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ABSTRACT

Multiscale convection-allowing precipitation forecast perturbations are examined for two forecasts and sys-

tematically over 34 forecasts out to 30-h lead time using Haar Wavelet decomposition. Two small-scale initial

condition (IC) perturbation methods are compared to the larger-scale IC and physics perturbations in an ex-

perimental convection-allowing ensemble. For a precipitation forecast driven primarily by a synoptic-scale

baroclinic disturbance, small-scale IC perturbations resulted in little precipitation forecast perturbation energy

on medium and large scales, compared to larger-scale IC and physics (LGPH) perturbations after the first few

forecast hours. However, for a case where forecast convection at the initial time grew upscale into a mesoscale

convective system (MCS), small-scale IC and LGPH perturbations resulted in similar forecast perturbation

energy on all scales after about 12h. Small-scale IC perturbations added to LGPH increased total forecast

perturbation energy for this case. Averaged over 34 forecasts, the small-scale IC perturbations had little impact

on large forecast scales while LGPH accounted for about half of the error energy on such scales. The impact of

small-scale IC perturbations was also less than, but comparable to, the impact of LGPH perturbations on me-

dium scales. On small scales, the impact of small-scale IC perturbations was at least as large as the LGPH

perturbations. The spatial structure of small-scale IC perturbations affected the evolution of forecast pertur-

bations, especially at medium scales. There was little systematic impact of the small-scale IC perturbations when

added to LGPH. These results motivate further studies on properly sampling multiscale IC errors.

1. Introduction

Limited predictability of warm season precipitation

forecasts has been demonstrated by low deterministic

forecast skill (Fritsch and Carbone 2004), theoretical

arguments (Thompson 1957; Lorenz 1963, 1969), sen-

sitivity to small perturbations (e.g., Hohenegger et al.

2006; Hohenegger and Sch€ar 2007a,b; Zhang et al.

2003, 2006), and sensitivity to model and physics dif-

ferences (e.g., Zhang and Fritsch 1988; Zhang et al.

2006; Johnson et al. 2011a,b; Johnson and Wang 2012,

2013). The ability to resolve small-scale features asso-

ciated with rapid nonlinear error growth limits the
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predictability of convection-scale forecasts evenmore than

that of coarser-resolution forecasts (Elmore et al. 2002;

Walser et al. 2004; Hohenegger et al. 2006; Hohenegger

and Sch€ar 2007a,b; Zhang et al. 2003, 2006). Predictability

studies at convection-allowing1 resolution have been lim-

ited to a small number of forecasts, rather than systematic

evaluation over a period of many forecasts.

Understanding perturbation growth is important for

ensemble design because ensemble perturbations are

intended to sample the error growth leading to forecast

uncertainty (Leith 1974; Toth and Kalnay 1997). The

optimal design of storm scale (#24-h forecasts with 1–4-km

grid spacing) ensemble forecast (SSEF) systems re-

mains largely unknown, although coarser-resolution

ensembles have been relatively well studied. For exam-

ple, medium-range (;1 week) synoptic-scale (;100-km

grid spacing) ensembles have been studied for almost

two decades (Buizza and Palmer 1995; Toth and Kalnay

1997; Houtekamer et al. 1996; Wang and Bishop 2003;

Wang et al. 2004). Short-range (;1–3 days) mesoscale

(;10–20km) ensembles have also been the focus ofmany

past studies (Du et al. 1997; Stensrud et al. 1999; Marsigli

et al. 2001; Xu et al. 2001; Grimit and Mass 2002; Eckel

and Mass 2005; Lu et al. 2007; Li et al. 2008; Berner et al.

2011). However, the optimal design of SSEFs may be

quite different than that of coarser-resolution ensembles

(Hohenegger and Sch€ar 2007b).

Hohenegger andSch€ar (2007a) found similar convection-

allowing precipitation forecast sensitivity to different

perturbation methods after about 11 h for a case study.

However, it is not known if these results are characteristic

of other cases with different background flow and/or a

different role of topography. Other studies have demon-

strated large differences in predictability for different

events. For example, Zhang et al. (2006) showed reduced

sensitivity to small-scale initial condition (IC) perturbations

for a warm season heavy precipitation event compared to

a cold season large-scale cyclone event.Walser et al. (2004)

and Hohenegger et al. (2006) further found that some

warm season cases in the Alpine region characterized by

stratiform precipitation exhibited greater predictability

than some cases characterized by deep moist convection.

However, it was also found that deep convective cases can

exhibit higher predictability, depending on other factors

such as the presence of topography and the residence time

of the perturbations in convectively unstable regions.Done

et al. (2012) have also related different aspects of pre-

dictability on two case studies to whether convection is in

statistical equilibrium with large-scale forcings.

The evolution of different types of perturbations has

yet to be systematically studied over a period of many

convection-allowing forecasts. The present study sys-

tematically evaluates the characteristics of evolution of

different perturbations for 34 forecasts. Two case studies

are also evaluated in detail to expand on the types of flow

regimes considered in past case studies. In contrast to the

Mesoscale Alpine Program cases studied byWalser et al.

(2004) and Hohenegger et al. (2006), this study focuses

on the Great Plains of the United States where topo-

graphy plays a less dominant direct role, severe convective

weather is more frequent and intense (Brooks et al. 2003),

and the latitude is farther south from the main belt of the

westerlies.

Given the range of resolvable scales at convection-

allowing resolution, the growth and interaction of per-

turbations on different scales is of particular interest.

Multiscale evolution of convection-allowing forecast

perturbations have been studied on even fewer cases than

predictability in general (Zhang et al. 2003, 2006; Walser

et al. 2004; Luo and Zhang 2011). The present study fo-

cuses on evaluating the characteristics and evolution of

forecast perturbations by decomposing them into multi-

ple scales using a Harr wavelets analysis method.

A few additional deterministic forecasts were gener-

ated by the Center forAnalysis and Prediction of Storms

(CAPS) during the 2010 National Oceanic and Atmo-

spheric Administration (NOAA) Hazardous Weather

Testbed (HWT) Spring Experiment (Kong et al. 2010;

Xue et al. 2010; Clark et al. 2012) to complement the

CAPS Spring Experiment real-time SSEF. The general

design of the CAPS SSEF did not include small-scale IC

perturbations. These additional forecasts were therefore

designed to study the sensitivity to small-scale IC per-

turbations. The present study has three main goals. The

first goal is to determine the forecast sensitivity to small-

scale IC perturbations, relative to the larger-scale IC and

physics perturbations already included in the SSEF de-

sign. The second goal is to compare the sensitivity to two

methods of generating such small-scale IC perturbations.

The third goal is to explore the impact of adding small-

scale IC perturbations on top of the existing large-scale IC

and physics perturbations. These goals are addressed us-

ing two case studies with different background flows and

systematic evaluation of all 34 available cases. Since the

existingmethod of perturbation actually includesmultiple

perturbation sources (IC and physics), additional fore-

casts were later generated for the two case studies, with

the physics perturbations excluded, to aid interpretation

of the results and better understand the impact of IC

perturbations at various scales.

The paper is organized as follows. In section 2 themodel

configuration, scale decomposition, and perturbation

1Equivalently called convection-permitting or cloud-system re-

solving in other published studies.
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methods are described. A brief overview of the two

cases that are selected for detailed study is given in

section 3 and results are presented in section 4. Section

5 contains conclusions and a discussion.

2. Model configurations and methods

a. Control forecast configuration

Forecasts were generated with 4-km grid spacing at

0000UTC on 34 weekdays from 3May to 18 June during

the 2010 NOAA HWT Spring Experiment (Xue et al.

2010; Kong et al. 2010). The control forecast used the

Weather Research and Forecasting Model (WRF) Ad-

vanced Research WRF (ARW; Skamarock et al. 2005).

The control forecast ICs were obtained from the oper-

ational National Centers for Environmental Prediction

(NCEP) North American Mesoscale Model (NAM)

0000 UTC NAM Data Assimilation System (NDAS;

Rogers et al. 2009) analysis at 12-km grid spacing, in-

terpolated to the 4-km WRF grid. Additional radar and

mesoscale observations were then assimilated using the

Advanced Regional Prediction System (ARPS) three-

dimensional variational data assimilation (3DVAR) and

cloud analysis package (Xue et al. 2003; Gao et al. 2004;

Hu et al. 2006). Radial velocity from over 120 radars in

the Weather Surveillance Radar-1988 Doppler (WSR-

88D) network, as well as surface pressure, horizontal

wind, potential temperature, and specific humidity from

theOklahomaMesonet, aviation routine weather report

(METAR), and wind profiler networks were assimilated

with ARPS 3DVAR. The ARPS cloud analysis package

uses radar reflectivity along with surface data, Geosta-

tionary Operational Environmental Satellite (GOES)

visible and 10.5-mm infrared data to estimate hydrome-

teor species and adjust in-cloud temperature and mois-

ture (Hu et al. 2006). The control forecast was configured

with theThompson et al. (2008)microphysics scheme, the

Mellor–Yamada–Janjic (Janjic� 1994) boundary layer

scheme, the Rapid Radiative Transfer Model longwave

radiation scheme (Mlawer et al. 1997), the Goddard

shortwave radiation (Tao et al. 2003) scheme, and the

NCEP–Oregon State University–Air Force–National

Weather Service (NWS) Office of Hydrology (Noah; Ek

et al. 2003) land surface model. The vertical turbulent

mixing was represented in the boundary layer scheme

and subgrid-scale horizontal turbulence mixing was rep-

resented by Smagorinsky parameterization. No addi-

tional numerical diffusion was applied.

b. Forecast perturbation methods

In the general design of the SSEF during the 2010

HWT Spring Experiment, perturbations that sample

model and physics uncertainty as well as IC and lateral

boundary condition (LBC) perturbations derived from

the short-range ensemble forecast system (SREF; Du

et al. 2009) are included. Since the SREF was run at grid

spacings of 32–45 km (corresponding to a wavelength of

64–90 km; Du et al. 2009), SREF perturbations are on

scales much larger than the SSEF model resolution.

Thus, the perturbations from SREF do not include small

scales (i.e., order of tens of kilometers). Methods to gen-

erate perturbations on multiple scales, ranging from the

synoptic to the convective scales, have yet to be system-

atically studied. As a first step to help guide development

of practical methods of sampling errors across multiple

scales in a SSEF system, during the 2010 Spring Exper-

iment additional forecasts were generated with small-

scale IC perturbations. For each perturbation method

described below, one perturbed deterministic forecast

was generated and compared to the control member.

Six methods of perturbation are investigated in this

study. Perturbations RAND (random) and RECRS

(recursive filter) are designed to simulate random small-

scale errors in the initial state. Perturbation LGPH

(larger-scale IC and physics) is designed to simulate the

medium- and large-scale (i.e., order of hundreds and

thousands of kilometers, respectively) IC errors and

model physics errors. Perturbation LGPH is what is

currently adopted in the standard CAPS SSEF system.

Perturbation LGPH_RECRS (large scale and physics

with recursive filter) is a combination of the LGPH and

RECRS perturbation methods. This method is designed

to explore the impact of adding small-scale IC pertur-

bations on top of the existing large-scale IC and physics

perturbations. For the two case studies, two additional

perturbations are evaluated. Perturbations LG and

LG_RECRSare identical toLGPHandLGPH_RECRS,

respectively, except without any physics differences from

the control member. The latter twomethods are designed

to better understand the impact of IC perturbations at

various scales and to infer the impacts of using different

physics parameterization schemes on the results. Since

the primary goal of the study is a comparison of small-

scale IC perturbations to the LGPH perturbations in

the current CAPS SSEF design, LG and LG_RECRS

are not generated for all forecasts and are only limited

to the two case studies to facilitate understanding of the

results.

The RAND perturbation is obtained by adding spa-

tially uncorrelated, Gaussian random numbers to the IC

temperature and relative humidity (standard deviation

of 0.5K and 5%, respectively). The RECRS perturba-

tion is obtained similarly, except with a recursive filter

applied to the random perturbations to create spatially

correlated perturbations with a 12 (3) km horizontal
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(vertical) decorrelation scale. The RAND perturbation

is conceptually similar to the random perturbations of

Hohenegger and Sch€ar (2007a). The RECRS perturba-

tion is conceptually similar to the Gaussian perturbation

of Hohenegger and Sch€ar (2007a), except RECRS is

applied homogenously across the domain instead of only

at a single location.

The LGPH IC perturbation is obtained from the dif-

ference between a 3-h forecast of a SREF WRF-ARW

member (labeled P1 in Du et al. 2009) and the corre-

sponding SREF control member forecast. The SREF

perturbations of u and y wind components, potential

temperature, and specific humidity are rescaled to have a

root-mean-square value of 1m s21, 0.5K, and 0.02g kg21,

respectively. In addition to the IC perturbation, the

LGPH forecast uses a different physics configuration than

the control forecast to approximate physics errors. Unlike

the control forecast, the LGPH perturbation uses the

Morrison and Grabowski (2008) microphysics scheme,

the Rapid Update Cycle (RUC) land surface model

(Benjamin et al. 2004), and the Yonsei University (Noh

et al. 2003) boundary layer scheme. The LGPH_RECRS

perturbation is identical to LGPH except with additional

recursive filtered randomperturbations added in the same

way as for the RECRS perturbation.

Although only temperature and humidity (and wind in

the case of LGPH and LGPH_RECRS) are directly

perturbed, results are evaluated in terms of precipitation

differences. Thus, the focus is on the net effect, rather

than the processes, of perturbation growth and evolution.

c. Scale decomposition method

Following Casati et al. (2004), precipitation fields are

decomposed into components of different spatial scale

using 2D Haar Wavelets with the Model Evaluation

Tools package from the Developmental Testbed Center

(http://www.dtcenter.org/met/users). The decomposition

is defined over a 2n by 2n gridpoint domain for n. 1. The

original field is decomposed into its component on each

of n 1 1 scales, and is equal to the sum of its components.

The ith component can be calculated as the difference

between the original field averaged in boxes of 2i21 by

2i21 grid points and the original field averaged in boxes

of 2i by 2i grid points for 1 # i # n. The (n 1 1)th

component is the domain average value. Each compo-

nent therefore represents the variation over a spatial

scale of 4 3 2i21 km from a larger-scale average. Anal-

ogous to the more familiar Fourier decomposition, in

the rest of the paper the wavelet-decomposed spatial

scales are referred to in terms of a corresponding

wavelength. Thus, for example, the smallest resolvable

scale of 4 km (e.g., Fig. 1b) corresponds to the smallest

resolvable wavelength of 8 km. A verification domain

(shown in Fig. 3) of 512 by 512 grid points (2048 km by

2048 km) within the larger forecast domain (shown in

Fig. 2) of 1163 by 723 grid points (4652 km by 2892 km) is

used in this study. Further details of the wavelet de-

composition are described in Casati et al. (2004). Pre-

cipitation forecast energy is defined as the square of the

1-h accumulated precipitation field, averaged over the

verification domain. The energy on a particular scale is

defined similarly, using only the component of the pre-

cipitation field on that scale. The error (or perturbation)

energy is the square of the precipitation field difference

between a forecast and the observations (or control

forecast). The evolution of a perturbation, or difference,

energy metric is a common method of quantifying sensi-

tivity to forecast perturbations (e.g., Zhang et al. 2006;

Hohenegger et al. 2006).

Figure 1 illustrates the 2D Haar wavelet decom-

position of the difference between the 6-h control

forecast and corresponding observation of hourly accu-

mulated precipitation on the 20 May case. [The distri-

bution of difference energy across scales is also found in

Fig. 9 (dashed cyan line).] Objectively, there is a maxi-

mum of difference energy at 32–64-km wavelength

scales and a smaller secondary maximum at the 256-km

scale (Fig. 9). The total difference field (Fig. 1a) sub-

jectively looks most similar to the difference fields on

32–64-km scales (Figs. 1d,e), suggesting that the high-

amplitude, small-scale features on these scales account

for most of the total difference. The subjectively ap-

parent displacement of the mesoscale convective system

(MCS) in Oklahoma and Arkansas (Fig. 1a) also corre-

sponds to increased energy on the 256-km scale (Figs. 1g

and 9).

For presentation of results we define the large scale

as the sum of scales with wavelengths of 4096, 2048, and

1024 km; the medium scale as the sum of scales with

wavelengths of 512, 256, 128, and 64 km; and the small

scale as the sum of scales with wavelengths of 32, 16,

and 8 km. The small scales are those that are too small

to be represented with the current SREF-derived

perturbations.

3. Case study overview

Forecasts initialized at 0000 UTC 10 and 20 May 2010

(hereafter 10 May case and 20 May case, respectively)

are selected for comparison of the differences in pre-

cipitation forecasts resulting from different sources and

scales of perturbations during different flow regimes.

The following subsections describe the reasons for

selecting these cases, a synoptic-scale overview of en-

vironmental conditions, and the evolution of the un-

perturbed control forecast.
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a. 10 May 2010

The 10 May case is selected because a synoptic-scale

baroclinic disturbance generatedwidespread precipitation

in the control forecast. Duringmuch of the forecast period

(i.e., the first ;24h), the forecast evolution was de-

termined primarily by large-scale influences (e.g., fronts,

jets, and temperature advection). This event is also of in-

terest because of a significant tornado outbreak that oc-

curred in the southern plains on the afternoon of 10 May

(e.g., Palmer et al. 2011). The control forecast of this event

contains substantial errors in comparison to observations.

It is therefore of interest to examine the sensitivity of the

control forecast to different types of perturbations.

At the time of forecast initialization (0000 UTC 10

May) there was an embedded shortwave trough over the

western United States and a broad ridge over the central

United States aloft (Fig. 2a). There was southerly flow

and a warm front in central Texas at the surface (Fig.

2b). By 0000 UTC the negatively tilted shortwave had

propagated to the central United States, inducing surface

cyclogenesis and an intersecting dryline, cold front and

warm front in the southern plains (Figs. 2c–f). An initial

wave of observed scattered showers associated with the

low-level warm advection developed in Arkansas and

Missouri by 0600 UTC and moved eastward into Ten-

nessee and northernAlabama by 1800UTC (Figs. 3b,d,f).

FIG. 1. Difference between control forecast and observed 1-h accumulated precipitation, at 0600 UTC 20 May 2010 using the forecast

initialized at 0000 UTC 20May 2010, showing (a) the total precipitation forecast and (b)–(k) the anomalies on each scale identified by the

2D Haar wavelet decomposition.
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Convection also developed near the Kansas–Nebraska

border by 1200 UTC, moving eastward into northern

Missouri by 1800 UTC (Figs. 3d,f). At 0000 UTC more

intense convection was occurring in the southern

plains.

The control forecast predicted the initial wave of

scattered showers, although with a southwestward dis-

placement and with greater intensity than observed

(Figs. 3a–c), as well as the development of convection

along the Kansas–Nebraska border, although with more

linear organization, weaker intensity, and a slight

northward displacement (Figs. 3c,d). The most prom-

inent difference between the forecast and observation

was the absence of the intense convection over the

southern plains at 0000 UTC (Fig. 3g). Storms eventu-

ally developed in the control forecast but they were

several hours slower to develop than observed and did

not extend as far south as observed (not shown).

FIG. 2. Synoptic-scale conditions at (a),(b) 0000 UTC 10 May; (c),(d) 1200 UTC 10 May; and (e),(f) 0000 UTC 11 May. In (a),(c),(e),

500-hPa geopotential height of the control member forecast initialized at 0000 UTC 10 May is shown. In (b),(d),(f), the mean sea level

pressure, surface fronts, and surface observations from the Hydrometeorological Prediction Center surface analysis archive are shown

(http://www.hpc.ncep.noaa.gov/html/sfc_archive.shtml).
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FIG. 3. 1-h accumulated precipitation from the (a),(c),(e),(g) control forecast

and (b),(d),(f),(h) observations. Valid times are (a),(b) 0600 UTC 10May; (c),(d)

1200 UTC 10 May; (e),(f) 1800 UTC 10 May; and (g),(h) 0000 UTC 11 May.
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b. 20 May 2010

In contrast to the 10 May case, the 20 May case is

selected because early in the control forecast (i.e., first

;12 h) anMCS grew upscale from initially smaller-scale

convection. The MCS evolution then influenced the

regional-scale characteristics of subsequent convection

(e.g., through the strength and location of its surface cold

pool outflow boundary).

At the time of forecast initialization (0000 UTC

20 May 2010) there was a slow-moving, broad trough

aloft with an embedded shortwave rounding its base

(Figs. 4a,c,e). At the surface, a weaker surface low than in

the 10 May case propagated from central Oklahoma

into western Missouri between 0000 UTC 20 May and

0000 UTC 21 May without substantial intensification

(Figs. 4b,d,f). By 0600 UTC 20May, cellular convection

from the previous evening (Fig. 5b) was organizing into

an MCS in eastern Oklahoma, Arkansas, and Missouri

that was dissipating by 1200 UTC (Figs. 5d,f). The rem-

nant outflow boundary was the focus for additional con-

vection that developed the following afternoon (Figs. 5h,j).

Stratiform precipitation also developed by 1200 UTC,

from southeastern Nebraska to southeastern Missouri

(Figs. 5f,h), weakening later in the day (Fig. 5j).

The control forecast reflects the upscale organization

and intensification of convection, subsequent dissipation

of the MCS, development of stratiform precipitation,

and regeneration of convection the following afternoon

(Figs. 5a,c,e,g,i). However, the forecast MCS evolved

a different structure than the observedMCS (Figs. 5c,e).

The coverage, timing, and location of subsequent con-

vection along the remnant outflow boundary was also

qualitatively different than observed (Figs. 5g,i).

4. Characteristics of perturbation growth

The characteristics of the precipitation forecast per-

turbation evolution are evaluated using the change in

perturbation energy with time in total and on the small,

medium, and large scales as well as the change in per-

turbation energy with spatial scale for selected fixed

times. When perturbations are related to the background

flow, the background flow refers to the control forecast

upon which the perturbations were added, which may be

different than the observations. Precipitation observa-

tions are from theNational Severe StormsLaboratoryQ2

product (Zhang et al. 2011).

An optimal ensemble design should contain members

that are equally plausible, and therefore equally skillful

(Leith 1974). Although lower skilled members can add

value to an ensemble (Eckel and Mass 2005) and this

study focuses on forecast sensitivity rather than skill, the

impact of the perturbations on forecast skill should also

be considered when designing an ensemble system.

Among the forecasts evaluated systematically in this

study, only the physics perturbations at some lead times

(;2–5 and ;22–27 h) and the RECRS perturbations

during the first hour resulted in significant decreases in

skill compared to the control forecast (not shown). The

differences in skill resulting from physics perturbations

are in large part related to differences in forecast bias

resulting from the use of different physics schemes. How

to optimally sample model and physics error is still an

open research question for SSEF design. The inclusion

of LG and LG_RECRS perturbations in the case studies

helps to understand the impacts of forecast biases re-

sulting from different physics schemes and the sensitiv-

ity to IC perturbations of various scales. The early loss of

skill resulting from recursive filter perturbations is a re-

sult of spurious precipitation that formed over large areas

onmany cases (not shown). This is clearly not desirable in

an ensemble and it is suggested that the spatial scales and

amplitude of such perturbations should bemore carefully

studied before this perturbation method is used for en-

semble forecasting.

The following case studies and season-average results

address the three research goals stated in section 1 by

a comparison of LGPH (and LG) with RAND and

RECRS, a comparison of RAND with RECRS, and

a comparison of LGPH_RECRS (and LG_RECRS)

with LGPH (and LG).

a. 10 May 2010

For the 10 May case, the control forecast error energy

shows maxima in forecast error energy at lead times of

about 10–15 and 24–27 h (Fig. 6d). The general trend of

two error energy maxima superimposed on an overall

increasing trend is found on all scales (Figs. 6a–c). The

magnitude of error energy is an order of magnitude

greater on themedium and small scales than on the large

scales. Compared to the control forecast error energy,

the perturbation energy for most lead times and methods

is too small in magnitude (Fig. 6). In general, those per-

turbations involving LG (i.e., LGPH, LGPH_RECRS,

LG, and LG_RECRS) capture about half of the total

error energy while small-scale IC perturbations (i.e.,

RAND and RECRS) capture about one-quarter of the

total error energy.A particularly pronounced absence of

medium-scale perturbation energy with a scale of about

64–256 km at 24 h for all perturbation methods shown in

Fig. 7, compared to forecast error, is consistent with

Fig. 3. The medium-scale storms in the southern plains at

this time (Fig. 3h) are absent in the corresponding fore-

cast (Fig. 3g), contributing to the medium-scale forecast

error energy. However, all perturbation methods also
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missed these storms (not shown) so the perturbation

energy does not reflect that particular forecast error.

In addition, as shown in Fig. 7, compared to the control

forecast error energy, the perturbation energy for

most lead times and methods is also too small in the

spatial scale of maximum energy except for LGPH and

LGPH_RECRS at 24 h.

On the 10 May case the evolution of perturbation

energy on different scales depends strongly on the

method of perturbation. Compared to LGPH, which is

currently used in the standard CAPS SSEF, RAND and

RECRS show less pronounced growth for large and

medium scales, but comparable growth for small scales

(Fig. 6). Without physics perturbations, LG perturba-

tion energy is less than LGPH on medium and large

scales at later lead times (Fig. 6). However, the quali-

tative comparison of RAND and RECRS to LGPH is

consistent with the comparison to LG. Between the two

small-scale perturbation methods, RECRS shows an

increase of perturbation energy over RAND on the

medium scales and on the small scales after;20 h (Figs.

6b,c). When small-scale IC perturbations are combined

with LGPH and LG, LGPH_RECRS and LG_RECRS

are similar to LGPH and LG, respectively (Fig. 6).

FIG. 4. As in Fig. 2, but for (a),(b) 0000 UTC 20 May; (c),(d) 1200 UTC 20 May; and (e),(f) 0000 UTC 21 May.
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The characteristics of perturbation growth are also

seen in the perturbation energy spectra at selected lead

times (Fig. 7). None of the perturbation methods gen-

erates much energy during the first 6 h. The perturbation

method affects both the spectral width and the wave-

length of maximum energy of the resulting precipitation

forecast perturbation. For example, at 12 h the wave-

length of maximum energy of 32 km for RAND (Fig. 7a)

is smaller than the 64 km for LGPH (Fig. 7c) and

RECRS (Fig. 7b). The LGPH spectrum after 6 h is

broader than the spectra for RAND and RECRS (Figs.

7a,b,c), indicating perturbations across a wider range of

scales in LGPH. The RECRS spectrum is also broader

than the RAND spectrum (Figs. 7a,b). When combining

the small-scale IC perturbation with LGPH, the wave-

length of maximum energy for LGPH_RECRS after 6 h

(Fig. 7d) tends to be larger than LGPH (Fig. 7c). How-

ever, such a differencewas not observed for the combined

small- and large-scale IC-only perturbations (LG and

LG_RECRS; Figs. 7e,f).

The perturbations involving RECRS (i.e., RECRS,

LGPH_RECRS, and LG_RECRS) show perturbation

energy maxima at 16–32-km wavelength at 1 h (Fig. 7).

Such maxima correspond to the spurious small-scale

precipitation mentioned above. This spurious pre-

cipitation may be a result of adding unrealistically large

perturbations on such scales, a lack of realistic coupling

between the temperature andmoisture perturbations, or

some other imbalance resulting from the temperature

and humidity perturbations in RECRS. The lack of

spurious precipitation in the RAND perturbations may

be a result of diffusion quickly reducing the amplitudes

of the small-scale perturbations when the perturbations

are of grid scale.

In summary, for the 10 May case the perturbation

methods considered, especially small-scale IC pertur-

bations, do not reflect the forecast error magnitude or

temporal variability. The shape of the perturbation en-

ergy spectrum also does not reflect the shape of the

forecast error energy spectrum for many lead times and

perturbation methods. Compared to the standard LGPH

perturbation in CAPS SSEF, RAND and RECRS show

less perturbation growth at medium and large scales,

resulting in narrower perturbation energy spectra with

a smaller wavelength of maximum energy at some lead

times. When the physics perturbation is eliminated from

LGPH, LG generally has less perturbation energy than

LGPH at later lead times on medium and large scales.

However, the smaller perturbation growth by RAND

and RECRS at medium and large scales is also seen

compared to LG. The difference between RAND and

RECRS is mainly on medium scales where perturbation

energy is increased for RECRS, resulting in a broader

FIG. 5. As in Fig. 3, but valid at (a),(b) 0100 UTC 20May; (c),(d)

0600 UTC 20 May; (e),(f) 1200 UTC 20 May; (g),(h) 1800 UTC 20

May; and (i),(j) 0000 UTC 21 May.
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spectrum at some lead times. The impact of adding small-

scale IC perturbations to LGPH and LG is generally

small. The relative lack of medium- and large-scale fore-

cast perturbations in RAND and RECRS compared to

LG and LGPH, and the minimal impact of combining

small- and large-scale perturbations, suggests a relative

insensitivity of this forecast at such scales to random

small-scale IC perturbations compared to larger-scale

perturbations such as LGPH and LG. As shown below,

this result is case dependent.

b. 20 May 2010

As in the 10 May case, the 20 May case shows forecast

error energywith amaximumat early lead times followed

by a larger maximum at ;24–27 h (Fig. 8d). The error

energy on 20 May does not show an increasing trend as

clearly as on the 10 May case. This may be due to the

already much larger error energy on the 20May case than

on the 10May case at early lead times, especially on small

andmedium scales (Figs. 8b,c). Although the error energy

during the firstmaximum is again underrepresented by the

forecast perturbations, the perturbation energy follows the

error energy more closely on this case during the second

maximum than on the 10May case. Compared with the 10

May case where all perturbation methods generate max-

imum error energy on smaller scales than the forecast

error energy during the first 12h, only a few perturbation

methods (RAND, LG, and RECRS) fail to capture the

error energy maximum wavelengths at some lead times

(Fig. 9). By 24h, all perturbation methods reflect the

maximum error energy on the 64-km wavelength scale on

the 20 May case.

FIG. 6. Average squared difference (i.e., energy) between control forecast and observed hourly accumulated pre-

cipitation (CNerror), and between each perturbed forecast and the control forecast, during the 10May case for (a) large

scales only, (b) medium scales only, (c) small scales only, and (d) without any scale decomposition or filtering.
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FIG. 7. Perturbation energy as a function of wavelength for the 10 May case at lead times of 1, 3, 6, 12, and 24 h for

(a) RAND, (b) RECRS, (c) LGPH, (d) LGPH_RECRS, (e) LG, and (f) LG_RECRS. The CNerror energy is the

dashed line in all panels.
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The evolution of perturbation energy on the 20 May

case is generally less dependent on the method of per-

turbation than on the 10 May case. There is not a con-

sistent separation between LGPH and RAND/RECRS

on medium and large scales during most of the forecast

period (Figs. 8a,b). RAND andRECRS have evenmore

perturbation energy than LGPH on small scales at;20–

27 h. Eliminating the impact of physics perturbations,

small-scale (RAND/RECRS) and large-scale (LG) IC

perturbations have similar perturbation energy (Fig. 8).

During the early forecast hours, RECRS has more

perturbation energy than RAND on small and medium

scales (Figs. 8b,c). In contrast to the 10 May case, this

difference diminishes and RAND and RECRS become

similar by ;10–12h. Combining the small-scale IC per-

turbation with LGPH also shows a larger impact com-

pared to the 10 May case. In particular, LGPH_RECRS

shows greater perturbation energy than LGPH at early

lead times on small scales (Fig. 8c), most lead times on

medium scales (Fig. 8b), and at the 1-h lead time, corre-

sponding to regional variation in the spurious pre-

cipitation response to RECRS, on large scales (Fig. 8a).

These differences are even more pronounced when only

the IC perturbations are considered (i.e., LG_RECRS vs

LG).

The impact of physics perturbation is also evaluated

by comparing LG and LGPH. The differences between

LG and LGPH are most pronounced on medium scales

at early lead times and small scales at later lead times

for this case (Figs. 8b,c). On the medium scales, LG

and LGPH become similar after ;15h, suggesting that

medium-scale forecast sensitivity is dominated by the

IC, rather than physics, perturbations at later lead times.

LGPH_RECRS energy is also less than RECRS alone at

1 h for large and small scales (Fig. 8). Since LG_RECRS

is more similar to RECRS at 1 h, this seemingly

FIG. 8. As in Fig. 6, but for the 20 May case.
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counterintuitive result is due to a damping effect of the

LGPH physics configuration, which is different from

that used in RECRS. The physics configuration of

LGPH showed less systematic bias in the LGPH fore-

cast than RAND and RECRS forecasts at these lead

times (not shown). It is not clear whether this damping

effect is related to the differences in microphysics or

boundary layer parameterization. This also explains why

LG is more similar to RECRS/RAND than LGPH for

small scales at later lead times (Fig. 8c).

FIG. 9. As in Fig. 7, but for the 20 May case.
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The perturbation energy spectra are also generally

less sensitive to the perturbationmethod on 20May than

on 10May (Fig. 9). A prominent difference from 10May

is that in the 20 May case the small-scale IC perturba-

tions grow substantially, creating total energy that is

similar or greater to larger-scale IC (with or without phys-

ics) perturbations (Fig. 9). At 6 and 12h the wavelength of

maximum energy for LGPH and LGPH_RECRS is

again larger than for RAND and RECRS (Figs. 9a–d).

This difference is largely due to the physics perturba-

tions since the LG and LG_RECRS spectra (Figs. 9e,f)

at these times are more similar to the RAND and

RECRS spectra. The differences between RAND and

RECRS spectra are more pronounced in the first 6 h due

to the spurious precipitation. Combining the small-scale

RECRS perturbation with the large-scale IC and physics

perturbations slightly broadens the spectra (i.e., LGPH

vs LGPH_RECRS and LG vs LG_RECRS).

The different sensitivities of the 10 and 20May cases to

different perturbations are illustrated subjectively with

representative RAND, LGPH, and LG forecast pertur-

bations at the 24-h lead time (Fig. 10). On 10 May it is

primarily the convective-scale details of an incipientMCS

over southeast Kansas and the small-scale features within

the stratiform precipitation farther north that are sub-

stantially affected by the RAND perturbation (Fig. 10a).

However, the LGPH perturbation alters the mesoscale

structure of the stratiform precipitation region, and more

dramatically changes the structure and location of the

incipient MCS which is displaced ;100 km to the

northwest (Fig. 10b). The LG perturbation shows a sim-

ilar displacement, although the amount of displacement

in the forecast perturbation by LG is less than that by

LGPH and in the opposite direction (Fig. 10c). In con-

trast, even the mesoscale characteristics and location of

theMCS forecast over the southern part of the domain on

20 May are substantially changed by the RAND pertur-

bation (Fig. 10d) at least as much as the LG and LGPH

perturbations (Figs. 10e,f).

In summary, the perturbation energy is again smaller

than the error energy at early lead times but, unlike the

10 May case, is similar to the error energy after ;15 h.

Unlike the 10 May case, RAND/RECRS show similar

or greater energy compared to LGPH. The distribution

of perturbation energy across spatial scales is generally

more similar among the different perturbation methods

on this case than on the 10 May case. Also in contrast to

the 10 May case, combining the small-scale IC perturba-

tions with larger-scale IC and physics perturbations shows

a clear impact in terms of the magnitude of perturbation

energy growth. These results suggest that small-scale IC

errors on this case contribute to the forecast uncertainty at

least as much as the larger-scale IC and physics errors.

Therefore, adding small-scale IC perturbations to the

larger-scale IC and physics perturbations may be advan-

tageous to the SSEF design in certain situations.

c. Season average results

On average, the forecast error energy grows approxi-

mately linearly on the large scale with much less magni-

tude than on smaller scales (Fig. 11). On medium and

small scales, the forecast error energy follows the diurnal

cycle of convection, with maxima during the early fore-

cast hours and during the following afternoon (Figs. 11b,c).

The medium-scale afternoon maximum of the second

day persists into the evening while the small-scale maxi-

mum decreases after;23h (i.e.,;2300 UTC; Figs. 11b,c).

All perturbation methods result in less total energy than

the forecast errors (Fig. 11d). The underestimation of

forecast errors is most pronounced for medium and

large scales and for the RAND and RECRS pertur-

bations (Figs. 11a–c).

Differences among the average perturbation energies

in Fig. 11 are tested for statistical significance using one-

sided permutation resampling (Hamill 1999) at the 95%

confidence level. On medium and large forecast scales,

LGPH has significantly more perturbation energy than

RANDandRECRS, except at early lead times due to the

spurious precipitation of RECRS and except at 19–24h

on the medium scale where the difference between

LGPH and RECRS is not significant (Figs. 11a,b). Only

LGPH and LGPH_RECRS account for a substantial

fraction of the error energy on large scales (Fig. 11a). On

small scales LGPH is slightly, but significantly, greater

than RAND at 3–9 h and is markedly less than RAND

and RECRS at 16–30 h (Fig. 11c). The reduced LGPH

perturbation energy compared to RAND and RECRS

on small scales at 16–30 h is a systematic result of the

physics-related bias difference discussed for the 20 May

case. Besides the first few hours, dominated by spurious

precipitation for RECRS, significantly greater energy

for RECRS than RAND is found at most lead times for

large and medium scales and at several lead times for

small scales (Figs. 11a–c). This difference is qualitatively

most pronounced on the medium scales (Fig. 11b). On

average, the medium-scale differences between LGPH

and RAND/RECRS are less pronounced than on the 10

May case. The RAND/RECRS medium-scale pertur-

bation energy is 50%ormore of the LGPHperturbation

energy on average at most lead times. This suggests

systematic upscale growth of the small-scale IC errors

throughout the 30-h forecast period. However, the dif-

ferences between LGPH and LGPH_RECRS on aver-

age are generally small and/or not significant, again

excluding early lead times dominated by spurious pre-

cipitation (Fig. 11).
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The total average perturbation energy from all per-

turbationmethods becomes similar after;16h (Fig. 11d),

4 h later than the 11-h time scale of insensitivity to the

small-scale IC perturbation method suggested by

Hohenegger and Sch€ar (2007a). The differences be-

tween RAND and RECRS perturbation energy, espe-

cially on the medium scales, throughout the forecast

period suggests that the impact of the structure of small-

scale IC perturbations may persist longer into the fore-

cast than expected.

The RAND and RECRS perturbations do not reflect

the spectral evolution of error energy as well as LGPH

(Figs. 12a–c). LGPH already approximately reflects the

error energy maximum of ;32–128-km wavelength by

6 h (Fig. 12c). However, RAND and RECRS still do

not even reflect the error energy maximum of 64-km

wavelength at 12 h (Figs. 12a,b). By 24 h, all methods

reflect the error energy maximum of 32-km wavelength

(Fig. 12). At later lead times, LGPH generally has a

broader spectrum, withmore energy on the larger scales,

than RAND and RECRS (Figs. 12a–c). Except for the

very early lead times whereRECRS and LGPH_RECRS

are dominated by the spurious precipitation, there are not

substantial differences in perturbation energy spectra

between RAND and RECRS or between LGPH and

LGPH_RECRS.

5. Summary and discussion

The purpose of this study is to understand the multi-

scale characteristics of the evolution of different sources

of perturbations on convection-allowing precipitation

forecasts for two case studies and for 34 forecasts on

average, for the purpose of guiding the optimal SSEF

FIG. 10. Forecast perturbations at the 24-h lead time (perturbed forecasts minus the control forecasts shown in Figs. 3g and 5i) for

(a) RANDon the 10May case, (b) LGPHon the 10May case, (c) LG on the 10May case, (d) RANDon the 20May case, (e) LGPHon the

20 May case, and (f) LG on the 20 May case.
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design. In particular, three main goals are addressed.

First, the impact of small-scale IC perturbations (RAND

and RECRS) is compared to the impact of larger-scale IC

and physics perturbations (LGPH and LG) that are cur-

rently used in theCAPSSpringExperiment SSEF. Second,

two methods of generating small-scale IC perturba-

tions (RAND and RECRS) are compared to each other.

Third, LGPH is compared to a method of combining

the small and large-scale IC perturbations (LG_RECRS)

and combining multiscale IC and physics perturbations

(LGPH_RECRS).

It is found that the relative impacts of the different

types of perturbation are case dependent. On the 10

May case the evolution of the precipitation systems

in the background forecast are driven primarily by

a synoptic-scale disturbance. After the first few hours,

the 10 May forecasts containing large-scale IC pertur-

bations, with or without physics perturbations, have

more perturbation energy than the small-scale IC-only

perturbations, RAND and RECRS, on medium and

large scales while the small-scale forecast perturbation

energy is similar for all methods. As a result, the per-

turbation energy spectra are generally broader for LG

and LGPH than RAND and RECRS. On this case the

RECRS method creates more forecast perturbation

energy than RAND at most lead times for the medium

scales and for many lead times after ;20 h for the small

scales. LGPH_RECRS and LG_RECRS do not in-

crease the perturbation energy relative to LGPH and

LG, respectively, in this case. In contrast, the 20 May

FIG. 11. As in Fig. 6, but averaged over the entire experiment period. Statistical significance at the 95% confidence

level, based on permutation resampling, is indicated as follows. Markers on the RAND, RECRS, and

LGPH_RECRS lines (circles, triangles, and squares, respectively) indicate a significant difference from the LGPH

line. Markers (asterisks) above all the lines indicate a significant difference between RAND and RECRS.
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case has ongoing convection in the background forecast

at the initial time that grows upscale into an MCS. The

20 May forecasts are generally less sensitive to the scale

of IC perturbations, with LG and LGPH not showing

a clear increase of perturbation energy, relative to

RAND and RECRS, on any scale. The perturbation

energy spectra are also less sensitive to the perturbation

method on 20May than on 10May. There is less forecast

energy for LGPH than for RAND and RECRS on small

scales at;20–27h due to the physics scheme differences.

On 20 May, RECRS shows increased perturbation en-

ergy, relative to RAND, for only the first ;12–15 h on

small and medium scales. Unlike the 10 May case, the 20

May case shows a greater impact of combining small-

scale IC perturbations with larger-scale IC and physics

perturbations, with perturbation energy at ;20–26 h for

LGPH_RECRS and LG_RECRS being larger than

LGPH and LG, respectively.

One of the main differences in perturbation evolution

between the two cases is the greater sensitivity to the

small-scale IC perturbations, relative to the larger-scale

IC and physics perturbations, on the 20May case. This is

consistent with past case studies suggesting that lower

predictability generally results from the release of

deep moist convective instability (e.g., Hohenegger

et al. 2006). However, Zhang et al. (2006) found less

sensitivity of the mesoscales to small-scale random IC

perturbations for a warm season heavy precipitation

event than a large-scale winter cyclone event. This

contrasts with the results in the present study. Reasons

for this difference may include the direct consideration

of precipitation forecasts, instead of wind and temper-

ature differences as in Zhang et al. (2006), as well as

differences in the forcing mechanisms of the pre-

cipitation systems. For example, our 20 May case is

characterized by upscale growth of convection due to

FIG. 12. As in Fig. 7, but averaged over the entire experiment period.
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internal storm dynamics rather than the large-scale

moisture transport interacting with topography in

Zhang et al. (2006).

The perturbations are evaluated over a large number

of forecasts to better understand their systematic be-

havior, independent of the many factors of individual

cases that can affect the predictability. Averaged over 34

forecasts, there is a diurnal cycle of forecast error and

perturbation energy on the small and medium scales.

Compared to RAND and RECRS, the forecast sensi-

tivity is dominated by LGPH and LGPH_RECRS per-

turbations on large and medium scales. However, on

medium scales RAND and RECRS alone can generate

at least half as much forecast perturbation energy as

LGPH throughout the forecast period. This sensitivity

of the medium forecast scales to small-scale IC pertur-

bations is more similar to the 20 May case than the 10

May case. This similarity is consistent with the expec-

tation that during the late spring and early summer

season convective episodes are often dominated by local-

ized and/or diurnal forcings, such as those on the 20 May

case, rather than large-scale forcing like the 10 May case

(Stensrud and Fritsch 1993). Also similar to the 20 May

case, perturbation energy for LGPH and LGPH_RECRS

is systematically reduced on small scales during the di-

urnal convective maximum due to the different biases of

the physics schemes. The most prominent difference

between RAND and RECRS is an increase of medium-

scale perturbation energy at all times for RECRS.

RECRS also shows greatly increased energy at 1–2 h due

to spurious precipitation. Refinement of the RECRS

method or investigation of better methods to generate

small-scale IC perturbations would therefore be neces-

sary before inclusion in an ensemble forecast system. On

average, LGPH_RECRS does not create significantly

more perturbation energy than LGPH on any scale after

the first few hours which are dominated by the spurious

precipitation.

The dominant impact of large-scale IC and physics

perturbations suggests that the current CAPS ensemble

configuration, sampling only large-scale IC and physics

errors, already samples the primary forecast sensitivity.

The comparable, although lesser, impact of small-scale

IC-only perturbations on medium scales also implies

a process of upscale growth of the initially small errors that

can substantially contribute to the medium-scale forecast

sensitivity. However, the method of generating multiscale

IC perturbations represented by LGPH_RECRS does

not show a systematic increase in medium-scale per-

turbation energy, relative to LGPH. The three most

likely reasons for this lack of impact are that 1) better

methods of combiningmultiple scales of IC perturbation

need to be developed, 2) there is only an advantage of

including small scales in the IC perturbations under

certain conditions such as rapid upscale error propaga-

tion (e.g., the 20 May case), or 3) the downscale energy

cascade of the large-scale IC perturbations implicitly

accounts for small-scale errors that are not explicitly

sampled.

More work is needed to understand how to realistically

and efficiently sample, and optimally combine, all scales

of uncertainty, from synoptic to convective, into IC/LBC

perturbations, along with physics perturbations, for

SSEFs. The methods of defining the small-scale IC per-

turbations in this study are not flow dependent, may not

reflect the actual analysis errors, and can result in un-

balanced initial fields that are detrimental to short-term

forecasts. For example, the RAND perturbations exhibit

no initial spatial structure and result in less growth than

the RECRS perturbations. The RECRS perturbations

are defined to have a fixed, uniform spatial structure and

amplitude but create spurious precipitation at early lead

times. The differences between RAND and RECRS,

especially on the medium forecast scales, show the im-

portance of the spatial structure of small-scale IC pertur-

bations. Flow-dependentmethods should be developed to

better sample the small-scale error structure in the ICs.

Future work will investigate the use of ensemble based

data assimilation and its variants (e.g., Wang et al. 2008)

to provide flow-dependent multiscale IC perturbations

for SSEFs. In addition to IC/LBC perturbationmethods,

different physics perturbations may also yield different

results. Investigation of physics perturbation methods

such as using different physics schemes and different

parameters within a fixed scheme (Duda et al. 2013,

manuscript submitted to Mon. Wea. Rev.) is left for fu-

ture study. While this study focuses primarily on the

spatial scales of forecast perturbation, the questions of

which variables should be perturbed and what the co-

variance should be among the perturbed variables for

SSEF design remains an open question. Ensemble-

based data assimilation may also be useful to address

such questions.
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