercell storm simulation of (a),(b) ZH; (c),(d) ZDR; 
and (e),(f) KDP.  
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3.2.2 Data assimilation procedure 

As mentioned earlier, the EnKF radar data assimilation framework of XTD06, 

which was based on TX05 and further enhanced in TX08a, is used as the basis of our 

data assimilation work. This framework is enhanced by adding additional capabilities to 

assimilate the polarimetric radar variables. The observation operators developed in 

Chapter 2 are used, with our formula for the reflectivity at horizontal polarization [(2.5) 

in Chapter 2] replacing the reflectivity formula described in TX05. The new error model 

described above is used. 

Our EnKF assimilation system employs the ensemble square-root filter (EnSRF) 

after Whitaker and Hamill (2002), which is a particular variant of ensemble-based 

filters. A full description of the filter can be found in XTD06 and TX08a. The 

experiment environment is largely inherited from XTD06 and TX08a, with the 

differences noted above. 

Following TX08a, initial ensemble members are initialized at t = 20 min of 

model time by adding spatially smoothed perturbations to the initially horizontally 

homogeneous first guess defined by the Del City, Oklahoma, sounding. The standard 

deviations of the perturbations added to each variable are 2 m s-1 for u, v, and w; 2 K for 

θ; and 0.6 g kg-1 for mixing ratios of hydrometeors (qv, qc, qr, qi, qs, and qh,). The 

perturbations are added to the velocity components, potential temperature, and specific 

humidity, in the entire domain excluding grids comprising the lateral boundaries. For 

the mixing ratios, the perturbations are added only to the grid points located within 6 

km horizontally and 2 km vertically from the observed precipitation. Negative values of 
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mixing ratios after the perturbations are added are reset to zero. The pressure variable is 

not perturbed. These configurations are the same as in TX08a. 

The first assimilation of simulated observations is performed at 25 min of model 

time and the analyses are repeated every 5 min until 100 min. The filter uses 40 

ensemble members and a covariance inflation factor of 15% and a covariance 

localization radius of 6 km (Anderson 2001; Xue et al. 2005; Houtekamer and Mitchell 

1998, 2001; Hamill et al. 2001). A single virtual polarimetric WSR-88D radar that scans 

the model atmosphere is located at the southwest corner of the model domain, as is the 

nonpolarimetric radar in XTD06. For more detailed information on the configuration of 

the assimilation experiment, the reader is referred to XTD06 and TX08a. 

3.2.3 Experimental design 

To examine the impact of assimilating polarimetric variables (ZDR, Zdp, and KDP), 

in addition to the reflectivity at horizontal polarization (ZH, which is what conventional 

WSR-88D radars observe) or in additional to both ZH and Vr, on the analysis of the 

convective storm, we designed 10 experiments, which are listed in Table 3.1. 

Experiment Zh serves as the control run for the first set of the data impact experiments 

that include itself, ZhZdr, ZhZdp, ZhKdp and ZhZZK. Experiments ZhZdr, ZhZdp, 

ZhKdp test the impact of ZDR, Zdp, and KDP data individually when assimilated in 

addition to ZH. Experiment ZhZZK tests the combined impact of all three variables (ZDR, 

Zdp, and KDP) together. Experiment VrZh is the control run for the second set of 

experiments that consists of itself, VrZhZdr, VrZhZdp, VrZhKdp, and VrZhZZK. In 

this set, the impact of polarimetric variables in addition to both radial velocity and 
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conventional reflectivity data is examined. 

 
Table 3.1. List of experiments testing the impact of polarimetric variables. 

 

Experiment Observation(s) assimilated 

Zh ZH (everywhere) 

ZhZdr ZH and ZDR (ZDR > 0.3 dB) 

ZhZdp ZH and Zdp ((Zdp)0.2 > 1.7 mm6 m-3) 

ZhKdp ZH and KDP (KDP > 0.9 degree km-1) 

ZhZZK ZH, ZDR, Zdp, and KDP  

VrZh Vr (ZH > 10dBZ) and ZH 

VrZhZdr Vr, ZH, and ZDR 

VrZhZdp  Vr, ZH, and Zdp  

VrZhKdp Vr, ZH, and KDP 

VrZhZZK Vr, ZH, ZDR, Zdp, and KDP  
 

TX05 shows that the ZH data from echo-free regions help suppress spurious cells 

in those areas. The ZH data within the entire radar range are therefore assimilated in all 

of our experiments. For the polarimetric variables, thresholds that are experimentally 

determined are applied to each variable. We performed experiments ZhZdr, ZhZdp, 

ZhKdp without thresholding and with various thresholds based on their SDs and found 

that applying thresholds can lead to better analyses. The thresholds used for ZDR, (Zdp)0.2, 

and KDP in this study are 0.3 dB, 1.7 mm6 m-3, and 0.9° km-1, respectively. In other 

words, we assimilate polarimetric variables only when their values are greater than their 

respective thresholds.  
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To help understand the need for thresholding for polarimetric variables, we 

investigate the effect of observational errors on the analysis in the current assimilation 

framework. In our one-moment microphysics scheme, all polarimetric variables 

including ZDR are uniquely determined by the mixing ratios only, with assumed fixed 

values of DSD parameters. Therefore, they are to some extent correlated with each 

other. In practice, assimilating two (or more) observations taken at the same point and 

time that should be correlated may result in the deterioration of the analysis if the noise 

level is high in one or both observations. When a signal is weak, as is often the case 

with polarimetric data in many parts of a storm (see examples given in Chapter 2 and 

here in Fig. 3.1), it is possible that the noise dominates over the signal. In such a case, 

the assimilation of noise-dominated data may interfere with the assimilation of signals 

contained in other variables that are less susceptible to the noise (e.g., reflectivity). This 

can be inferred from the scatterplots of polarimetric variables versus reflectivity in Fig. 

3.2. Figures 3.2a,c,e show the scatter diagram between truth (error free) reflectivity and 

truth (error free) polarimetric variables and Figs. 3.2b,d,f show the same plots between 

error-containing observations. It is clear from the plots that the relative errors are larger 

for small values and smaller for large values. In Figs. 3.2a,e, there are several lines 

showing high population densities of observation points that pack together. When a 

single hydrometeor dominates in many of the radar sampling volumes, such as snow at 

the upper levels and rain at the low levels, the functional relation between the 

reflectivity and the polarimetric variable stands out as a densely clustered curve. In Fig. 

3.2a, the straight steeply sloped line corresponds to raindrops. In the error-free cases, all 

scatter away from the identifiable curves is due to the co-existence of more than one 
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hydrometeor species in the sampling volumes. For those who are interested in more 

detailed information on the impacts of noise on signals, many past studies are well 

documented in Doviak and Zrnic (1993) and Bringi and Chandrasekar (2001). 

When the simulated errors are added to the error-free observations, the clearly 

defined lines become blurred, and overall there is much more scatter with the plots 

(Figs. 3.2b,d,f). For reflectivity difference (Zdp)0.2 (Figs. 3.2c,d), the line broadening due 

to noise is more severe where the slope is low below a certain threshold. As a result, the 

reflectivity shows a much larger variability for small values of (Zdp)0.2 in Fig. 3.2d. For 

KDP, the effect of noise at low KDP values is even more severe – below KDP  = 0.9° km-1, 

no signal is perceivable due to noise (Fig. 3.2f). For this reason, the thresholding of 

polarimetric variables is clearly necessary, and their values are chosen based on the 

scatter plots in combination with sensitivity experiments, at levels below which noise 

dominates, as indicated by the horizontal dashed lines in the plots. These thresholds are 

applied to the simulated data. When the thresholds are increased above these levels, we 

found that the quality of analysis starts to decline because some useful signal is 

excluded. With the given thresholds, only 34.5%, 53.6% and 13.9% of ZDR, Zdp, and KDP 

observations collected from the echo region (where observed reflectivity is greater than 

0 dBZ) are assimilated. If more data could be used, the impact of polarimetric data to be 

shown later might have been larger. 
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Fig. 3.2. Scatterplot of reflectivity vs (a),(b) ZDR; (c),(d) (Zdp)0.2, and (e),(f) KDP for 
(a),(c),(e) truth and (b),(d),(f) observation.  The thresholds applied to the observation in 
the assimilation are overlaid on each plot (thick dashed). 
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3.3 The impact of assimilating polarimetric variables 

We examine, through the two sets of experiments listed in Table 3.1, the impact 

of ZDR, Zdp, and KDP data when only ZH is or when both Vr and ZH are assimilated. The 

Vr data are only available in precipitation regions where reflectivity is greater than 10 

dBZ following TX05.  

Figure 3.3 shows the ensemble mean analysis and forecast RMSEs of model 

state variables during the assimilation cycles of experiments Zh and VrZh, which are 

our control runs. As in TX05 and XTD06, these errors are calculated in the regions 

where the truth reflectivity ( t
HZ ) is no less than 10 dBZ. Additional details on the plots 

can be found in those papers. As mentioned earlier, the experiment names are self-

descriptive. For example, experiment Zh assimilates ZH data only and ZhZdr assimilates 

ZH and ZDR while experiment VrZhZZK assimilates Vr, ZH, ZDR, Zdp, and KDP.  

Under the perfect model assumption, the solid curves in Fig. 3.3 show that 

reflectivity data alone can successfully reduce the RMSEs over the first 40 min or so of 

the assimilation window period to rather low levels. After t = 60 min., the RMSEs more 

or less stabilize. At the end of the assimilation window, the RMSEs of u and v are 

between 1 and 1.2 m s-1, while that of w is about 0.6 m s-1. The RMSEs of the 

hydrometeors are all below 0.1 g kg-1 except for qv. On average over all assimilation 

cycles, additional 30 to 48 % of analysis error reduction in u, v, and w, and 17 to 27 % 

in the rest of variables except for qv, which show about 36 % of error reduction, are 

achieved with the addition of Vr data. These results are consistent with those of TX05. 
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θ

 

Fig. 3.3. The ensemble mean forecast and analysis RMSEs averaged over points at 
which the true reflectivity is greater than 10 dBZ  for (a) u, (b) v, (c) w (d) perturbation 
potential temperature θ', (e) p', (f) qc, (g) qr, (h) qv (the curves with larger values) and qi 
(the curves with lower values), (i) qs, and (j) qh for experiments Zh (solid black) and 
VrZh (dotted black). The vertical straightline segments in the curves correspond to the 
reduction or increase in RMSEs or ensemble spreads by the data assimilation. 
 

Because we are interested in if and how much the polarimetric data can further 

improve the analyses when they are assimilated in addition to reflectivity or both 

reflectivity and radial velocity data, we normalize the ensemble mean analysis RMSE of 

the data impact experiments using those of the corresponding control. Namely, the 

RMSEs of ZhZdr, ZhZdp, ZhKdp, and ZhZZK are normalized by the errors of Zh, and 

the errors of VrZh are used to normalize those of VrZhZdr, VrZhZdp, VrZhKdp and 

VrZhZZK. [These normalized RMSEs (NRMSEs) are shown in Figs. 3.4 and 3.6]. A 

smaller NRMSE suggests a larger improvement through the assimilation of additional 

variable(s). 
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Figure 3.4 shows that every polarimetric variable shows a degree of positive 

impact when assimilated individually in addition to reflectivity (Fig. 3.4), at least during 

the later assimilation cycles when the filter stabilizes. Generally, ZhZdp (dashed in Fig. 

3.4) and ZhKdp (dotted in Fig. 3.4) produce better analyses than ZhZdr (solid in Fig. 

3.4) during early-to-intermediate cycles and ZhZdr shows a bigger improvement than 

ZhZdp and ZhKdp during intermediate-to-later cycles. These results show that different 

observations may have different relative impact at the different times. At the early stage 

of assimilation when the forecast error is relatively large, the intensity information 

carried by Zdp and KDP seems to be more beneficial. Later in the assimilation period, ZDR 

seem to provide additional information other than intensity. 

 

θ

 

Fig. 3.4. The ensemble mean analysis RMSEs of experiments ZhZZK (thick solid), 
ZhZdr (solid), ZhZdp (dashed), and ZhKdp (dotted) normalized by those of experiment 
Zh. The reference horizontal line at a unity is overlaid.  
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From experiments ZhZdp, ZhZdr, ZhKdp, with the help of any one of the 

polarimetric variables, the normalized analysis RMSEs stay lower than those of 

experiment Zh after 60 min of model time for all variables except for qh but there is a 

tendency for such error reductions to become smaller in the later assimilation cycles for 

many of the variables. This is believed to be due to the fact that by the time of the later 

cycles, the reflectivity data have had more time to correct the model state error while 

during the intermediate cycles, there is more room for the polarimetric variables to 

contribute, by accelerating the error reduction. During the earlier cycles, the positive 

impact of the polarimetric variables is questionable according to Fig. 3.4, which 

suggests that when the model state estimation is relatively poor (during the earlier 

cycles), and the positive impact of the polarimetric variables is harder to realized. 

After 60 min of model time, in general, ZhKdp shows the smallest error 

reduction among ZhZdr, ZhZdp and ZhKdp on average. Their error reduction behaviors 

are all similar to each other with the exception of qc and p' during the later assimilation 

cycles. Experiment ZhZdp shows generally larger RMSEs than ZhZdr, but slightly 

smaller than or similar to ZhKdp in most of variables. The polarimetric variables are 

more beneficial to w, qv, and qr, with the reduction of error in qr being the largest. This 

is probably not surprising because rainwater mixing ratio, qr, is directly involved in the 

calculation of ZDR, Zdp, and KDP, and the signatures of these variables are strongest 

where rain mixing ratio is larger (see Chapter 2). These variables are related to w and qv 

through their direct connection to the updraft/downdraft intensities and microphysics. 

For example, qv converts to qr through condensation in the updraft and is created from 

qr by evaporation in the downdraft. Among the other state variables, the improvements 
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to u, v, and qs are rather smaller. Even though qs is directly related to polarimetric 

variables, the polarimetric signatures related to dry-ice-phase hydrometeors are 

generally weak so that most of the observations containing information on qs are 

screened out by the observation thresholding. An interesting point is that the analysis 

error reduction is relatively large in qh. This is because a considerable amount of qh 

information is available from wet hail, which survives the thresholding in the deep layer 

below the melting level. 

Among experiments ZhZdp, ZhZdr, and ZhKdp, experiment ZhZdr has the 

greatest impact. This may not be intuitively obvious because ZDR mainly carries 

information on the difference between reflectivity at horizontal and vertical 

polarization; however, it does not provide much information on the intensity of the 

reflectivity. On the contrary, KDP and Zdp are directly related to mixing ratios and are 

expected to be more useful for quantification. This behavior may be explained in terms 

of independent information content. The ZDR contains information on the mean shape 

and orientation of hydrometeors and is proportional to the median diameter of 

precipitation particles in the radar resolution volume. The ZH is mainly related to the 

hydrometeor concentration. For rain drops, the shape is a strong function of size and, 

therefore, ZDR and ZH share some information in common. Both KDP and Zdp contain the 

information on both hydrometeor concentration and shape. As discussed earlier in 

section 3.2.3, with a single-moment scheme, all polarimetric variables are correlated to 

the reflectivity, with the correlation between ZDR and ZH being the smallest; the 

independent information content in ZDR can therefore have a larger impact. The 

intensity information should have already been well captured by the ZH data. Another 
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perhaps more important issue is that, with the current single-moment microphysics 

scheme used, the DSD parameters, including intercept parameters and hydrometeor 

densities are fixed and cannot be adjusted using the information contained in the 

polarimetric radar data. The impact of polarimetric data may increase when adjustments 

to these parameters are allowed, via, for example, parameter estimation (TX08a, 

TX08b) or if a multimoment scheme is used. In those cases, the response of the data 

assimilation system to the polarimetric data may become more physical. 

When all three polarimetric variables are assimilated together, the analysis 

improvement is seen to further increase in general, although ZhZdr does do better 

temporarily after 60 min of model time for p', ZhZdp does better for qr and qh, and 

ZhKdp does better for p'. It is encouraging that experiment ZhZZK successfully reduces 

the analysis RMSEs even when individual polarimetric parameters show little or no 

positive impact. For instance, the normalized RMSEs of ZhZZK stay low at 65 min of 

model time for qs, at 85 min for qc, and at 90 min and 100 min for qh, while the 

corresponding RMSEs of ZhKdp, ZhZdr are greater than 1.  

From Fig. 3.4j, we see that KDP and Zdp help reduce RMSE up to 60 minutes, ZDR 

from 60 min to 85 min, and Zdp helps reduce the RMSE after 85 min. Similar behaviors 

are seen in many other variables (Figs. 3.4a-c,f,g).  

The percentage improvement over experiment Zh averaged over the last nine 

cycles is summarized in Table 3.2. From Table 3.2, we can see that all model state 

variables experience analysis error reduction when assimilating polarimetric data. The 

improvement is greatest in qr, which has an approximately 29 ~ 41 % improvement in 

ZhZdr, ZhZdp, and ZhKdp and more than 50% improvement when all three variables 
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are assimilated. As discussed in Chapter 2, KDP is more linearly proportional to rain 

mixing ratio and has little sensitivity to other species. Therefore, it is expected to be 

more useful for determining qr than other variables, including ZH, even if we take the 

thesholding into account. Actually, only 14 % of available KDP observations are used in 

the analysis, which is about 40% of ZDR and about 25% of Zdp observations. Considering 

this, the impact of KDP on qr analysis is rather large.  

 
Table 3.2. The improvement over the experiment Zh for the experiments ZhZdr, ZhZdp, 
ZhKdp, and ZhZZK and over the experiment VrZh for the experiments VrZhZdr, 
VrZhZdp, VrZhKdp, and VrZhZZK averaged over the last nine cycles (60-100 min of 
model time). The improvement is expressed in percentages relative to the corresponding 
control experiment. 
 

Variab
les 

Improvement (%) Improvement (%) 

ZhZdr ZhZdp ZhKdp ZhZZK VrZhZdr VrZhZdp VrZhKdp VrZhZZK

u 10.4 6.2 7.8 14.6 5.0 2.8 4.4 7.1 

v 13.1 7.2 6.1 17.1 0.7 0.8 3.0 1.2 

w 22.3 14.4 9.7 28.3 12.3 7.3 7.1 18.7 

θ' 15.7 10.6 6.2 19.6 3.2 2.6 4.6 7.4 

p' 19.7 10.8 9.1 20.0 8.6 2.0 4.9 11.9 

qv 29.0 18.3 17.5 33.5 9.5 5.1 3.9 9.9 

qc 20.0 11.0 7.8 23.4 8.1 5.2 4.7 12.9 

qr 40.7 28.7 31.1 51.9 31.1 22.1 30.5 45.9 

qi 15.0 8.4 9.4 21.9 4.0 4.2 7.8 9.3 

qs 12.2 9.5 9.0 18.4 3.0 2.2 1.1 6.7 

qh 15.4 19.9 11.8 26.1 3.2 8.8 7.2 14.4 

tot 123.5 145.0 125.5 274.8 88.7 63.1 79.2 145.4 
 



 68

θ

 

Fig. 3.5. The vertical profile of RMS analysis errors averaged over points at which the 
truth reflectivity is greater than 10 dBZ for (a) u, (b) v, (c) w, (d) θ', (e) p', (f) qc, (g) qr, 
(h) qv, (i) qs, and (j) qh at 80 min of experiments Zh (dashed) and ZhZdr (solid).  

 

Figure 3.5 shows the vertical profiles of the RMSEs averaged over points at 

which the truth reflectivity is greater than 10 dBZ for experiments Zh (dotted) and 

ZhZdr (solid) at 80 min. It is seen that the errors of all variables are reduced at almost 

all levels by assimilating ZDR, with the exceptions being with u in a shallow layer 

between 12.5- and 13.0-km height. Considering that most ZDR observations at the high 

altitudes are excluded by the threshold constraints (see Table 3.1) because ZDR values 

are typically small for ice phase particles (see Table 3.1), the fact that improvements are 

found at all levels is encouraging specially with the large error reduction at the upper 

levels in v, w, θ', and qs. Also, the error reduction is generally largest where the RMSE 

profiles peak. Apparently, direct improvement to the analysis at the low levels is 

propagated upwards, or throughout the computational domain, through the dynamic 
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prediction model. The reduction of errors in qr and qh below 5 km where the melting 

occurs is also noticeable at the time shown.  

 
θ

 
 

Fig. 3.6. As in Fig. 3.4, but for experiments VrZhZZK (thick solid), VrZhZdr (solid), 
VrZhZdp (dashed), and VrZhKdp (dotted).  

 

In the next set of experiments (VrZh, VrZhZdr, VrZhKdp, and VrZhZZK), we 

examine the impact of ZDR, Zdp, and KDP data when both Vr and ZH are assimilated. 

From Fig. 3.6, we see that in such a case, the impact of polarimetric variables is rather 

small though still positive in general during middle to later cycles in most of the state 

variables although temporary deterioration can occur with qs and qh. Variables u and w 

show decreasing error reduction starting around 80 min of model time and the RMSE 

reduction is minimized at the end of assimilation cycles while the improvement is very 

small in v. Such a diminishing impact of the additional polarimetric variables appears 

again due to the very accurate analysis that one can already achieve by using reflectivity 
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and radial velocity data, especially after they have had a sufficiently long time to 

contribute to the state estimation. 

The gross improvement can be assessed more easily from Table 3.2. The error 

reduction characteristics are generally similar to but somewhat different from those of 

the previous set of experiments. As in previous cases, the improvement is generally 

larger in w, qv, and qr and smaller in u, v, and qs either when polarimetric variables are 

assimilated individually or when all are assimilated together. Again, qh shows large 

improvement, even larger than those of w and qv in VrZhZdp and VrZhKdp, and that of 

qv in VrZhZZK. Another interesting point is that the gross error reduction by VrZhZdp 

is smaller than that of VrZhKdp in contrast to the experiments without Vr. When Vr is 

assimilated, the percentage improvements by polarimetric variables relative to the 

control experiment are significantly reduced with the percentage reduction by KDP being 

the smallest in general comparing to the corresponding experiments without Vr. 

Moreover, the percentage improvement in qr is similar between VrZhKdp and ZhKdp. 

From Table 3.2, we can see that the NRMSE reduction by VrZh for the 11 

model state variables range from 1% to 46 % when all polarimetric data are assimilated 

together. However, these additional error reductions may not be very meaningful in 

practice. Within the current OSSE framework using a perfect prediction model, the 

analysis obtained using Vr and ZH alone is already very good; the RMS  analysis errors 

in u and v, for example, are quickly reduced to below 1 m s-1 within 4-5 cycles (Figs. 

3.3a-c), therefore there is little room for further improvement (the 1 m s-1 analysis error 

is already at or below the level of Vr  RMSE, which is 1 m s-1 as defined in section 3.2). 

For real data cases where model error tends to be rather large, the extra information 
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content afforded by the polarimetric data may produce a larger impact, especially when 

the polarimetric data are used to correct microphysics-related model error. For the 

single-moment scheme used here, many uncertainties exist with the values of the 

intercept parameters associated with the assumed exponential DSDs, and with snow and 

hail densities. TX08b shows that large analysis error can result when errors exist in 

these DSD parameters and the resultant analysis errors tend to be larger than the amount 

of error reduction achieved here through the assimilation of additional polarimetric 

variables. TX08b also shows that the errors in the DSD parameters can often be 

corrected through EnKF-based parameter estimation, although nonuniqueness in the 

solution does seem to exist. The final parameter estimation was found to be sensitive to 

the initial guess when multiple parameters are estimated together. It was suggested there 

that additional polarimetric data could impose additional constraints that may improve 

the uniqueness of the solution, given the fact that the polarimetric data contain DSD 

information. Using additional polarimetric parameters to improve the DSD parameter 

retrieval whereby reducing microphysical uncertainties and model error is discussed in 

Chapter 4, where polarimetric data assimilation plays an even greater role.  

Last, we also performed additional experiments assimilating combinations of 

any two of ZDR, Zdp, and KDP and these experiments exhibit lower analysis errors for 

most variables than experiments assimilating any one of the two variables involved in 

terms of time-averaged RMSEs after 60 min. One exception is found in qh of ZhZdrZdp 

whose time-averaged RMSE is smaller than that of ZhZZK. For example, ZhZdrKdp 

result in better analyses than those of ZhZdr and ZhKdp in terms of RMSE but worse 

analyses than that of ZhZZK. This is also true when Vr is assimilated. In this case, 
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VrZhZZK produces the best analyses among all experiments including those 

assimilating any two combinations of polarimetric variables with one exception in v of 

VrZhZdpKdp. So in general, it is better to assimilate more polarimetric variables.  

3.4 Summary and further discussion 

In this chapter, an ensemble Kalman filter system that incorporates the ability to 

assimilate polarimetric radar variables is described. It employs the observation 

operators developed in Chapter 2. The polarimetric variables considered include the 

differential reflectivity, ZDR, reflectivity difference Zdp, and specific differential phase 

KDP. A new error model for reflectivities at horizontal and vertical polarizations is 

developed in this study that includes both correlated and uncorrelated errors, and the 

relative errors of which are assumed to have Gaussian distributions in the linear domain 

based on Xue et al. (2007). This model gives realistic errors for the derived quantities, 

such as ZDR and Zdp. The simulated error-containing radar observations are shown, for 

example, for the truth simulation of a supercell. 

The enhanced EnKF assimilation system is used to assimilate radar data sampled 

from a simulated supercell storm, to examine the impact of additional polarimetric 

measurements, including ZDR, Zdp, and KDP, on the quality of storm analysis under the 

perfect model assumption. It is found that the assimilation of these variables, in addition 

to the reflectivity at horizontal polarization (reflectivity measurement of non-

polarimetric radars), helps further reduce the analysis error and the improvement during 

the intermediate and later assimilation cycles can be quite significant for some state 

variables. The results also show that the analyses for all model state variables are 
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improved at all vertical levels in general. Although ZDR does not direct reflect the 

magnitude of hydrometeor concentration, it gives the largest impact among the three 

polarimetric variables examined. When both Vr and ZH are assimilated, the impact of 

additional polarimetric variables becomes smaller, partly because the analyses obtained 

with Vr and ZH alone are already very good.   

The result shows that applying data thresholding when assimilating polarimetric 

variables leads to better analysis. When two or more observations are taken at the same 

point and time that are somewhat correlated, the assimilation of noise-containing 

observations may interfere with the assimilation of signals contained in other 

observations. This noise effect can limit the improvement to the analysis or even harm 

the analysis, especially when the noise level is high, which is likely to be true where a 

signal is weak. Applying thresholding also reduces the assimilation cost. 

It is suggested that polarimetric radar data can be very useful for estimating 

DSD parameters, such as the intercept parameters and hydrometeor densities used in 

single-moment microphysics schemes, because of their information content on DSDs. 

The DSD parameter estimation experiments using our EnKF framework are presented 

in Chapter 4, following the work of TX08a and TX08b. 

We expect to see a larger impact for real data cases where the state estimation 

using Vr and ZH is generally not as good. In such cases, additional polarimetric data are 

expected to play a larger role. 

We also pointed out earlier that the error levels assumed for the polarimetric 

variables are on the larger side. The data thresholding necessitated by the relatively 
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larger errors caused the discarding of large fractions of the simulated polarimetric 

observations. If the actual errors are smaller, larger impacts may be expected. 

Last, we point out that even though correlations among the reflectivity-related 

observation variables and their errors are expected, in the EnSRF used here, which 

assimilates observations serially, one at a time, all observations are assumed to be 

uncorrelated. The ideal way of processing correlated observations is to either transform 

the observation variables into a space where the assimilated quantities are no longer 

correlated (this may or may not be possible) or to use an algorithm that can take the 

observation error covariance into account. Their practical implementations are often 

nontrivial, however. To have an idea how much our observation errors are correlated, 

we calculated the observational error correlation coefficients between ZH and the 

polarimetric variables and found the coefficients to be 3.8×10-2, 0.37, and -3.2×10-3 for 

those between ZH and ZDR, (Zdp)0.2, and KDP, respectively. These correlations suggest 

that the results of our serial algorithm are probably reasonable. 
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Chapter 4 3    Simultaneous Estimation of Microphysical Parameters 
and Atmospheric State using Simulated Polarimetric Radar Data and 
Ensemble Kalman Filter in the Presence of Observation Operator 
Error 

 

4.1 Introduction 

The accuracy of the numerical weather prediction (NWP) is subject to two 

factors - error in the initial condition and deficiency of the NWP model. A considerable 

amount of research has focused on developing more advanced techniques to minimize 

the errors in the initial condition (Le Dimet and Talagrand 1986; Courtier and 

Talagrand 1987; Evensen 1994; Evensen and Leeuwen 1996; Burgers et al. 1998; 

Houtekamer and Mitchell 1998; Anderson 2001; Bishop et al. 2001; Whitaker and 

Hamill 2002; Evensen 2003; Tippett et al. 2003; Gao and Xue 2007; Liu et al. 2007). 

Among these, the ensemble Kalman filter (EnKF) techniques are thought to be 

attractive because of their ability to make effective use of prediction models and to deal 

with complex and highly nonlinear processes in the assimilation process. Previous 

studies using the EnKF method have achieved encouraging success for applications at 

large scale through convective scale (e.g., Houtekamer et al. 2005; Whitaker et al. 2004; 

Snyder and Zhang 2003; Tong and Xue 2005b, TX05 hereafter; Xue et al. 2006, 

hereafter XTD06).  

On the other hand, the deficiency in the NWP models, which is commonly 

referred to as model error, has received less attention until recently, because the 

                                                 

3 This chapter is conditionally accepted as: Jung. Y., M. Xue, and G. Zhang, 2008: The estimation of 
microphysical parameters and atmospheric state using simulated polarimetric radar data and ensemble 
Kalman filter in the presence of observation operator error. Mon. Wea. Rev. 
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characteristics of model error are little known and its statistical properties are poorly 

understood (Dee 1995; Houtekamer et al. 2005). Model error can arise from many 

sources such as insufficient resolution in time and/or space, misrepresentation of the 

physical and sub-grid scale processes, and the use of non-physical model boundaries 

and/or external forcing.  

It has been observed in certain EnKF studies that model error can dominate the 

error growth in data assimilation cycles and must be parameterized to prevent the filter 

from diverging from its truth state (Houtekamer et al. 2005). One way to account for 

model error within the EnKF system is to add the so-called additive error to the model 

state by assuming an error model (Lawson and Hansen 2005). Houtekamer et al. (2005) 

used additive errors by assuming model error covariance that has the same functional 

form as the forecast error covariance used in a 3DVAR system. Their experiments using 

a global model showed that the added model errors increased the ensemble spread to the 

level of ensemble mean error. Hamill and Whitaker (2005) performed several 

experiments to account for the model error due to unresolved scales using a global 

spectral model. They compared the two most popular methods for parameterizing model 

error – covariance inflation and additive error models. Additive error was randomly 

sampled from the time series of the difference between two runs at different resolutions. 

Their results performed at the global scale show that the additive error model 

outperformed the covariance inflation method and produced more accurate analyses. 

The ability of the additive error approach in increasing the space spanned by the 

existing ensemble perturbations is an advantage but the added errors are usually flow 

independent and therefore inconsistent with the actual flow. 
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Difficulties can arise when we attempt to apply these methods to the convective-

scale where model error is very flow- and situation-dependent. For this reason, the 

estimation of tunable model parameters, which often have a profound impact on the 

forecast, using the data assimilation scheme appears to be an attractive alternative or 

addition to the aforementioned methods for dealing with convective-scale model error. 

Early work using adjoint-based parameter estimation can be found in fields such as 

hydrology that solves the problem of aquifer identification (e.g., Yakowitz and 

Duckstein 1980). In meteorology, such studies include the estimation of nudging 

coefficients using the four-dimensional variational assimilation (4DVAR)  method (Zou 

et al. 1992), statistical model error parameters using a maximum-likelihood method 

(Dee and Silva 1999), and estimation of wind-stress coefficient using the extended 

Kalman filter method (Hao and Ghil 1995). The relative importance of optimal 

parameter values versus optimal initial condition of state is discussed by Zhu and 

Navon (1999) using a 4DVAR system of a full-physics global spectral model. Their 

results show that the impact of optimal parameters on the forecast persists even after the 

impact of the optimal initial condition has been lost. A comprehensive review on 

parameter estimation studies in meteorology and oceanography up to the mid 1990s can 

be found in Navon (1997).  

Anderson (2001) proposed using EnKF for simultaneous estimation of 

parameters and state. Several studies have since shown that EnKF is capable of 

successfully estimating parameters through the data assimilation process and may 

therefore help improve the subsequent forecast (Annan et al. 2005a; Annan and 

Hargreaves 2004; Annan et al. 2005b; Hacker and Snyder 2005; Aksoy et al. 2006b, a). 
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More recently, Tong and Xue (2008b; 2008a, hereafter TX08a and TX08b) applied the 

EnKF method to the estimation of fundamental microphysical parameters in a storm-

scale model. In TX08a, parameter identifiability is addressed through an investigation 

of correlation fields and a detailed sensitivity analysis. TX08b performed simultaneous 

estimation of up to 5 microphysical parameters using simulated radar data and found, as 

in Aksoy et al. (2006a), that a single imperfect parameter can be successfully estimated 

while the accuracy of estimation declines as the number of error-containing parameters 

increases. Another common conclusion of both studies is that the parameter estimation 

is beneficial in reducing errors in both estimated parameters and state. The studies also 

indicate that the parameter estimates are sensitive to the filter configuration and 

significant nonlinearities exist between model parameters and state variables, so that an 

attempt to improve one parameter may influence the estimate of other parameters.  

The matter of simultaneous parameter and state estimation is further complicated 

when the very same parameters to be estimated are involved in the forward observation 

operators that link the model state to the observations. In past studies, either the 

parameters to be estimated were not involved in the observation operators, or the 

observation operators were assumed to be perfect. In the case of radar reflectivity-

related observations, the model microphysical parameters also appear in the observation 

operators. In TX08b that estimates microphysical drop size distribution (DSD) 

parameters from simulated reflectivity data, the observation operators were assumed to 

be perfect, i.e., correct parameter values were used in the operators. In that study, 

difficulties were encountered when estimating multiple DSD parameters and this arose 

from the fact that the responses to error in different parameters compensate each other 
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in terms of the observed radar reflectivity, causing solution non-uniqueness. This result 

suggests that additional constraints provided by polarimetric radar measurements may 

help improve the well-posedness of the problem (Jung et al. 2008b; Jung et al. 2008c). 

Chapter 3 showed positive impacts of directly assimilating polarimetric variables on 

state estimation in a perfect model scenario.  

In this chapter, we extend the earlier studies of TX08a and TX08b that 

performed simultaneous DSD parameter and state estimation from reflectivity only and 

assuming perfect observation operators, and the studies of Chapters 2 and 3 that 

assimilated simulated polarimetric radar data with a perfect model, and perform 

simultaneous state and parameter estimation from polarimetric radar data whose 

observation operators also contain DSD parameter error. We attempt to quantitatively 

assess how additional polarimetric data can improve the parameter and state estimation 

using the EnKF approach. The forecast model, EnKF assimilation system and the 

design of OSSEs are first described in section 4.2, along with a discussion on the 

characteristics of the parameters to be estimated. Section 4.3 discusses the results of the 

sensitivity analysis and section 4.4 examines the impact of polarimetric radar data on 

the parameter and state estimation. A summary and conclusions are given in section 4.5. 

4.2 Model and experimental design 

4.2.1 Forecast model and filter configuration 

The same as the OSSE studies of TX08a,b, capter 2 and 3, a truth simulation is 

created using the Advanced Regional Prediction System (ARPS, Xue et al. 2000; 2001; 

2003) for a supercell storm. The ARPS is a fully compressible and nonhydrostatic 
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atmospheric prediction model. The ARPS prognostic variables include three velocity 

components u, v, and w; potential temperature θ; pressure p; and mixing ratios of water 

vapor, cloud water, rainwater, cloud ice, snow aggregate, and hail (qv, qc, qr, qi, qs, and 

qh, respectively) with the Lin et al. (1983, hereafter LFO83) ice microphysics scheme. 

The turbulence kinetic energy is another prognostic variable used by the 1.5-order 

subgrid-scale turbulence closure scheme. The ARPS model is also used for the 

sensitivity analysis and in the state and parameter estimation. 

The configurations of the forecast model and assimilation system used here are 

very similar to those used in Tong and Xue (2005; 2008a; 2008b), except for one major 

modification: the forward observation operator for reflectivity uses the one developed in 

Chapter 2 instead. The capabilities to assimilate polarimetric data were developed in 

Chapters 2 and 3, although the data are also used for parameter estimation here. The 

size of ensemble is 80 and no covariance inflation is applied. The effect of terminal 

velocity is assumed to have been removed from the radial velocity data in this study.  

The sounding of the 20 May 1977 Del City, Oklahoma, supercell storm (Ray et 

al. 1981) is used by the truth storm simulation. The CAPE of this sounding is 3300 J kg-

1. The grid spacing is set to 2 km horizontally and 0.5 km vertically. The dimension of 

the model domain is 64×64×16 km3 and a virtual polarimetric Weather Surveillance 

Radar-1988 Doppler (WSR-88D) radar is located at the south-west corner of the domain. 

The storm is initiated by a 4-K ellipsoidal thermal bubble with a 10-km horizontal 

radius and a 1.5-km vertical radius centered at x = 48 km, y = 16 km, and z = 1.4 km. 

The time step for model integration is 6 seconds with 3 seconds for the acoustically-
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active model equation terms. These configurations are essentially the same as used in 

TX05, TX08a, and Chapter 2. 

The ensemble square-root filter (EnSRF) proposed by Whitaker and Hamill 

(2002) is employed, in which the observations are serially assimilated. More detailed 

information on the filter implementation can be found in XTD06 and TX08a.  

Following TX08a, and TX08b, spatially smoothed stochastic perturbations with 

standard deviations of 2 m s-1 for velocity components (u, v, and w), 2 K for potential 

temperature (θ), and 0.6 g kg-1 for mixing ratios of hydrometeors (qv, qc, qr, qi, qs, and 

qh,) are added to the initially horizontally homogeneous first guess defined by the Del 

City sounding to initialize the ensemble members at t = 20 minutes of model time. The 

perturbations are added at the grid points located within 6 km horizontally and 3 km 

vertically from observed reflectivity. As in previous studies of TX08a,b, pressure is not 

perturbed. The covariance localization radius is set to 6 km.  

A 80-minute assimilation window is used with the first analysis at 25 minutes of 

model time and the last at 100 minutes. Radar volume scan data are available and 

assimilated every 5 min. Reflectivity data from the entire domain, including the non-

precipitation regions, are assimilated and used to update all state variables while radial 

velocity data, from regions where reflectivity is greater than 10 dBZ, are used to update 

wind variables (u, v, and w) only; it is found in our experiments that updating 

thermodynamic and microphysical variables using radial velocity does not further the 

analysis. 
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4.2.2 Simulation of observations 

Detailed information on the forward observation operators that link model state 

variables with the polarimetric radar variables can be found in Chapter 2; these 

operators are used to generate error-free observations. The error models described in 

Xue et al. (2007) and Chapter 3 are used to generate simulated observation errors with 

slightly different error statistics. In this study, we assume that a basic quality control 

process has been applied to the observations prior to the assimilation. The effect is 

achieved by limiting the modeled reflectivity error samples to within 5 times their 

standard deviation, which correspond to 10 dBZ (larger error samples are dropped). To 

accommodate this change while keeping the error standard deviations (SDs) at a similar 

level as in Chapter 3, the correlated and uncorrelated parts of error for reflectivity are 

increased to 40% and 2.7% of the truth reflectivity, respectively. The resultant error 

distribution is similar to that of Xue et al. (2007) (solid line in their Figure 1) except for 

a shorter tail on the negative end  (not shown). Therefore, the effective error SDs of the 

simulated observations are 1 m s-1 for Vr, about 2 dBZ for reflectivity at the horizontal 

polarization (ZH), close to 0.2 dB for differential reflectivity (ZDR), and 0.5 degree km-1 

for specific differential phase (KDP). The same SDs are specified in the filter for the 

corresponding observations. Reflectivity difference Zdp is not examined here since it 

exhibits the highest correlation to ZH among the polarimetric variables (Chapter 3), and 

hence is believed to contain the least independent information. 
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4.2.3 Parameters to estimate 

LFO83 used in the ARPS model is a single-moment 5-class (cloud water, cloud 

ice, rainwater, snow and hail) bulk microphysics scheme, in which the DSD is described 

by an exponential function with a fixed intercept parameter. The water amount of 

hydrometeors in each category is represented by the corresponding mixing ratio, and it 

changes through interactions with the other categories. Such interactions include 

condensation or deposition, collection, breakup, freezing, evaporation or sublimation, 

melting, and precipitation sedimentation. DSD-related parameters including bulk 

density and intercept parameter of the DSD of each category explicitly appear in the 

equations for microphysical processes and can greatly influence the magnitude and 

relative importance of those processes. Briefly, the intercept parameter is the product of 

the total number concentration and the slope parameter of the exponential distribution 

(see Eqs. 1 through 6 of LFO83). Significant uncertainties exist in them because these 

parameters, which vary significantly both in time and space in nature, are usually 

predefined as constants in single-moment microphysics schemes. TX08a demonstrated 

through sensitivity analysis that the error in the intercept parameters and the bulk 

densities considerably influence the storm evolution. In this study, the same set of 

parameters are selected for parameter estimation under the assumption of imperfect 

observation operators; these parameters are the intercept parameters for rain n0R, snow 

n0S, and hail n0H, and the bulk densities for snow ρS and hail ρH. 
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4.2.4 Parameter estimation procedure 

The parameters to be estimated are given first-guess values at the beginning of 

assimilation cycles that typically deviate from the truth values; they are further 

perturbed for each of the ensemble members to form an ensemble of parameter values. 

Their values are adjusted/updated during the EnKF assimilation cycles. The update of 

these parameters in the early assimilation cycles when the errors in the estimated state is 

still very large is found to hurt rather than help parameter estimation; the estimated 

parameter values easily drift away from the truth, because the covariance between the 

parameters and observations at this early stage is very unreliable. Since the success of 

parameter estimation and the convergence rate depend on the filter performance of the 

previous assimilation cycles and the error is cumulative, larger error in the early cycles 

can significantly slow down the parameter estimation process (TX08a). As error in the 

estimated state can usually be significantly reduced in the first 2 to 3 cycles, we delay 

the parameter estimation until 40 minutes of model time or the time of the fourth EnKF 

analysis. During the assimilation period, parameter values estimated in the previous 

assimilation cycle are used in the forecast model as well as the observation operators of 

the following cycle. To prevent the collapse of the parameter variance because of the 

lack of dynamic error growth in the parameters, a covariance inflation procedure 

following Aksoy et al. (2006a) and TX08b is applied, which restores the parameter 

spread to predefined minimum value after each analysis cycle, when the prior parameter 

spread is smaller than this. For the logarithmically transformed intercept parameters, 

this predefined minimum spread is set to 1 m-4, for logarithmically transformed snow 

and hail densities, it is set to 0.5 kg m-3. 
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4.2.5 Design of parameter estimation experiments 

We first perform five sets of single-parameter estimation experiments that 

examine the capability of the EnKF when only a single parameter contains error. We 

then perform a set of experiments in which 5 parameters are unknown. However, our 

main focus is on the improvement that can be obtained by using additional polarimetric 

data. Following TX08b, the radial velocity is not used in the parameter estimation due 

to its small response to the change in parameter values as well as the fact that it is not a 

direct function of hydrometeors. The radial velocity data are used for state estimation, 

however. 

In the single-parameter estimation experiments, one of the five parameters starts 

with an incorrect first-guess value while in the five-parameter experiments all five 

parameters start incorrect. In the experiments where the parameter error is involved in 

the observation operators, the forecast and analysis trajectory is found to be very 

sensitive to the initial perturbations of the parameters. To increase the robustness of our 

estimation, we perform five parallel experiments that only differ in the sampling of 

initial parameter perturbations; the same was also done in Aksoy et al. (2006a).  

As in TX08b we sample the random perturbations in the log domain (with 10 

log(x) transform) which avoids negative values of intercept parameters and bulk 

densities. With this procedure, unrealistically small or large parameter values can occur 

occasionally, causing forecast instability. Such experiments were rerun using reduced 

large and small time step sizes of 2 and 0.5 seconds respectively. Table 4.1 lists the true 

and first guess values of the parameters. Because the Guassian random perturbations are 

sampled in the log space, after the ensemble mean of the parameters after being 
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converted back to their original space is usually not the same as the ensemble mean in 

the log space. As in TX08b, the parameter estimation is performed in the log space of 

the parameters while the ensemble prediction uses their values in the original scale.  

 
Table 4.1. Microphysical parameters and their uncertainty ranges used in the sensitivity 
experiments, and their initial guesses as used in the parameter estimation experiments.  

 

Parameter pi 
Rain 

intercept 
n0R (m-4) 

Snow 
intercept 
n0S (m-4) 

Hail/graupel 
intercept 
n0H (m-4) 

Density of 
snow 

ρS (kg m-3) 

Density of 
hail/graupel 
ρH (kg m-3) 

Control (assumed 
true) values of 
parameter pi

t  
8x106 3x106 4x104 100 913 

Parameter 
values 
used in 

the 
sensitivity 

test 

Lower 
bound 3x106 5x105 4x102 20 400 

Upper 
bound 8x107 1x108 4x106 400 913 

Three initial 
guesses used in 

the single-
parameter 
estimation 

experiments 

3x106 7x105 4x103 50 400 

2x107 3x107 4x105 300 700 

8x107 1x108 4x106 400 750 

Two initial 
guesses used in 

the five-parameter 
estimation 

experiments 

3x106 7x105 4x105 50 400 

2x107 3x107 4x106 300 700 

 
 

Within the first few cycles when the error covariance is still poor, the error in 

the estimated parameters often grow too large to prevent successful estimation in later 

cycles or even cause instability in the model integration. To avoid this problem, we 
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constrain the parameters within their respective lower and upper bounds, which are the 

same bounds, used in the sensitivity experiments (see Table 4.1). 

A data selection procedure developed by TX08b is used here. At each analysis 

time, 30 observations are chosen based on the correlation between the estimated 

parameter and the prior estimate (model version) of ZH, ZDR, KDP observations, when 

only one of the observed quantities is used for parameter estimation. When more than 

one observed quantities are used, 15 observations from each data set are chosen based 

on correlation. For polarimetric variables, data thresholding is found necessary as in 

Chapter 3. However, we apply lower thresholds to allow for the use of more 

observations, especially at the upper levels. For ZDR and KDP, the thresholds are 0.05 dB 

and 0.05 degree km-1, respectively; data values lower than the thresholds are discarded. 

4.3 Sensitivity analysis 

4.3.1 Response function 

Before we perform parameter estimation, we first carry out a set of sensitivity 

experiments to examine if the model output, in the form of polarimetric variables, is 

sensitive to the DSD parameters to be estimated. This issue is ultimately related to the 

identifiability of each parameter with given observations (Yakowitz and Duckstein 

1980; Tong and Xue 2008b).  

Table 4.1 lists the uncertainty ranges and initial guesses used in our sensitivity 

and the parameter estimation experiments, respectively; these values were also used in 

TX08a,b.  These choices are based on observed ranges of values although they are not 

necessarily all encompassing (Joss and Waldvogel 1969; Houze et al. 1979; Mitchell 



 88

1988; Gunn and Marshall 1958; Gilmore et al. 2004a; Pruppacher and Klett 1978; 

Brandes et al. 2007).  

The sensitivity analysis procedure follows TX08a. First, EnKF data assimilation 

cycles are performed using perfect model parameters. The EnKF analyses are 

performed every 5 min with the first and last analysis being at 25 and 100 min. Forty 

ensemble members are used and the covariance inflation factor is 15%. Other 

configurations are as described in section 4.2.1. Five min forecasts are then launched 

from the ensemble mean analyses with one of the DSD parameters set to an ‘incorrect’ 

value sampled within its uncertainty range (Table 4.1). This is done for 16 analysis 

cycles for several sampled values for the individual parameters. These 5-min forecasts 

are used to calculate the response function, J, as defined in TX08a: 

( )
2

2
1

1( ) ( )
M

s s o
y m m

my

J p y p y
σ −

= −∑ , (4.1) 

where p denotes the parameter and superscript s is either w for incorrect value or t for 

true value. With pt, the correct parameter value is used in the observation operator. o
my  

denotes the mth observation and ( )my p  is a prior estimate based on the model forecast. 

Here the observations consist of ZH, ZDR, and/or KDP. yσ  is the SD of the observation 

error.  

The response functions for each type of observation are averaged over the 16 

cycles for each ‘incorrect’ value of a given DSD parameter. Since we are interested in 

the change in the model response to the error in the parameter, we compute the response 

function difference (RFD), ,( ) ( )s s t
y y cRFD J p J p= − , where the bar represents the 
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average over the assimilation cycles. RFDt is essentially same as ΔJy in TX08a where 

true parameter value is used in the response function calculation. Here , ( )t
y cJ p  is the 

response function calculated from the forecasts of the control experiment with the truth 

parameter value.  

The difference between RFDt and RFDw presents some hints about the amount 

of error that can be attributed to the error in the observation operator. As in any modern 

data assimilation system, in the EnKF system, the amount of correction made to the 

forecast is proportional to the difference between the observations and the forecast 

projected to the observation space using the observation operator, which is the quantity 

in the parenthesis in (4.1). Therefore, RFDt represents the total root-mean-square (RMS) 

difference between the forecast and observations if the forecast is project into the 

observations without error while RFDw represents the total RMS difference the filter 

would see in the presence of both forecast and observation operator error. When RFDw 

is larger than RFDt, the observation operator error acts to amplify the total error when 

measured against the particular observation.  

Another practical significance of the sensitivity analysis is its ability to rank the 

relative importance of model parameters so that more important ones can be chosen for 

estimation. A higher sensitivity implies that the parameter in question has more impact 

on the forecast than that with a smaller sensitivity (Navon 1997). 

4.3.2 Results of sensitivity experiments 

From a response function point of view, a necessary condition for a parameter to 

be identifiable is that it has a unique minimum within its bounds and the response 
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function has to be sensitive to the parameter (TX08a). To investigate the parameter 

identifiablity with polarimetric radar data, we plot RFDt and RFDw against the deviation 

of parameter values from their truth in Fig. 4.1.  

With respect to (wrt) reflectivity observation, both RFDt and RFDw curves are 

concave with their minima located at or near the zero deviation points of individual 

parameters (Figs 4.1a,b), it is therefore very likely that the truth value can be found by 

using reflectivity observations when only one of the parameters has error. For ZDR, The 

RFD wrt n0S exhibits very small sensitivity for positive deviations, indicating potential 

difficulty of estimating n0S in that range. The RFDs of n0R and n0H have clear concave 

shapes with their minima at zero deviation (Figs. 4.1c,d) while the bulk densities, ρS and 

ρH, show rather small sensitivity. The RFD wrt KDP are even smaller (Figs. 4.1d,f) for 

all parameters and no unique minimum is apparent for n0S and ρS due to the lack of 

sensitivity wrt to positive deviations.  

The parameter identification problem is more complex in the presence of 

observation operator error. When the DSD parameters are involved in the observation 

operators, incorrect parameter values result in under or over-correction to the parameter 

that can lead to larger analysis error. In other words, a large difference between RFDw 

and RFDt indicates a large impact of the parameter error through the observation 

operator. Generally, these differences are moderate for moderate sensitivity and very 

small when the overall sensitivity is small, but can be very large when the total 

sensitivity is large (e.g., n0H and ρS for ZH) (Fig. 4.1).   
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Fig. 4.1. Response function difference (a),(c),(e) ,( ) ( )t t t
y y cRFD J p J p= −  calculated 

with correct parameter values and (b),(d),(f) ,( ) ( )w w t
y y cRFD J p J p= −  with incorrect 

parameter values in the radar observation operators, for (a),(b) reflectivity data; (c),(d) 
differential reflectivity data; and (e),(f) specific differential phase data. The parameter 
deviations are in logarithmic space.  

 

 



 92

The problem becomes even more complicated when multiple observation 

datasets are used due to complex nonlinear interactions within the filter. For example, 

the RFD for KDP might be too small for successful estimation of n0H while the 

estimation of n0H using ZH might also be challenging due to the large difference between 

RFDw and RFDt. However, when KDP and ZH are used together, the estimation can be 

successful as we will see in section 4. While the sensitivity results are not sufficient to 

determine if certain parameters can be estimated successfully, they can still provide 

useful guidance for interpreting the estimation results. 

4.4 Results of parameter estimation 

4.4.1 Results of single-parameter estimation 

We first investigate the impact of polarimetric data on the estimation of 

individual DSD parameters. Such estimation assumes that one of the microphysical 

parameters is the dominant source of error. Because DSD parameters can change over 

several orders of magnitude, following TX08b, we perform the parameter estimation in 

the logarithmic space of these parameters. Because we take the average over a number 

of ‘parallel’ experiments (see section 4.2.5), we define “normalized absolute error” 

(NAE) as follows: 

,

1

1
tN

i k i
i t

k i

p p
NAE

N p=

−
= ∑

,
 (4.2) 

where pi,k is the ensemble mean of the ith parameter in linear space of kth experiment 

out of a total of N. 
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Figure 4.2 show the NAEs of estimated parameters from single-parameter 

experiments. These errors are averaged over 5 parallel experiments that start from three 

different initial guesses. The experiment names are made up of the parameter name, and 

the coefficient and exponent of the initial guess of intercept parameter or the first two 

digits of the bulk density shown in Table 4.1. Observations used in the parameter 

estimation are indicated after “_”. For example, experiment N0r36_ZhKdp estimates n0R 

from an initial guess of 3x106 m-4 using both ZH and KDP data. In most cases, reflectivity 

data alone can reduce the initial parameter errors (thick solid gray) but the results are 

not as good as those of TX08b obtained with perfect observation operators. As observed 

in TX08b, the parameter value can depart far from the truth in the first 1 or 2 cycles (e.g. 

Figs. 4.2a,b,d,e,g,h,k) and oscillates (around its truth values in log space). The error in 

the final estimate is larger than the initial error in such experiments as N0h43, N0h45, 

and Rhos05. Generally, an increase of NAE is observed in the later cycles of the 

intercept parameters (e.g., Figs. 4.2a-d,e) while the bulk densities converge to their truth 

values except for Rhos05. These results are quite different from those of TX08b where 

all parameters eventually converge to their truth values in their single-parameter 

experiments that use only reflectivity data. 
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Fig. 4.2. The time evolution of normalized absolute error (NAE) of the ensemble mean 
of estimated parameter values from single-parameter estimation experiments, for (a)-(c) 
n0R; (d)-(f) n0S; (g)-(i) n0H; (j)-(l) ρS; and (m)-(o) ρH, when the parameter estimation is 
performed using ZH alone (thick solid gray), both ZH and KDP (solid black), and ZDR 
alone (dashed black). The experiment name starts with the parameter name and is 
followed by the coefficient and the exponent of the initial guess of (a)-(i) the intercept 
parameter or (j)-(o) the first two digits of the bulk density presented in Table 4.1. The 
NAEs are averaged over the five parallel experiments that have the same initial guesses 
but different realizations of the initial parameter ensemble. 
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Figure 4.2 shows that the estimation of intercept parameters is generally 

improved when KDP is used in addition to ZH (solid black curves in Fig. 4.2). For n0R, 

the NAEs stay lower than those of experiments using ZH alone (thick solid gray) at most 

times (Figs. 4.2a-c). Figure 3 shows the ensemble mean analysis RMSEs of state 

variables from experiments N0r_Zh (thick solid gray), N0r_ZhKdp (solid black), and 

N0r_Zdr (dashed black). They are averaged over 15 experiments that start from three 

initial guesses (corresponding to Figs. 4.2a-c), which each initial guesses having 5 

parallel experiments with different initial ensemble parameter perturbations. In this case, 

the benefit of KDP to the estimation of state is rather small because the state obtained 

with ZH alone is already rather good. The overall RMSE levels of state are lower than 

those in Figs. 4.4 and 4.5, which are for experiments estimating n0S and n0H, 

respectively. In Figs. 4.2d-f, the NAE of n0S experiences a clear reduction in the later 

cycles when KDP is used in addition to ZH and the estimated qs and qi are improved in 

response (Fig. 4.4). The positive impact of KDP on the estimation of n0H may not be 

apparent from Fig. 4.2. However, significant improvement is obtained in the state 

estimation (Fig. 4.5). It is believed that the smaller variability of NAEs during the 

assimilation cycles (Figs. 4.2g-i) and the significantly smaller NAEs compared to that 

of N0h45_Zh (Fig. 4.2h) contribute to the large improvement in the analysis of state. 

Additional use of KDP in the estimation of bulk densities yields slightly smaller errors in 

the parameter estimation but exhibits little impact on the state estimation (not shown). 
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θ

 

Fig. 4.3. The ensemble-mean analysis RMS errors averaged over points at which the 
true reflectivity is greater than 10 dBZ  for (a) u, (b) v, (c) w and (d) perturbation 
potential temperature θ', (e) water vapor qv, (f) cloud water qc, (g) rainwater qr, (h) 
cloud ice qi, (i) snow qs, and (j) hail qh, for experiments where n0R alone contains error 
and is estimated. The experiments use ZH data alone (thick solid gray), both ZH and KDP 
data (solid black), or ZDR data alone (dashed black). The RMS errors are averaged over 
15 experiments that start from three initial guesses presented in Table 4.1 and five 
initial perturbation realizations for each initial guess. 
 
 

θ

 

Fig. 4.4. The same as Fig. 4.3 but for n0S. 
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θ

 

Fig. 4.5. The same as Fig. 4.3 but for n0H. 
 

The largest benefit of polarimetric data is obtained in the estimation of n0H when 

ZDR is used alone without reflectivity data in the parameter estimation. The NAEs 

exhibit a steady trend of reduction in general with the exception of the large deviation 

found in the early assimilation cycles in N0h43_Zdr (black dashed) while the NAEs of 

N0h_Zh (thick solid gray) show large oscillations with time (Figs. 4.2g,h,i). The 

estimation of all state variables, including microphysical variables as well as dynamic 

and thermodynamic variables is significantly improved as the parameter estimation 

improves (Fig. 4.5). However, the use of ZDR alone in the parameter estimation has a 

negative impact on both state and parameter estimation for the other 4 parameters (Figs. 

4.2, 4.3e,g, and 4.4). 

The reason why ZDR outperforms ZH in the estimation of n0H may be explained 

by the sensitivity analysis. In section 4.3, it is found that the difference between 

RFD(n0H
w) and RFD(n0H

t) for reflectivity (solid lines with square symbols in Figs. 
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4.1a,b) is larger while those for ZDR have similar shape and magnitude (solid lines with 

squares in Figs. 4.1c,d). As discussed in section 4.3, the amount of correction made to 

the forecast is proportional to the difference between the observations and the forecast 

projected to the observation space using the observation operator. Therefore, a large 

(RFDw - RFDt) implies that the analysis may deteriorate due to large uncertainty in the 

observation operators and hence in the observed quantities themselves. 

Similar to TX08a, we examine the error correlations to help us understand the 

filter behavior for the parameter estimation of n0H. This is because the adjustment to 

parameters is accomplished based on error covariance, the dimensional version of 

correlation in the filter.  Figure 4.6 shows the time series of the correlation coefficient 

between parameter n0H and the prior estimates of ZH for one of the five parallel 

experiments named N0h46_Zh (dotted), and that between n0H and ZDR of the 

corresponding experiment N0h46_Zdr. The coefficients are averaged over the 30 

observations used in the parameter estimation. The correlation coefficient is calculated 

from the parameter ensemble and the model version (prior estimate) of the observations 

(ZH or ZDR) from the forecast ensemble. The correlation coefficient in experiment 

N0h46_Zdr keeps increasing during early cycles and stays high during the rest of the 

cycles. On the other hand, the correlation coefficient in N0h46_Zh drops rapidly in the 

first two cycles. It bounces back in the next two cycles but oscillates during the 

remaining cycles and stays lower than that of N0h46_Zdr. Since nonlinear feedback 

exists between parameter and state estimations during the assimilation cycles, large 

error in parameter estimation due to weak correlation leads to poor state estimation and 

slow convergence or even parameter estimation failure.  
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Fig. 4.6. The time evolution of the correlation coefficients between parameter n0H and 
the model prior estimates of ZDR from one of the five parallel experiments named 
N0h46_Zdr (solid) and those between n0H and ZH from corresponding experiment 
N0h46_Zh (dotted), averaged over the 30 observations used in parameter estimation. 

 

The spatial distribution of observations used for parameter estimation appears to 

also affect the estimation. From Figs. 4.7 and 4.8, ZH observations used in N0h46_Zh 

are clustered at a few locations (Figs. 4.7a,b and 4.8a,b) while ZDR observations used in 

N0h46_Zdr are scattered in a wider area (Figs. 4.7c,d and 4.8c,d). Observations from 

the same spatial regions of a storm are likely to carry similar information on the storm. 

Repeated application of observations with similar information content tends to 

accelerate the reduction of parameter spread. The covariance inflation procedure used to 

prevent the collapse of spread can lead to oscillations and over-adjustments (TX08b). In 

N0r46_Zh, the parameter spread falls to the predefined minimum SD after 2 cycles 

while it takes 7 cycles in N0r46_Zdr. We also notice that many of ZH observations are 

taken from the region where at least three phases (rain, hail, and melting hail) contribute 

to ZH. At 45 min, many of the ZH data chosen are below 4 km, which is about the 0 °C 

level (Fig. 4.7b). At 90 min they are mostly near the extended hail core region, possibly 
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near strong updraft (Fig. 4.8b). On the contrary, many of the ZDR observations are taken 

from the region where dry hail dominates over snow (Figs. 4.7d and 4.8d).  

 

 
 
Fig. 4.7. Vertical column maximum ZH and ZDR shown in the horizontal plane (a and c, 
respectively) and column maximum ZH and ZDR in the y direction shown in the vertical 
x-z plane (b and d, respectively), of truth simulation at 45 minutes (shading and thin 
solid contours). Solid squares indicate the locations of the observations that were used 
in the single-parameter estimation experiments N0h46_Zh (ZH observations in a and b) 
and N0h46_Zdr (ZDR observations in c and d). The data points are projected to the 
horizontal x-y plane in the left panels and to the vertical x-z plane in the right panels. 
Thick dotted contours at intervals of 2 g kg-1 represent the hail mixing ratio through 
vertical velocity maximum. 
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Fig. 4.8. As in Fig. 4.7 but for 90 min. 
 

The mean estimated parameters in logarithmic form from the single-parameter 

estimation experiments are presented in Table 4.2, together with the true values given in 

parentheses. The mean values are computed from the 15 experiments with three 

different initial guesses for each parameter (see Table 4.1) and are averaged over the 

last 5 cycles. All five parameter estimates are more accurate when both ZH and KDP are 

used in the parameter estimation than when only ZH is used. In the case of n0H, the best 

estimate is obtained using ZDR  data alone. The mean parameter values in a logarithmic 

form, averaged over 5 runs are 51.2, 46.7, 48.0 for N0h43_Zdr, N0h45_Zdr, 

N0h46_Zdr, respectively; they are 57.5, 55.8 and 53.8 for N0h43_Zh, N0h45_Zh, 
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N0h46_Zh, respectively, while the truth is 46. The n0H averaged over runs with different 

initial guesses is 56.0 for N0h_Zh and 49.1 for N0h_Zdr (Table 4.2). After being 

converted to the linear domain, these values correspond to a factor of 6 difference; 56.0 

is about five times larger than 49.1 in terms of their linear values. We point out that 

N0h_Zdr produces a more stable estimate of n0H than N0h_Kdp because in the former 

the estimated parameter shows smaller spread among the experiments with different 

realizations (not shown) and has almost no oscillation during the assimilation cycles 

(see Fig. 4.2) even though the averaged values in Table 4.2 appear to be similar. As a 

result, the state estimation of N0h_Zdr exhibits significant improvement over that of 

N0h_Kdp. 

 
Table 4.2. The mean estimated parameter values in logarithmical form for single-
parameter estimation experiments, averaged over 15 experiments with three different 
initial guesses presented in Table 4.1 and five different perturbation realizations for 
each initial guess, over the last 5 cycles (80 minutes to 100 minutes of model time). 
Their truth values in logarithmical form are given inside parentheses.  
 

Observations 
used in 

parameter 
estimation 

n0R 
(69.0) 

n0S 
(64.8) 

n0H 
(46.0) 

ρS 
(20.0) 

ρH 
(29.6) 

ZH 68.6 65.0 56.0 20.3 29.4 

ZDR 73.2 66.2 49.1 18.0 28.8 

ZH and KDP 69.1 64.8 49.2 19.9 29.4 
 

 

The best results for certain parameters or state variables are obtained with 

somewhat different combinations of polarimetric measurements. Based on our results, 
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the combined use of both ZH and KDP appears a good choice when estimating one of n0R, 

n0S, ρS, and ρH, while the use of ZDR is recommended for the estimation of n0H. 

4.4.2. Results of five-parameter estimation 

In this subsection, we examine the filter performance when five parameters are 

estimated simultaneously. Again, errors and estimated DSD parameters are averaged 

over 160 experiments, as described in section 4.2.5 (Table 4.1).  

Figure 4.9 shows the NAEs of the ensemble mean estimated parameters from 

the five-parameter estimation experiments. Five-parameter estimation experiments 

reveal difficulties in estimating all five parameters simultaneously in the presence of 

observation operator error. The initial error level is overlaid for easier comparison 

(dashed gray). When ZH is used alone (thick solid gray), the NAEs of n0R, n0S, and ρS 

experience rapid error growth in the first 1 to 2 cycles (Figs. 4.9a,b,d, respectively). 

These NAEs decrease significantly in the next several cycles but increase again in later 

cycles. The errors of n0S and ρS remain above the initial error level during all 

assimilation cycles except for a temporary drop at 85 minutes for ρS. This result is quite 

different from that of TX08b that used perfect observation operators. In their study, ZH 

alone was able to reduce the errors in all five parameters below their initial errors most 

times.  
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Fig. 4.9. The time evolution of the NAE of the mean parameter values from five-
parameter estimation experiments for (a) n0R, (b) n0S, (c) n0H, (d) ρS, and (e) ρH for the 
experiments para5_Zh (thick solid gray), para5_ZhZdr (dotted black), para5_ZhKdp 
(dashed black), and para5_ZhZdrKdp (solid black). Initial error level is shown in 
dashed gray. The average NAE is calculated from the 160 experiments with 32 different 
initial guesses consisting of the combinations of 5 parameters with 2 initial guesses each, 
as shown in Table 4.1, where 5 parallel runs with different realizations of initial 
parameter perturbations are carried out for each initial guess. 
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A positive impact of polarimetric data is observed in the estimation of n0R, n0H, 

and ρS during the later assimilation cycles no matter which additional polarimetric 

parameter is used (Figs. 4.9a,c,d). When either ZDR (dotted black) or KDP (dashed black) 

is used or when both ZDR and KDP are used (solid black) in addition to ZH in the 

estimation of n0H, and ρS, the error grows much slower after 80 min; the error, however, 

grows rapidly when ZH is used alone. The most significant positive impact of 

polarimetric data is found with the estimation of n0H, whose error level is significantly 

lower in all cases that use polarimetric data (Fig. 4.9c). 

As in the single-parameter estimation experiments, KDP is slightly more 

beneficial than ZDR in general but ZDR produces a better estimation of n0H than does KDP . 

Smaller errors in the estimated parameters during the assimilation cycles help improve 

state estimation while smaller errors at the end should improve the subsequent forecast. 

For the estimated state, the best results are obtained when both ZDR and KDP are 

used for parameter estimation (solid lines in Fig. 4.10). The RMSEs of experiments 

para5_ZhZdr and para5_ZhKdp (not shown) are slightly larger than those of 

para5_ZhZdrKdp but smaller than those of para5_Zh (dashed lines) with the exception 

of qs because of the poor performance of para5_ZhZdrKdp in the estimation of n0S. A 

tendency of error increase is found in most state variables in para5_Zh during later 

assimilation cycles in response to the error increase in n0R, n0S, n0H, and ρH; this error 

increase is much weaker and the errors stay lower in para5_ZhZdrKdp in all state 

variables except for qs.  
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Fig. 4.10. As Fig. 4.3 but for simultaneous estimation of five parameters for 
experiments para5_Zh (dashed black) and para5_ZhZdrKdp (solid black). The RMS 
errors of the no-parameter-estimation experiments with the initial guesses of parameters 
kept throughout the assimilation cycles are shown in thick solid gray for comparison. 
The RMS errors are averaged over 160 experiments as in Fig. 4.9. 

 

Even though the observation operator error adds extra complication to parameter 

estimation, the positive impact of parameter estimation on state estimation is clear, even 

with the failure in estimating n0S and ρS. This is seen by comparing the state variable 

errors with those of no-estimation experiments (thick solid gray in Fig. 4.10) where the 

initial ‘incorrect’ parameter values are kept throughout the assimilation cycles. In the 

latter experiments, the state variable errors increase significantly after 65 minutes of 

model time, presumably because the parameter errors now dominate. 

Since we are interested in how much the polarimetric data can further improve 

not only the parameter but also the state estimation, we calculate the percentage 

improvement in state variables according to the following,  
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,  (4.3) 

where εc is the RMSE of the control experiment for a particular variable and N is the 

number of experiments averaged over. This improvement is further averaged over the 

last five assimilation cycles.  

The improvement amounts of para5_ZhZdr, para5_ZhKdp, para5_ZhZdrKdp 

over para5_Zh are summarized in Table 4.3. We can see from the table that the 

improvement is larger in w, qr, qv, and qh and smaller (actually negative) in qs. This is in 

general consistent with the finding of Chapter 3. The improvement due to polarimetric 

data is greatest (between 28 and 35 %) in qh here, while it was greatest in qr in Chapter 

3. No negative impact was found in any state variable in Chapter 3. The poor 

performance in estimating qs is understandable, since polarimetric signatures related to 

the low-density dry snow are generally very weak.  

The spatial distribution of observations used in one of the five–parameter 

estimation experiments is shown in Fig. 4.11 as an example. As in the single-parameter 

estimation experiments, the ZH observations used to estimate n0H in para5_Zh are 

concentrated in two general areas in the precipitation region (black dots in Figs. 

4.11a,c,e) while the ZH (black dots), ZDR (triangles), and KDP (squares) data in 

para5_ZhZdrKdp (Figs. 4.11b,d,f) are selected from a broader region. Interestingly, the 

ZH data are mostly selected from the lower levels, ZDR mostly from the upper levels, and 

KDP mostly from the middle levels.  
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Table 4.3. The percentage improvement in state estimation for experiments 
para5_ZhZdr, para5_ZhKdp and para5_ZhZdrKdp over experiment para5_Zh, averaged 
over 160 experiments with 32 different initial guesses with 5 parallel runs for each 
initial guess and over the last 5 cycles (80 minutes to 100 minutes of model time). 
Prefix ‘para5_’ is omitted in the experiment names. 

 
  

Variables 
Improvement (%) 

ZhZdr ZhKdp ZhZdrKdp 

u 8.9 9.7 12.1 

v 7.6 9.6 10.5 

w 12.7 12.2 16.9 

θ' 8.2 6.6 11.5 

p' 7.0 2.9 7.7 

qv 15.2 18.5 19.4 

qc 9.3 12.0 13.3 

qr 21.8 22.3 25.9 

qi -0.1 2.4 3.7 

qs -11.0 -2.9 -11.6 

qh 33.5 28.5 34.9 

average 10.3 11.1 13.1 
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Fig. 4.11. Vertical column maximum ZH in a x-y plane (a and b), column maximum  ZH 
in y direction in an x-z plane (c and d) and in x direction in a y-z plane (e and f), from 
the truth simulation at 40 min. Black dots in the left panels indicate the locations of ZH 
observations used in 5-parameter estimation experiment para5_Zh, and the black dots, 
triangles and squares in the right panels represent the ZH, ZDR, and KDP observations, 
respectively, that were used to estimate n0H in experiment para5_ZhZdrKdp. Initial 
parameter values for this experiment are (n0R, n0S, n0H, ρS, ρH) = (3x106 m-4, 7x105 m-4, 
4x105 m-4, 50 kg m-3, 400 kg m-3).  
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4.4.3. Results of three-parameter estimation 

Figure 4.9 shows that the errors in estimated n0S and Sρ  are almost always 

larger than their initial errors. This suggests that it may be better not to estimate n0S and 

ρS, but to keep their initial values. To test this hypothesis, we perform ten additional 

experiments starting from incorrect values in all five parameters but estimating only 

three of them or n0R, n0H, and Hρ . Two sets of initial guesses are used, they are (n0R, n0S,  

n0H, ρS, ρH) = (3x106 m-4, 7x105 m-4, 4x105 m-4, 50 kg m-3, 400 kg m-3) and (3x106 m-4, 

3x107 m-4, 4x105 m-4, 300 kg m-3, 400 kg m-3). The estimated mean parameter values 

and spreads computed from ten such experiments are shown in Fig. 4.12. In 

experiments para3_ZhZdr (dotted black), para3_ZhKdp (solid black), para3_ZhZdrKdp 

(dashed black), with the help of polarimetric variables, the mean n0H and ρH converge 

nicely to their truth values and exhibit a clear tendency of rapid decrease in spread 

during middle to later cycles. Meanwhile, the parameters in para3_Zh (thick solid gray) 

show large oscillations and stay away from the truth, and the spreads remain high. The 

n0R estimation is most successful with additional KDP data. The mean estimated 

parameter values averaged over the 10 experiments and over the last 5 cycles are more 

accurate than those of para5_Zh when polarimetric variables are used except for n0R in 

para3_ZhZdr and para3_ZhZdrKdp (Table 4.4). Compared to experiment para5_Zh, the 

largest improvement by not estimating n0S and ρS is achieved in n0H. The positive impact 

of polarimetric data is also greatest in n0H estimation. For example, the estimated n0H in 

para5_Zh contains about 2,200% error in linear space while the estimate in 

para3_ZhKdp contains only about 17 % error; for reference, the average initial error is 

about 5,000 % of the assumed truth in linear space.  
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Fig. 4.12. The mean estimated parameter (left penels) and spread (right panels) for 
(a),(b) n0H; (c),(d) n0H; and (e),(f) ρH for 3-parameter estimation experiments para3_Zh 
(thick solid gray), para3_ZhZdr (dotted black), para3_ZhKdp (solid black), and 
para3_ZhZdrKdp (dashed black). The horizontal thick dotted gray lines in the left 
panels indicate the truth parameter values. In these experiments, n0R, n0H and ρH were 
estimated while n0S and ρS were kept at their incorrect initial values throughout the 
assimilation cycles. The mean and spread are computed from 10 experiments starting 
from two sets of imperfect parameter values (n0R, n0S,  n0H, ρS, ρH) = (3x106 m-4, 7x105 
m-4, 4x105 m-4, 50 kg m-3, 400 kg m-3) and (3x106 m-4, 3x107 m-4, 4x105 m-4, 300 kg m-3, 
400 kg m-3). 

 

 



 112

Table 4.4. Same as in Table 4.2 but for five-parameter experiment para5_Zh and three-
parameter estimation experiments para3_Zh, para3_ZhZdr, para3_ZhKdp and 
para3_ZhZdrKdp, in which n0S and ρS were kept as their incorrect initial value 
throughout the assimilation cycles while other three parameters were estimated. The 
experiments start from two sets of parameter values, namely, (n0R, n0S,  n0H, ρS, ρH) = 
(3x106 m-4, 7x105 m-4, 4x105 m-4, 50 kg m-3, 400 kg m-3) and (3x106 m-4, 3x107 m-4, 
4x105 m-4, 300 kg m-3, 400 kg m-3). 

 

Experiment n0R 
(69.0) 

n0S 
(64.8) 

n0H 
(46.0) 

ρS 
(20.0) 

ρH 
(29.6) 

para5_Zh 71.4 74.4 59.7 23.2 28.4 

para3_Zh 69.1 71.9 50.5 22.4 28.5 

para3_ZhZdr 72.1 71.9 45.8 22.4 29.4 

para3_ZhKdp 69.0 71.9 46.7 22.4 29.4 

para3_ZhZdrKdp 72.6 71.9 45.5 22.4 29.3 
 
 

The state estimation is also improved when the parameter estimation is 

improved by not estimating the snow-related parameters (Fig. 4.13). The RMSEs of 

para3_Zh (black dashed) are generally smaller than those of para5_Zh (thick solid gray), 

except for qi, and the RMSE differences increase with time. The percentage 

improvement over para5_Zh in para3_Zh averaged over 11 model state variables is 

23.4 %, with a largest improvement of 42% found in qh . w, qr, and qs experience about 

30% improvement.  

The RMSEs are further reduced significantly by polarimetric data in the 

parameter estimation (Fig. 4.13). The qs estimation is no longer hampered by the 

additional KDP data (solid black) but rather experiences large RMSE reduction 

compared to Fig. 4.10i. When ZH is used alone (black dashed), after large reduction 

during the first 20 minutes of assimilation cycles (not shown in the plots), the RMSEs 
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start increasing between 40 and 70 min mostly because of the poor estimation of n0R 

during early cycles and the poor estimation of n0H between 45 to 60 min (Figs. 4.12a,c). 

Because the accuracy of the estimated state as well as estimated parameters depends on 

the history of estimation, large errors in the early assimilation cycles, regardless of their 

source, impact the state and parameter estimation process. On the contrary, continuous 

error reductions throughout the assimilation cycles are seen in all state variables in 

para3_ZhKdp, except for qi (Fig. 4.13).  

 
θ

 
 
Fig. 4.13. As Fig. 4.3 but for experiments para3_Zh (black dashed) and para3_ZhKdp 
(solid black). The RMS errors are averaged over 10 experiments starting from two sets 
of initial parameter values as given in the caption of Fig. 4.12. The RMS errors of 
experiment para5_Zh are shown in thick solid gray for comparison. 

 

In the early cycles between 40 and 45 min, experiment para3_Zh produces 

comparable estimate of n0R but better estimate of n0H than para3_ZhKdp (Figs. 4.12a,c). 

However, the state estimation of para3_Zh is generally poorer than that of 

para3_ZhKdp. This seemingly contradictory result can be explained by the 
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compensating model responses described in TX08b. The increase in n0R compensates 

the decrease in n0H in terms of reflectivity. When the problem is insufficiently 

constrained by data, multiple solutions can exist. The microphysical information 

provided by additional polarimetric data appears to help alleviate the non-uniqueness 

problem.  

The gross improvement produced by the polarimetric data in the three-parameter 

estimation experiment with five incorrect parameter values can be assessed more easily 

from Table 4.5. Statistically, the overall errors in the analysis are approximately cut in 

half. All state variables exhibit fairly large improvements ranging from 29.9 to 66.4 %. 

The best analysis is obtained by using KDP data in addition to ZH, which is consistent 

with the parameter estimation results shown in Fig. 4.12. This appears reasonable 

because KDP data seem to provide different information content than ZH since they are 

selected mostly from discrete regions of the storm while many of ZDR data seem to 

overlap ZH in location (Fig. 4.11). Another interesting point is that when not estimating 

snow related parameters, qs experiences the second largest improvement in 

para3_ZhZdr and para3_ZhZdrKdp and the third largest improvement in para3_ZhKdp.  

Last, in the three- and five-parameter estimation experiments, when the 

polarimetric data are used alone, individually or together, without ZH, the estimated 

states are generally not as good as those using ZH alone.  These results are not presented 

here. 
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Table 4.5. The percentage improvement of state estimation for three-parameter 
estimation experiments para3_ZhZdr, para3_ZhKdp, and para3_ZhZdrKdp over 
experiment para3_Zh. The percentage improvements are ensemble mean of those 
computed from ten experiments listed in Table 4.4. Prefix ‘para3_’ is omitted in the 
experiment names. 

 

Variables 
Percentage improvement (%) 

ZhZdr ZhKdp ZhZdrKdp 

u 42.9 46.9 42.5 

v 42.6 49.5 42.2 

w 49.0 56.1 49.5 

θ' 45.7 50.0 45.6 

p' 36.4 43.3 36.7 

qv 40.2 46.5 36.1 

qc 46.4 52.0 44.5 

qr 57.6 63.0 54.5 

qi 29.9 45.1 29.9 

qs 60.0 61.6 55.9 

qh 64.3 66.4 57.8 

average 46.8 52.8 45.0 
 

4.5. Summary and conclusions 

We investigated the impact of additional polarimetric data on correcting errors 

in DSD-related fundamental parameters in the model microphysics scheme. Such errors 

also affect the observation operators of all radar observations except radial velocity (in 

our case at least where reflectivity weighting for radial velocity is ignored). These 

parameters, namely, the intercept parameters of rain n0R, snow n0S, and hail n0H, and the 
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bulk densities of snow ρS and hail ρH, are estimated, individually or all together, 

simultaneously with the model state using a sequential ensemble square-root Kalman 

filter. The polarimetric data considered include differential reflectivity ZDR and specific 

differential phase KDP. To obtain more robust results, single-, five-, and three-parameter 

estimations are repeated with different initial guesses and different initial ensemble 

perturbations for each parameter, and the mean and standard deviation statistics are 

computed and compared. Compared to the earlier parameter estimation work of Tong 

and Xue (2008b), this study includes the effect of observation operator error, and 

examines the impact of additional polarimetric data. In Chapter 3, the impact of 

polarimetric data is examined in the absence of any parameter error. Based on the 

author’s knowledge, no previous parameter estimation study has addressed the issue of 

parameter error within the observation operators. 

Generally, the reflectivity, ZH, observations alone can effectively reduce the 

error in n0R, n0S, ρS and ρH when only one parameter contains error, even in the presence 

of observation operator error, they, however, perform poorly when estimating n0H. The 

KDP, in addition to ZH, is found to help further reduce the errors in the intercept 

parameters and improve the state estimation through improved parameter estimation. 

Adding KDP has almost no impact on the estimation of snow and hail densities and their 

related state variables because the estimation with reflectivity alone is already very 

successful. The best estimation of n0H is obtained when ZDR is used alone (for parameter 

estimation) while its estimation using KDP and ZH is also reasonably good. 

Our results reveal some difficulties in simultaneously estimating all five 

parameters that contain error. Unlike TX08b that assumes perfect observation operators, 
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our five-parameter estimation experiments show that the errors in n0S and ρS are 

increased during the assimilation cycles by the parameter estimation to above their 

initial levels with or without using polarimetric data (for parameter estimation). 

However, the positive impacts of polarimetric data on the state estimation are clear 

when ZDR or KDP or both ZDR and KDP are used along with ZH  in the parameter 

estimation. When all five parameters contain initial error, both parameter and state 

estimations are improved when n0R, n0H, and ρS are estimated without n0S and ρS. 

Moreover, the positive impact of polarimetric data is further increased compared to the 

case when all five parameters are estimated. This behavior can be understood from the 

fact that the polarimetric signature of snow is very weak and the sensitivity of the 

polarimetric measurement to the corresponding parameters is also small.  

Since it is suggested by previous studies (Aksoy et al. 2006a, TX08b) that a 

larger ensemble size leads to better parameter estimation, we performed additional five-

parameter estimation experiments with a doubled ensemble size of 160. When 

compared to the 80-member counterparts, the estimated states are improved in general 

except for experiment para5_ZhKdp, which shows comparable results in a statistical 

sense. Some of the parameter estimations, however, experience deterioration in some 

experiments while larger improvements in other parameters seem to more than 

compensate the negative effect of these parameters on the state estimation.  

We point out that the accuracies of the state and DSD parameters estimated 

through the EnKF system may differ when different polarimetric measurements are 

used. Certain combinations of polarimetric measurements may yield a better estimated 

state but less accurate parameter values than other combinations. This variability also 
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exists among state variables and estimated parameters. A better understanding of the 

combined impact can help optimize the assimilation/estimation system although in 

practice nonlinear interactions in the model, which are abundant in the complex 

microphysical processes, can make it difficult to delineate the effects of one source of 

input data or parameter value on another. While the sensitivity studies performed here 

and in TX08a,b are helpful, more effective approaches may be needed to further 

improve our understanding. 

While the polarimetric data are believed to contain much useful information on 

the microphysics, the use of a single-moment microphysics scheme based on an 

assumed exponential DSD may limit the ability of polarimetric data in helping estimate 

the intercept parameters. If a two-moment microphysics scheme is used where both the 

mixing ratios and total number concentration are predicted, the intercept parameter no 

longer has to be specified. In this case, our goal would be changed to the estimation of 

both mixing ratios and total number concentrations that are now state variables.  The 

increased number of state variables needing estimation may demand more observation 

information and the polarimetric observations may become a more valuable addition to 

the radial velocity and reflectivity observations of non-polarimetric Doppler radars. The 

impact of polarimetric data on full microphysical state estimation when a two-moment 

microphysics scheme is used will be examined in the Chapter 6. 
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Chapter 5     Polarimetric Signatures of a Supercell Storm Simulated 
Using a Two-Moment Microphysics Scheme 

 

5.1 Introduction 

The supercell thunderstorm has received the attention of the meteorology 

community because it often provokes serious damage from tornadoes, large hail, strong 

wind, and/or heavy precipitation. Many observational studies focus mainly on 

understanding the time evolution of storm structure, microphysical characteristics, and 

dynamics revealed by radar reflectivity and radial velocity data (e.g., Browning and 

Donaldson 1963; Browning 1964; Marwitz 1972; Musil et al. 1986; Ray et al. 1981). 

Numerical studies have tried to simulate such supercell storms and aid the 

understanding of storm initiation and development (e.g., Klemp and Wilhelmson 1978; 

Klemp et al. 1981; Lemon and Doswell 1979; Weisman and Klemp 1982). Recently, 

some research has demonstrated that the storm microphysical processes and properties 

can be better understood with polarimetric radar data (e.g., Bringi et al. 1986b; Hubbert 

et al. 1998; Kumjian and Ryzhkov 2008a,b; hereinafter KR08a,b, respectively; Romine 

et al. 2008).  

Although conventional and polarimetric radar observations offer important 

insights into storms, observations are often insufficient to provide details on storm 

evolution due to certain limitations. Such limitations include the lack of coverage from 

the beam blockage or radar cone of silence, insufficient observational frequencies, and 

insufficient spatial resolution when the radar is located far from the storm. In addition to 

these external factors, reflectivity and polarimetric measurements provide only bulk 



 120

properties of all hydrometeors in the radar resolution volume, and radial velocity offers 

only the wind component projected in the direction of the line of sight.  

On the other hand, numerical models allow us to study small details that are not 

directly observed within the current observational network with high temporal and 

spatial resolutions. They can help to substantiate findings made in observational studies. 

Numerical models also can be used to discover new theory. Through a numerical study 

by Wilhelmson and Klemp (1978), it was found that the strong low-level shear and 

strong low-level inflow, enough to inhibit the propagation of gust front away from the 

storm, are necessary for a storm split. Most of all, the numerical model is of primary 

importance in modern weather forecasting. However, the numerical solutions have to be 

validated with appropriate observations, emphasizing the complementary relationship 

between observations and numerical models. 

For a direct comparison between model output and observation, the model 

variables are often converted into the form of observations using the radar emulator, 

which is also referred to as the radar forward observation operator in the data 

assimilation system. The radar emulator should be accurate, consistent with the model 

microphysics scheme, and make use of all the relevant information available in the 

model.  

While many polarimetric radar emulators are mainly interested in single-phase 

hydrometeor concentration (Brandes et al. 1995; Brandes et al. 2004b; Ryzhkov et al. 

1998; Vivekanandan et al. 1994; Zhang et al. 2001; Capsoni et al. 2001), only a handful 

of complete polarimetric radar emulators exist in the literature that utilizes all 

parameters available in the model. Huang et al. (2005) developed a simulator based on 
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T-matrix scattering calculations (Waterman 1969; Vivekanandan et al. 1991) coupled 

with the Regional Atmospheric Research Model (RAMS) employing the two-moment 

microphysics scheme. However, they have only examined the vertical cross-section of a 

simulated supercell storm, and some details on the dielectric constant model are not 

given in the short conference paper. They employ a simple melting treatment for ice 

species with fixed fractions of water and ice (and air for graupel) based on the height or 

air temperature. 

Recently, Jung et al. (2008b) developed a polarimetric simulator combining the 

power-law fitting of the scattering amplitudes of rain calculated using T-matrix codes 

and Rayleigh scattering approximation for ice for the single-moment microphysics 

scheme (see Chapter 2). This method may not be as accurate as a full T-matrix 

scattering calculation. However, the computation is much faster, which makes it 

suitable for data assimilation purposes. They introduced a new melting ice model with a 

continuously varying density of ice particles and the fractional water in the ice.  

Pfeifer et al. (2008) also proposed a polarimetric emulator called Synthetic 

Polarimetric Radar (SynPolRad), based on the T-matrix method. SynPolRad is coupled 

with a single-moment microphysics scheme with various assumptions for drop size 

distribution (DSD). The researchers obtained a fixed water fraction for wet ice 

hydrometeors by fitting the value of simulated polarimetric variables to their respective 

expected values within a certain range for observations. However, their dielectric 

constant model is physically questionable because it assumes a high-density melting 

core with a low-density shell. Additionally, the specific differential phase, which is a 

very useful polarimetric measurement, is not included in SynPolRad. 



 122

Although these emulators have their own strengths and weaknesses, they all 

show that the polarimetric emulators can be very useful for evaluating model 

microphysics. Furthermore, a computationally optimized emulator can serve as a 

forward observation operator in the data assimilation system. 

In this chapter, we develop a radar emulator that is more general than that 

described in Chapter 2 and employs the full T-matrix scattering method for both rain 

and ice hydrometeors. This emulator has an option for the user to specify any radar 

wavelength for scattering calculations. In this study, it is set to 10.7 cm, which is the 

wavelength of Weather Surveillance Radar-1988 Doppler (WSR-88D). Model 

prognostic variables of single-, two-, or three-moment (hereinafter SM, DM, and TM, 

respectively) microphysics schemes can be used as inputs. The polarimetric variables 

include reflectivity at the horizontal polarization ZH, differential reflectivity ZDR, 

specific differential phase KDP, and the co-polar cross-correlation coefficient at zero-lag 

ρhv(0).  

Recent studies of Dawson et al. (2007) suggest that supercell thunderstorms with 

a more realistic reflectivity structure and cold pool strength can be obtained with a high 

horizontal resolution (1 km or smaller grid spacing) and the multi-moment 

microphysics schemes of Milbrandt and Yau (2005b; 2005a), with the most 

improvement achieved when moving from SM to DM microphysics scheme. Therefore, 

we apply the new emulator to a simulated supercell storm using a DM scheme to see if 

this emulator can reproduce characteristic polarimetric signatures that are commonly 

found in the observations. This will give us an opportunity to cross-examine a DM 

scheme and the emulator at the same time. 
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This chapter is organized as follows. Section 5.2 discusses the polarimetric radar 

data emulator, with assumptions made for DSD-related parameters. In section 5.3, the 

prediction model and the configurations used to create an idealized supercell storm are 

briefly described. Section 5.4 presents the simulated polarimetric signatures and 

compares them with results of the SM scheme. Finally, the results are summarized in 

section 5.5. 

5.2 Polarimetric radar data emulator 

The emulator developed in this study is more complex and general than the one 

in Chapter 2, which was used in our previous studies (Jung et al. 2008c; Jung et al. 

2008a). As discussed in Chapter 2, the DSD-related parameters within the emulator 

should be consistent with those within the numerical model. The DSDs of each species, 

n(D), are modeled by a gamma distribution to take a maximum of three DSD 

parameters from a TM scheme: 

0( ) Dn D n D eα λ−=   (5.1) 

where D is the particle size, and n0, α, and λ are the concentration, shape, and slope 

parameters, respectively. The fixed densities of 1,000, 100, 913 kg m-3 for rain (ρR), 

snow (ρS), and hail (ρH), respectively, are assumed, as in the prediction model. 

Some extra characteristics are required to simulate polarimetric variables, such 

as the shape, the statistical properties of the drop orientation, and the ice/water 

composition of hydrometeors. Since they are not specified in the prediction model, 

assumptions have to be made based on their physical properties. These assumptions are 

largely inherited from Chapter 2; for more detailed information, see Chapter 2. 
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To include the Mie scattering effect for all hydrometeor types, we perform the 

numerical integration of the scattering amplitudes over the DSD. This enables us to 

deploy the revised axis ratio relation based on the observations for rain (Brandes et al. 

2002): 

2 3 40.9951 0.02510 0.03644 0.005303 0.0002492r D D D D= + − + − . (5.2) 

While a few relationships, including the ones given by Green (1975) and Beard et al. 

(1991), are available in the emulator, new relationships can easily be added as well. 

Within the scattering calculations, the maximum sizes of rain drops (Dmax,r), 

snow aggregates (Dmax,s), and hailstones (Dmax,h) are assumed to be 8, 30, and 70 mm, 

respectively. These size ranges are partitioned into 100 bins. For rain, dry snow, and dry 

hail, the forward and backward scattering amplitudes along the major and minor axes 

with assumed drop shape are calculated at the center of each size bin and stored in the 

lookup table. For melting species, the same tables are constructed at the uniform water 

fraction interval, which is 5% in this study. The same melting ice and dielectric constant 

models developed in Chapter 2 are employed in the scattering calculation. For example, 

for a melting snow aggregate with a specified water fraction, the density and the 

dielectric constant of that particle are calculated and used to compute the forward and 

backward scattering amplitudes at each size bin with that water fraction. These 

scattering amplitudes are then integrated over the DSD later, when the model mixing 

ratios (and the total number concentration for a DM scheme and the 6th moment of DSD 

for a TM scheme) are given as input. 
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For rain, dry snow aggregate, dry hail, rain-snow aggregate mixture, and rain-

hail mixture, radar reflectivity factors at horizontal and vertical polarizations are 

calculated as follows (Zhang et al. 2001):
 

max,
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4 ( ) ( ) 2 Re ( ) ( ) ( )xD

h,x a x b x a x b x
w

Z A f B f C f f n D dD
K
λ π π π π

π
⎡ ⎤⎡ ⎤= + + ⎣ ⎦⎣ ⎦∫   

(mm6 m-3) and (5.3)
 

max,
4

2 2 *
, , , ,24 0

4 ( ) ( ) 2 Re ( ) ( ) ( )xD

v,x a x b x a x b x
w

Z B f A f C f f n D dD
K
λ π π π π

π
⎡ ⎤⎡ ⎤= + + ⎣ ⎦⎣ ⎦∫   

(mm6 m-3), (5.4) 

where 

( )2 22 84 1cos 3 4cos 2 cos 4
8

− −= = + +A e eσ σφ φ φ , 

( )2 22 84 1sin 3 4cos 2 cos 4
8

− −= = − +B e eσ σφ φ φ , 

and 

( )282 2 1sin cos 1 cos 4
8

C e σφ φ φ −= = −
, 

and x can be r (rain) or rs (rain-snow mixture), ds (dry snow), rh (rain-hail mixture), or 

dh (dry hail). Here, ( )af π  and ( )bf π  are complex backscattering amplitudes for 

polarizations along the major and minor axes, respectively, and *
af  and *

bf  are their 

respective conjugates. Here, [ ]Re ⋅ ⋅ ⋅  represents the real part of the complex number, and 

...  implies the magnitude of the value between single bars. Here, ...  means that an 

ensemble average is taken over canting angles, and n(D) defines the DSD and is the 



 126

number of particles per unit volume of air and unit bin size. Truncation is applied at 

raindrop, snow aggregates, and hailstone’s maximum size when the integration is 

performed. Here, φ  is the mean canting angle, σ is the standard deviation of the canting 

angle, λ is the radar wavelength, and Kw = 0.93 is the dielectric factor for water.  

The reflectivity in linear scale for different species are combined to give 

logarithmic reflectivity at horizontal and vertical polarizations (ZH and ZV, respectively) 

and differential reflectivity (ZDR) as 

( )1010log= + + + +H h,r h,rs h,ds h,rh h,dhZ Z Z Z Z Z  dBZ, (5.5) 

( )1010log= + + + +V v,r v,rs v,ds v,rh v,dhZ Z Z Z Z Z  dBZ, (5.6) 

,
10 10

,

10 log 10log
⎛ ⎞+ + + +⎛ ⎞

= = ⎜ ⎟⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠

h,r h,rs h,ds h,rh h dhh
DR

v v,r v,rs v,ds v,rh v dh

Z Z Z Z ZZZ
Z Z Z Z Z Z

 dB. (5.7) 

ZDR is a good indicator of the mean shape of hydrometeors and depends on their relative 

orientation to the radar beam. Therefore, DSD shifts toward larger or smaller drop sizes 

can be roughly inferred from the ZDR value.   

The cross-correlation coefficient is defined as 

( )( ){ }
, , , , ,

1/ 2

, , , , , , , , , ,

,hv r hv s hv h hv rs hv rh
hv

h r h s h h h rs h rh v r v s v h v rs v rh

Z Z Z Z Z

Z Z Z Z Z Z Z Z Z Z
ρ

+ + + +
=

+ + + + + + + +
 (5.8)

 

where the numerator is give as a product of two orthogonal co-polar components of the 

radar signals and computed as
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hvρ  is very useful in detecting the melting layer since it is sensitive to the presence of 

the mixture. For example, hvρ  is very high for pure rain, while much lower in the 

presence of randomly oriented, large wetted hailstones. 

The specific differential phases for rain, rain-snow aggregate mixture, and dry 

snow aggregate, rain-hail mixture, and dry hail are calculated as follows: 

max,xD

0

180 (0) (0)DP,x k a,x b,x
λK C Re f f n(D)dD

π
= −⎡ ⎤⎣ ⎦∫  (° km-1), (5.10) 

where 

22cos 2 cos 2kC e σφ φ −= =  

and ( )0af  and ( )0bf  are forward scattering amplitudes for polarizations along the 

major and minor axes, respectively. KDP is known as more useful in quantitative 

precipitation estimation because it is more linearly proportional to the rainfall rate than 

reflectivity. However, the KDP field is often very noisy in weak rain regions and 

vulnerable to errors.  

When creating observations on the radar elevation planes, the effective earth 

radius model (Doviak and Zrnic 1993) is used to take into account beam bending, and a 

Gaussian beam weighting function described in Xue et al. (2006) is used in the vertical 

direction. The error model described in Xue et al. (2007) and Chapter 3 is optional to 

simulate observations errors. 

5.3 Model configurations 

An idealized supercell storm is initialized by the sounding of the May 20, 1977 

Del City, Oklahoma, supercell storm (Ray et al. 1981) using the Advanced Regional 
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Prediction System (ARPS, Xue et al. 2000; 2001; 2003), which is a fully compressible 

and non-hydrostatic atmospheric prediction model. The multi-moment bulk 

microphysics scheme of Milbrandt and Yau (2005b; 2005a, hereinafter MY05) is 

recently implemented in the ARPS microphysics package (Dawson et al. 2007) and is 

used in this study.  

With the DM option, the ARPS predicts three velocity components u, v, and w; 

potential temperature θ; pressure p; mixing ratios of water vapor qv; and mixing ratios 

of cloud water, rainwater, cloud ice, snow aggregate, and hail (qc, qr, qi, qs, and qh, 

respectively), and their total number concentrations (Ntc, Ntr, Nti, Nts, and Nth, 

respectively). The graupel category originally included in the MY05 package is turned 

off to maintain consistency with our previous experiments (Chapters 3 and 4). The 

turbulence kinetic energy is also predicted to be used in the 1.5-order subgrid-scale 

turbulence closure scheme. 

A 4-K ellipsoidal thermal bubble 10km long and 1.5km high is centered at x = 

48 km, y = 16 km, and z = 1.4 km and used to initiate the storm. A radiation, a rigid 

wall with a wave-absorbing layer, and a free-slip condition are applied to the lateral, top, 

and bottom boundaries, respectively.  

A few changes are made to the configurations used in Chapters 3 and 4 to 

accommodate the use of a DM scheme. The model domain size is 63 km x 63 km x 16 

km, with a horizontal resolution of 1.5 km and a vertical separation of 0.5 km. This 

horizontal spacing is reduced here because the model fails to simulate the storm split 

with a 2.0-km resolution. Constant winds of u = 1 m s-1 and v = 13 m s-1 are subtracted 

from the original sounding to maintain the storm near the center of the domain. The 
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time step sizes are 3 seconds for model integration and 1.5 seconds for acoustic wave. A 

monotonic scheme is applied to the 4th order computational mixing to prevent Gibbs 

phenomenon.  

The multi-moment bulk microphysics of MY05 assumes that each hydrometeor 

type has a constant density. The default values for rain, snow, and hail are 1,000, 100, 

and 913 kg m-3. The DSDs for all hydrometeor types are modeled by exponential 

distribution.  

5.4 Polarimetric signatures of a simulated convective storms 

5.4.1 Storm evolution and simulated reflectivity 

Figure 5.1 shows the time evolution of the reflectivity field of the simulated 

supercell storm with the MY05 DM scheme (Figs. 5.1e-h) at the 250-m altitude. Briefly, 

the updraft quickly intensifies during the first 20 minutes, with the reflectivity core 

greater than 40 dBZ appearing after 10 minutes of simulation (not shown). While the 

forward flank regions continue to extend for the next 30 minutes, the storm starts to 

split into two parts at around 1 hour (Fig. 5.1f). Then, the left-moving cell (relative to 

the storm motion vector) continues to develop while moving northwest of the right-

moving cell. The right-moving storm is at its mature stage at 80 minutes of model time 

and maintains intensity for the next few hours. In this study, we focus only on the right-

moving storm, which is usually a major one.  
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Fig. 5.1. Reflectivity (thin solid contours and shading), perturbation potential 
temperature (dotted contours at 0.5-K intervals for negative potential temperature) and 
horizontal perturbation wind (vectors, plotted every four grid point; m s-1) at z = 250 m 
for the simulated storm for (a)-(d) SM and (e)-(h) DM runs. AA' and BB' show the 
locations of the vertical cross-sections passing through the updraft core (maximum 
vertical velocity).  

 

As discussed in Dawson et al. (2007), the simulated reflectivity using the DM 

scheme (Figs. 5.1e-h) shows a more realistic structure and intensity in the hook echo 

and forward flank downdraft (FFD) regions compared with the simulated reflectivity 

with the MY05 SM scheme (Figs. 5.1a-d). The simulated storm using the MY05 SM 

scheme is very similar to that using the Lin et al. (1983, hereafter LFO83) ice 

microphysics scheme shown in Fig. 2 of TX05. Compared to the shape of the echo 

using the DM scheme, that using the SM scheme has a kidney shape with a narrow area 

of the FFD, while the DM scheme produces a swirl-shaped weak echo region (WER) 

wrapping around the hook echo and the extending FFD to the far east of the storm (Figs. 

5.1d,h). Another significant difference between storms using SM and DM schemes is 

the cold pool strength. The SM scheme tends to produce a stronger cold pool than the 
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DM scheme. Dawson et al. (2008) showed that one of the main causes of the strong 

cold pool with SM schemes is the evaporative cooling of raindrops in the downdraft 

related to the fixed large n0R, which maintains many small drops that can evaporate 

quickly through the microphysical heat budget analysis.  

The evaluation of the microphysics scheme is beyond the scope of this study. 

Therefore, our main focus will be maintained if our emulator can produce the 

characteristic polarimetric signatures when a DM scheme is employed in the prediction 

model.  

5.4.2 Simulated polarimetric radar fields for a supercell storm 

There are several very unique polarimetric signatures repeatedly reported in the 

observational study. They include ZDR and KDP columns, a mid-level ZDR ring, a hail 

signature (ZDR hole), ZDR arc (ZDR shield), and mid-level ρhv ring (e.g., Wakimoto and 

Bringi 1988; Bringi et al. 1986b; Hubbert et al. 1998; Kumjian and Ryzhkov 2008b; a, 

hereafter KR08a and b; Romine et al. 2008). These signatures appear in the specific 

locations within a storm as a result of storm dynamics and microphysics. If the 

numerical model can handle storm dynamics and microphysics properly, the 

polarimetric radar emulator should be able to reproduce those signatures. In this study, 

these polarimetric signatures are discussed from the model-simulated storm point of 

view in the following subsections.  

5.4.2.1 ZDR and KDP columns 

Figure 5.2 shows the vertical structures of ZDR (Fig. 5.2a) at line AA' shown in 

Fig. 5.1h and of KDP (Fig. 5.2b) at line BB'. Both cross-sections pass through the 
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maximum vertical velocity region within the storm. The locations of the ZDR and KDP 

columns are associated with the updraft because the rainwater has to be carried aloft by 

a strong updraft. The ZDR and KDP columns extending above 0°C level are clear in Fig. 

5.2.  

 

 

Fig. 5.2. The vertical cross-sections of simulated (a) ZDR (dB) along line AA' shown in 
Fig. 5.1h corresponding to x = 38.2 km and (b) KDP (° km-1) along line BB' 
corresponding to y = 32.2 km of the simulated supercell storm at 100 min. The 0°C 
isotherms are shown as thick black lines.  

 

The offset of their centers is pointed out in the observational study of the 

polarimetric signatures of KR08a. In the observations, the KDP column is often found in 

the west or northwest of the ZDR column. A similar offset is observed in the lower mid-

level (Figs. 5.3a,d), while they become collocated in the upper mid-level in our 

simulated storm (Figs. 5.3c,f). At a 3-km altitude, the ZDR column is located in the south 

of the updraft core near the reflectivity hook. This location agrees well with that of the 

ZDR column reported in Hubbert et al. (1998). At this level, the KDP column is found in 

the reflectivity maximum and located in the west of the updraft core. At a 4km altitude, 
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the ZDR column looks close to the half-ring around the updraft core to the east, while the 

center of the KDP column is almost collocated with the updraft core. At a 5-km height, 

the ZDR and KDP columns are collocated with the updraft core.  

 

 
 
Fig. 5.3. (a)-(c) ZDR (shading, dB) and reflectivity (solid contours at 15-dBZ intervals, 
starting from 10 dBZ), (d)-(f) KDP (shading, ° km-1) and horizontal perturbation wind 
(vectors, plotted every other grid point; m s-1), and (g)-(i) hail mixing ratio qh (shading, 
g kg-1) and rain mixing ratio qr (solid contours at 1.0-g kg-1 intervals, starting from 1.0 g 
kg-1) at (a),(d),(g) z = 3 km, (b),(e),(h) z = 4 km, and (c),(f),(i) z = 5 km at 100 min of 
storm. The vertical velocity (dotted contours at 5-m s-1 interval from 10 m s-1) is 
overlaid on each plot. 
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The main cause of this spatial offset of the ZDR column from the updraft core is 

the presence of hail. From Fig. 5.3g,h,i, it is apparent that the production of qr is 

strongly related to the updraft. Within the updraft, the low-level qr is transported to the 

higher level, and/or qr is also created through the condensation on site. qh is also 

produced in the updraft. Large hailstones fall through the updraft, and small hailstones 

are carried by the horizontal wind while growing and falling in the FFD north of the 

updraft core. The high qh region is overlapped with the high qr region from the north or 

northwest. The presence of hail reduces the ZDR because the tumbling nature of the 

hailstones makes their apparent shape close to spherical. Therefore, the high ZDR 

column shows up at the south or southeast of the updraft. 

On the other hand, the KDP is almost transparent to the hail and only sensitive to 

the amount of rainwater. The KDP maximum, high qr region, and updraft core are, hence, 

almost collocated. 

5.4.2.2 ZDR arc 

The ZDR arc is the low-level signature repeatedly observed in the southern edge 

of the FFD along the sharp gradient of reflectivity in the right-moving supercells 

(KR08a). This is characterized by a horizontally elongated high ZDR band along the 

right edge of the FFD near the surface. Although this is a quite consistent feature found 

in the supercells, regardless of seasons and geographic regions, this signature has been 

noted only recently (KR08a,b, Romine et al. 2008). This signature is analyzed in detail 

in KR08b, where it is argued that the size-sorting mechanism, due to speed and 

directional wind shears, is primarily responsible for this signature; large drops 
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discharged from the updraft fall into the region close to the origin, while smaller drops 

are advected farther into the FFD. The rain evaporation is likely another source of a 

modified DSD toward a large Dnr. In the location of the ZDR arc, the DSD, initially 

lacking small drops, loses small drops fast while falling through the dry air. Therefore, a 

two- or higher moment microphysics scheme has to be used to simulate this feature 

because the SM is not capable of handling size-sorting mechanisms (Fig. 5.4a).  

 

 
 
Fig. 5.4. ZDR (shading), qr (solid contours at 0.5 g kg-1 intervals, starting from 0.5 g kg-1), 
and a) mean-mass diameter of rain drops Dnr (dotted black contours at intervals of 0.1 
mm, starting from 0.1 mm) for the SM simulation and b) Dnr (intervals of 0.3 mm, 
starting from 0.3 mm) for the DM simulation at z = 500 m at 80 min. of the storm. 

 

The modified DSD of rain as a result of the size sorting can be evaluated easily 

by examining the mean-mass diameter Dnr, where the Dnr is calculated for the 

exponential distribution as 
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where ρair is the density of air. For the SM run, n0R is used to calculate Dnr, rather than 

Ntr using 0r R nrNt n D= . The modified DSD directly affects ZDR because ZDR is 

proportional to the median diameter of precipitation particles in the radar resolution 

volume. The calculated Dnr for the SM and DM simulations is presented in Fig. 5.4 

along with simulated ZDR.  

The ZDR arc signature is well captured by the DM scheme and polarimetric radar 

data emulator at a 0.5-km altitude at 80 min. of storm in Fig. 5.4b. This high ZDR region 

along the southern edge of the FFD is shallow (~ 2-km depth), rather narrow, and 

persistent in time, as observed, and shifts slightly toward the north with its height. This 

band becomes weak and broad above 2 km, practically fading away. The shape and 

location of the high ZDR region agrees with the Dnr pattern. The qr pattern, in 

conjunction with the Dnr, substantiates that this is an area with a small number of large 

drops and lacking small drops. On the other hand, the simulated storm using the SM 

scheme completely misses the ZDR arc signature because both Dnr and ZDR are 

proportional only to the qr (Fig. 5.4a).   

5.4.2.3 Mid-level ZDR and ρhv rings 

The mid-level ZDR ring (KR08a) refers to the enhanced ZDR value in the shape of 

a ring with a depressed ZDR value in the middle. The ZDR ring is sometimes a complete 

circle and sometimes just a half-ring. KR08a reports that the enhanced ZDR region is 

always found on the right flank of the updraft when only a half-ring is manifest. In our 

simulation, it is usually a half-ring on the right flank of the updraft in the mid-level and 

close to a complete ring in the lower level.  
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The half-ZDR ring in Fig. 5.5a is mostly overlapping with the high Dnr region. 

The maximum Dnr region is collocated with the updraft core. The local maxima found 

on the south and east of the main Dnr core may be explained by the large raindrops 

falling around the updraft following a cyclonic wind (Fig. 5.3d-f). The half-ring 

signature is highly correlated with the presence of hail (Fig. 5.5a). As discussed in 

subsection 5.5.2.1, the presence of hailstones reduced the ZDR value because their 

tumbling motion and random orientation make their apparent shape spherical to the 

radar beam. At a 4km altitude, the region with the high hail-mixing ratio locates to the 

west and northwest of the updraft core. This weakens the ZDR signature on the left flank 

of the updraft.  

 

ρ

 
 
Fig. 5.5. (a) ZDR (shading), ZH (solid contours at 15 dBZ intervals from 15 dBZ), qh 
(dotted contours at 1.0 g kg-1 intervals from 0.5 g kg-1), and Dnr (thick dashed contours 
at intervals of 0.6 mm, starting from 0.9 mm) at z = 4 km, and (b) ρhv (shading and solid 
contours at 0.01 intervals starting from 0.98 and lower) and the ratio of rain-hail 
mixture to the sum of rain and dry hail mixing ratios (dotted contours at 0.1 intervals 
from 0.2) at z = 3 km at 80 min. of the storm. Ring features are prominent at mid-levels. 

 



 138

The ρhv ring is another mid-level feature with a depressed ρhv value in the shape 

of a ring (KR08a). A well-defined ρhv ring is seen in Fig. 5.5b. The ρhv values for pure 

water and ice are very high and decrease when hydrometeors of diverse types are mixed 

together in the same resolution volume. The dotted contours in Fig. 5.5b show the ratio 

of rain-hail mixture to the sum of rain and dry hail mixing ratios. The high value of this 

ratio indicates that three different types coexist, but the mixture is dominant in that area. 

The low value of this ratio suggests that either pure rain or dry hail is dominant in that 

region (see Eq. (2.2) and section 2.3.2 for more details on the melting ice model). The 

pattern of this ratio agrees well with the ring-shaped ρhv depression.  

 

ρ

 
 
Fig. 5.6. Simulated ρhv with size of melting hailstones for the fraction of water, fw = 0.45 
(dotted), 0.65 (solid), and dry hailstone (dashed). 

 

When ice is in a melting phase, the resonance effect can contribute to the 

reduction of the ρhv value (Fig. 5.6). For dry hail, the ρhv slowly decreases with size 

within the range shown in Fig. 5.6, in which the particle size is truncated at 4.235 cm. 

With the exponential DSD, large drops have little effect because the number of drops is 
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very small at that size, although the resonance effect can be much more significant in 

very large drops. It can be seen that the ρhv shows a sudden drop at a certain size. Both 

that characteristic size and the maximum amplitude decrease with an increasing water 

fraction. The size-sorting mechanism is also necessary to simulate this signature so that 

the DSD can have a sufficient number of hailstones at the characteristic size to reduce 

the total ρhv values. This signature is very weak or completely missing when a SM 

scheme is used (not shown). 

We would like to point out that the simulated ρhv is higher than the observed one, 

in general. The non-meteorological effects that can also contribute to the reduction of 

ρhv, such as noise bias, clutter contamination, dust and bugs, are not included in our 

emulator. This fact may partially be responsible for the rather high ρhv. The other source 

of the difference might be due to the simplified model of randomly orientated spheroids 

for hail and snow, which does not account for the effect of the irregular shape of the 

natural hydrometeors.  

5.4.2.4 Hail signature in the forward flank downdraft 

The hail signature (KR08a) is characterized by a high ZH and low ZDR at the 

lowest tilt associated with hail reaching the ground. This feature is also called “ZDR-

Hole” (Wakimoto and Bringi 1988), which often stretches from the surface up to a 

certain height. Our simulated storm does not exhibit this signature near the surface 

because most of the hail completely melts while falling in this area. However, the 

emulator is capable of simulating this signature if a significant amount of hail survives 

the melting and reaches the ground. For example, a hail signature is evident at a 2.5km 
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height, where the relatively large hail concentration presents (Fig. 5.7). The simulated 

ZDR pattern with a ZDR-Hole surrounded by high ZDR values shows a remarkable 

similarity to the observation in Fig. 3a of KR08a.  

 

 
 
Fig. 5.7. The hail signature is characterized by high ZH (thin solid contours at 15 dBZ 
intervals, starting from 15 dBZ) and low ZDR (shading, dB) at z = 2.5 km at 60 min. of 
storm. The hail mixing ratio is overlaid in thick dashed contours at 1 g kg-1 intervals 
from 1 g kg-1. 

 

5.5 Summary and discussions 

In this chapter, a synthetic polarimetric radar emulator based on full T-matrix 

scattering calculations and accurate formulations for polarimetric radar variables is 

developed. This emulator takes advantage of the continuous melting ice model 

developed in Chapter 2. The density of the melting ice and dielectric constant are also 

allowed to vary continuously. This emulator is flexible enough to take a radar 
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wavelength as a user input and to choose one of the one-, two-, and three-moment 

microphysics schemes to plug in.  

This emulator can simulate the reflectivity of the horizontal and vertical 

polarizations (ZH and ZV), differential reflectivity (ZDR), specific differential phase (KDP), 

and cross-correlation coefficient (ρhv) including radial velocity (Vr). These 

measurements are what will be observed by operational WSR-88D radar after the 

polarimetric upgrade and are currently being observed by the research polarimetric 

WSR-88D radar, KOUN. 

The new radar emulator is applied to the idealized supercell storm simulated 

using a two-moment (DM) microphysics scheme. Another storm with the same 

configurations but using a single-moment (SM) microphysics scheme is created for 

comparison. The simulated storm using a DM scheme exhibits the unique polarimetric 

signatures reported in the literatures, including the ZDR and KDP columns, ZDR arc, mid-

level ZDR and ρhv rings, and hail signature. Some of the signatures associated with the 

size-sorting mechanisms, however, could not be simulated when a SM scheme was used. 

These signatures include the ZDR arc and mid-level ZDR and ρhv rings. These results 

support that a two- or higher-moment microphysics has to be used to describe storm 

microphysics and kinematics more realistically. It would be especially important for 

polarimetric data to be useful when they are directly assimilated in the numerical 

models.  

To evaluate the importance of the accuracy of the simulator, we compared these 

signatures with those simulated using the simplified version of the emulator developed 

in Chapter 2, where the efficiency is considered to be equally as important as the 
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accuracy when developing it for data assimilation purposes. The simulator developed in 

Chapter 2 can simulate most of these signatures. However, the ZH, ZDR, and KDP values 

are somewhat higher than observations and the ρhv ring could not be simulated correctly 

because the Mie scattering for the ice species is not included in Chapter 2, which seems 

to be critical to this feature (Fig. 5.8).  

 

 

Fig. 5.8. As in Fig. 5.5b, but for simulation using the observation operator of Chapter 2. 
The Mie scattering effect is not included in this simplified version. 

 

The verification of the numerical weather prediction is challenging because most 

of the model prognostic variables are not directly observed. In the convective scale 

forecast, the reflectivity has been used to verify the model prediction for decades. 

However, reflectivity alone is not sufficient to verify microphysics because many 

independent variables and uncertain constants based on many assumptions on DSDs are 

involved in reflectivity simulation. Here, simulated polarimetric variables can help 
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discriminate against and/or highlight certain variables from others by using their 

differential sensitivity to the phase. They can be even more useful than reflectivity 

because they contain extra information on the DSDs and microphysical processes. As 

an example, Chapter 2 demonstrated that a realistic radar simulator could be useful in 

evaluating the model microphysics scheme by identifying delayed melting processes in 

the Lin-type microphysics scheme. Additionally, this simulator could provide a unique 

opportunity to study storm microphysical processes more in depth.  

More importantly, a good radar simulator can help forecasters to determine 

where attention and monitoring should be directed in a severe weather event. KR08a 

related some of the polarimetric signatures to the severity of the storms: strengthening 

the ZDR and KDP columns and ρhv to the updraft strength, and the ZDR arc to the enhanced 

storm-relative environmental helicity (SREH). This suggests that polarimetric 

signatures can be used as an indicator of storm intensity. Although the numerical model 

provides the vertical velocity as one of the prognostic variables, observed quantities can 

often be interpreted more intuitively. For instance, analyzing the ZDR field could be as 

informative as examining the mixing ratio and the number concentration of each 

hydrometeor type separately in addition to the vertical velocity field. In this regard, the 

polarimetric emulator can be useful to the forecasters by providing the opportunity to 

look at the model polarimetric fields in advance of the occurrence of the actual event.  

For higher frequency radar such as the X-band radar, attenuation from the severe 

storm can be significant enough to alter observed polarimetric signatures, which are 

very different from the theoretical ones. In this case, the attenuation algorithm must be 

included to produce realistic polarimetric signatures. This will be developed as a part of 
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the emulator in the future. The evaluation of both the multi-moment microphysics 

scheme and the simulator developed in this study using KOUN data is also planned for 

future study. 
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Chapter 6     State Estimation of Convective Storms with Two-Moment 
Microphysics Scheme and Ensemble Kalman Filter: Experiments with 
Simulated Data 

 

6.1 Introduction 

Numerical weather prediction (NWP) is an initial-boundary value problem: the 

accuracy of the final solution depends on the accuracy of the initial condition, given 

appropriate boundary conditions. Therefore, a significant amount of research has been 

carried out in the field of the data assimilation (DA) to minimize the errors in the initial 

condition (Le Dimet and Talagrand 1986; Courtier and Talagrand 1987; Evensen 1994; 

Evensen and Leeuwen 1996; Burgers et al. 1998; Houtekamer and Mitchell 1998; 

Anderson 2001; Bishop et al. 2001; Whitaker and Hamill 2002; Evensen 2003; Tippett 

et al. 2003; Gao and Xue 2007; Liu et al. 2007).  

Several past studies have shown that the ensemble Kalman filter (EnKF) 

techniques can be successfully applied to the convective scale through both Observing 

System Simulation Experiments (OSSEs) and real-data experiments (e.g., Doswell et al. 

2004; Houtekamer et al. 2005; Snyder and Zhang 2003; Tong and Xue 2005b, hereafter 

TX05; Xue et al. 2006, hereafter XTD06; Whitaker et al. 2004). The fact that the EnKF 

technique is capable of handling complex and highly nonlinear processes in the 

assimilation process makes it attractive for convective scale DA. 

However, the forecast is also hampered by model errors that can arise from 

many sources (e.g., insufficient spatial and/or temporal resolution, misrepresentation of 

the physical and sub-grid scale processes). It is suggested that the model error can 

dominate the error growth during the forecast, even if it starts from an accurate initial 
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condition (Zhu and Navon 1999; Houtekamer et al. 2005). Therefore, it is equally 

important to improve the forecast model while making an effort to improve the model 

initial condition. 

In the convective scale NWP, the supercell thunderstorms have received a 

significant amount of attention because they often accompany destructive tornados, 

large hail, strong winds, and/or heavy precipitation. The structure and time evolution of 

these storms is highly sensitive to the drop-size distributions (DSDs) of the 

hydrometeors involved in the microphysics scheme, which is used in simulating the 

microphysical processes in the real atmosphere (McCumber et al. 1991; Ferrier et al. 

1995; Gilmore et al. 2004a; van den Heever and Cotton 2004; Tong and Xue 2008b). 

The hydrometeor in one phase—either vapor, water, or ice—interacts with the others 

through microphysical processes, condensation or deposition, collection, breakup, 

freezing, evaporation or sublimation, melting, and precipitation sedimentation. The 

DSD-related parameters of each hydrometeor explicitly appear in the governing 

equations of microphysical processes and influence the magnitude and relative 

importance of those processes. For example, many small drops in the downdraft area 

will evaporate faster than a few large drops, hence inducing a stronger cold pool. 

Therefore, modeling accurate DSDs has a profound impact on the success of the 

simulation of precipitating systems.  

The single-moment bulk microphysics scheme is widely used in the current 

research and in operational NWP models. In the single-moment microphysics scheme, 

the shape of the DSD is predefined, and the total number concentration is uniquely 

determined by the mixing ratio of each hydrometeor type. This single-moment 
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microphysical parameterization is not capable of handling the change in shape of the 

DSD in time and space as a result of the size-sorting mechanisms, such as the 

differential conversion to other species, the differential sedimentation, vertical motion, 

rotation, unidirectional shear, and directional shear (Kumjian and Ryzhkov 2008b). 

Kumjian and Ryzhkov (2008b) argued that size sorting due to the unidirectional and 

directional shears is primarily responsible for the unique ZDR arc signature consistently 

found in the polarimetric data collected from many supercell storms.  

The rapid evolution of computing hardware technology during recent decades 

has enabled us to use finer model grids and more complex microphysics schemes, 

which can overcome the limitation of the single-moment microphysics schemes in 

simulating more realistic DSD models (Ferrier 1994; Ferrier et al. 1995; Morrison et al. 

2005; Morrison and Pinto 2005; Milbrandt and Yau 2005b, a). Dawson et al. (2007) 

compared the supercell storms simulated using one-, two-, and three-moment (SM, DM, 

and TM, respectively) microphysics schemes implemented in the Advanced Regional 

Prediction System (ARPS) microphysics package and showed that the DM and TM 

schemes simulate more realistic storm structures than the SM schemes. This is 

substantiated by the results presented in Chapter 5, where a polarimetric radar data 

simulator using a rigorous approach in computing scattering matrix is developed and 

applied to a simulated supercell storm using SM and DM schemes. In Chapter 5, the 

SM fails to simulate certain characteristic polarimetric signatures such as ZDR arc and 

mid-level ZDR and ρhv rings. These studies suggest that the forecast skill is likely 

improved by employing higher-moment microphysics schemes. 
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Motivated by Dawson et al. (2007) and Chapter 5, we employ a DM scheme in 

the prediction model and perform EnKF analysis in this study. The forward observation 

operator developed in Chapter 2 is modified to accommodate a DM scheme in the 

forecast model. This chapter is organized as follows: The prediction model and the 

experimental design used in this study are first briefly described in section 6.2. A 

special treatment applied to the total number concentration is then discussed. The 

simulated observations created for both the perfect and imperfect model experiments 

are also discussed. In section 6.3, we examine the ability of filter in retrieving increased 

numbers of model state variables through Observing System Simulation Experiments 

(OSSEs) using the perfect model assumption. The impact of assimilating additional 

polarimetric variables is also investigated. Section 6.4 discusses the experiment results 

in the presence of forecast model error with/without observation operator error. Finally, 

we summarize the results and conclusions in section 6.5. 

6.2 Model and experimental setup 

6.2.1 Prediction model and EnSRF assimilation procedure 

ARPS is used in both simulation and analysis in this study. Briefly, ARPS is a 

fully compressible and nonhydrostatic atmospheric prediction model (Xue et al. 2000; 

2001; 2003). With the DM scheme of Milbrandt and Yau (2005b; 2005a, hereinafter 

MY05), ARPS predicts three velocity components u, v, and w; potential temperature θ; 

pressure p; mixing ratios of water vapor qv; and mixing ratios of cloud water, rainwater, 

cloud ice, snow aggregate, and hail (qc, qr, qi, qs, and qh, respectively) and their total 

number concentrations (Ntc, Ntr, Nti, Nts, and Nth, respectively). Exponential drop size 
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distributions are assumed for microphysical variables. The graupel category originally 

included in the MY05 package is tuned off to maintain the consistency with previous 

experiments (Chapters 3 and 4). The turbulence kinetic energy is another prognostic 

variable used by the 1.5-order subgrid-scale turbulence closure scheme.  

Configurations are largely inherited from Chapters 3 and 4, with some 

modifications presented later in this section. A truth simulation is created for a supercell 

storm initialized by the sounding of the 20 May 1977 Del City, Oklahoma, supercell 

storm (Ray et al. 1981). The ensemble square-root filter (EnSRF) after Whitaker and 

Hamill (2002) is employed, in which observations are not perturbed. The full 

description of the filter can be found in XTD06. The assimilation of ZH and Vr starts at 

25 min of model time and is repeated every 5 min until 100 min.  

Some modifications to the configurations of the prediction model and 

assimilation system are made to accommodate the used of the DM scheme in the 

prediction model. Most of all, the forward observation operator developed in Chapter 2 

has been modified to take both mixing ratios and total number concentrations of rain, 

snow aggregate, and hail as input. The horizontal resolution is 1.5 km because the 

model fails to simulate the storm split with 2.0-km resolution. Domain size is adjusted 

to 63 km x 63 km x 16 km in accordance. Constant winds of u = 1 m s-1 and v = 13 m s-1 

are subtracted from the original sounding to maintain the storm near the center of the 

domain. The ensemble consists of 80 ensemble members. The filter uses a covariance 

localization radius of 4.5 km to be consistent with three grid points and covariance 

inflation factors, as shown in Table 6.1 and 6.2 (Anderson 2001; Houtekamer and 

Mitchell 1998, 2001; Hamill et al. 2001).  
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The spatially smoothed stochastic perturbations with the correlation length scale 

of 4.5 km are added to the initially horizontally homogeneous first guess defined by the 

Del City sounding to initialize the ensemble members at t = 20 min of model time; for 

velocity components (u, v, and w), potential temperature (θ), and water vapor (qv) to the 

entire domain; and for mixing ratios of hydrometeors (qc, qr, qi, qs, and qh,) at the grid 

points located within 6 km from observed reflectivity, Z, greater than 10 dBZ. The 

standard deviations of those perturbations are 2 m s-1, 2 K, and 0.6 g kg-1, and 0.6 g kg-1, 

respectively. The total number concentrations of rain, snow, and hail are diagnosed 

using their default values of the intercept parameter of the MY05 SM scheme (1.0x106 

m-4, 1.0x107 m-4, and 1.0x105 m-4, respectively) and mixing ratios. The Ntc is set to the 

constant 1.0x108 m-4, and Nti is calculated as a function of temperature following 

Cooper (1986). In this way, the total number concentrations can be considered 

perturbed. 

In the early cycles, the covariance between model state variables and 

observations is unreliable when the errors in the state estimates are still very large. 

Assimilating additional polarimetric variables is found to harm the analysis at this stage. 

The errors in the state estimates are usually significantly reduced in the first 2 to 3 

cycles when a SM scheme is used. With a DM option, it takes more cycles to reduce 

errors to the level of those with a SM scheme, which will be discussed in section 6.3.1. 

Therefore, we delay the assimilation of ZDR and KDP until 50 min of model time or the 

time of the sixth EnKF analysis.  

The time evolution of truth storm at 250-m altitude is show in Figs. 6.1a-d. 

Briefly, the updraft quickly intensifies during the first 20 min (not shown), and the 
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forward flank region keeps extending afterward. The storm split starts at around 1 hour 

(Fig. 6.1b). The left-moving cell relative to the storm motion vector is completely 

separated from the right-moving storm at the low level at 80 min, which is at the mature 

stage. The left-moving cell continues to develop and move northwest of the right-

moving cell, while the right-moving storm maintains intensity for the next few hours. 

6.2.2 Transform of the total number concentration in the filter 

10log(x) or ln(x) are often used in the assimilation system to reduce the dynamic 

range of data and/or to avoid negative values, where x is the positive definite state 

vector (Hogan 2007; Tong and Xue 2008b, Chapter 4). The drawback of the log 

transform is that it loses its sensitivity with increasing value. As a result, a small 

overestimation (or underestimation) in the log domain can lead to a large error in the 

physical domain when the value of a variable subject to the estimation is very large. 

This necessitated the application of upper and lower bounds in the parameter estimation 

in Chapter 4 to prevent a large deviation in the early assimilation cycles that can lead to 

the divergence of the solution. However, applying the upper and lower bounds is not 

appropriate in the estimation of Nt because they can be as small as 0, and the upper limit 

is not known. Therefore, we use the power of Nt where the power is smaller than 1 so 

that we keep the sensitivity at the large values while reducing the dynamic range of data. 

The power is experimentally determined and set to 0.4. The state vector of Nt for 

various hydrometeors at one model grid point during assimilation is, therefore, 
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6.2.3 Observations 

Two sets of observations are created in this study. For the perfect model 

experiments, model state variables of the truth simulation are first converted to 

observations at model grid points using the forward observation operator developed in 

Chapter 2. This observation operator is modified to accommodate the new variables in 

the DM scheme as discussed in section 6.2.1, which are the total number concentration, 

in a way that maintains the consistency with the prediction model and used to create 

simulated observations. Then vertical interpolation using a Gaussian beam weighting 

(XTD06) and the effective earth radius model (Doviak and Zrnic 1993) is performed to 

obtain observations on the radar elevation level. Finally, simulated noise following Xue 

et al. (2007) is added to error-free observations. As in Chapter 4, we drop the sample 

error that is larger than 10 dBZ. The error for reflectivity is set to 42.7 % of the truth 

reflectivity to obtain an effective error standard deviation (SD) of about 2 dBZ for ZH. 

We lower the maximum fraction of hydrometeors in the mixture form maxF  for hail to 

0.3, which was 0.5 in the previous experiments, to mitigate unrealistically high 

reflectivity due to the Rayleigh scattering assumptions. Gaussian errors with zero mean 

and SDs of 1 m s-1 for Vr are added to truth Vr.  
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For KDP and ZDR, error-free observations are used in the data impact experiments 

to examine the maximum possible improvement that can be obtained when polarimetric 

variables are assimilated in addition to the conventional radar data.  

To take into account the model error, we create observations using the supercell 

simulated with the same configurations but with the TM scheme of MY05 and the 

polarimetric simulator developed in Chapter 5. This comprehensive simulator employs 

rigorous scattering calculations using the T-matrix method. Details on the simulator can 

be found in Chapter 5. In this way, the simulation performed using a TM microphysics 

is considered perfect, and we are dealing with two sources of error: 1) model error 

originating from misrepresentation of DSDs and 2) forward observation operator error 

due to the misrepresentation of the scattering properties. The procedure of creating 

observations and the characteristics of them are the same as those for the perfect model 

experiments described above. In this experiment, the observations are considered 

independent of the forecast model. 

6.3 Perfect model experiments 

6.3.1 Assimilation of conventional radar data 

Table 6.1 lists the set of the assimilation experiments performed in this 

subsection. Three experiments, which assimilate reflectivity and radial velocity 

individually and together, are conducted under the perfect model assumption. The 

experiment names are self-descriptive. For example, experiment VrZh assimilates both 

Vr and ZH data, while experiment Vr assimilates only Vr data. Experiment VrZh serves 
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as a control run in subsection 6.3.2, which tests the impact of polarimetric variables and 

the imperfect model experiment with a perfect observation operator in subsection 6.4.1.  

TX05 showed that the reflectivity of the clear echo helps suppress the spurious 

cells in echo-free region. Therefore, reflectivity data from the entire radar coverage are 

assimilated, while radial velocity data are assimilated only where Z ≥ 10 dBZ, as in the 

previous studies (e.g., TX05; XTD06, Chapters 3 and 4). All model state variables are 

updated when we assimilate ZH and/or Vr. The optimal inflation factors are set to 7%, 

20%, and 20% for experiments Vr, Zh, and VrZh, respectively. 

 
Table 6.1. List of data assimilation experiments. 

 

Experiments Observation(s) 
assimilated Covariance inflation 

Vr Vr (ZH > 10 dBZ) 7% 

Zh ZH (everywhere) 20% 

VrZh Vr (ZH > 10 dBZ) and ZH 20% 
 

In Fig. 6.1, the simulated reflectivity, along with analyzed horizontal 

perturbation winds and perturbation potential temperature near the surface of 

experiments Vr, Zh, and VrZh, is compared with their truth at 20-min intervals, starting 

from 40 min of simulation. When radial velocity is assimilated alone (Figs. 6.1e–h), 

spurious echoes are not suppressed because radial velocity data are not available in 

these areas and, therefore, no observations are assimilated. These spurious echoes 

quickly developed during the forward model integration after we added random 

perturbations to mixing ratios within 6 km from the grid point, where reflectivity is 

greater than 10 dBZ. Once they are created, they survive through assimilation cycles 
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while maintaining a low value of mixing ratios. With a DM microphysics scheme, a low 

mixing ratio can produce high reflectivity if the total number concentration is low 

enough. In fact, the high reflectivity shown in echo-free regions in Figs. 6.1e–h are 

mostly associated with very low mixing ratios (Fig. 6.3), which will be discussed later. 

The reflectivity and cold pool structure of experiment Vr is poorly estimated in the 

echo-free region throughout analysis cycles. However, the structure of reflectivity near 

the core and forward-flank downdraft (FFD) area is retrieved reasonably well at the 

later time of assimilation cycles, where the reflectivity is strong (Figs. 6.1g–h). The 

shape and strength of retrieved cold pool cores of both left- and right-moving cells and 

the location and orientation of the front generally agree to those of the truth at 100 min.  

When reflectivity is assimilated alone (Figs. 6.1i–l), reflectivity of the clear air 

effectively suppresses the spurious echo at the first cycle (not shown). The reflectivity 

pattern is almost as good as that of VrZh (Figs. 6.1m–p) and is very close to truth (Figs. 

6.1a–d). The general cold pool pattern matches that of truth, although the strength tends 

to be overestimated, and the center of the cold pool is shifted to the west. 

Cold pool strength and wind fields of VrZh (Figs. 6.1m–p) show the best match 

to the truth among Vr, Zh, and VrZh. Improvement over Zh is clear in and around the 

wind fields of the left-moving storm and in the location and strength of the cold pool 

after 80 min. 

In general, surface convergence in the updraft and divergence in FFD are well 

captured by retrieved wind fields of all three experiments. The retrieved wind directions 

and speeds are reasonable compared to the truth wind in the echo region, while the 
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perturbation wind analysis at the upper left and lower left corners of the domain is 

rather poor, where is echo-free region and perturbation wind is relatively weak.  

 
 

 
 
Fig. 6.1. The perturbation wind (vectors; m s-1, plotted at every four grid point), 
perturbation potential temperature (thick black lines for 0 K and dotted contours at 0.5-
K intervals for negative potential temperature) and simulated reflectivity (solid contours 
and shading at 10 dBZ interval, starting from 10 dBZ) at z = 250 m at 40, 60, 80, and 
100 min of a supercell storm simulation: (a)-(d) truth, EnKF analysis of (e)-(h) 
experiment Vr; (i)-(l) Zh; and (m)-(p) VrZh. 
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Figure 6.2 shows the change of ensemble mean forecast and analysis root-mean-

square errors (RMSEs) of model state variables during the assimilation cycles of Vr, Zh, 

and VrZh averaged over model grid points at which the true reflectivity is greater than 

10 dBZ. For total number concentrations, RMSEs are expressed in the form of (Ntx)0.4, 

which is our control value in the filter, where x can be c (cloud water), r (rainwater), i 

(cloud ice), s (snow aggregate), and h (hail). Under the perfect model assumption, the 

solid curves in Fig. 6.2 show that the filter can successfully reduce RMSEs with both 

reflectivity and radial velocity data. These results suggest that the filter is able to 

develop the reliable error covariance matrix for the increased number of state variables 

if the forecast model is perfect. The final RMSE levels are comparable to those in Fig. 

3.3 performed using a SM scheme, although the error reduction rates are generally 

slower than those of Fig. 3.3. The RMSEs of u and v drop below 1 m s-1 around t = 50 

min and converge below 0.7 m s-1 at the end, while the RMSE of w reaches about 0.3 m 

s-1. The RMSEs of mixing ratios are below 0.05 g kg-1 for qc, qr, qi, and qs, about 0.8 g 

kg-1 for qh, and around 0.26 g kg-1 for qv. For Ntx, after being converted to the linear 

domain, the RMSEs at the end are about 4.6×105, 0.186, 6.89×103, 91.9, and 0.177 for 

Ntc, Ntr, Nti, Nts, and Nth, respectively. These are all several orders of magnitude smaller 

than their dynamic ranges: they are O(3) , O(4), O(5), O(2), and O(4) smaller for Ntc, 

Ntr, Nti, Nts, and Nth, respectively. The rain water experiences the largest benefit from 

the assimilation considering both mixing ratio and the total number concentration when 

a DM scheme is used. 
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θ

 
 
Fig. 6.2. The ensemble mean forecast and analysis RMSEs averaged over points at 
which the true reflectivity is greater than 10 dBZ for (a) u, (b) v, (c) w, (d) perturbation 
potential temperature θ', (e) qv, (f) qc, (g) qr, (h) qi, (i) qs, (j) qh, (k) Ntc, (l) Ntr, (m) Nti, 
(n) Nts, and (o) Nth for experiments VrZh (solid, inflation = 20%), Vr (dotted, inflation 
= 7%), and Zh (dashed, inflation = 20%). The vertical straight-line segments in the 
curves correspond to the reduction or increase in RMSEs by the data assimilation.  

 

When reflectivity is assimilated alone, the filter is still able to reduce error 

effectively (Fig. 6.2), but RMSEs at the end of assimilation cycles are larger than those 

of the corresponding experiment shown in Fig. 3.3. It is reasonable because not all free 

variables estimated using reflectivity are independent. For example, rain reflectivity is 

determined by two free variables, qr and Ntr. Even though the estimated qr value is not 

optimal, the filter would compensate the error in the reflectivity by adjusting Ntr. As a 
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result, simulated reflectivity is almost as good as that of VrZh (Fig. 6.1), although the 

RMSEs of Zh are generally two or three times larger than those of VrZh.  

Radial velocity results in smaller RMSEs in wind variables (u, v, and w), qv, qc, 

and Ntc than reflectivity does when used alone (Fig. 6.2). This is reasonable because 

radial velocity is a linear function of wind variables. At the end of the assimilation 

windows, the analysis RMSEs of u and v are around 1.1 m s-1 and that of w is about 0.7 

m s-1. Cloud ice is directly related to neither reflectivity nor radial velocity; its 

estimation, therefore, solely depends on the cross-covariance structure of state variables. 

Reflectivity clearly performs better than Vr for qs, Ntr, Nts, and Nth, which all directly 

affect the reflectivity.  

While comparing results from experiments Zh and Vr, we noticed that the near 

perfect reflectivity patterns of Zh shown in Figs. 6.1i–l actually have comparable sizes 

of error at the end of the assimilation window to Vr in qr, Ntr, qh, and Nth, which are 

involved in the reflectivity calculations at the elevation shown in Fig. 6.1. On the other 

hand, it is hard to infer the truth reflectivity pattern from Fig. 6.1h with similar levels of 

RMSEs to those of Zh. These results led us to two questions: the first question is why 

the reflectivity pattern of Vr is noisier than that of Zh with similar levels of RMSE in 

microphysical variables. First of all, the echo-free region is not included in the RMSE 

calculations because we are more interested in the error in the storm region. However, 

spurious reflectivity of Vr in the echo-free region mostly involves low qx and low Ntx, 

which would not have a big impact on the total RMSE calculations even if they are 

taken into account. This spurious but high reflectivity can be explained by the 

selectively sensitive reflectivity to the drop size. For example, reflectivity is only 
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sensitive to the number of large drops, while many small drops have little influence on 

the reflectivity. Therefore, certain combinations of qx and Ntx can lead to high 

reflectivity even though mixing ratio is low.  

The second question is how the simulated reflectivity pattern of Zh can be so 

good even when RMSEs of relevant state variables are relatively high. The state 

estimation is essentially an undetermined problem. Reflectivity is nonlinear function of 

distributions of rain drops, snow aggregate, and hailstones in the atmosphere, while it is 

only an observation to be used in estimating usually more than one hydrometeor type 

involved in more than one state variable. The number of hydrometeor types is reduced 

when one species is dominant in the radar resolution volume. When a SM scheme is 

used, reflectivity is solely determined by the mixing ratio of interest, and, therefore, it 

can be retrieved very accurately in this simple case if the observation is error-free and 

the observation operator is perfect. When a DM scheme is used, the mixing ratio and 

the total number concentration, which vary independently, are two state variables to be 

estimated for one hydrometeor type. In this case, the same reflectivity can be obtained 

using the infinite pair of qr and Ntr. When the qr estimate is not optimal, the filter may 

fit reflectivity closely by adjusting Ntr, which essentially increases error in Ntr. This is 

illustrated in Fig. 6.3. Figure 6.3 shows estimated qr and Ntr at 1-km height for 

experiments Vr, Zh, and VrZh, along with the truth simulation. At this level, rain water 

is dominant, and so the estimation problem is simpler. When reflectivity is assimilated 

alone (Fig. 6.3c), the rain water mixing ratio at the core is overestimated in both left- 

and right-moving storms compared with truth. Because the filter does not know the 

truth qr value, it increases the total number concentration to fit the reflectivity to truth 
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closely as shown in Fig. 6.1. It is clear that VrZh, and probably Vr at least in the echo 

region, produce better estimates of qr and Ntr than Zh at this level (Figs. 6.3c,d), 

although it is not obvious in Fig. 6.1. The uncertainties increase when more than one 

species co-exist in the same resolution volume. This is a good example of how analysis 

can deteriorate when the problem is undetermined. 

 

 
 
Fig. 6.3. Rain water mixing ratio (solid contours and shading at intervals of 0.5 g kg-1, 
starting from 0.0 g kg-1) and total rain water number concentration (dotted contours at 
intervals of 40 m-3, starting from 40 m-3) at z = 1 km and t = 100 min for (a) truth 
simulation, (b) experiment Vr, (c) Zh, and (d) VrZh.  

 

Figure 6.4 shows the vertical profiles of the RMSEs averaged over points at 

which the truth reflectivity is greater than 10 dBZ for experiments Vr (dotted), Zh 
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(dashed), and VrZh (solid) at 100 min. Experiment Vr generally performs better than Zh 

in u, v, w, qv, qc, qr, and Ntc at middle to lower levels (Figs. 6.4a–c,e–g,k). 

Improvements are found at all levels in all state variables when both Vr and ZH are 

assimilated compared with experiment Zh and Vr, with the exceptions being u between 

1.5- and 3.5-km and qr between 5.0- and 5.5-km height.  

 

θ

 
 
Fig. 6.4. The horizontally averaged ensemble mean analysis RMSEs averaged over 
points at which the truth reflectivity is greater than 10 dBZ for (a) u, (b) v, (c) w, (d) 
perturbation potential temperature θ', (e) qv, (f) qc, (g) qr, (h) qi, (i) qs, (j) qh, (k) Ntc, (l) 
Ntr, (m) Nti, (n) Nts, and (o) Nth for experiments VrZh (solid, inflation = 20%), Vr 
(dotted, inflation = 7%), and Zh (dashed, inflation = 20%) at 100 min.  

 

In the EnKF system, the successful estimation of model state variables depends 

on the ability of the filter to develop reliable multivariate covariance structures through 
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assimilation cycles. This makes the EnKF system very attractive because the variables 

that are not directly related to the observed quantities can be retrieved using the cross-

covariance information between the forecast ensemble of a state variable and the prior 

estimates of observations. Figure 6.5 shows the forecast error correlations between the 

prior estimate of reflectivity at point x = 38.5 km and z = 8 km and model variables at 

each grid point in the x–z plane at y = 33 km through the maximum updraft at 100 min.  
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Fig. 6.5. Forecast error correlations (thick solid and dotted contours at interval of 0.2) 
computed from the ensemble for experiment VrZh at t = 100 min in the x-z plane at y = 
33 km, which passes through the updraft core (maximum vertical velocity). Thick solid 
(dotted) contours represent positive (negative) error correlations between forecast 
reflectivity ZH at x = 37.5 km and z = 8 km (indicated by the boldface X) and (a) qr, (b) 
qc, (c) qh, (d) w, (e) Ntr, (f) ) Ntc, (g) Nth, and (h) θ'. The shading and thin solid contours 
are model fields from the truth simulation with units of (a)-(c) g kg-1, (d) m s-1, (e)-(g) 
m-3, and (h) K. Zero correlation lines are suppressed.  

 

Because the observation is located near the strong updraft core, the errors are 

correlated through much of the deep convection vertically. Compared with the 

correlation patterns computed using a SM scheme in Fig. 5 of TX05, almost all 

variables shows the opposite sign of correlation patterns. As seen in Fig. 6.5d, the large 
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negative correlations between ZH and w are found in the updraft extended from the 

surface up to the model top, while this region shows the large positive correlations in 

Fig. 5b of TX05. This is reasonable considering that a DM scheme is capable of 

handling an independently varying total number concentration of each hydrometeor 

type depending on the updraft strength. The supersaturation increases when updraft 

speeds increase. Then more cloud condensation nuclei (CCN) are activated to decrease 

the supersaturation and, therefore, Ntc increases (Rogers and Yau 1989). The number of 

ice nuclei (IN) to be activated is also a function of supersaturation; the same theory can 

be applied to the cloud ice. With more drops to grow, the number of rain and ice phase 

hydrometeors increases. Regarding the size of each drop, increased updraft speed 

reduces the residence time of drops to experience growing in the atmosphere. This leads 

to a larger number of small drops and low reflectivity. This is consistent with the 

correlation patterns shown in Figs 6.5a–g.  

Figure 6.5c exhibits a deep layer of a large positive correlation region on the 

right of the updraft core. This is where large hailstones fall on the edge of the updraft. 

In the updraft, qh and Nth are negatively correlated with reflectivity; small amounts of 

hail with the DSD shifted toward the larger sizes in the updraft increase reflectivity in 

situ, while large amounts of hail with the DSD shifted toward a smaller size decrease it. 

In the former case, larger mass of hail falls near the updraft because the total mass of 

hailstones that are too heavy to be advected farther increase. On the other hand, the 

correlations for Nth are still negative in this region (Fig. 6.5g), suggesting that the 

number of hailstones falling in this region are relatively small.  
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The correlation pattern for θ' is similar to that of w (Fig. 6.5h). The θ' is 

positively correlated with mixing ratios because of the latent heat release where the 

mixing ratio is negatively correlated with reflectivity, as discussed above. 

To investigate these physical processes more closely, we compute the 

correlations between w at the location of ZH shown in Fig. 6.5 and microphysical 

quantities discussed above and present in Fig. 6.6. The correlations between w and qc 

and Ntc (Figs. 6.6d,h) show that a stronger updraft produces more cloud drops and more 

cloud water. It is also shown that Ntc is more strongly correlated with w than qc.  
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Fig. 6.6. As in Fig. 6.5, but between forecast w and (a) qr, (b) qs, (c) qh, (d) qc, (e) Ntr, 
(f) Nts, (g) Nth, and (h) Ntc. 

 

Although stronger updraft transports more rain water to the upper level (Fig. 

6.6a), the increased number of rain drops may restrict the increase of reflectivity (Fig. 

6.6e). In Fig. 6.6e, the correlation for Ntr shows that the correlation increases to the 

upper level. This pattern suggests that more rain drops grow from the increased number 

of cloud drops along the stronger updraft. qs and Nts are negatively correlated with w, 
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implying that the production of low density snow is suppressed as w increases. However, 

the reflectivity change depends on the relative changes in magnitudes of these two 

fields. If decrease of snow mixing ratio is more rapid than that of the total number 

concentration of snow, reflectivity would still decrease. The correlation for qh is weak 

negative, while the correlation for Nth is positive at the location of observation. This is a 

clear indication of the shifting DSD toward smaller drop size, which lowers reflectivity.  

In Fig. 6.5d, the deep layer of negative correlation region is tilted slightly toward 

the east, with decreasing height, located between x = 36 and 43.5 km in the low level. 

The region is associated with the negative correlation for qr and the near-zero 

correlation with Ntr (Figs. 6.6a,e). This combination of qr and Ntr may be responsible 

for the negative correlation shown in Fig. 6.5d. However, we would like to point out 

that the correlations at large distances are not reliable and are not used after applying 

covariance localization.  

6.3.2 Assimilation of polarimetric radar data 

In this subsection, we investigate the impact of assimilating polarimetric 

variables in addition to both reflectivity (everywhere) and radial velocity (ZH > 10 dBZ) 

data (Table 6.2). As in section 6.3.1, each experiment name exhibits all observed 

variables assimilated in the experiment. The same thresholds applied to the polarimetric 

variables in Chapter 3 are also applied here. They are 0.3 dB and 0.9 ° km-1 for ZDR and 

KDP, respectively. The covariance inflation factor for each experiment is chosen 

experimentally, and the SDs of ZDR and KDP in the filter are set to 0.2 dB and 0.5 ° km-1, 
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respectively. Experiment VrZh discussed in subsection 6.3.1 is used as the control run 

in this subsection.  

 
Table 6.2. List of experiments testing the impact of polarimetric variables. 

 
Experiments Observation(s) assimilated Covariance inflation 

VrZhZdr Vr, ZH, and ZDR (ZDR > 0.3 dB) 10% 

VrZhKdp Vr, ZH, and KDP (KDP > 0.9 ° km-1) 15% 

VrZhZdrKdp Vr, ZH, ZDR, and KDP 15% 
 

Figure 6.7 shows the ensemble mean analysis RMSEs of the data impact 

experiments listed in Table 6.2 normalized by those of VrZh. A smaller normalized 

RMSE (NRMSE) suggests that a larger improvement is obtained by assimilating 

additional polarimetric variables. As shown in Chapter 3, both ZDR and KDP exhibit a 

degree of positive impact in the later cycles at least after 80 min of model time in most 

state variables with the exceptions in θ' of VrZhKdp and VrZhZdrKdp, qv of VrZhKdp, 

qs and Nts of VrZhZdr, and qc and Ntc of VrZhZdr, VrZhKdp, and VrZhZdrKdp, which 

show negative impact temporarily. Generally, the state variables that are directly related 

to the polarimetric variables receive larger positive impact from the relatively early 

cycles (Figs. 6.7g,i–j,l,o), except for Nts (Fig. 6.7n). Although qi and Nti are not directly 

related to the polarimetric variables, they also show relatively large improvements. 

With the help of polarimetric variables, the NRMSEs stay lower than 1 after 65 min of 

model time for qr, qi, qh, Ntr, Nti, and Nth, but a tendency for error reductions to become 

smaller in the later assimilation cycles is found in state variables who show large 

improvement (Figs. 6.7g–j,m,o), except for Ntr (Fig. 6.7l).   
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θ

 

Fig. 6.7. The ensemble mean analysis RMSEs of experiments VrZhZdr (dotted), 
VrZhKdp (dashed), and VrZhZdrKdp (solid) normalized by those of experiment VrZh. 
The reference horizontal line at unity is overlaid.  

 

To help assess the gross improvement more easily, the percent improvement 

over the control experiment averaged over the last five cycles is summarized in Table 

6.3. The largest improvement is found in Ntr in VrZhZdr and qr in both VrZhKdp and 

VrZhZdrKdp, which experience approximately 47%, 45%, and 36% improvement, 

respectively. The improvement is also large in the hail and ice categories. 
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Table 6.3. The improvement over the experiment VrZh for the experiments VrZhZdr, 
VrZhKdp, and VrZhZdrKdp averaged over the last five cycles (80-100 min of model 
time). The improvement is expressed in percentages relative to the control experiment. 
 

Variables 
Improvement (%) 

VrZhZdr VrZhKdp VrZhZdrKdp 

u 5.1 4.4 6.7 
v 7.4 2.6 6.3 
w 10.4 9.4 8.0 
θ' 6.1 1.5 2.6 
p' -0.3 -2.4 3.1 
qv 15.3 1.1 13.4 
qc 6.6 3.4 2.8 
qr 22.7 45.0 36.3 
qi 17.0 16.5 14.5 
qs 3.4 14.6 15.5 
qh 13.1 10.9 12.6 
Ntc 1.0 -0.1 0.8 
Ntr 47.2 15.2 30.3 
Nti 11.9 12.6 9.3 
Nts -0.6 2.6 2.5 
Nth 26.6 14.9 19.0 
tot 193.0 152.2 183.8 

 

Generally, VrZhZdr produce a better analysis than does VrZhKdp, and the 

improvement is larger in rain water-, hail-, and cloud ice-related variables, water vapor, 

and vertical velocity. Among microphysical variables, qc, qs, Ntc, and Nts show small or 

even negative improvement. The negative impact is found in p' when polarimetric 

variables are assimilated individually. When both ZDR and KDP are assimilated, all 

model state variables show positive impact, although the overall improvement is 

slightly smaller than that of VrZhZdr. However, the difference is too small to be 
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significant. These results generally agree with what were found in Chapters 3 and 4 

using SM. 

We would like to point out that the current data impact experiments have some 

limitations to fully examining the impact of the direct assimilation of polarimetric radar 

data. As discussed in Chapters 3 and 4, polarimetric variables have very little impact 

when the analysis obtained using conventional data is already very good. Under the 

perfect model assumption within the OSSE framework, the EnKF system is able to 

retrieve all model state variables successfully, leaving no room for polarimetric 

variables to play. This necessitates the use of error-free polarimetric variables while 

conventional radar data contain errors. Assimilating error-contaminated polarimetric 

variables can easily produce negative impact where the analysis is already very good 

because polarimetric variables are more susceptible to observation errors than 

reflectivity.  

We expect to see a larger impact of polarimetric data in real-data situations in 

which the model error tends to be larger. Reflecticity alone is not sufficient to determine 

microphysical processes associated with the size-sorting mechanism of a supercell 

storm revealed by unique polarimetric signatures shown in Chapter 5. The extra 

information on DSD carried by the polarimetric data may help improve analysis by 

providing additional constraints.  

6.4 Imperfect model experiments 

To examine the ability of EnKF system in retrieving model state variables in the 

presence of model error, we designed five experiments listed in Table 6.4. The first set 
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of experiments consists of VrZh_ptrα_IM and VrZh_cstα_IM, and the model error 

originates from the incorrect DSD shape parameter α for rain and hail, while the 

observation operater is assumed perfect. In the experiment names, _ptrα_ stands for 

“perturbed α” and _cstα_ for “constant α.” Suffix “_IM” denotes “imperfect forecast 

model experiment.” In the experiment with perturbed α, αr increases from -1 to 3 at a 

constant interval of 0.05, while αh decreases from 3 to 1 at intervals of 0.025 for each 

member, where the correct α value is 0 for the exponential DSD. Variables αr and αh are 

set to 3 and 2, respectively, in VrZh_cstα_IM. Each experiment assimilates both 

reflectivity and radial velocity with the covariance inflation factor of 20%. 

In the second set of experiments, both forecast model error and the observation 

operator error are taken into account. The truth simulation is created using the TM 

scheme of MY05, which allows concentration, shape, and slope parameters to vary 

freely in time and space. In this way, the incorrect DSD shape parameter is a source of 

the error in both the forecast model and the observation operator. Observations are 

produced using the polarimetric radar simulator developed in Chapter 5 using the T-

matrix method for all species employing a different axis ratio for rain. Therefore, 

observation operator involves another source of error: misrepresentation of the 

scattering properties. Three experiments are performed using the same configuration 

presented in Table 6.1, but with new observations and indicated by “_obs” in the 

experiment names. Polarimetric variables are not assimilated because of their small 

impact to the state estimation in OSSEs based on the results in section 6.3.2. 
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Table 6.4. List of data assimilation experiment in the presence of forecast model error. 

 

Errors in Experiments Incorrect values truth 

incorrect shape parameter 
in the forecast model 

VrZh_ptrα_IM αr = -1~3, αh = 3~1 αr = 0,  
αh = 0 VrZh_cstα_IM αr = 3, αh = 2 

incorrect DSDs in both 
forecast model and 
observation operator, 
misrepresentation of the 
scattering properties in the 
observation operator 

Vr_obs_IM Exponential 
distribution, 

Rayleigh approx. 
for ice species 

Gamma DSDs, 
Mie scattering 
for all species 

Zh_obs_IM 

VrZh_obs_IM 
 

6.4.1 Forecast model error 

Figure 6.8 shows the ensemble mean forecast and analysis RMSEs of model 

state variables during the assimilation cycles of experiments VrZh_cstα_IM and 

VrZh_ptrα_IM, which test the impact of the model error when the shape parameters are 

set incorrectly in the prediction model. The RMSEs show rapid error reduction in the 

early few cycles whose rates are almost the same as those of the control experiment’s. 

When each ensemble member uses the same incorrect α values in VrZh_cstα_IM (thick 

solid gray), the error reductions generally become slower than those of the control 

between 40 to 60 min of model time, and the RMSEs of state variables stay higher than 

those of the control experiment, except for qv, which show almost the same RMSEs 

during the whole assimilation period. The model state variables directly related to the 

incorrect model parameters show far larger errors than rest of variables: the errors in qr, 

Ntr, qh, and Nth estimates are around 135%–500% larger than those of the control 

experiment, while other variables show 10%–110% larger errors.  
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The RMSEs of u, v, and w estimates are less than 1 m s-1, and those of qc, qi, and 

qs are less than 0.1 g kg-1 with that of θ' being less than 0.5 K in VrZh_cstα_IM. The 

RMSEs of Ntc, Nti, and Nts are also 2–4 orders of magnitude smaller than their 

respective dynamic ranges. Considering the relatively low errors in the later cycles after 

the RMSEs stabilize, 10%-110% errors may be insignificant. This result suggests that 

the impact of the incorrect shape parameters is rather small to the model state variables 

that are not directly related to them. 

 
θ

 

Fig. 6.8. As in Fig. 6.2, but for experiments VrZh_ptrα_IM (thin dotted black) and 
VrZh_cstα_IM (thick solid gray).The RMSEs of the control run, which is VrZh with αr 
= αh = 0, are shown in thin solid black for comparison. 
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When each member is assigned an α value perturbed in a certain range, the state 

estimation is significantly improved (dotted line in Fig. 6.8). The RMSEs of most state 

variables are now almost as low as those of the control experiment VrZh (black solid 

line in Fig. 6.8), with the exception of qr, and qi. It is interesting that qh and Nth can be 

estimated accurately, although αh is perturbed between 1 and 3, where the true αh is 0, 

while the RMSEs of qr, and qi are about two times larger than those of the control.  

Several past studies showed that employing different parameterization schemes 

in different ensemble members improves analysis (e.g., Meng and Zhang 2007, 2008; 

Zhang and Snyder 2007). When the perturbed αr and αh are used in different ensemble 

members, the ensemble spreads of qr, Ntr, qh, and Nth increase compared with those of 

control experiment’s. In the later cycles, the ensemble spreads of Ntr, qh, and Nth are at 

almost the same level of their RMSEs, while those in VrZh_cstα_IM are even lower 

than their corresponding spreads of VrZh (not shown). It can be inferred from these 

results that the model error arose from the uncertain parameters can partially be 

accounted for by using perturbed parameters in the ensemble.  

6.4.2 Forecast model and observation operator errors 

In this subsection, we explore the ability of the EnKF system in producing an 

accurate analysis in the presence of observation operator error in addition to the forecast 

model error. This could be the OSSE scenario closest to the real data case. The model 

state variables produced using a TM scheme are ingested as an input to the radar 

emulator to create simulated observations, which are independent of the observation 
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operator used in the data assimilation system. The RMSEs of the state variables shown 

in Fig. 6.9 are calculated with respect to the true simulation employing the TM scheme.  

Although reflectivity data alone can noticeably reduce the RMSEs errors in most 

state variables (Fig. 6.9), the RMSEs at the end of the assimilation window are higher 

than those obtained in the perfect model scenarios (Fig. 6.2). For example, the RMSEs 

of u and v are about 3 m s-1, that of w is around 2 m s-1, and mixing ratios are all greater 

than 0.1 g kg-1. A tendency of rapid RMSE decrease in the first 4–6 cycles, followed by 

error increase, is found in many of the microphysical variables, including qc, qr, qi, Ntc, 

Ntr, Nti, Nts, and Nth, which is the indication of filter divergence. In the current OSSE 

framework, only microphysical variables are associated with observation operator errors, 

while dynamic and thermodynamic variables are not directly involved in them. As a 

result, the RMSEs of microphysical variables of experiment Zh_obs_IM in the later 

cycles are higher than those of Vr_obs_IM, except for qs, where Vr alone is very poor in 

estimating qs. (Figs. 6.9e–h,j–o).  

To prevent filter divergence, we performed the same experiment with a larger 

inflation factor, 25%, and found that the average RMSE is reduced about 25% when it 

is averaged over state variables over the last five cycles. However, this is not practical 

because the optimal covariance inflation factor depends on many other factors and is 

not known in advance in the real-time forecast.  
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Fig. 6.9. As in Fig. 6.2, but for experiments VrZh_obs_IM (solid), Vr_obs_IM (dotted), 
and Zh_obs_IM (dashed). The RMSEs are computed with respect to the true simulation 
performed using three-moment microphysics scheme. The RMSEs of experiments VrZh 
(thick dotted gray) and VrZh_ptrα_obs_IM (thin solid gray) are shown for comparison.  
 

Experiment Vr_obs_IM (dotted line in Fig. 6.9) produced a much better analysis 

than did Zh_obs_IM in general. In the early assimilation cycles, Vr is more beneficial 

than ZH to u and v, while ZH is more beneficial than Vr to most microphysical variables 

except qv, qh, Nti. Although the error reduction rates of qc, qr, qi, Ntc, Ntr, Nts, and Nth in 

early cycles of Vr_obs_IM are slower than those of Zh_obs_IM, a trend of error 

increase in the later cycles is weak or not found in these variables. Considering the fact 

that the wind variables are not associated with observation operator error, good 

performance of Vr compared with ZH is reasonable.  
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When ZH is assimilated in addition to Vr, the positive impact of assimilating 

additional ZH data is clear in θ', qr, qi, qs, qh, Ntr, Nti, Nts, and Nth (Figs. 6.9 d,g–j,l–o). 

Because of the model error, the overall RMSE levels of state in VrZh_obs_IM (thin 

solid black) are higher than those of VrZh (thick dotted gray). The larger deterioration 

of state estimation is found in w, qh, Ntr, Nth, and qr, which show between 150%-500% 

larger errors than those in VrZh. This result suggests that the model microphysical 

processes are more sensitive to correctly modeling DSDs of rain and hail than they are 

cloud water, cloud ice, and snow aggregates. The perturbed α used in the ensemble of 

experiment VrZh_ptrα_obs_IM helps further reduce the overall analysis error (thin 

solid gray in Fig. 6.9), although the improvement is relatively small. In this experiment, 

αr increases from -1 to 3, and αh decreases from 4 to 0 at a constant interval of 0.05 for 

each member. 

At 40 min or after four analysis cycles, the basic pattern of reflectivity and cold 

pool structure of VrZh_obs_IM is retrieved reasonably well, but the intensity of 

reflectivity and cold pool strength of the analyzed storm is weaker than that of truth (Fig. 

6.10a,e). The low-level horizontal perturbation wind pattern also appears reasonable if 

the mean southerly wind is subtracted from the perturbation wind of VrZh_obs_IM. The 

stronger southerly wind seems to be partly due to the lack of Vr observation in the echo-

free region so that the wind variables could not be corrected there. The wind errors are 

gradually corrected during subsequent analysis cycles by 100 min, while cold pool 

strength and the intensity of reflectivity are consistently underestimated throughout 

assimilation cycles.  
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Fig. 6.10. As in Fig. 6.1, but for a supercell storm simulation: (a)-(d) truth with TM of 
MY05 and (e)-(h) EnKF analysis of experiment VrZh_obs_IM. Reflectivity is 
computed using the radar simulator developed in Chapter 5.  

 

6.5 Summary and conclusions 

When both Vr and ZH are assimilated, the EnSRF system employing a two-

moment (DM) microphysics scheme is able to accurately estimate the increased number 

of model state variables of a simulated supercell storm with a sufficiently large 

ensemble under the perfect model assumptions. However, a significant deterioration of 

the analysis was encountered when ZH is assimilated alone due to the solution non-

uniqueness of this undetermined problem. Where the reflectivity is determined by two 

independent variables, mixing ratio qx, and the total number concentration Ntx for 

hydrometeor type x, not-optimally estimated qx increases the error in Ntx estimate in a 

way in which they compensate the reflectivity difference due to the errors in qx. As a 

result, simulated reflectivity computed from estimated qx and Ntx fits observed 
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reflectivity very closely while failing to reduce RMSEs of qx and Ntx. The results, which 

show that the model states can be retrieved more accurately with both Vr and ZH than 

with any one of them, suggest that additional observations will likely improve the well-

posedness of this problem.  

The impact of additional error-free polarimetric variables on the quality of storm 

analysis is generally positive, though rather small under the perfect model assumption, 

partly because the analysis obtained using Vr and ZH is already accurate, leaving little 

room for the polarimetric variables to play a role. A larger impact is expected in a real-

data situation in which the model error is larger, and reflecticity alone is not sufficient 

to fully determine the microphysical variables accounting for the entire spectrum of 

variability in drop size distributions (DSDs). The extra information on DSDs carried by 

the polarimetric data may help improve analysis by providing additional constraints in 

this case. 

The forecast error correlations between model state variables and simulated 

reflectivity taken from the updraft core and among model states computed from the 

ensemble show that the simulation employing the DM scheme produces a more realistic 

pattern compared with those using the single-moment (SM) microphysics scheme. The 

signs of correlation are opposite for these two in the regions where significant 

correlations exist. The opposite sign of the SM run is mainly because a SM scheme is 

not capable of handling the DSD shift toward larger or smaller drop sizes because of 

size sorting, while a DM scheme is at least able to account for this, although it is still 

incapable of addressing the change in shape of the DSDs. 
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The filter performance in the presence of forecast model error with/without the 

observation operator error is also investigated using Vr and ZH data. The results show 

that model error can noticeably deteriorate the quality of state estimates of 

microphysical variables when the prediction model is subject to the microphysical 

parameterization error due to the assumed incorrect DSD shapes and when the 

observation operator is suffering from incorrect DSD shapes and a misrepresentation of 

the scattering properties. Nevertheless, the retrieved dynamic, thermodynamic, and 

microphysical fields are still reasonably good. As the observation operator for radial 

velocity is not involved in any errors in the current OSSE framework, retrieved wind 

variables are relatively accurate when Vr is assimilated with/without ZH. However, ZH is 

necessary to suppress spurious cells in the echo-free regions. When the shape parameter 

α of a certain hydrometeor type was perturbed and used in different ensemble members, 

the ensemble spreads of state variables of corresponding type were increased, and 

overall analysis was improved accordingly.  

In the real-data scenario, we may encounter severe model errors arising from 

many sources, such as insufficient resolution in time and space, misrepresentation of 

physical processes, and the non-physical model boundaries. These model errors can 

dominate the error growth during the assimilation cycles and lead to filter divergence 

(Houtekamer et al. 2005). To account for model error, various methods have been 

proposed, such as additive error model and simultaneous model parameter estimations. 

However, using a more accurate parameterization scheme could be a more direct, better 

solution. The previous study of Dawson et al. (2007), a comparison of simulated 

polarimetric signatures using SM and DM schemes presented in Chapter 5, and the 



 181

correlation analysis performed in this chapter all support the fact that a DM scheme may 

describe storm microphysics and kinematics more realistically than does a SM scheme. 

Motivated by these results, the assimilation of real data using EnSRF and a DM scheme 

is underway. Effective ways to deal with other source of model error will be studied 

along the way. 
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Chapter 7     Summary and Future work 
 

7.1 Summary 

Radar data are indirect measurements of the model state. In modern data 

assimilation (DA) systems using variational data or ensemble Kalman filter (EnKF) 

techniques, the direct assimilation of such indirect measurements require forward 

observation operators that convert model state variables into the form of observations. 

These observation operators often involve more than one state variable and can be very 

complex and nonlinear. While the formulas that link all available state variables and 

observations for reflectivity and radial velocity can be found in the literature, those for 

polarimetric radar (PR) data either focus on a single-phase hydrometeor or are too 

complex and expensive for DA purposes. Moreover, melting ice particles are often 

ignored or calculated by using a very simple linear interpolation between two 

temperature layers chosen on an ad hoc basis even for the calculation of conventional 

radar reflectivity, which significantly affects reflectivity calculated within the melting 

layer. In this dissertation, we first developed a comprehensive radar simulator for PR 

variables at the S band of wavelength 10.7 cm. The PR variables include reflectivity at 

horizontal (ZH) and vertical (ZV) polarizations, differential reflectivity ZDR, reflectivity 

difference Zdp, specific differential phase KDP, and the cross-correlation coefficient ρhv. 

The transition matrix (T-matrix) method was used for the scattering calculations of 

raindrops, and Rayleigh scattering approximation was applied to snow and hail particles. 

The PR variables are expressed as functions of the hydrometeor mixing ratios as well as 

their densities and drop size distribution (DSD) parameters. This simulator served as a 
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testbed for developing and testing forward observation operators of PR variables. New 

features include the continuous melting ice (snow/hail) model that allows varying 

dielectric constants and density due to melting and error models accounting for 

correlated and uncorrelated error components for reflectivity at horizontal and vertical 

polarizations.  

Those forward operators were incorporated into the Advanced Regional 

Prediction System (ARPS) ensemble square-root Kalman filter (EnSRF) data 

assimilation system and used to assess the impact of assimilating additional PR 

variables. Results show that storm analysis is improved when PR variables are 

assimilated in addition to ZH or in addition to both ZH and radial velocity Vr. Positive 

impact is largest when ZDR, Zdp, and KDP are assimilated all together. Improvement is 

generally larger in vertical velocity, water vapor, and rainwater mixing ratios. The 

rainwater field provides the most benefits, while the impacts on horizontal wind 

components and snow mixing ratio are smaller. Improvement is found at all model 

levels even though the PR data, after the application of thresholds, are mostly limited to 

the lower levels. Among ZDR, Zdp, and KDP, ZDR is found to have the largest positive 

impact on the analysis. It is suggested that ZDR provides more independent information 

than the other variables. The impact of PR data is also expected to be larger when they 

are used to retrieve drop size distribution parameters. PR data thresholding prior to 

assimilation is found to be necessary to minimize the impact of noise.  

Encouraged by the result of data impact experiments, we applied PR data to the 

simultaneous estimation of five uncertain DSD-related microphysical parameters which 

are also involved in the observation operators. These parameters are the intercept 



 184

parameters of rain, snow, and hail (n0R, n0S, and n0H, respectively) and the bulk densities 

of snow (ρS) and hail (ρH), and they are estimated individually or collectively using 

EnSRF. ZDR, KDP, and ZH are used individually or in combination for parameter 

estimation, while Vr and ZH are used for state estimation. In these experiments, the latest 

estimated parameter values are used in the forecast model and observation operators in 

the subsequent cycle. 

Both single- and five-parameter estimation experiments reveal difficulties in 

estimating certain parameters in the presence of observation operator error using ZH 

alone. It is found that the PR data are more helpful when the parameter estimation is not 

very successful with ZH only. Between ZDR and KDP, KDP is found to have a larger 

positive impact on parameter estimation, while ZDR is more useful in the estimation of 

n0H. In the five-parameter estimation, the filter fails to recover snow-related parameters 

n0S and ρS with or without PR data, probably because of the combined effects of mis-

specification of the amount of correction made to the forecast fields due to observation 

operator error and the insensitivity of model response. When snow-related parameters 

are not estimated but are kept at their initial wrong guesses, both the estimation of the 

other three parameters and the stimation of state are significantly improved and the 

positive impact of PR data is larger than when all five parameters are estimated. 

The parameter estimation experiments discussed in Chapter 4 show promising 

results, implying that additional PR measurements, which provide microphysics and 

DSD information, can help alleviate solution non-uniqueness of the sometimes ill-posed 

inverse problem. The fact that PR data can help in the estimation of intercept 

parameters also suggests that they might help the estimation of total number 
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concentrations predicted with higher-moment microphysics schemes because they 

contain similar information. Very recent studies by Dawson et al. (2007) suggest that 

supercell thunderstorms with more realistic reflectivity structure and cold pool strength 

can be obtained with a high horizontal resolution (1 km or smaller grid spacing) and 

multi-moment microphysics schemes of Milbrandt and Yau (2005b; 2005a), with the 

most improvement being achieved when moving from a single moment (SM) to a two-

moment (DM) microphysics scheme.  
Evaluating the performance of a DM scheme prior to use is necessary but 

challenging because detailed microphysical observations are very limited. One way to 

validate the model forecast is compare synthetic observations simulated from model 

output using an observation simulator with real observations. For verification purposes, 

the accuracy of the simulator is more important than its efficiency. Therefore, we 

developed another more complex PR data simulator based on rigorous scattering 

calculation using the T-matrix method for all hydrometeor types in Chapter 5. This 

emulator is general, can be applied to any weather radar frequency band, and can take as 

input the prognostic variables of NWP model simulations predicting single, double, or 

triple moments of microphysics DSDs.  

This complex emulator was applied to an idealized supercell storm simulated 

using a DM scheme assuming 10.7 cm wavelength. The simulation results show that 

realistic polarimetric signatures in terms of general location, shape, and strength can be 

reproduced when a DM microphysics scheme is employed. These signatures include 

ZDR and KDP columns; ZDR arc, mid-level ZDR, and ρhv rings; and hail signature. We 

compared this simulation to one employing a single-moment microphysics scheme and 
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found that signatures including the ZDR arc and mid-level ZDR and ρhv rings cannot be 

reproduced with the single moment scheme; these signatures are closely linked to 

precipitation particle size sorting. Such emulations suggest that the higher-moment 

schemes better represent the related microphysical processes.  

In Chapter 6, we explored the capability of the EnSRF system in estimating state 

variables associated with a DM scheme that includes not only the water/ice mixing 

ratios (the third moment of DSD) but also the total number concentrations (zeroth 

moment of DSD). The results show that these state variables can be accurately 

estimated using both Vr and ZH observations with a perfect prediction model. In this 

case, additional polarimetric variables have a small and generally positive impact on the 

quality of analysis, partly because the analysis obtained using Vr and ZH is already very 

good. Imperfect model experiments with forecast model error and with/without 

observation operator error were also performed to test the filter performance. Two types 

of model errors were considered: microphysical parameterization error due to 

incorrectly assumed DSD shape and a misrepresentation of the scattering properties of 

hydrometeors. The results showed that model error can noticeably deteriorate the 

estimates of microphysical state variables. Perturbing the shape parameter α of 

microphysical DSDs and using them in different ensemble members was found to 

improve overall analysis; doing so increases the ensemble spread of the state variables 

directly related to those species.  
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7.2 Future work 

As this is the first study to directly assimilate PR data, the potential of PR data 

for convective storm analysis in the EnKF system is primarily explored in an OSSE 

framework in this study. Our OSSE experiments show that polarimetric data can 

provide extra information about storm microphysical processes and the evolution of 

DSDs. The results also indicate that double-moment microphysics schemes can produce 

much more relistic simulations of supercell thunderstorms than the most commonly 

used single-moment schemes. Based on these OSSE results, we plan to extend our 

EnSRF analysis to a long-lived tornadic thunderstorm case on May 29-30, 2004, 

employing a double-moment scheme. A previous study of the same case using SM 

showed that the analyzed Vr and ZH match observations well but the predicted storm is 

generally weaker and moves faster than the observed storm (Tong 2006).  

Preliminary experiments have been performed with different filter 

configurations to help design the assimilation system and investigate potential issues 

that may be encountered when using a DM microphysics scheme. The preliminary 

results using a DM scheme reveal severe flow divergence problems in some parts of the 

storm, such as at the southern edge of the forward flank downdraft region. One example 

of an analyzed reflectivity field is shown in Fig 7.1 as compared to the observed one. 

Briefly, 60 ensemble members are initialized at 0000 UTC on 30 May. Vr and ZH data of 

Oklahoma City WSR-88D radar (KTLX) and Vr of the Vance Air Force radar (KVNX) 

are assimilated at 0010, 0020, 0040, and 0100 UTC in this experiment. In Fig. 7.1b, it is 

clear that a noticeable portion of storm is missing south of the main storm [the reference 

line at y = 32 km is overlaid to help with visual comparison] and west of the small 



 188

storm to the north of the main one. These areas are associated with regions where sharp 

gradients of reflectivity are observed. It seems that the filter experiences difficulty in 

retrieving mixing ratios and total number contentraions where the reflectivity abruptly 

decreases. The storm exhibits a more severe loss of echoes near sharp reflectivity 

gradient at 0100 UTC (Fig. 7.1d). The smallest storm, located at the north boundary 

between x = 64 and 80 km in Fig. 7.1c, is almost completely missing in Fig. 7.1d.  

 

 

Fig. 7.1. Reflectivity (solid contours and shading at 10 dBZ interval, starting from 10 
dBZ) at 1.25° elevation at (a),(b) 0040 UTC and (c),(d) 0100 UTC from the KTLX’s 
perspective for (a),(c) observations and (b),(d) ensemble mean analysis.  

 

The analysis intervals were significantly increased in the current experiment 

compared with previous studies because the ensemble spreads of a prior estimate of 

reflectivity could not grow enough in 5 min. This should be reduced with appropriate 

techniques to account for the loss of spread. The covariance inflation factor was 
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experimentally determined as 60%; the storm more quickly dissipates or diverges from 

the observations with smaller covariance inflation factors. However, too large 

covariance inflation is undesirable because it induces imbalance among ensemble 

members (Anderson 2001). The large inflation factor creates another problem with the 

current application: discontinuity in the fields at the cut-off radius in which the inflation 

is applied only to the grid points that are directly influenced by the observations. The 

total number concentrations was never updated to prevent fast shrinking of echoes. 

During assimilation, over-adjustment is common, especially in the early stage of 

assimilation when errors in the state variables are high. With the DM scheme, when 

either the mixing ratio or the number concentration becomes negative at a grid point for 

a particular species, both are set to zero. Updating only the mixing ratio reducing the 

chances of this happening, but doing so is not necessarily the right solution. One 

possible remedy for this could be a log transform of those values during assimilation. 

The model bias is another source of storm dissipation. The echo is suppressed in 

some part of storm, such as the southern part of FFD, in many ensemble members 

during the forward model integration. Covariance inflation is not effective in such a 

case because the spread is still small after the inflation is applied. One possible solution 

is to add positive noise within the observed echo region before or after assimilation. In 

this case, the error should be carefully designed so as not to disturb the balance between 

the mixing ratio and the total number concentration. Clipping at predefined thresholds 

applied to mixing ratio and total number concentration during forward model 

integration could also contribute to the diminishing echo. Reducing the thresholds might 

help to alleviate this problem.  
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In the EnKF system, mixing ratio and total number concentration are estimated 

independently; therefore, the balance between them is not guaranteed in the analysis 

unless the covariance is very reliable. Covariance inflation introduced to account for 

model error can cause other problems if overdone. To prevent filter divergence and 

effectively reduce small-scale perturbations within the echoes, better solutions have to 

be found. Much research is still needed in this area. 
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Nomenclature 

List of Symbols 

D Equivalent diameter of a precipitation particle 

Dmax,x Maximum drop size of category x 

Dnr Mean-mass diameter of raindrop 

fw Water fraction within a water-ice mixture 

fa Backscattering amplitude for polarization along the major axis 

fb Backscattering amplitude for polarization along the minor axis 

J Response function 

Kw Dielectric factor for water 

KDP Specific differential phase 

n0H Intercept parameter of hail/graupel size distribution 

n0R Intercept parameter of rain size distribution 

n0S Intercept parameter of snow size distribution 

n0x Intercept parameter of category x 

N Ensemble size 

Ntx Total number concentration of category x ∈  (c, r, i, s, h) 

p Pressure  

p′ Pressure perturbation 

pi Model microphysical parameter (Chapter 4) 

t
ip  Control (assumed true) value of parameter pi (Chapter 4) 

qx Mixing ration for category x ∈  (c, r, i, s, h) 

qrh Mixing ration for rain-hail mixture 
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qrs Mixing ration for rain-snow aggregate mixture 

qv Water vapor specific humidity 

r Axis ratio between minor to major axis of a precipitation particle 

u Horizontal velocity in the x direction 

v Horizontal velocity in the y direction 

Vr Radial velocity 

w Vertical velocity 

x, y Horizontal coordinates 

x Model state vector 

y Observation vector 

z Vertical coordinate 

Zdp Reflectivity difference 

ZDR Differential reflectivity 

ZH Equivalent reflectivity factor at the horizontal polarization 

ZV Equivalent reflectivity factor at the vertical polarization 

α Shape parameter 

β Radar azimuth  

εcorr Correlated part of the observation error 

εh Uncorrelated observation error for ZH 

εv Uncorrelated observation error for ZV  

φ  Canting angle of a precipitation particle 

φ  Mean canting angle of precipitation particles 

λ Radar wavelength 
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λx Slope parameter of category x 

θ Potential temperature 

θ′ Perturbation potential temperature 

σ Standard deviation of canting angle (Chapter 2) 

ρair Density of air 

ρH Density of hailstone 

ρhv Co-polar cross-correlation coefficient 

ρm Density of rain-snow/hail mixture (Chapter 2) 

ρS Density of snow aggregate 

 

Acronyms 

ARPS Advanced Regional Prediction System 

CASA Center for Adaptive Sensing of the Atmosphere 

CAPE Convective available potential energy 

DSD Drop size distribution 

EnKF Ensemble Kalman filter 

EnSRF Ensemble Square Root Filter 

GSFC Goddard Space Flight Center 

KOUN Research polarimetric WSR-88D radar 

NASA National Aeronautics and Space Administration 

NWP Numerical Weather Prediction 

OSSE Observing System Simulation Experiments 
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PRD Polarimetric radar data 

RMS Root-mean-square 

SD Standard deviation 

SREH storm-relative environmental helicity 

UTC Coordinated Universal Time 

WSR-88D Weather Surveillance Radar 88 Doppler 

WRF Weather Research and Forecasting 

3DVAR Three-dimensional variational  

4DVAR Four-dimensional variational 
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