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ABSTRACT

A data assimilation system based on the ensemble square-root Kalman filter (EnSRF) is extended to
include the additional capability of assimilating polarimetric radar variables. It is used to assess the impact
of assimilating additional polarimetric observations on convective storm analysis in the Observing System
Simulation Experiment (OSSE) framework. The polarimetric variables considered include differential
reflectivity Zppg, reflectivity difference Zy,, and specific differential phase Kpp. To simulate the observa-
tional data more realistically, a new error model is introduced for characterizing the errors of the nonpo-
larimetric and polarimetric radar variables. The error model includes both correlated and uncorrelated
error components for reflectivities at horizontal and vertical polarizations (Z, and Z,, respectively). It is
shown that the storm analysis is improved when polarimetric variables are assimilated in addition to Z,, or
in addition to both Z,, and radial velocity V,. Positive impact is largest when Zpg, Zy,, and Kpp are
assimilated all together. Improvement is generally larger in vertical velocity, water vapor, and rainwater
mixing ratios. The rainwater field benefits the most while the impacts on horizontal wind components and
snow mixing ratio are smaller. Improvement is found at all model levels even though the polarimetric data,
after the application of thresholds, are mostly limited to the lower levels. Among Zpg, Zyy,, and Kpp, Zpg
is found to produce the largest positive impact on the analysis. It is suggested that Z, provides more
independent information than the other variables. The impact of polarimetric data is also expected to be
larger when they are used to retrieve drop size distribution parameters. The polarimetric radar data
thresholding prior to assimilation is found to be necessary to minimize the impact of noise. This study is

believed to be the first to directly assimilate (simulated) polarimetric data into a numerical model.

1. Introduction

For convective-scale NWP, microphysics represents
perhaps one of the most important physical processes
with both direct and indirect influences. The micro-
physical processes depend to a large extent on the
phase, density, and the drop size distributions (DSDs)
of the microphysical species involved. These properties
also directly affect radar measurements within each ra-
dar sampling volume. For these reasons, equivalent ra-
dar reflectivity factor (hereinafter reflectivity) and ra-
dial velocity measurements from conventional Doppler
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weather radars are usually insufficient to fully describe
the microphysical states in a convective storm. Addi-
tional observational parameters available from polari-
metric Doppler radars, including differential reflectiv-
ity and differential phase measurements can be very
helpful here as they contain information about the den-
sity, shape, and DSDs of hydrometeors (Doviak and
Zrnic 1993; Bringi and Chandrasekar 2001).

The use of differential reflectivity for meteorological
applications, in particular for rainfall estimation, was
first proposed by Seliga and Bringi (1976); many studies
have shown that polarimetric measurements can im-
prove precipitation-type classification and quantitative
rainfall estimates (Straka et al. 2000). Ryzhkov et al.
(1998) and Vivekanandan et al. (1994) have proposed
that polarimetric methods can estimate ice water con-
tent more accurately than the one that only uses reflec-
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tivity (Z,). Wu et al. (2000) used differential reflectiv-
ity (Zpgr) indirectly (rain and ice mixing ratios were
derived from reflectivity and Z,i before assimilation)
in a cloud-scale four-dimensional variational data as-
similation (4DVAR) system and obtained somewhat
encouraging results. Moreover, the planned polarim-
etry upgrade starting later this decade or early next
decade (D. Zrnic 2006, personal communication) by the
National Weather Services (NWS) of the entire opera-
tional Weather Surveillance Radar-1988 Doppler
(WSR-88D) radar network will undoubtedly motivate
more active research on the utilization of polarimetric
radar data.

An accurate estimate of the amounts of hydromete-
ors and DSDs using polarimetric radar data can con-
tribute to the improvement and verification of micro-
physical parameterizations in cloud and mesoscale
models. Such estimations can also help enhance our
understanding of the interactions between microphysics
and kinematics in severe storms and in the mesoscale
system (Straka et al. 2000). Polarimetric radars also
should be helpful for storm-scale model initialization,
especially of the microphysical and related thermody-
namic fields, through data assimilation.

The accuracy of NWP depends on the model initial
condition. The error in the initial state grows with time
and makes the predicted state diverge from its true
state. Therefore, a lot of effort has been given to de-
termining more accurate initial conditions that can lead
to more accurate weather forecasts. Currently, the two
most promising data assimilation techniques for obtain-
ing the atmospheric initial condition or the best esti-
mate of the atmospheric state are the 4DVAR (Le
Dimet and Talagrand 1986; Courtier and Talagrand
1987) and the ensemble Kalman filter (EnKF) method
(Evensen 1994; Evensen and Leeuwen 1996; Burgers et
al. 1998; Houtekamer and Mitchell 1998; Anderson
2001; Bishop et al. 2001; Whitaker and Hamill 2002;
Evensen 2003; Tippett et al. 2003), because of their
ability to make effective use of the dynamic model
equations and observations distributed in space and
time, and to provide the best estimate that is also con-
sistent with the prediction model. Because of its ability
in handling complex, nonlinear, physical processes
(e.g., ice microphysics) in the assimilation model, and in
the forward observation operators (e.g., those for re-
flectivity), the EnKF method appears to be more suit-
able for convective-scale data assimilation, which is the
main interest of our current study.

The EnKF technique was introduced into the meteo-
rological community about a decade ago and has be-
come very popular in recent years. It is an attractive
alternative to the more mature 4DVAR method. Very
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encouraging results have been obtained by a number of
researchers for large-scale models (e.g., Houtekamer et
al. 2005; Whitaker et al. 2004). Tests with perfect pre-
diction models with simulated Doppler radar data at
the convective scale with EnKF have also produced
very encouraging success in recent studies. The first
paper to investigate the potential of EnKF for assimi-
lating Doppler radar data was Snyder and Zhang
(2003). The study used a cloud model with warm rain
microphysics and assimilated simulated radial velocity
data assumed to be available on the model grid. The
studies of Tong and Xue (2005, hereinafter TX05) and
Xue et al. (2006, hereinafter XTDO06) further demon-
strated that the cloud fields associated with a three-ice
microphysics scheme (cloud ice, snow aggregates, and
hail) can be accurately retrieved using the EnKF
method. Moreover the inclusion of reflectivity data im-
proves the results even though its observation operator
is highly nonlinear. XTDO06 also removed the assump-
tion that radar data are available on the model grid and
used more realistic radar-beam-pattern-based forward
observation operators.

More recently, Tong and Xue (2008a,b, hereinafter
TX08a and TXO08b, respectively) applied the ensemble
Kalman filter technique to the problem of simultaneous
estimation of the atmospheric state of a convective
storm and uncertain DSD-related microphysics param-
eters associated with a single-moment microphysics
scheme, from radar radial velocity and reflectivity data.
It was found that the parameter estimation can always
be successful when only one of the parameters contains
error. The difficulty of parameter estimation increases
when multiple parameters contain error and have to be
estimated simultaneously. The fact that the errors in
some of the parameters produce compensating re-
sponses in terms of the observed radar reflectivity,
causing solution nonuniqueness, is believed to be the
reason for the difficulties. The study suggests that ad-
ditional polarimetric radar measurements that provide
the microphysics and DSD information can help allevi-
ate the solution’s nonuniqueness problem. Even when
microphysics parameter estimation is not performed,
the additional polarimetric measurements are expected
to improve the microphysical state estimation. When
the microphysics scheme predicts more than one mo-
ment (i.e., the mixing ratios), then more microphysical
state variables (e.g., the total number concentration
and reflectivity factor, as in the three-moment scheme
of Milbrandt and Yau 2005) have to be estimated. If the
radial velocity and conventional reflectivity are the only
two storm-scale observations, the full state estimation is
likely to be very difficult.

In this paper, we report on the results of our initial
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efforts in developing capabilities to assimilate polari-
metric radar data into a storm-scale NWP model, and in
studying the impact of these variables on the analysis or
model state estimation. We extended the ensemble
Kalman filter data assimilation framework of TXO05,
XTDO06, and TXO08a, by adding the ability to assimilate
the differential reflectivity (Zpg), reflectivity difference
(Z4p), and specific differential phase (Kpp). In Jung et
al. (2008, hereinafter Part I), the development of the
observational operators for these parameters are de-
scribed, together with an examination of their applica-
tions to a simulated squall line and supercell storm.
These observation operators are used in the EnKF Ob-
serving System Simulation Experiment (OSSE) system
to produce the simulated observation and to assimilate
the data. Other polarimetric parameters such as the
correlation coefficient p,,(0) can be added in the fu-
ture.

In section 2, the simulation of the radar observations
to be used in the OSSEs is discussed, together with their
error models. The supercell simulation used in Part I is
used as the truth simulation from which error-
containing observations are generated. It is followed by
the design and configurations of the OSSE data assim-
ilation experiments. The impact of assimilating addi-
tional polarimetric variables is examined in section 3
based on the OSSE results. In section 4, we conclude
our study and discuss some practical issues in the use of
polarimetric radar data for data assimilation purposes.
We believe the study reported herein represents the
first attempt to directly assimilate polarimetric radar
data into a numerical model.

2. Assimilation system and experimental design

The prediction model and the truth simulation of a
supercell storm used for OSSEs are described in Part 1.
In the following, we first describe the simulation of the
observations from this truth simulation and the error
modeling for the reflectivity and polarimetric variables.

a. Simulation of observations and the error model

Real observations are usually contaminated by mea-
surement and sampling errors, and can contain repre-
sentativeness error also. In our radar simulator, error-
free observations are first generated at model grid
points using the observation operators developed in
Part I, with the state variables of the truth simulation as
input. The results are then brought to the radar eleva-
tion levels through interpolation and necessary beam-
pattern weighting. We assume that the radar data are at
the model grid columns, which is also an assumption
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made in XTDO06. The effective earth radius model is
used to take into account the effect of beam bending
due to the surface curvature of the earth and the ver-
tical change of the refractive index (Doviak and Zrnic
1993). A Gaussian beam weighting function described
in XTDO6 is used in the vertical direction to simulate
Z,, Z,,V, and Kpp observations on the radar elevation
planes.

Noise is then added to the error-free observations to
simulate observation errors. Operational polarimetric
WSR-88D radars transmit and receive horizontally and
vertically polarized waves simultaneously, which mea-
sures Z, and Z, from the same pulses. Because the
errors in Z, and Z, are mostly correlated for weather
echoes in this configuration, the error in Zy is usually
small because Zpg is a ratio between Z, and Z,. To
more realistically model the errors, correlated and un-
correlated random errors having Gaussian distributions
are added to uncontaminated Zj, and Z! in the linear
domain (before the logarithmic transform) and con-
verted to logarithmic reflectivity, Z,, and Z,, (Xue et al.
2007), so that

23 =1010810(Z + Seome + &) and (1)

Z5 =1010g10(Z% + ecorr + &), )
where superscripts ¢ and o denote the uncontaminated
(truth) and error-containing simulated observations, re-
spectively. Here e, represents the correlated part of
the error and ¢, and ¢, are the uncorrelated errors for
Z, and Z,, respectively. They are randomly generated
Gaussian errors with zero means and standard devia-
tions proportional to the (uncontaminated) reflectivity
(Z,), as real sampling errors should behave (Doviak
and Zrnic 1993; Xue et al. 2007).

Briefly, the actual sizes of the standard deviation
(hereafter effective error SD) of the error are experi-
mentally determined in the following way. First, errors
€corr» €n» and g, are simulated by multiplying Z}, by a
specified factor representing the relative error magni-
tude for each of them, and by a Gaussian-distributed
random number with a zero mean and a standard de-
viation of one. The errors are then used in (1) and (2)
to give Z¢, and Z}i. These error-containing data are
collected over the points where Z¢, > 0 dBZ and

br > 0 dB, respectively, for all data sampling times;
the effective error SD for each dataset are then calcu-
lated. To obtain desired levels of the SD of data for the
purpose of data assimilation experiments, these steps
are repeated through trials with different combinations
of &, and g, (and ¢,) until they are obtained. With this
error model, errors are Gaussian distributed in the lin-
ear domain but become non-Gaussian when they are
transformed to the log domain. For further details and

corr
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discussions on the error model, the reader is referred to
Xue et al. (2007).

The observations of Z{,k and Z§, are generated from

»and Z37. The errors in Z{g and Z g, are simply prop-
agated from errors in the reflectivity observations, as in
the real data. Simulated observations of V¢ and K%p
are obtained from the error-free V% and K5p by adding
Gaussian errors of zero mean and specified SDs:

V¢ = u cosa sin + vcosa cosf + w sina

+ arandom error and 3)

K%p = K'5p + arandom error. )

In (3), we neglected the effect of the hydrometeor ter-
minal velocity, which is also done in this paper when
assimilating V, data. The same is done in XTDO06, al-
though our more recent studies have included the ter-
minal velocity effect (TX08a).

We note that in (1)—(4) only the typical radar sam-
pling error is simulated. Other types of measurement
errors associated with mismatched side lobes, clutter
contamination, partial beam filling, range effect, etc.,
are not taken into account in our error model. In our
radar emulator, the SDs or variances can be specified
by the user. For operational WSR-88D radars, the rea-
sonable range of the standard deviations of reflectivity
and differential reflectivity are 1-2 dBZ and 0.1-0.3 dB,
respectively (Ryzhkov et al. 2005; Doviak and
Zrnic 1993). The standard error of Kpp in the range of
0.24°-0.48° km™! is expected for lightly filtered esti-
mates of Kp from differential phase ¢pp for opera-
tional WSR-88Ds (Ryzhkov et al. 2005). The V, error
can be assumed to be 1 ms~! (Doviak and Zrnic 1993).

Default error SDs used in our simulation and assim-
ilation experiments are given here. The default values
of e, and g, (and &,) are set to be 36% and 2% of Z7,
so as to yield an effective error SD of about 2 dBZ for
Z¢, and close to 0.2 dB for Z{ k. Gaussian errors with
zero mean and SDs of 1 ms™! for V¢ and 0.5° km ™' for
Kpp, which is reasonable for a 2-km resolution (Ryzh-
kov et al. 2005), are added to V. and Kpp. The (Z4,)"*
error is determined by the errors in Z¢,, and is about 1.0
mm® m 3. These errors approach the large end of er-
rors suggested in the literature. Also, Torres and Zrnic
(2003) proposed a technique that can significantly re-
duce statistical errors while maintaining the same level
of current WSR-88D radar capabilities such as the scan
rate. We assume large errors in the observations to
account for the worst cases. The errors in the real ob-
servation can be reduced by implementing new tech-
niques in the future, and then the impacts could be
larger than those shown later in this paper. The same
SDs (or their squared version, i.e., the error variances)
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are specified in the filter for the corresponding obser-
vations in all experiments presented in this paper.

As an example, Fig. 1 shows the error-containing
(Figs. 1b,d,f) observations at the lowest radar elevation
of 0.5° that are compared with the error-free observa-
tions (Figs. la,c,e), for the simulated supercell storm.
Observations below 250 m in height, which is the first
level of the scalar variables in the model for the 500-m
vertical grid resolution, are not plotted near the radar at
the lower-left-hand corner of each panel. With the de-
fault SD errors for Z,, Zy, Zpr, and Kpp as given
above, the overall patterns of error-containing obser-
vations are not much affected by the errors. Of course,
the error-containing observation fields appear noisy
and the values at specific points differ from the truth
values. Some local extrema introduced by the errors,
like those at x = 25 and y = 43 km and at x = 45 and
y = 47 km in the reflectivity field, are evident and
resemble real observations (Fig. 1b). In our previous
OSSE studies, negative Z is set to 0. This is done here
also.

The errors in Zp are simply propagated from the
errors in reflectivity at horizontal and vertical polariza-
tions. Even though a large reflectivity error generally
leads to a large Z, error in most cases, their errors are
not necessarily strongly correlated at every point be-
cause of the uncorrelated part of error. The noise in the
data is particularly noticeable for small values of Zyg
and most of this noise is removed in our assimilation by
data thresholding. Negative Zp is also set to 0 as we
assume that the differential attenuation is small for S-
band radars at both polarizations, which could cause
negative Zpi by attenuating Z,; more than Z,. Also,
the negative Zi observed from hail (Bringi et al. 1986;
Illingworth et al. 1987), either from prolate or conical
shape particles or three-body scattering (Hubbert and
Bringi 1997), is not simulated in this study; they are less
important because they will most likely fall below our
threshold. We also note here that setting the negative
value to zero is also a form of data thresholding; we
believe doing so is desirable and can be done with real
data also.

We keep the negative values of K,p in the error-
containing field (Fig. 1f). An SD of 0.5° km™' that is
used here is quite large considering the dynamic range
of data. However, the fact that K,p error does not scale
with the signal (as those of reflectivity do) means that
the signal-to-noise ratio of Ky,p is actually high in heavy
precipitation regions.

b. Data assimilation procedure

As mentioned earlier, the EnKF radar data assimila-
tion framework of XTD06, which was based on TX05
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FiG. 1. Simulated (a),(c),(e) error-free and (b),(d),(f) error-containing observations at the 0.5° elevation at 100

min of the supercell storm simulation of (a),(b) Z; (c),(d) Zpg; and (e),(f) Kpp.
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and further enhanced in TX08a, is used as the basis of
our data assimilation work. This framework is en-
hanced by adding additional capabilities to assimilate
the polarimetric radar variables. The observation op-
erators developed in Part I are used, with our formula
for the reflectivity at horizontal polarization [(5) in Part
I] replacing the reflectivity formula described in TXO05.
The new error model described above is used.

Our EnKF assimilation system employs the ensemble
square-root filter (EnSRF) after Whitaker and Hamill
(2002), which is a particular variant of ensemble-based
filters. A full description of the filter can be found in
XTDO06 and TXO08a. The experiment environment is
largely inherited from XTDO06 and TX08a, with the dif-
ferences noted above.

Following TX08a, initial ensemble members are ini-
tialized at + = 20 min of model time by adding spatially
smoothed perturbations to the initially horizontally ho-
mogeneous first guess defined by the Del City, Okla-
homa, sounding. The standard deviations of the pertur-
bations added to each variable are 2 m s~ for u, v, and
w; 2 K for 6; and 0.6 g kg~ ! for the mixing ratios of
hydrometeors (q,, 4., 4,, 9:> 45, and g,). The perturba-
tions are added to the velocity components, potential
temperature, and specific humidity, in the entire do-
main excluding grids composing the lateral boundaries.
For the mixing ratios, the perturbations are added only
to the grid points located within 6 km horizontally and
2 km vertically from the observed precipitation. Nega-
tive values of mixing ratios after the perturbations are
added are reset to zero. The pressure variable is not
perturbed. These configurations are the same as in
TXO08a.

The first assimilation of simulated observations is
performed at 25 min of model time and the analyses are
repeated every 5 min until 100 min. The filter uses 40
ensemble members and a covariance inflation factor of
15% and a covariance localization radius of 6 km
(Anderson 2001; Xue et al. 2005; Houtekamer and
Mitchell 1998, 2001; Hamill et al. 2001). A single virtual
polarimetric WSR-88D radar that scans the model at-
mosphere is located at the southwest corner of the
model domain, as is the nonpolarimetric radar in
XTDO06. For more detailed information on the configu-
ration of the assimilation experiment, the reader is re-
ferred to XTDO06 and TX08a.

c. Experimental design

To examine the impact of assimilating polarimetric
variables (Zpg, Zgp, and Kpp), in addition to the re-
flectivity at horizontal polarization (Z,;,, which is what
conventional WSR-88D radars observe) or in addition
to both Z; and V,, on the analysis of the convective
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TABLE 1. List of experiments testing the impact of polarimetric

variables.

Expt Observation(s) assimilated
Zh Z,; (everywhere)
ZhZdr Zy and Zpr (Zpg > 03 dB)
ZhZdp Zy and Zy, [(Z4,)** > 1.7 mm° m ™)
ZhKdp Zy and Kpp (Kpp > 0.9° km ™)
ZhZZK Zi1s Zisgs Zap, and Kpp
ViZh V,(Zy > 10 dBZ) and Z,,
VrZhZdr V., Zy, and Zpg
VrZhZdp V., Zy, and Zy,
VrZhKdp V., Zy, and Kpp
VIZhZZK Vo Ziss Zisgs Zaps and Kpp

storm, we designed 10 experiments, which are listed in
Table 1. Experiment Zh serves as the control run for
the first set of the data impact experiments that include
itself, ZhZdr, ZhZdp, ZhKdp, and ZhZZK. Experi-
ments ZhZdr, ZhZdp, and ZhKdp test the impact of
ZpRr, Zgp» and Kpp data individually when assimilated
in addition to Z,. Experiment ZhZZK tests the com-
bined impact of all three variables (Zpg, Zg,, and Kpp)
together. Experiment VrZh is the control run for the
second set of experiments that consists of itself,
VrZhZdr, VrZhZdp, VrZhKdp, and VrZhZZK. In this
set, the impact of polarimetric variables in addition to
both radial velocity and conventional reflectivity data is
examined.

TXO05 shows that the Z;; data from echo-free regions
help suppress spurious cells in those areas. The Z;; data
within the entire radar range are therefore assimilated
in all of our experiments. For the polarimetric vari-
ables, thresholds that are experimentally determined
are applied to each variable. We performed experi-
ments ZhZdr, ZhZdp, and ZhKdp without threshold-
ing and with various thresholds based on their SDs and
found that applying thresholds can lead to better analy-
ses. The thresholds used for Zpg, (Z4,)"?, and Kpp in
this study are 0.3 dB, 1.7 mm® m~, and 0.9° km',
respectively. In other words, we assimilate polarimetric
variables only when their values are greater than their
respective thresholds.

To help to understand the need for thresholding for
polarimetric variables, we investigate the effect of ob-
servational errors on the analysis in the current assim-
ilation framework. In our single-moment microphysics
scheme, all polarimetric variables including Zyy are
uniquely determined by the mixing ratios only, with
assumed fixed values of DSD parameters. Therefore,
they are to some extent correlated with each other. In
practice, assimilating two (or more) observations taken
at the same point and time that should be correlated
may result in the deterioration of the analysis if the
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Fi1G. 2. Scatterplot of reflectivity vs (a),(b) differential reflectivity; (c),(d) reflectivity differ-
ence; and (e),(f) specific differential phase for (a),(c),(e) truth and (b),(d),(f) observation. The
thresholds applied to the observation in the assimilation are overlaid on each plot (thick

dashed).

noise level is high in one or both observations. When a
signal is weak, as is often the case with polarimetric
data in many parts of a storm (see examples given in
Part I and here in Fig. 1), it is possible that the noise
dominates over the signal. In such a case, the assimila-
tion of noise-dominated data may interfere with the
assimilation of signals contained in other variables that
are less susceptible to the noise (e.g., reflectivity). This
can be inferred from the scatterplots of polarimetric
variables versus reflectivity in Fig. 2. Figures 2a,c,e
show the scatter diagram between truth (error free)
reflectivity and truth (error free) polarimetric variables

and Figs. 2b,d,f show the same plots between error-
containing observations. It is clear from the plots that
the relative errors are larger for small values and
smaller for large values. In Figs. 2a.e, there are several
lines showing high population densities of observation
points that pack together. When a single hydrometeor
dominates in many of the radar sampling volumes, such
as snow at the upper levels and rain at the low levels,
the functional relation between the reflectivity and the
polarimetric variable stands out as a densely clustered
curve. In Fig. 2a, the straight steeply sloped line corre-
sponds to raindrops. In the error-free cases, all scatter
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FIG. 3. The ensemble mean forecast and analysis RMSEs averaged over points at which the true reflectivity is greater than 10 dBZ
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curves with lower values), (i) ¢,, and (j) g,, for experiments Zh (solid black) and VrZh (dotted black). The vertical straightline segments
in the curves correspond to the reduction or increase in RMSEs or ensemble spreads by the data assimilation.

away from the identifiable curves is due to the co-
existence of more than one hydrometeor species in the
sampling volumes. For those who are interested in
more detailed information on the impacts of noise on
signals, many past studies are well documented in
Doviak and Zrnic (1993) and Bringi and Chandrasekar
(2001).

When the simulated errors are added to the error-
free observations, the clearly defined lines become
blurred, and overall there is much more scatter within
the plots (Figs. 2b,d,f). For reflectivity difference
(Z4p)"* (Figs. 2¢,d), the line broadening due to noise is
more severe where the slope is low below a certain
threshold. As a result, the reflectivity shows a much
larger variability for small values of (Z4,)"” in Fig. 2d.
For Kpp, the effect of noise at low Kp values is even
more severe—below Kpp = 0.9, no signal is perceivable
due to noise (Fig. 2f). For this reason, the thresholding
of polarimetric variables is clearly necessary, and their
values are chosen based on the scatterplots in combi-
nation with sensitivity experiments, at levels below
which noise dominates, as indicated by the horizontal
dashed lines in the plots. These thresholds are applied
to the simulated data. When the thresholds are in-
creased above these levels, we found that the quality of
analysis starts to decline because some useful signal is
excluded. With the given thresholds, only 34.5%,
53.6%, and 13.9% of Zpg, Z4,, and Kpp observations,

respectively, collected from the echo region (where ob-
served reflectivity is greater than 0 dBZ) are assimi-
lated. If more data could be used, the impact of pola-
rimetric data to be shown later might have been larger.

3. The impact of assimilating polarimetric
variables

We examine, through the two sets of experiments
listed in Table 1, the impact of Zpg, Z4,, and Kpp data
when only Z; is assimilated or when both V, and Z
are assimilated. The V, data are only available in pre-
cipitation regions where reflectivity is greater than 10
dBZ following TXO05.

Figure 3 shows the ensemble mean analysis and fore-
cast RMSEs of model state variables during the assim-
ilation cycles of experiments Zh and VrZh, which are
our control runs. As in TX05 and XTDO06, these errors
are calculated in the regions where the truth reflectivity
(Z%) is no less than 10 dBZ. Additional details on the
plots can be found in those papers. As mentioned ear-
lier, the experiment names are self-descriptive. For ex-
ample, experiment Zh assimilates Z, data only and
ZhZdr assimilates Z,, and Zpig while experiment
VrZhZZ7ZXK assimilates V,, Zy, Zpgr, Zqp, and Kpp.

Under the perfect model assumption, the solid curves
in Fig. 3 show that reflectivity data alone can success-
fully reduce the RMSEs over the first 40 min or so of
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F1G. 4. The ensemble mean analysis RMSEs of experiments ZhZZK (thick solid), ZhZdr (solid), ZhZdp (dashed), and ZhKdp
(dotted) normalized by those of experiment Zh. The reference horizontal line at unity is overlaid.

the assimilation window period to rather low levels.
After t = 60 min, the RMSEs more or less stabilize. At
the end of the assimilation window, the RMSEs of u
and v are between 1 and 1.2 m s~ !, while that of w is
about 0.6 ms~'. The RMSEs of the hydrometeors are
all below 0.1 g kg~ " except for g,. On average over all
assimilation cycles, an additional 30%-48% of analysis
error reduction in u, v, and w, and 17%-27% in the rest
of the variables except for ¢q,, which shows about
36% of error reduction, are achieved with the addition
of V, data. These results are consistent with those of
TXO05.

Because we are interested in if and how much the
polarimetric data can further improve the analyses
when they are assimilated in addition to reflectivity or
both reflectivity and radial velocity data, we normalize
the ensemble mean analysis RMSE of the data impact
experiments using those of the corresponding control.
Namely, the RMSEs of ZhZdr, ZhZdp, ZhKdp, and
ZhZZK are normalized by the errors of Zh, and the
errors of VrZh are used to normalize those of
VrZhZdr, VrZhZdp, VrZhKdp, and VrZhZZK.
[These normalized RMSEs (NRMSEs) are shown in
Figs. 4 and 6]. A smaller NRMSE suggests a larger
improvement through the assimilation of additional
variable(s).

Figure 4 shows that every polarimetric variable
shows a degree of positive impact when assimilated in-
dividually in addition to reflectivity (Fig. 4), at least
during the later assimilation cycles when the filter sta-

bilizes. Generally, ZhZdp (dashed in Fig. 4) and
ZhKdp (dotted in Fig. 4) produce better analyses than
ZhZdr (solid in Fig. 4) during early-to-intermediate
cycles and ZhZdr shows a bigger improvement than
ZhZdp and ZhKdp during intermediate-to-later cycles.
These results show that different observations may
have different relative impact at the different times. At
the early stage of assimilation when the forecast error is
relatively large, the intensity information carried by Z,
and Kp seems to be more beneficial. Later in the as-
similation period, Z seems to provide additional in-
formation other than intensity.

From experiments ZhZdp, ZhZdr, and ZhKdp, with
the help of any one of the polarimetric variables, the
normalized analysis RMSEs stay lower than those of
experiment Zh after 60 min of model time for all vari-
ables except for g, but there is a tendency for such
error reductions to become smaller in the later assimi-
lation cycles for many of the variables. This is believed
to be due to the fact that by the time of the later cycles,
the reflectivity data have had more time to correct the
model state error while during the intermediate cycles,
there is more room for the polarimetric variables to
contribute, by accelerating the error reduction. During
the earlier cycles, the positive impact of the polarimet-
ric variables is questionable according to Fig. 4, which
suggests that when the model state estimation is rela-
tively poor (during the earlier cycles), the positive im-
pact of the polarimetric variables is harder to realize.

After 60 min of model time, in general, ZhKdp shows
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the smallest error reduction among ZhZdr, ZhZdp, and
ZhKdp on average. Their error reduction behaviors are
all similar to each other with the exception of g. and p’
during the later assimilation cycles. Experiment ZhZdp
shows generally larger RMSEs than ZhZdr, but slightly
smaller than or similar to ZhKdp in most variables. The
polarimetric variables are more beneficial to w, g,, and
q,, with the reduction of error in g, being the largest.
This is probably not surprising because rainwater mix-
ing ratio, ¢q,, is directly involved in the calculation of
Zpr, Zgp, and Kpp, and the signatures of these vari-
ables are strongest where rain mixing ratio is larger (see
Part I). These variables are related to w and g,, through
their direct connection to the updraft/downdraft inten-
sities and microphysics. For example, g, converts to g,
through condensation in the updraft and is created
from g, by evaporation in the downdraft. Among the
other state variables, the improvements to u, v, and g,
are rather smaller. Even though g, is directly related to
polarimetric variables, the polarimetric signatures re-
lated to dry-ice-phase hydrometeors are generally weak
so that most of the observations containing information
on g, are screened out by the observation thresholding.
An interesting point is that the analysis error reduction
is relatively large in g,,. This is because a considerable
amount of g, information is available from wet hail,
which survives the thresholding in the deep layer below
the melting level.

Among experiments ZhZdp, ZhZdr, and ZhKdp, ex-
periment ZhZdr has the greatest impact. This may not
be intuitively obvious because Zr mainly carries in-
formation on the difference between reflectivity at the
horizontal and vertical polarization; however, it does
not provide much information on the intensity of the
reflectivity. On the contrary, Kpp and Zg, are directly
related to mixing ratios and are expected to be more
useful for quantification. This behavior may be ex-
plained in terms of independent information content.
The Zi contains information on the mean shape and
orientation of hydrometeors and is proportional to the
median diameter of precipitation particles in the radar
resolution volume. The Z,, is mainly related to the hy-
drometeor concentration. For rain drops, the shape is a
strong function of size and, therefore, Z,r and Z
share some information in common. Both Kpp and Z,,
contain the information on both hydrometeor concen-
tration and shape. As discussed earlier in section 2c,
with a single-moment scheme, all polarimetric variables
are correlated to the reflectivity, with the correlation
between Zyr and Z;; being the smallest; the indepen-
dent information content in Zpi can therefore have a
larger impact. The intensity information should have
already been well captured by the Z, data. An-
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other perhaps more important issue is that, with the
current single-moment microphysics scheme used, the
DSD parameters, including intercept parameters and
hydrometeor densities, are fixed and cannot be ad-
justed using the information contained in the polari-
metric radar data. The impact of polarimetric data may
increase when adjustments to these parameters are al-
lowed, via, for example, parameter estimation (TX08a
and TXO08b) or if a multimoment scheme is used. In
those cases, the response of the data assimilation sys-
tem to the polarimetric data may become more physi-
cal.

When all three polarimetric variables are assimilated
together, the analysis improvement is seen to further
increase in general, although ZhZdr does do better
temporarily after 60 min of model time for p’, ZhZdp
does better for g, and g;, and ZhKdp does better for p’.
It is encouraging that experiment ZhZZK successfully
reduces the analysis RMSEs even when individual po-
larimetric parameters show little or no positive impact.
For instance, the normalized RMSEs of ZhZZK stay
low at 65 min of model time for ¢, at 85 min for ¢_, and
at 90 and 100 min for g,, while the corresponding
RMSEs of ZhKdp, ZhZdr are greater than 1.

From Fig. 4j, we see that Kpp and Z,, help reduce
the RMSE up to 60 min, Zi helps reduce the RMSE
from 60 to 85 min, and Z, helps reduce the RMSE
after 85 min. Similar behaviors are seen in many other
variables (Figs. 4a—c,f,g).

The percentage improvement over experiment Zh
averaged over the last nine cycles is summarized in
Table 2. From Table 2, we can see that all model state
variables experience analysis error reduction when as-
similating polarimetric data. The improvement is great-
est in g,, which has an approximately 29%—41% im-
provement in ZhZdr, ZhZdp, and ZhKdp and more
than 50% improvement when all three variables are
assimilated. As discussed in the Part I, Kpp is more
linearly proportional to rain mixing ratio and has little
sensitivity to other species. Therefore, it is expected to
be more useful for determining ¢, than other variables,
including Z,;, even if we take the thresholding into ac-
count. Actually, only 14% of available K, observa-
tions are used in the analysis, which is about 40% of
Zpr and about 25% of Z,, observations. Considering
this, the impact of Kpp on g, analysis is rather large.

Figure 5 shows the vertical profiles of the RMSEs
averaged over points at which the truth reflectivity is
greater than 10 dBZ for experiments Zh (dotted) and
ZhZdr (solid) at 80 min. It is seen that the errors of all
variables are reduced at almost all levels by assimilating
Zpr, With the exceptions being with « in a shallow layer
between 12.5- and 13.0-km height. Considering that
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TABLE 2. The improvement over the experiment Zh for the experiments ZhZdr, ZhZdp, ZhKdp, and ZhZZK and over the experi-
ment VrZh for the experiments VrZhZdr, VrZhZdp, VrZhKdp, and VrZhZZK averaged over the last nine cycles (60-100 min of model
time). The improvement is expressed in percentages relative to the corresponding control experiment.

Improvement (%)

Improvement (%)

Variable ZhZdr ZhZdp ZhKdp ZhZ7ZK VrZhZdr VrZhZdp VrZhKdp VrZhZZK
u 10.4 6.2 7.8 14.6 5.0 2.8 4.4 71
v 13.1 72 6.1 17.1 0.7 0.8 3.0 1.2
w 22.3 14.4 9.7 28.3 12.3 7.3 7.1 18.7
0’ 15.7 10.6 6.2 19.6 32 2.6 4.6 7.4
p' 19.7 10.8 9.1 20.0 8.6 2.0 4.9 11.9
q, 29.0 18.3 17.5 335 9.5 5.1 3.9 9.9
q. 20.0 11.0 7.8 234 8.1 52 4.7 12.9
q, 40.7 28.7 31.1 51.9 31.1 221 30.5 459
q; 15.0 8.4 9.4 21.9 4.0 42 7.8 9.3
q, 12.2 9.5 9.0 18.4 3.0 22 1.1 6.7
qn 154 19.9 11.8 26.1 32 8.8 72 14.4
Tot 213.5 145.0 125.5 274.8 88.7 63.1 79.2 145.4

most Zpr observations at the high altitudes are ex-
cluded by the threshold constraints (see Table 1) be-
cause Zpg values are typically small for ice phase par-
ticles (see Fig. 6 of Part I), the fact that improvements
are found at all levels is encouraging specially with the
large error reduction at the upper levels in v, w, 6', and
q,. Also, the error reduction is generally largest where
the RMSE profiles peak. Apparently, direct improve-
ment to the analysis at the low levels is propagated
upward, or throughout the computational domain,
through the dynamic prediction model. The reduction
of errors in g, and g, below 5 km where the melting
occurs is also noticeable at the time shown.

In the next set of experiments (VrZh, VrZhZdr,
VrZhKdp, and VrZhZZK), we examine the impact of
Zprs Zap, and Kpp data when both V, and Z; are as-
similated. From Fig. 6, we see that in such a case, the
impact of polarimetric variables is rather small though
still positive in general during middle to later cycles in
most of the state variables although temporary deterio-
ration can occur with ¢, and ¢,,. Variables u and w show
decreasing error reduction starting around 80 min of
model time and the RMSE reduction is minimized at
the end of assimilation cycles while the improvement is
very small in v. Such a diminishing impact of the addi-
tional polarimetric variables appears again due to the
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very accurate analysis that one can already achieve by
using reflectivity and radial velocity data, especially af-
ter they have had a sufficiently long time to contribute
to the state estimation.

The gross improvement can be assessed more easily
from Table 2. The error reduction characteristics are
generally similar to but somewhat different from those
of the previous set of experiments. As in previous cases,
the improvement is generally larger in w, q,, and g, and
smaller in u, v, and g, either when polarimetric vari-
ables are assimilated individually or when all are as-
similated together. Again, g, shows large improvement,
even larger than those of w and ¢, in VrZhZdp and
VrZhKdp, and than that of g, in VrZhZZK. Another
interesting point is that the gross error reduction by
VrZhZdp is smaller than that of VrZhKdp, in contrast
to the experiments without V,. When V, is assimilated,
the percentage improvements by polarimetric variables
relative to the control experiment are significantly re-
duced with the percentage reduction by Kp being the
smallest in general compared to the corresponding ex-
periments without V,. Moreover, the percentage im-
provement in g, is similar between VrZhKdP and Zh-
Kdp.

From Table 2, we can see that the NRMSE reduction
by VrZhh for the 11 model state variables range from
1% to 46% when all polarimetric data are assimilated
together. However, these additional error reductions
may not be very meaningful in practice. Within the
current OSSE framework using a perfect prediction

model, the analysis obtained using V, and Z alone is
already very good; the RMS analysis errors in u and v,
for example, are quickly reduced to below 1 ms™!
within 4-5 cycles (Figs. 3a—c), therefore there is little
room for further improvement (the 1 ms™!' analysis
error is already at or below the level of V, RMSE,
which is 1 ms™! as defined in section 2). For real data
cases where model error tends to be rather large, the
extra information content afforded by the polarimetric
data may produce a larger impact, especially when the
polarimetric data are used to correct microphysics-
related model error. For the single-moment scheme
used here, many uncertainties exist with the values of
the intercept parameters associated with the assumed
exponential DSDs, and with snow and hail densities.
TX08a shows that large analysis error can result when
errors exist in these DSD parameters and the resultant
analysis errors tend to be larger than the amount of
error reduction achieved here through the assimilation
of additional polarimetric variables. TX08a also shows
that the errors in the DSD parameters can often be
corrected through EnKF-based parameter estimation,
although nonuniqueness in the solution does seem to
exist. The final parameter estimation was found to be
sensitive to the initial guess when multiple parameters
are estimated together. It was suggested there that ad-
ditional polarimetric data could impose additional con-
straints that may improve the uniqueness of the solu-
tion, given the fact that the polarimetric data contain
DSD information. Using additional polarimetric pa-



2258

rameters to improve the DSD parameter retrieval
whereby reducing microphysical uncertainties and
model error is the goal of our planned research, and is,
we believe, where polarimetric data assimilation may
play an even greater role.

Last, we also performed additional experiments as-
similating combinations of any two of Zpg, Z4,, and
Kpp, and these experiments exhibit lower analysis er-
rors for most variables than experiments assimilating
any one of the two variables involved in terms of time-
averaged RMSEs after 60 min. One exception is found
in g, of ZhZdrZdp, whose time-averaged RMSE is
smaller than that of ZhZZK. For example, ZhZdrKdp
and ZhZdpKdp result in better analyses than those of
ZhZdr and ZhKdp in terms of RMSE, but worse analy-
ses than that of ZhZZK. This is also true when V, is
assimilated. In this case, VrZhZZK produces the best
analyses among all experiments including those assimi-
lating any two combinations of polarimetric variables
with one exception in v of VrZhZdpKdp. So in general,
it is better to assimilate more polarimetric variables.

4. Summary and further discussion

In this paper, an ensemble Kalman filter system that
incorporates the ability to assimilate polarimetric radar
variables is described. It employs the observation op-
erators developed in the first part of this paper. The
polarimetric variables considered include the differen-
tial reflectivity Zpy, reflectivity difference Z,,, and
specific differential phase Kpp. A new error model for
reflectivities at horizontal and vertical polarizations is
developed in this study that includes both correlated
and uncorrelated errors, and the relative errors of
which are assumed to have Gaussian distributions in
the linear domain based on Xue et al. (2007). This
model gives realistic errors for the derived quantities,
such as Zpr and Z,,. The simulated error-containing
radar observations are shown, for example, for the
truth simulation of a supercell.

The enhanced EnKF assimilation system is used to
assimilate radar data sampled from a simulated super-
cell storm, to examine the impact of additional polari-
metric measurements, including Zpg, Zg,, and Kpp, on
the quality of storm analysis under the perfect model
assumption. It is found that the assimilation of these
variables, in addition to the reflectivity at horizontal
polarization (reflectivity measurement of nonpolari-
metric radars), helps further reduce the analysis error
and the improvement during the intermediate and later
assimilation cycles can be quite significant for some
state variables. The results also show that the analyses
for all model state variables are improved at all vertical
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levels in general. Although Z,i does not directly re-
flect the magnitude of hydrometeor concentration, it
gives the largest impact among the three polarimetric
variables examined. When both V, and Z,, are assimi-
lated, the impact of additional polarimetric variables
becomes smaller, partly because the analyses obtained
with V, and Z;; alone are already very good.

The results show that applying data thresholding
when assimilating polarimetric variables leads to better
analysis. When two or more observations are taken at
the same point and time that are somewhat correlated,
the assimilation of noise-containing observations may
interfere with the assimilation of signals contained in
other observations. This noise effect can limit the im-
provement to the analysis or even harm the analysis,
especially when the noise level is high, which is likely to
be true where a signal is weak. Applying thresholding
also reduces the assimilation cost.

It is suggested that polarimetric radar data can be
very useful for estimating DSD parameters, such as the
intercept parameters and hydrometeor densities used in
single-moment microphysics schemes, because of their
information content on DSDs. The DSD parameter es-
timation experiments using our EnKF framework are
under way, following the work of TX08a and TX08b.

We expect to see a larger impact when a two-moment
microphysics scheme is used and/or for real data cases
where the state estimation using V, and Z, is generally
not as good. When a two-moment scheme is used, Zpp
depends only on the slope parameter A, which is a func-
tion of mixing ratios, while Z;;, depends on both total
number concentration N, and slope parameter A of the
exponential and the gamma DSD. In that case, Zg is
expected to be more independent of Z,,. Even though
Kpp and Zpp are still correlated with Z;; as they are
determined by N, and A, as is Zy, a two-moment
scheme will increase the number of model state vari-
ables to be estimated, and then V, and Z,, data alone
may become insufficient to estimate all state variables.
In such cases, additional polarimetric data are expected
to play a larger role.

We also pointed out earlier that the error levels as-
sumed for the polarimetric variables are on the larger
side. The data thresholding necessitated by the rela-
tively larger errors caused the discarding of large frac-
tions of the simulated polarimetric observations. If the
actual errors are smaller, larger impacts may be ex-
pected.

Last, we point out that even though correlations
among the reflectivity-related observation variables
and their errors are expected, in the EnSRF used here,
which assimilates observations serially, one at a time,
all observations are assumed to be uncorrelated. The
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ideal way of processing correlated observations is to
either transform the observation variables into a space
where the assimilated quantities are no longer corre-
lated (this may or may not be possible) or to use an
algorithm that can take the observation error covari-
ance into account. Their practical implementations are
often nontrivial, however. To have an idea how much
our observation errors are correlated, we calculated the
observational error correlation coefficients between Z,;
and the polarimetric variables and found the coeffi-
cients to be 3.8 X 1072, 0.37, and —3.2 X 1073 for those
between Z;; and Zpg, (Z4,)"%, and Kpp, respectively.
These correlations suggest that the results of our serial
algorithm are probably reasonable.
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