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ABSTRACT: As part of the 2022 NOAA Hazardous Weather Testbed Spring Forecasting Experiment, the Center for
Analysis and Prediction of Storms produced Finite-Volume Cubed-Sphere–Based Limited Area Model (FV3-LAM) real-
time ensemble forecasts to study its use in convection-allowing ensemble forecasts for the severe weather forecasting problem
and to inform the optimization of the upcoming operational Rapid Refresh Forecast System. We evaluate deterministic and
ensemble forecasts in terms of surrogate severe weather reports (SSRs) and surrogate severe probability forecasts
(SSPFs) created from simulated 0–3- and 2–5-km updraft helicity (UH) and 10-m wind speed. Forecasts are verified
against observed storm reports (OSRs) and observed severe probabilistic fields (OSPFs) derived from tornado, hail,
wind, and all types of local storm reports, and 0600 UTC day 1 convective outlooks issued by the Storm Prediction Center
(SPC) for three cases. UH ensemble SSPFs have better reliability and discrimination when verified with OSRs from all
storm reports. Spatial smoothing generally increases reliability, while smaller smoothing lengths optimize discrimination
ability. Case studies demonstrate that UH SSPFs are consistent with SPC day 1 convective outlooks, indicating that these
forecasts are qualitatively similar to operational guidance. The ensemble mean of SSRs is generally more skillful than
individual members when based on UH but not 10-m wind. In fact, SSRs and SSPFs based on 10-m wind display little skill
in predicting severe wind events; we therefore conclude that UH seems to better inform severe hazard risk, even compared to
prognosed surface wind speed. Model resolution dictates its ability to prognose rotating updrafts and severe wind.

KEYWORDS: Ensembles; Forecast verification/skill; Numerical weather prediction/forecasting

1. Introduction

Numerical weather prediction of convective hazards has
steadily improved in recent years with increasing computing
power, allowing for finer horizontal resolution, more sophisti-
cated model physics, improved data assimilation, and an increas-
ing forecast ensemble size. As part of the Unified Forecast
System vision, the Rapid Refresh Forecast System (RRFS) is
expected to replace several regional operational models of the
National Weather Service. It will feature the Finite-Volume
Cubed-Sphere (FV3) model (e.g., Lin 2004) as its dynamic core.
As part of the 2022 National Oceanic and Atmospheric Admin-
istration (NOAA) Hazardous Weather Testbed (HWT) Spring
Forecasting Experiment (SFE), the Center for Analysis and
Prediction of Storms (CAPS) ran convection-allowing ensemble
forecasts with 3-km grid spacing utilizing multiple-physics com-
binations, with the goal of helping determine the optimal config-
uration of an operational multiphysics RRFS system.

The FV3 dynamic core’s operational implementation at
convection-allowing resolution is limited to two high-resolution

window FV3 members in the High-Resolution Ensemble Fore-
cast (Roberts et al. 2019), which replaced the high-resolution
window Nonhydrostatic Multiscale Model on the B-Grid (Janjic
2005) members in May 2021. Its performance as a convection-
allowing model has been examined in the past few years through
NOAA HWT and hydrometeorology testbed experiments.
Zhang et al. (2019) first demonstrated comparable precipita-
tion forecast skill between FV3 and the Weather Research
and Forecasting Model during the 2018 NOAA HWT SFE.
Snook et al. (2020) noted the greater performance of localized
probability-matched ensemble means compared to probability-
matched ensemble means in precipitation forecasts using an
FV3 ensemble. Since the FV3-Based Limited Area Model (FV3-
LAM) has been evolving, including the addition of and updating
to physics parameterizations, continued testing is needed. Supinie
et al. (2022) noted regional precipitation biases over the con-
tiguous United States (CONUS) attributable to microphysics
schemes for FV3-LAM-based ensemble forecasts for the winter
season of 2020–21 and recommended different land surface
models (LSMs) depending on which fields forecasters want to
prioritize for optimization. The operational High-Resolution
Rapid Refresh (Benjamin et al. 2016) still generally outper-
forms FV3 (Gallo et al. 2021), likely owing to its long-time
operational tuning and more compatible initial conditions (ICs).
Although FV3-LAM-based forecasts have exhibited useful skill
at convection-allowing grid spacings, there remains substantial
room for improvement and optimization, especially when differ-
ent physics combinations are to be used in the ensemble.
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High-resolution forecast evaluation for convection-allowing
models often invokes techniques to mitigate the “double pen-
alty” issue in which small spatial and temporal displacements
can simultaneously decrease hits and increase false alarms
(e.g., Ebert 2008; Gilleland et al. 2009). These techniques in-
clude the use of a neighborhood, scale separation, object-
based methods, and field deformation (e.g., Gilleland et al.
2009; Schwartz 2017). Forecasts of severe weather and its as-
sociated hazards can be verified against Multi-Radar Multi-
Sensor products over the United States, such as azimuthal
shear and maximum estimated size of hail, or against regions
of intense reflectivity (e.g., Flora et al. 2019; Johnson et al.
2023). One neighborhood approach for severe weather haz-
ards employs “surrogate severe weather reports” (SSRs; e.g.,
Sobash et al. 2011). Analogous to “practically perfect” fore-
casts (e.g., Brooks et al. 1998; Hitchens et al. 2013), SSRs map
predicted model events [i.e., updraft helicity (UH) exceeding
a prescribed threshold] that can be considered “surrogates” of
severe weather occurrences to a coarser grid, to which a
Gaussian smoother can be applied to create a surrogate se-
vere probability forecast (SSPF). SSPFs have demonstrated
skill for both deterministic and probabilistic forecasts of con-
vective hazards for warm- and cool-season events (e.g., Sobash
et al. 2016, 2019).

This study presents evaluations of the FV3-LAM ensemble
forecasts produced by CAPS during the 2022 HWT SFE, focus-
ing specifically on skill in predicting severe convective hazards.
The forecasts to be verified in this paper are a 10-member subset
with perturbed ICs that is part of a larger 21-member ensemble
over the CONUS. SSRs are created from simulated UH in the
0–3-km layer, UH in the 2–5-km layer, and 10-m wind speed
(|U| but stylized as U for simplicity) and are verified against
observed tornado, hail, and wind local storm reports. Similar
to prior studies, probabilistic forecasts are created by applying
a Gaussian filter to SSRs to create SSPFs and are verified
against similarly upscaled observed storm reports (OSRs) or
their smoothed observed severe probabilistic fields (OSPFs).
Such a study can clarify which hazards the ensemble can fore-
cast with skill and what deficiencies remain to be improved.

The remainder of this paper is organized as follows: Section 2
details the methods used including the forecast configuration
and Model Evaluation Tools employed for verification; section 3
evaluates the performance of the individual members and
ensemble forecasts; section 4 provides an operational com-
parison in terms of Storm Prediction Center (SPC) day 1
convective outlooks; and section 5 summarizes and discusses
the results.

2. Model configuration and verification

a. FV3-LAM ensemble configuration

The 21-member FV3-LAM ensemble run by CAPS during
the 2022 HWT SFE contains one reference member and three
subensembles designed to examine the performance of dif-
ferent ensemble perturbation strategies. One five-member
subensemble is multiphysics with identical ICs and lateral
boundary conditions (LBCs), the 10-member subensemble is

multiphysics with IC perturbations, and the other five-member
subensemble is multiphysics with stochastic physics and IC
perturbations. Forecasts are performed on a domain centered
over the CONUS (Fig. 1) using ;3-km horizontal spacing
with 65 vertical levels. Forecasts are initialized at 0000 UTC each
weekday from 2 May to 3 June 2022 and run for 84 h. The FV3-
LAM forecasts for the 12–36-h time period examined in this study
span a total of 16 days between 5 May and 3 June. The FV3-
LAM dynamic core employed for these forecasts was obtained
from the Global Systems Laboratory (GSL) repository (https://
github.com/NOAA-GSL/ufs-weather-model) on 30March 2022.

In this study, we consider one of the three subensembles
run by CAPS during the 2022 HWT SFE: a multiphysics, per-
turbed IC subensemble containing 10 members. We also com-
pare individual member performance with that of the CAPS
FV3-LAM ensemble’s reference member (M0B0L0_PG) and
the control member of the multiphysics ensemble (M0B0L0_P;
Table 1). These members are designated as such because the
reference member M0B0L0_PG contains Global Forecast
System (GFS) ICs and LBCs, to which IC strategies can be
compared. The control member of the multiphysics ensemble
M0B0L0_P uses experimental RRFS ensemble-variational
data assimilation analyses as ICs and GFS forecasts as LBCs.
All members with a “_PI” suffix use experimental RRFS en-
semble Kalman filter perturbed ICs and Global Ensemble
Forecast System (GEFS) forecast LBCs.

The naming convention for the members contains informa-
tion about their configuration as follows: M0 and M1 identify
the microphysics schemes, the partially two-moment Thomp-
son aerosol-aware scheme (Thompson and Eidhammer 2014)
or the fully two-moment National Severe Storms Laboratory
(NSSL; Mansell et al. 2010) scheme, respectively. The B in
the name identifies the planetary boundary layer (PBL)
scheme used, with B0 for the Mellor–Yamada–Nakanishi–
Niino (MYNN; Nakanishi and Niino 2006), B1 for the Shin–
Hong (Shin and Hong 2015), and B2 for the turbulent kinetic
energy–based moist eddy-diffusivity mass-flux (TKE-EDMF;
Han and Bretherton 2019) scheme. MYNN surface physics

FIG. 1. Computational domains of the FV3 native model (black)
and FV3 ouput (red) over the CONUS for the 2022 NOAA HWT
SFE.
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(Olson et al. 2021) are coupled with the MYNN PBL (but not
vice versa), while GFS surface physics (Long 1986) are also
employed. The L in the name refers to the LSM with L0 de-
noting the Noah (Chen and Dudhia 2001), L1 being the
Noah-MP (Niu et al. 2011), and L2 denoting the Rapid Up-
date Cycle (RUC; Smirnova et al. 2016) model. All members
use the Rapid Radiative Transfer Model for general circula-
tion models (e.g., Clough et al. 2005) to parameterize radia-
tive heat fluxes. Overall, two microphysics and three PBL
schemes, and three LSMs are used. These are candidate
schemes that have the potential to be adopted by the opera-
tional RRFS.

b. Model Evaluation Tools and verification datasets

In this study, we evaluate the individual members and
ensemble consensus products from the CAPS FV3-LAM en-
semble in terms of their ability to accurately predict severe
weather occurrences using three simulated severe weather
proxy variables: 0–3-km UH, 2–5-km UH, and 10-m wind
speed (the magnitude of the 2D wind vector |U| but stylized
as U for simplicity). A threshold is applied to each of these
fields during verification to produce SSRs and SSPFs via a
process described later in this section. The method to gener-
ate SSRs and SSPFs is similar to those employed by Sobash
et al. (2016, 2019) and uses Model Evaluation Tools v11.0
(Brown et al. 2021) to format forecast/observation fields and
perform verification. Additionally, a binary filter is applied to
10-m U using an hourly maximum 1-km height reflectivity
threshold of 45 dBZ and a square neighborhood with a 40-km
length. These values are chosen to isolate 10-m U to thunder-
storm and convective events (on which the SPC wind reports
are conditioned) while producing forecasts with skill relative
to the fractions skill score (FSS; Roberts and Lean 2008)
(Fig. 2). Here, skill represents the FSS if the SSPF at every
grid point was equal to the observed fractional coverage f0,
given by the formula 0.5 1 (f0/2). At each grid point, if 1-km
height reflectivity exceeds this threshold anywhere inside the
neighborhood, then the 10-m U value is retained; otherwise,
10-m U is set to 0.

CAPS FV3-LAM hourly maximum forecasts of the severe
weather proxies are combined into a single dataset that contains
the maximum value at each grid point over the 12–36-h forecast
period using Model Evaluation Tool’s “pcp_combine.”
This temporal range is chosen as it corresponds with the 1200–
1200 UTC timing used by SPC local storm reports and the day
1 convective outlook issued by 0600 UTC. Next, the 3-km
gridded output is upscaled to the National Centers for Envi-
ronmental Prediction Grid 211, which uses a horizontal grid
spacing of approximately 80 km. Grid 211’s horizontal resolu-
tion is consistent with SPC forecasts, which define probabili-
ties for occurrences within 25 mi (;40 km) of a point, and it
has been done in prior severe weather forecast validation
studies (e.g., Clark et al. 2018; Loken et al. 2020). If the 3-km
forecast fields exceed a predetermined threshold, then the
closest Grid 211 grid point (determined by latitude/longitude)
is set to 1. The selection of threshold values is explored in

TABLE 1. Physics and IC/LBC configurations of one reference member (M0B0L0_PG), one control member from the multiphysics
subensemble (M0B0L0_P), and the 10-member multiphysics with IC/LBC perturbation subensemble (M#B#L#_PI) during the 2022
NOAA HWT SFE. Experiment names denote the microphysics (M), PBL scheme (B), and LSM (L). Physics options and ICs/LBCs
are denoted in the text.

Experiment Microphysics PBL Surface LSM IC/LBC

M0B0L0_PG Thompson MYNN MYNN Noah GFS/GFS
M0B0L0_P Thompson MYNN MYNN Noah RRFS CNTL/GFS
M0B0L0_PI Thompson MYNN MYNN Noah RRFS01/GEFS m1
M0B1L0_PI Thompson Shin–Hong GFS Noah RRFS02/GEFS m2
M0B2L1_PI Thompson TKE-EDMF GFS Noah-MP RRFS03/GEFS m3
M0B0L1_PI Thompson MYNN GFS Noah-MP RRFS04/GEFS m4
M0B2L2_PI Thompson TKE-EDMF GFS RUC RRFS05/GEFS m5
M1B0L0_PI NSSL MYNN MYNN Noah RRFS06/GEFS m6
M1B1L0_PI NSSL Shin–Hong GFS Noah RRFS07/GEFS m7
M1B2L1_PI NSSL TKE-EDMF GFS Noah-MP RRFS08/GEFS m8
M1B0L1_PI NSSL MYNN GFS Noah-MP RRFS09/GEFS m9
M1B2L2_PI NSSL TKE-EDMF GFS RUC RRFS10/GEFS m10

FIG. 2. FSS of 10-m U SSPFs with no filtering (blue), filtering
with a reflectivity threshold of 40 dBZ and a 40-km neighborhood
(orange), and filtering with a reflectivity threshold of 45 dBZ and a
40-km neighborhood (green) verified with Wind OSPFs. The skill
line is shown as a black dashed line.
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section 3. The resulting binary grid of ones and zeroes rep-
resents the SSRs (1 5 event, 0 5 nonevent). Finally, a
Gaussian smoother of varying standard deviations (smooth-
ing lengths) is used to transform the SSRs into SSPFs. For the
ensemble SSPFs, the ensemble mean of SSRs is calculated us-
ing Model Evaluation Tool’s “GenEnsProd,” after which the
Gaussian smoother is applied.

SSRs and SSPFs are verified against OSRs and OSPFs.
Similar to SSRs, OSRs are constructed by setting the nearest
grid point on Grid 211 to 1 for each SPC-filtered local storm
report. Separate OSRs are made for reports containing torna-
does or hail (“TorHail”), wind reports (“Wind”), and a com-
bination of all three report types (“Total”). These reports are
processed by the SPC to eliminate duplicate occurrences using
spatial and temporal filters. Then, a Gaussian smoother can be
applied to transform the OSRs into OSPFs. Local storm re-
ports can be biased, particularly in sparsely populated areas
where severe weather may go unreported (e.g., Anderson et al.
2007). However, local storm reports still represent the best
available dataset for observed severe weather. Further, the
storm reports used for verification during the 2022 NOAA
HWT SFE period qualitatively exhibit at most weak correla-
tion with the location of population centers (not shown).

Deterministic and probabilistic verifications are performed
using Model Evaluation Tool’s “grid_stat” for forecasts and
observations on Grid 211. Because the 3-km FV3-LAM
model output is already coarsened to the ;80-km Grid 211,
no neighborhood is applied during verification. Verification is

limited to the land area of the CONUS, as local storm reports
are not typically available over the ocean. Finally, Model
Evaluation Tool’s “aggregate” and “aggregate_stat” are ap-
plied to compute contingency tables and verification metrics
for the entire 2022 NOAA HWT SFE period for which fore-
casts are available. FSS is calculated external to Model Evalu-
ation Tools directly from SSPFs and OSPFs.

3. Point-based verification

Given that SSRs are entirely dependent on the thresholds
chosen, we first examine biases in reference to TorHail, Wind,
and Total OSRs across a range of model variable thresholds
(Fig. 3) over the 2022 HWT SFE period. The biases analyzed
in this paper are largely frequency biases, which can range
from 0 to infinity, with a value of 1 representing a nonbiased
forecast. The 0–3- and 2–5-km UH SSRs are very similar: Fre-
quency biases across the three types of OSRs are large at
smaller thresholds, gradually decreasing to below 1.0 for large
UH values. Frequency bias is highest for TorHail, followed by
Wind, and finally Total OSRs, due to the frequency of these
OSRs (Table 2). The frequency biases are expected as severe
wind events are typically more prevalent than severe hail and
tornado events. As such, the optimal threshold for verifying
SSRs, which we define as the threshold which results in a fre-
quency bias of 1.0, against TorHail OSRs is much larger than
for Wind and Total OSRs. While UH is related to a storm’s
vertical motion and rotation (which can indicate a storm with

FIG. 3. Frequency bias relationships between
the (a) 0–3-km UH (m2 s22), (b) 2–5-km UH
(m2 s22), and (c) 10-m wind speed (m s21)
ensemble mean number of SSRs, and TorHail
(blue), Wind (orange), and Total OSRs (green)
over the 2022 NOAA HWT SFE period. The
dashed lines in the subplots denote a nonbiased
value of 1.
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tornado, hail, and wind hazard potential), 10-m wind speed
on its own contains no information on storm rotation or hail
potential and is therefore only verified against Wind OSRs.
Frequency bias in 10-m U SSRs moderately decreases over a
small threshold range, from;1.5 to 0.25 over a range of 7 m s21.
Given that this large decrease does not occur when UH is verified
against Wind OSRs, this might reflect limits in the numerical
weather prediction model’s ability to predict strong wind events
at 3-km grid spacing, at which severe wind events (e.g., down-
bursts) might not be adequately resolved. It should be noted
that a rotating updraft (i.e., high UH) is not necessary for a
storm to produce severe winds, but in general, storms with
rotating updrafts do have greater potential to produce severe
winds (e.g., Gallus et al. 2008). The optimal thresholds, defined

using frequency bias as discussed above, are listed in Table 2,
and they are used for subsequent verification statistics presented
in this study.

Ideally, the number of SSRs and OSRs would be equal ev-
erywhere (values near zero in Fig. 4). However, bias between
SSRs and OSRs varies geographically. Both 0–3- and 2–5-km
UH exhibit similar behaviors in regard to over/underpredic-
tion relative to OSRs: TorHail OSR correlations are weak
overall, although there is a general trend for some underpre-
diction in the upper Midwest and mid-Atlantic. Verification
with Wind OSRs exhibits two strong correlations: underpre-
diction of OSRs in the mid-Atlantic region and overpredic-
tion spanning the lower Great Plains to the upper Midwest.
We note here that, in addition to the population density bias,

TABLE 2. Thresholds resulting in a frequency bias closest to 1 between the UH and 10-m U ensemble mean number of SSRs and
TorHail, Wind, and Total OSRs over the 2022 NOAA HWT SFE period. The number of SSRs is listed next to the model thresholds,
and the number of OSRs is listed next to the storm reports.

TorHail reports (347) Wind reports (566) Total reports (768)

0–3-km UH $97 m2 s22 (344) $76 m2 s22 (573) $65 m2 s22 (759)
2–5-km UH $198 m2 s22 (343) $152 m2 s22 (571) $126 m2 s22 (773)
10-m wind speed } $22.0 m s21 (570) }

FIG. 4. The difference between the (a)–(c) 0–3-km UH (m2 s22), (d)–(f) 2–5-km UH (m2 s22), and (g) 10-m U (m s21) ensemble mean of
SSRs and TorHail, Wind, and Total OSRs.
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the characteristics of local wind damage markers can also bias
wind reports. For example, the presence and type of trees in
the region, power lines, and other structures can affect the ex-
tent to which the damage is recorded. Total OSRs exhibit sim-
ilar spatial patterns as for Wind OSRs, reflecting the larger
number of wind reports compared to tornado and hail re-
ports. Sobash et al. (2019) noticed a similar spatial distribu-
tion between UH SSRs and tornadic OSRs, attributing this
bias to regional differences in tornadic environments. Geo-
graphic biases for 10-m U are similar to wind verification with
UH SSRs, although the overprediction is offset further west.

a. Deterministic forecasts

Although ensemble forecasting can provide advantages over
deterministic forecasts (e.g., developing an envelope of spread
that contains more forecast possibilities and calculating ensem-
ble consensus products that often outperform the best individ-
ual member), we first examine the performance (Fig. 5) of
individual member (Table 1) forecasts to identify frequency

biases and compare the skill among differently configured mem-
bers. The configuration of the 10-member ensemble allows for
comparisons focusing on the impact of microphysics (M0 vs M1
members) and PBL (e.g., M0B0L0_PI vs M0B1L0_PI) schemes,
and LSM (e.g., M0B0L0_PI vs M0B0L1_PI) assuming the initial
and boundary conditions are of similar quality across the
members. As previously mentioned, the members are also
compared to the M0B0L0_P and M0B0L0_PG deterministic
forecasts that represent another subensemble’s control member
and the reference member, respectively. Finally, the ensemble
mean of SSRs is compared to OSRs at several probabilistic
thresholds (p5 0.1, 0.2, … , 1) to illustrate the skill of the entire
10-member ensemble.

Performance diagrams (Roebber 2009) are constructed by
comparing each member’s SSRs with relevant OSRs in terms
of probability of detection and success ratio; performance
is overall similar among the microphysics, PBL, and LSM
schemes (Fig. 5). When verifying UH SSRs, the member with
the greatest underprediction frequency bias and lowest skill is

FIG. 5. Performance diagrams with (a)–(c) 0–3- and (d)–(f) 2–5-km UH (m2 s22) SSRs compared with TorHail, Wind, and Total OSRs
and (g) 10-m U (m s21) SSRs compared to Wind OSRs. The black dashed lines represent lines of constant frequency bias, while the solid
blue lines are lines of constant critical success index. Individual members are denoted by the color and marker shape in the legend. The en-
semble mean number of SSRs is included in the subplots as a black line, with each square marker representing a probabilistic threshold
(0.1, 0.2, … , 1) to define a forecast event.
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the M0B2L1_PI member, which uses Thompson microphysics
and TKE-EDMF PBL schemes, and the Noah-MP LSM. Typ-
ically, members using NSSL microphysics (“M1” members)
produce relatively large frequency bias and higher skill than
those with Thompson microphysics (“M0” members). Mem-
bers with the MYNN PBL scheme have relatively large fre-
quency bias and higher skill than corresponding members
using the TKE-EDMF PBL scheme when other physics are
identical. Likewise, RUC LSM members exhibit relatively
larger frequency bias and higher skill than Noah-MP LSM
members. The reference and control members are among the
least-biased (i.e., frequency bias near 1) and most-skillful
members. This is expected for the control member of the mul-
tiphysics subensemble, whose ICs are supposed to be more
like the ensemble Kalman filter mean. It is less clear about
the reference member that uses GFS analyses as ICs. Both
members use GFS forecasts as the LBCs, which have higher
spatial resolution than the GEFS forecasts used in the other
members. The ensemble mean of SSRs (plotted for each
probability from 0.1, 0.2, … , 1) is more skillful than even the
two reference/control members across a range of probability
thresholds, demonstrating the collective value of an ensemble.
Therefore, for UH SSRs, it appears that the combination of
the reference/control physics suite with the GFS LBCs can
provide higher skills, but the ensemble mean is somewhat su-
perior despite the lower skill with individual multiphysics
members. The goal of having an effective ensemble of fore-
casts is achieved.

There is little difference in ensemble member performance
when verifying 10-m U SSRs against Wind OSRs (Fig. 5g).
Microphysics differences are not consistent for 10-m U SSRs.
It appears that the MYNN PBLmembers are slightly less biased
(i.e., frequency bias closer to 1) and more skillful than the TKE-
EDMF PBL members. The two reference/control members are
relatively skillful compared to other ensemble members, and
the M0B0L0_P member (along with some of the members in
the 10-member ensemble) is more skillful than the ensemble at
different probability thresholds. We note that the M0B0L0_P
member does contain a large frequency bias, so its larger critical
success index could result from overestimating 10-m U. Overall,
10-m U is a relatively poor predictor of hazardous wind events,
indicating that the ensemble struggles to directly prognose
such events. Instead, it exhibits greater skill when relying on
diagnostic metrics such as UH to prognose storms that can
produce strong surface winds.

b. Probabilistic forecasts

As previously mentioned, probabilistic forecasts are con-
structed from the 10-member ensemble by calculating the
ensemble mean of SSRs. The SSRs used to calculate the en-
semble mean are constructed from the thresholds in Table 2.
Then, a Gaussian smoother is applied to the ensemble mean
to calculate ensemble SSPFs. We begin by examining proba-
bilistic forecast reliability and sharpness (Fig. 6). Reliability
is a measure of how forecast probabilities match the corre-
sponding observations, and sharpness is a measure of the
distribution of probabilistic forecasts (Murphy 1993). Sharp

forecasts have most forecast probabilities near 0 or 1, which
demonstrates the ensemble’s forecasting consistency (i.e., all
forecast occurrences, or lack thereof) across its members.
Generally, 0–3-km UH ensemble SSPFs are most skillful
when verified against Total OSRs, followed by Wind and
TorHail OSRs (Figs. 6a–c). The 0–3-km UH is typically over-
forecast when compared to OSRs, so reliability typically
increases as smoothing radius increases, as these overpre-
dictions are smoothed to smaller probabilities. However,
small sample size (i.e., OSRs from tornado and hailstorm
reports) can severely decrease reliability. Given the overall
rarity of these severe events, it is difficult to determine the
sharpness of the forecasts as most probabilities are near zero.
Larger smoothing radii remove higher-probability forecasts,
reducing their sharpness. Reliability and sharpness exhibit
similar trends for 2–5-km UH ensemble SSPFs (Figs. 6d–f).
Ensemble SSPFs verified against Total OSRs provide the
best reliability relative to Wind and TorHail OSRs. Forecast
skill, in terms of reliability, generally increases as smoothing
radius increases, and sharpness is difficult to determine given
the rareness of the severe events. The 10-m U ensemble
SSPFs indicate substantial overforecasting of wind events
(Fig. 6g). Ensemble SSPFs with varying smoothing radii are
not as stratified relative to those using UH, as the observed
relative frequency is typically small across all smoothing radii.
Finally, sharpness is similar to that of UH ensemble SSPFs:
Probabilities are smoothed to smaller values as smoothing
radius increases, but most probabilities are near the small
climatological mean. A small climatological mean can make it
more difficult to ascertain reliability (especially its sensitivity
to smoothing), sharpness, and other forecast metrics that use
climatology as a reference for skill. We attempt to mitigate
these issues by, for example, selecting model thresholds that
result in frequency biases near 1 and supplementing metrics
with those that do not consider climatology (e.g., relative oper-
ating characteristic curves).

Relative operating characteristic (Mason 1982) curves mea-
sure an ensemble’s ability to discriminate between observed
events and nonevents by comparing false alarm rate and prob-
ability of detection. Forecast skill is often expressed using the
area under the relative operating characteristic curve (AUC);
a perfect forecast has an AUC of 1.0, while a forecast with an
AUC of 0.5 is no better than random chance at distinguishing
events from nonevents (i.e., false alarm rate 5 probability of
detection). In terms of AUC, 0–3-km UH ensemble SSPFs
verified against Wind OSRs are slightly more skillful than
those verified against TorHail OSRs at larger smoothing radii,
but forecasts show moderate skill (AUC of 0.6–0.8) when ver-
ified with both OSRs (Figs. 7a,b). AUC for 0–3-km UH SSPFs
is largest when verified against Total OSRs (Fig. 7c) and with
a smoothing radius of 90 km across all OSRs. The 2–5-km
UH ensemble SSPFs exhibit more skill when verified with
TorHail OSRs than with Wind OSRs, implying that low-level
UH is a better diagnostic for severe wind events than the mid-
level mesocyclone/rotating updraft (Figs. 7d,e). Still, forecasts
are moderately skillful with both verifications. Like 0–3-km
UH ensemble SSPFs, 2–5-km UH ensemble SSPFs are more
skillful for predicting Total OSRs than for TorHail or Wind
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OSRs considered separately (Fig. 7f). Further, a 90-km smooth-
ing radius generates the largest AUC when verifying 2–5-km
UH, either outright or combined with another radius. The 10-m
U ensemble SSPFs are less skillful than 0–3- or 2–5-km UH
ensemble SSPFs when verified with Wind OSRs in terms of
AUC (Fig. 7g). This suggests that even though 10-m U is a
model field more directly related to surface wind hazards, defi-
ciencies in model predictions of 10-m U result in poorer ability
to discriminate between events and nonevents than predicted
low-/midlevel UH.

The Brier score and Brier skill score are useful and com-
monly used metrics for probabilistic forecast verification. The
Brier score can be decomposed into three terms: reliability,
resolution, and uncertainty (Murphy 1973). The Brier skill
score normalizes the Brier score using a reference forecast
(e.g., climatology; Wilks 1995). Brier score components and
Brier skill scores are presented in Table 3 for UH SSPFs veri-
fied against Total OSRs and for 10-m U SSPFs verified against
Wind OSRs. Scores are shown for varying smoothing radii,
with the optimal radius (in terms of Brier score metrics) in
bold. For ensemble SSPFs, the reliability component of the
Brier score is minimized (i.e., higher reliability) at large

smoothing radii (180 or 210 km), in agreement with the prior
reliability diagrams (Fig. 6). Even when the smoothing radius
is extended to 300 km, the reliability component for 2–5-km
UH and 10-m U SSPFs do not reach a minimum (not shown).
The resolution component of the Brier score (which measures
the ability of a forecast to resolve different event frequencies)
is maximized at s 5 60 km for all SSPFs. AUC is maximized
at a similar scale (s 5 90 km; see Fig. 7). Brier skill score is
maximized for s of around 90–120 km for UH ensemble
SSPFs and 240 km (not shown) for 10-m U SSPFs. The 10-m
U ensemble SSPF is such a poor indicator of Wind OSRs that
its Brier skill score is negative for all smoothing radii exam-
ined. Overall, no one smoothing radius is optimal across the
board; rather, these results indicate that different desired
forecast qualities are optimized using different spatial lengths
for smoothing.

The FSS (Roberts and Lean 2008) is a measure of how well
the spatial distribution of forecast events matches that of ob-
served events. FSS is calculated here by verifying 0–3- and
2–5-km UH and 10-m U SSPFs against OSPFs at different
smoothing lengths. Forecasts are considered skillful if FSS
exceeds 0.51 (f0/2), where f0 is the observed fractional coverage.

FIG. 6. Reliability and frequency diagrams using (a)–(c) 0–3-km UH, (d)–(f) 2–5-km UH, and (g) 10-m U ensemble SSPFs. Ensemble
SSPFs are verified with TorHail, Wind, and Total OSRs, and increasing smoothing radii are denoted by line color. The horizontal dashed
line in each reliability diagram represents the climatological mean of forecasts.
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This equation is used to compute the skill lines in Fig. 8.
As FSS generally increases monotonically with increasing
smoothing length, the smallest length scale at which the skill
threshold is exceeded can be considered the minimum skillful
scale for that forecast in terms of FSS. The 0–3-km UH SSPFs
indicate skillful forecasts compared to TorHail, Wind, and
Total OSPFs at small smoothing lengths (e.g., ;40–60 km;

Fig. 8a). FSS is highest when verified against Total OSPFs.
Similarly, 2–5-km UH SSPFs produce skillful forecasts,
although Wind OSPFs have a larger minimum skillful scale
(Fig. 8b). In fact, UH SSPFs verified with Wind OSPFs pro-
duce the smallest FSS relative to verification with TorHail
and Total OSPFs. At larger smoothing radii, FSS using
TorHail OSPFs exceeds that of Total OSPFs for 2–5-km

FIG. 7. Relative operating characteristic curves using (a)–(c) 0–3-km UH, (d)–(f) 2–5-km UH, and (g) 10-m U ensemble SSPFs. The en-
semble SSPFs are verified with TorHail, Wind, and Total OSRs. Smoothing radii are denoted by line color, while each subplot also con-
tains the AUC.

TABLE 3. Brier score components (BSrel: reliability; BSres: resolution) and Brier skill scores relative to spatial smoothing lengths
for 0–3-km UH, 2–5-km UH, and 10-m U ensemble SSPFs. UH SSPFs are verified with Total OSRs, while 10-m U SSPFs are verified
with Wind OSRs. The uncertainty component of the Brier score is noted after each model variable, and optimal scores are in bold.

0–3-km UH (0.032 91) 2–5-km UH (0.032 91) 10-m U (0.024 48)

s (km) BSrel BSres BSS BSrel BSres BSS BSrel BSres BSS

30 0.003 04 0.005 61 0.077 80 0.003 70 0.004 93 0.037 42 0.005 15 0.001 23 20.160 04
60 0.002 20 0.005 85 0.110 91 0.002 65 0.005 13 0.075 43 0.003 81 0.001 28 20.103 50
90 0.001 82 0.005 70 0.117 62 0.002 13 0.004 92 0.085 03 0.003 18 0.001 16 20.082 48
120 0.001 64 0.005 35 0.112 58 0.001 81 0.004 63 0.085 54 0.002 62 0.001 07 20.063 38
150 0.001 49 0.004 96 0.105 49 0.001 58 0.004 22 0.080 36 0.002 23 0.000 96 20.051 74
180 0.001 40 0.004 66 0.099 13 0.001 48 0.004 02 0.077 32 0.001 98 0.000 93 20.042 86
210 0.001 40 0.004 30 0.088 13 0.001 24 0.003 77 0.076 94 0.001 74 0.000 85 20.036 34
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UH SSPFs. While less skillful than UH SSPFs (consistent
with previous metrics), 10-m U SSPFs do produce skillful
forecasts in terms of FSS for smoothing lengths near 200 km
when verified with Wind OSPFs (Fig. 8c). Still, the spatial ver-
ification of severe wind might be problematic given the poten-
tial for events without deep convection (e.g., low UH) or the
difficulty in directly resolving high-speed wind events (e.g.,
wind speed prognosis).

4. Comparisons with SPC day 1 convective outlooks

The 10-member CAPS FV3-LAM ensemble forecasts are
compared with SPC convective outlooks to determine their
consistency with operational guidance. As in section 3, ensem-
ble forecasts of 0–3-km UH, 2–5-km UH, and 10-m U are uti-
lized to create SSRs for each member, from which the
ensemble mean can be calculated. A Gaussian smoother with
s 5 30 km is applied to the SSRs to create SSPFs. This small
smoothing length is chosen to allow for limited spatial errors
while retaining smaller-scale structures. SPC day 1 0600 UTC
convective outlooks (valid for the same 1200–1200 UTC pe-
riod covered by the forecasts; e.g., Edwards et al. 2015) are
overlaid on the ensemble SSPFs (Fig. 9). The FV3-LAM
model output was unavailable to forecasters at 0600 UTC, so
the SPC outlooks at this time were independent forecasts.

Three cases during the 2022 NOAA HWT SFE period are se-
lected to illustrate different forecast behaviors: 5, 13, and 23
May 2022.

On 5 May 2022, the SPC issued an enhanced risk threat
over the ArkLaTex (Arkansas, Louisiana, Texas) region due
to a 30%–45% chance of severe wind. Deep convection was
anticipated in advance of an approaching cold front (Fig. 10a),
supported by upper-level divergence downstream of an upper-
level trough, moderate (;2000 J kg21) mixed-layer convective
available potential energy, and moderate effective (40–50 kt;
1 kt ’ 0.51 m s21) shear. On 13 May, the SPC issued a slight
risk area extending from the upper peninsula of Michigan to
Oklahoma due to an occluding cold front (Fig. 10b) and areas
of moderate (;2000 J kg21) convective available potential en-
ergy forecasted in this region, but little shear. 23 May had two
areas of interest; the SPC issued a slight risk over southwest
Texas and a marginal risk in the Southeast United States.
Over southwest Texas, an approaching shortwave trough and
forecasted dryline (not shown) were anticipated to contribute
to convection, although little shear precluded more severe
storms despite a predicted low-level jet. An approaching
shortwave trough also supported convection in the Southeast
United States downstream of a surface low (Fig. 10c) with
strong shear, but weak midlevel lapse rates limited stronger
deep convection.

FIG. 8. FSS as a function of smoothing length
(km) for (a) 0–3-km UH, (b) 2–5-km UH, and
(c) 10-m U SSPFs. Line colors denote OSPF type
as stated in the legends. Skill lines are dashed and
also indicate OSPF type.
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UH ensemble SSPFs demonstrate high confidence in severe
weather on 5 May in the ArkLaTex region, with maximum
SSPFs exceeding 0.9 (Figs. 9a,b). Further, the nonzero SSPFs
in this area compare favorably to the marginal, slight, and en-
hanced risks issued in the SPC convective outlooks. Subjec-
tively, the UH ensemble SSPFs match up well with observed
storm reports, with tornado, hail, and wind reports spanning
ArkLaTex into middle Tennessee (Figs. 9a,b and 11a). There
are missed wind reports in southern Alabama and the Florida
Panhandle and missed hail reports in north-central Okla-
homa. The SPC outlooks in these regions range from no risk
to marginal risk, indicating similarly low operational fore-
caster confidence in these areas. The 10-m U ensemble SSPFs
(Fig. 9c) generally demonstrate low confidence in severe wind
events but are typically contained within the SPC wind out-
look and cover many of the observed wind reports in the
ArkLaTex region (Fig. 11b).

UH ensemble SSPFs are less confident of severe weather
on 13 May compared to those of 5 May, although 2–5-km
UH SSPFs are slightly larger than those from 0 to 3-km UH
(Figs. 9d,e). This generally agrees with the SPC’s assessment;
SPC only issued a day 1 slight risk on 13 May compared to a
day 1 enhanced risk on 5 May. Storms on 13 May produced a
large number of hail reports in or near the SPC slight-risk
area (i.e., from Oklahoma into south Wisconsin; Fig. 11c), but
few wind reports, which compose most of the storm reports
over the 2022 HWT SFE period. The 13 May case, therefore,
provides an example of the overprediction of UH SSPFs

compared to Wind and Total OSRs (Figs. 4b,c,e,f). An SPC
convective outlook update noted that inadequate low-level
lapse rates diminished severe wind threats in Oklahoma given
more stable boundary layers suppressing downbursts near
the surface, although buoyancy still supported hail threats.
A convective line spanning from Wisconsin to south-central
Missouri spawned tornadoes and hail, so the small number of
wind reports might reflect population bias as well as storm
mode/environment limitations. We repeat here that wind re-
ports can also be affected by the presence of wind damage
markers. The 10-m U ensemble SSPFs demonstrate modest
confidence of severe weather in the highest-probability SPC
wind outlook area, with the most confidence in the Trans-
Pecos and west-central regions of Texas (Fig. 9f). While this
does indicate a false alarm when verified with wind reports in
this region (Fig. 11d), the lower confidence in the Midwest
United States prevents wind hazard overprediction biases
relative to UH SSPFs (Fig. 4).

On 23 May, UH ensemble SSPFs generally have higher
confidence of severe weather in Texas than in the Southeast
United States (Figs. 9g,h), in agreement with the SPC threat
assessment. UH nonzero SSPFs generally agree with the SPC
convective outlook with potentially more skill, as there are
a few instances of storm reports just outside the slight-risk
threat area in the Texas Panhandle and southern Texas (Fig. 11e)
that ensemble SSPFs forecast with confidence (greater than 0.5).
Still, storm reports in the Trans-Pecos region might be more lim-
ited than in the Texas Panhandle or southern Texas, complicating

FIG. 9. The 0–3-km UH, 2–5-km UH, and 10-mU ensemble SSPFs for the (a)–(c) 5 May, (d)–(f) 13 May, and (g)–(i) 23 May 2022 cases.
(left),(center) SPC day 1 categorical outlooks and (right) wind convective outlooks valid from 1200 to 1200 UTC are overlaid on the UH
and wind SSPFs, respectively, as black contours. Convective outlook contours range from thunderstorm, marginal, slight, to enhanced
risks, while wind outlook contours range from 5%, 15%, to 30% probabilities.
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verification in this area. Of particular interest on 23 May is
the large number of wind reports received over the southeast-
ern United States (Fig. 11f), despite the low confidence of UH
SSPFs and the marginal-risk threat from the SPC convective
outlook. Subsequent updates to the SPC day 1 convective out-
look upgraded the risk threat from marginal to slight in this
area (not shown) as subsequent observations reduced uncer-
tainty regarding the amount of destabilization that would oc-
cur in the region given preexisting cloud coverage. We also
note that the storm reports themselves might be affected by
population bias, local wind damage indicators, and/or differ-
ences in tree/vegetation type that have different tolerances
for wind damage (e.g., subsevere winds). Therefore, a single
wind threshold that does not account for these factors may
lead to regional verification biases. Finally, 10-m U SSPFs are
very small in the southeastern United States, which is not en-
tirely unexpected as the SPC wind outlook in this region has a
probability of only 5% (Fig. 9i). Given how the event un-
folded (Figs. 11e,f), it is clear that this event is an example of

underprediction of UH and 10-m U ensemble SSPFs com-
pared to OSRs in this region (Figs. 4b,e,g). The 10-m U en-
semble SSPFs contain a similar coverage as UH SSPFs from
the Texas Panhandle to southern Texas and qualitatively
match observed wind reports with potentially more skill than
the SPC wind outlook. Therefore, the qualitative skill of 10-m
U ensemble SSPFs is not as deficient for this case as the 5 and
13 May cases.

5. Summary and discussion

In this study, we evaluate deterministic and ensemble
convection-allowing forecasts of the CAPS FV3-LAM
10-member ensemble which was run during the 2022 NOAA
HWT SFE period to evaluate its skill in forecasting severe
weather hazards from 1200 to 1200 UTC (i.e., 12–36 h of fore-
cast time). Hazards are predicted using model forecasts of
0–3- and 2–5-km updraft helicity (UH) and 10-m wind speed
U. Instances of these model variables exceeding thresholds

FIG. 10. Surface charts for the (a) 5 May, (b) 13 May, and
(c) 23 May 2022 cases detailing fronts and other systems of
interest. These charts are courtesy of the Weather Prediction
Center (WPC).
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(selected during preliminary testing to minimize overall fre-
quency bias) are upscaled to the National Centers for Envi-
ronmental Prediction Grid 211 with ;80-km grid spacing to
create surrogate severe weather reports (SSRs). Similarly,
observed storm reports (OSRs) are created from tornado and
hail combined (“TorHail”), wind (“Wind”), and all three
types (“Total”) of local storm reports. Ensemble probabilistic
forecasts and their observed analog are generated by applying
a Gaussian smoother to the SSRs and OSRs, creating surrogate
severe probability forecasts (SSPFs) and observed severe proba-
bilistic fields (OSPFs), respectively. In addition to OSR/OSPF
verification, SSPFs are compared to SPC day 1 convective out-
looks issued by 0600 UTC and valid from 1200 to 1200 UTC to
provide a point of comparison to an operational forecast made
by skilled severe weather forecast specialists.

When nonbiased thresholds (i.e., resulting in a similar en-
semble mean number of SSRs and number of OSRs over the

2022 NOAA HWT SFE period) are utilized to define SSRs,
geographic biases when utilizing UH arise relative to Wind
and Total OSRs. There tends to be an overprediction of UH
SSRs spanning the southern Great Plains to the upper Midwest
and an underprediction in the mid-Atlantic/southeastern United
States. These geographic biases are similar for 10-m U SSRs
when verified with Wind OSRs, with the overprediction further
offset west. UH SSR verification with TorHail OSRs does not
exhibit any strong geographic biases. Cases from 13 to 23 May
indicate that these differences might be attributable to, for ex-
ample, uncertainty in the evolution of convective environment
or reporting biases. In other words, there are no clear biases
solely attributable to regional convective patterns.

Skill differences among ensemble members with differing
physics are small. In general, members with NSSL micro-
physics, MYNN PBL, and RUC LSM contain relatively
higher frequency bias and skill than members with Thompson

FIG. 11. OSRs (yellow boxes) from storm reports valid from 1200 to 1200 UTC for the (a),(b) 5 May, (c),(d) 13 May, and
(e),(f) 23 May 2022 cases. Overlaid on the OSRs are tornado (red), hail (green), and windstorm (blue) reports.
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microphysics, TKE-EDMF PBL, and Noah-MP LSM members,
respectively, when considering the skill of forecasts constructed
using UH. Still, the ensemble means of SSRs are generally
more skillful than the forecasts of individual members. Indi-
vidual member forecasts constructed using 10-m U show very
little consistency between physics configurations, at least in
part due to their poor overall forecast skill. Attributes dia-
grams demonstrate that reliability for UH SSPFs is greatest
for the prediction of all severe hazards compared to wind or
tornado/hail hazards; overall reliability is also higher for
larger spatial smoothing lengths. Similarly, these ensemble
SSPFs show greater discrimination between observed and
nonobserved events when verifying against all types of severe
hazards. Brier score components and skill scores elaborate on
these forecast characteristics and indicate that reliability is opti-
mized at larger length scales (;180–210 km), while resolution
and overall skill are optimized at smaller scales (;60–120 km).
Sharpness is especially difficult to ascertain given the rareness
of these severe events. Fractions skill score is typically largest
when verified with all types of severe hazards, although 2–5-km
UH SSPFs produce larger FSS when verified with tornado/hail
hazards at large smoothing lengths. In contrast to low- and
midlevel UH, 10-m U as a forecast proxy for severe wind
events typically produces low-skill forecasts with few desirable
qualities.

Generally, UH SSPFs using a small smoothing radius
(s 5 30 km) qualitatively agree well with SPC day 1
(1200–1200 UTC) convective outlooks issued by 0600 UTC.
For two of the three cases examined in detail (5 and 13 May
2022), larger SSPFs are clustered near the highest SPC risk
areas (enhanced in the ArkLaTex region and slight in the
Great Plains/Midwest regions, respectively), with higher
probabilities in the enhanced risk on 5 May than in the
slight risk on 13 May. Although there is inconsistent ensem-
ble confidence in terms of UH SSPFs relative to the largest
SPC convective outlook threat level on 23 May, observed
storm reports of any severe hazard are concentrated closer
to high SSPFs in the Texas Panhandle and southern Texas.
Both UH SSPFs and the day 1 convective outlook under-
forecast a primarily severe wind event on this date in the
Southeast United States. The 10-m U SSPFs display a simi-
lar spatial pattern as UH for this case near the highest wind
outlook probabilities and have some consistency with the
SPC day 1 wind outlook. Of the three cases, it seems the
10-m U SSPFs are most helpful for issuing threat levels
corresponding to SPC wind outlook probabilities for the
23 May case.

Severe wind events may be diagnosed via updraft helicity
interpretation of storm evolution, but direct prognosis (i.e.,
simulated wind speed) of such events is less accurate for the
forecasts evaluated in this paper. There may be several rea-
sons for this: The horizontal resolution of this regional model
is 3 km. This resolution might not be fine enough to resolve
small-scale wind events, such as downbursts. UH might not
require as fine of a grid resolution to produce useful forecast
skill, since this quantity represents the storm’s overall poten-
tial for severe weather (i.e., rotating updraft) during subse-
quent evolution. As such, this indirect proxy remains popular

for severe weather diagnosis, especially given that tornado
and hail verification at this scale can be problematic. The
10-m Umight capture severe wind in the absence of deep con-
vection (which motivated the Z threshold employed in this
paper). Storm reports still suffer from underreporting in
sparsely populated regions, motivating the spatial upscaling
employed in this paper to address the deficiency. The NSSL’s
Multi-Radar Multi-Sensor system has developed postprocess-
ing diagnoses to derive physically meaningful quantities from
radar data, such as maximum hail size, azimuthal shear, etc.
These data generally have higher spatiotemporal resolutions
than local storm reports but were developed with their own
set of assumptions and parameterizations. As such, severe
weather verification should include both well documented
and newer experimental datasets to attempt to fill in the gap
of missing observations.

It is important to continue model evaluations as operational
weather models continue to evolve, especially as regional
models can offer sufficient resolution to allow the explicit pre-
diction of convective weather. In this paper, the NSSL micro-
physics members typically had more skill than the Thompson
members when forecasting UH (i.e., higher critical success
index when verifying with similarly upscaled total storm re-
ports), but the entire ensemble with initial condition perturba-
tions and mixed physics generally outperformed individual
members. Assessing deterministic and ensemble performance
can optimize the physics membership of the ensemble, as well
as inform IC perturbation strategies, both of which are often
needed to increase ensemble spread. Further, such ensemble
performance evaluations can help clarify the effectiveness of
different forecast products in operational decision-making
when issuing risks and warnings for potential weather hazards
(e.g., UH vs 10-m U forecasts). Subsequent model system
refinements will continue to best inform hazardous weather
prediction and warning guidance.
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