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Abstract 48 
  49 

Multiscale convection-allowing precipitation forecast perturbations are examined for two 50 

forecasts and systematically over 34 forecasts out to 30-h lead time using Haar Wavelet 51 

decomposition.  Two small scale initial condition (IC) perturbation methods are compared to the 52 

larger scale IC and physics perturbations in an experimental convection-allowing ensemble.  53 

For a precipitation forecast driven primarily by a synoptic scale baroclinic disturbance, 54 

small scale IC perturbations resulted in little precipitation forecast perturbation energy on 55 

medium and large scales, compared to larger scale IC and physics (LGPH) perturbations after the 56 

first few forecast hours.  However, for a case where forecast convection at the initial time grew 57 

upscale into a Mesoscale Convective System (MCS), small scale IC and LGPH perturbations 58 

resulted in similar forecast perturbation energy on all scales after about 12h.  Small scale IC 59 

perturbations added to LGPH increased total forecast perturbation energy for this case.  60 

Averaged over 34 forecasts, the small scale IC perturbations had little impact on large forecast 61 

scales while LGPH accounted for about half of the error energy on such scales.  The impact of 62 

small scale IC perturbations was also less than, but comparable to, the impact of LGPH 63 

perturbations on medium scales.  On small scales, the impact of small scale IC perturbations was 64 

at least as large as the LGPH perturbations.  The spatial structure of small scale IC perturbations 65 

affected the evolution of forecast perturbations, especially at medium scales.  There was little 66 

systematic impact of the small scale IC perturbations when added to LGPH.  These results 67 

motivate further studies on properly sampling multi-scale IC errors.  68 
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1.    Introduction  69 

Limited predictability of warm season precipitation forecasts has been demonstrated by 70 

low deterministic forecast skill (Fritsch and Carbone 2004), theoretical arguments (Thompson 71 

1957; Lorenz 1963), sensitivity to small perturbations (e.g., Hohenegger et al. 2006, Hohenegger 72 

and Schär 2007a, 2007b, Zhang et al. 2003, 2006), and sensitivity to model and physics 73 

differences (e.g., Zhang and Fritsch 1988; Zhang et al. 2006; Johnson et al. 2011ab; Johnson and 74 

Wang 2012, 2013).  The ability to resolve small scale features associated with rapid non-linear 75 

error growth limits the predictability of convection-scale forecasts even more than that of coarser 76 

resolution forecasts (Elmore et al. 2002; Walser et al. 2004; Hohenegger et al. 2006; Hohenegger 77 

and Schär 2007a, 2007b; Zhang et al. 2003, 2006).  Predictability studies at convection-allowing
1
 78 

resolution have been limited to a small number of forecasts, rather than systematic evaluation 79 

over a period of many forecasts.   80 

Understanding perturbation growth is important for ensemble design because ensemble 81 

perturbations are intended to sample the error growth leading to forecast uncertainty (Leith 1974; 82 

Toth and Kalnay 1997).  The optimal design of Storm Scale (≤24 h forecasts with 1-4 km grid 83 

spacing) Ensemble Forecast (SSEF) systems remains largely unknown, although coarser 84 

resolution ensembles have been relatively well studied.  For example, medium range (~1 week) 85 

synoptic scale (~100 km grid spacing) ensembles have been studied for almost two decades 86 

(Buizza and Palmer 1995; Toth and Kalnay 1997; Houtekamer et al. 1996; Wang and Bishop 87 

2003; Wang et al. 2004).  Short-range (~1-3 days) mesoscale (~10-20 km) ensembles have also 88 

been the focus of many past studies (Du et al. 1997; Stensrud et al. 1999; Marsigli et al. 2001; 89 

Xu et al. 2001; Grimit and Mass 2002; Eckel and Mass 2005; Lu et al 2007; Li et al. 2008; 90 

                                                 
1
 Equivalently called convection-permitting or cloud-system resolving in other published studies 
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Berner et al. 2011).  However, the optimal design of SSEFs may be quite different than that of 91 

coarser resolution ensembles (Hohenegger and Schär 2007b). 92 

Hohenegger and Schär (2007a) found similar convection-allowing precipitation forecast 93 

sensitivity to different perturbation methods after about 11 hours for a case study.  However, it is 94 

not known if these results are characteristic of other cases with different background flow and/or 95 

a different role of topography.  Other studies have demonstrated large differences in 96 

predictability for different events.  For example, Zhang et al. (2006) showed reduced sensitivity 97 

to small scale IC perturbations for a warm season heavy precipitation event compared to a cold 98 

season large scale cyclone event.  Walser et al. (2004) and Hohenegger et al. (2006) further 99 

found that some warm season cases in the Alpine region characterized by stratiform precipitation 100 

exhibited greater predictability than some cases characterized by deep moist convection.  101 

However, it was also found that deep convective cases can exhibit higher predictability, 102 

depending on other factors such as the presence of topography and the residence time of the 103 

perturbations in convectively unstable regions.  Done et al. (2012) have also related different 104 

aspects of predictability on two case studies to whether convection is in statistical equilibrium 105 

with large scale forcings. 106 

The evolution of different types of perturbations has yet to be systematically studied over 107 

a period of many convection-allowing forecasts.  The present study systematically evaluates the 108 

characteristics of evolution of different perturbations for 34 forecasts.  Two case studies are also 109 

evaluated in detail to expand on the types of flow regimes considered in past case studies.  In 110 

contrast to the Mesoscale Alpine Program cases studied by Walser et al. (2004) and Hohenegger 111 

et al. (2006), this study focuses on the Great Plains of the United States where topography plays 112 
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a less dominant direct role, severe convective weather is more frequent and intense (Brooks et al. 113 

2003), and the latitude is farther south from the main belt of the westerlies.   114 

Given the range of resolvable scales at convection-allowing resolution, the growth and 115 

interaction of perturbations on different scales is of particular interest.  Multiscale evolution of 116 

convection-allowing forecast perturbations have been studied on even fewer cases than 117 

predictability in general (Zhang et al. 2003, 2006; Walser et al. 2004; Luo and Zhang 2011).  The 118 

present study focuses on evaluating the characteristics and evolution of forecast perturbations by 119 

decomposing them into multiple scales using a Harr wavelets analysis method. 120 

A few additional deterministic forecasts were generated by the Center for Analysis and 121 

Prediction of Storms (CAPS) during the 2010 National Oceanographic and Atmospheric 122 

Administration Hazardous Weather Testbed (NOAA HWT) Spring Experiment (Kong et al. 123 

2010, Xue et al 2010, Clark et al 2012) to complement the CAPS Spring Experiment real-time 124 

SSEF.  The general design of CAPS SSEF did not include small scale IC perturbations.  These 125 

additional forecasts were therefore designed to study the sensitivity to small scale IC 126 

perturbations.  The present study has three main goals.  The first goal is to determine the forecast 127 

sensitivity to small scale IC perturbations, relative to the larger scale IC and physics 128 

perturbations already included in the SSEF design.  The second goal is to compare the sensitivity 129 

to two methods of generating such small scale IC perturbations.  The third goal is to explore the 130 

impact of adding small scale IC perturbations on top of the existing large scale IC and physics 131 

perturbations.  These goals are addressed using two case studies with different background flows 132 

and systematic evaluation of all 34 available cases.  Since the existing method of perturbation 133 

actually includes multiple perturbation sources (IC and physics), additional forecasts were later 134 
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generated for the two case studies, with the physics perturbations excluded, to aid interpretation 135 

of the results and better understand the impact of IC perturbations at various scales.  136 

The paper is organized as follows.  In section 2 the model configuration, scale 137 

decomposition, and perturbation methods are described.  A brief overview of the two cases that 138 

are selected for detailed study is given in section 3 and results are presented in section 4.  Section 139 

5 contains conclusions and a discussion. 140 

 141 

2.    Model configurations and methods 142 

a. Control forecast configuration 143 

 144 

Forecasts were generated with 4 km grid spacing at 0000 UTC on 34 weekdays from 3 145 

May to 18 June during the 2010 NOAA HWT Spring Experiment (Xue et al. 2010; Kong et al. 146 

2010).  The control forecast used the Weather Research and Forecasting (WRF) model Advanced 147 

Research WRF (ARW; Skamarock et al. 2005).  The control forecast ICs were obtained from the 148 

operational National Centers for Environmental Prediction’s North American Model (NCEP 149 

NAM) 0000 UTC NAM Data Assimilation System (NDAS; Rogers et al. 2009) analysis at 12 150 

km grid spacing, interpolated to the 4 km WRF grid. Additional radar and mesoscale 151 

observations were then assimilated using ARPS 3DVAR and cloud analysis package (Xue et al. 152 

2003; Gao et al. 2004; Hu et al. 2006).  Radial velocity from over 120 radars in the Weather 153 

Surveillance Radar (WSR)-88D network, as well as surface pressure, horizontal wind, potential 154 

temperature, and specific humidity from the Oklahoma Mesonet, METAR (Meteorological 155 

Aviation Report), and Wind Profiler networks were assimilated with ARPS 3DVAR.  The ARPS 156 

cloud analysis package uses radar reflectivity along with surface data, Geostationary Operational 157 

Environmental Satellite (GOES) visible and 10.5 micron infrared data to estimate hydrometeor 158 
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species and adjust in-cloud temperature and moisture (Hu et al., 2006).  The control forecast was 159 

configured with the Thompson et al. (2008) microphysics scheme, the Mellor-Yamada-Janic 160 

(Janjic´ 1994) boundary layer scheme, the Rapid Radiative Transfer Model longwave radiation 161 

scheme (Mlawer et al. 1997), the Goddard shortwave radiation (Tao et al. 2003) scheme and the 162 

NCEP-Oregon State University-Air Force-NWS Office of Hydrology (NOAH; Ek et al. 2003) 163 

land surface model.  The vertical turbulent mixing was represented in the boundary layer scheme 164 

and sub-grid scale horizontal turbulence mixing was represented by Smagorinsky 165 

parameterization.  No additional numerical diffusion was applied. 166 

 167 

b. Forecast perturbation methods 168 

 169 

In the general design of the SSEF during the 2010 HWT Spring Experiment, 170 

perturbations that sample model and physics uncertainty as well as IC and Lateral Boundary 171 

Condition (LBC) perturbations derived from the Short Range Ensemble Forecast system (SREF; 172 

Du et al. 2009) are included.  Since the SREF was run at grid spacing of 32-45 km 173 

(corresponding to a wavelength of 64-90 km, Du et al. 2009), SREF perturbations are on scales 174 

much larger than the SSEF model resolution.  Thus the perturbations from SREF do not include 175 

small scales (i.e., order of tens of kilometers).  Methods to generate perturbations on multiple 176 

scales, ranging from the synoptic to the convective scales, have yet to be systematically studied.  177 

As a first step to help guide development of practical methods of sampling errors across multiple 178 

scales in a SSEF system, during the 2010 Spring Experiment additional forecasts were generated 179 

with small scale IC perturbations.  For each perturbation method described below, one perturbed 180 

deterministic forecast was generated and compared to the control member.   181 
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Six methods of perturbation are investigated in this study.  Perturbations RAND 182 

(random) and RECRS (recursive filter) are designed to simulate random small scale errors in the 183 

initial state.  Perturbation LGPH (large scale and physics) is designed to simulate the medium 184 

and large scale (i.e., order of hundreds and thousands of kilometers, respectively) IC errors and 185 

model physics errors.  Perturbation LGPH is what is currently adopted in the standard CAPS 186 

SSEF system.  Perturbation LGPH_RECRS (large scale and physics with recursive filter) is a 187 

combination of the LGPH and RECRS perturbation methods.  This method is designed to 188 

explore the impact of adding small scale IC perturbations on top of the existing large scale IC 189 

and physics perturbations.  For the two case studies, two additional perturbations are evaluated.  190 

Perturbations LG and LG_RECRS are identical to LGPH and LGPH_RECRS, respectively, 191 

except without any physics differences from the control member.  The latter two methods are 192 

designed to better understand the impact of IC perturbations at various scales and to infer the 193 

impacts of using different physics parameterization schemes on the results.  Since the primary 194 

goal of the study is a comparison of small scale IC perturbations to the LGPH perturbations in 195 

the current CAPS SSEF design, LG and LG_RECRS are not generated for all forecasts and are 196 

only limited to the two case studies to facilitate understanding of the results. 197 

The RAND perturbation is obtained by adding spatially uncorrelated, Gaussian random 198 

numbers to the IC temperature and relative humidity (standard deviation of 0.5 K and 5%, 199 

respectively).  The RECRS perturbation is obtained similarly, except with a recursive filter 200 

applied to the random perturbations to create spatially correlated perturbations with a 12 (3) km 201 

horizontal (vertical) de-correlation scale.  The RAND perturbation is conceptually similar to the 202 

random perturbations of Hohenegger and Schär (2007a).  The RECRS perturbation is 203 



 

9 

 

conceptually similar to the Gaussian perturbation of Hohenegger and Schär (2007a), except 204 

RECRS is applied homogenously across the domain instead of only at a single location. 205 

The LGPH IC perturbation is obtained from the difference between a 3 hour forecast of a 206 

SREF WRF-ARW member (labeled P1 in Du et al. 2009) and the corresponding SREF control 207 

member forecast.  The SREF perturbations of u and v wind components, potential temperature, 208 

and specific humidity are rescaled to have a root mean square value of 1 m s
-1

, 0.5 K, and 0.02 209 

g/kg, respectively.  In addition to the IC perturbation, the LGPH forecast uses a different physics 210 

configuration than the control forecast to approximate physics errors.  Unlike the control 211 

forecast, the LGPH perturbation uses Morrison et al. (2008) microphysics scheme, RUC land 212 

surface model (Benjamin et al. 2004) and Yonsei University (Noh et al. 2003) boundary layer 213 

scheme.  The LGPH_RECRS perturbation is identical to LGPH except with additional recursive 214 

filtered random perturbations added in the same way as for the RECRS perturbation.  215 

Although only temperature and humidity (and wind in the case of LGPH and 216 

LGPH_RECRS) are directly perturbed, results are evaluated in terms of precipitation differences.  217 

Thus, the focus is on the net effect, rather than the processes, of perturbation growth and 218 

evolution.   219 

 220 

c. Scale decomposition method 221 

 222 

Following Casati et al. (2004), precipitation fields are decomposed into components of 223 

different spatial scale using 2D Haar Wavelets with the Model Evaluation Tools package from 224 

the Developmental Testbed Center, available at http://www.dtcenter.org/met/users.  The 225 

decomposition is defined over a 2
n
 by 2

n
 grid point domain for n>1. The original field is 226 

decomposed into its component on each of n+1 scales, and is equal to the sum of its components.  227 

The i
th

 component can be calculated as the difference between the original field averaged in 228 
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boxes of 2
i-1

 by 2
i-1

 grid points and the original field averaged in boxes of 2
i
 by 2

i
 grid points for 229 

1 ≤  i ≤ n.  The (n+1)
th

 component is the domain average value.  Each component therefore 230 

represents the variation over a spatial scale of 4 * 2
i-1

 km from a larger scale average.  Analogous 231 

to the more familiar Fourier decomposition, in the rest of the paper the wavelet-decomposed 232 

spatial scales are referred to in terms of a corresponding wavelength.  Thus, for example, the 233 

smallest resolvable scale of 4 km (e.g., Fig. 1b) corresponds to the smallest resolvable 234 

wavelength of 8 km.  A verification domain (shown in Fig. 3) of 512 by 512 grid points (2048 by 235 

2048 km) within the larger forecast domain (shown in Fig. 2) of 1163 by 723 grid points (4652 236 

by 2892 km) is used in this study.  Further details of the wavelet decomposition are described in 237 

Casati et al. (2004).  Precipitation forecast energy is defined as the square of the one-hour 238 

accumulated precipitation field, averaged over the verification domain.  The energy on a 239 

particular scale is defined similarly, using only the component of the precipitation field on that 240 

scale.  The error (or perturbation) energy is the square of the precipitation field difference 241 

between a forecast and the observations (or control forecast).  The evolution of a perturbation, or 242 

difference, energy metric is a common method of quantifying sensitivity to forecast perturbations 243 

(e.g., Zhang et al. 2006, Hohenegger et al. 2006).  244 

Figure 1 illustrates the 2D Haar wavelet decomposition of the difference between the 6h 245 

control forecast and corresponding observation of hourly accumulated precipitation on the 20 246 

May case.  The distribution of difference energy across scales is also found in Fig. 9 (dashed 247 

cyan line).  Objectively, there is a maximum of difference energy at 32-64 km wavelength scales 248 

and a smaller secondary maximum at the 256 km scale (Fig. 9). The total difference field (Fig. 249 

1a) subjectively looks most similar to the difference fields on 32-64 km scales (Fig. 1d,e), 250 

suggesting that the high amplitude, small-scale features on these scales account for most of the 251 
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total difference.  The subjectively apparent displacement of the MCS in Oklahoma and Arkansas 252 

(Fig. 1a) also corresponds to increased energy on the 256 km scale (Figs. 1g and 9). 253 

For presentation of results we define the large scale as the sum of scales with 254 

wavelengths of 4096, 2048, and 1024 km, the medium scale as the sum of scales with 255 

wavelengths of 512, 256, 128 km and 64 km and the small scale as the sum of scales with 256 

wavelengths of 32, 16, and 8 km. The small scales are those that are too small to be represented 257 

with the current SREF-derived perturbations.    258 

 259 

3.    Case study overview 260 

Forecasts initialized at 0000 UTC on 10 and 20 May 2010 (hereafter, 10 May case and 20 261 

May case, respectively) are selected for comparison of the differences in precipitation forecasts 262 

resulting from different sources and scales of perturbations during different flow regimes.  The 263 

following sub-sections describe the reasons for selecting these cases, a synoptic scale overview 264 

of environmental conditions, and the evolution of the unperturbed control forecast. 265 

 266 

a. 10 May 2010 267 

The 10 May case is selected because a synoptic scale baroclinic disturbance generated 268 

widespread precipitation in the control forecast.  During much of the forecast period (i.e., the 269 

first ~24h), the forecast evolution was determined primarily by large scale influences (e.g., 270 

fronts, jets and temperature advection). This event is also of interest because of a significant 271 

tornado outbreak that occurred in the southern Plains on the afternoon of 10 May (e.g., Palmer et 272 

al. 2011).  The control forecast of this event contains substantial errors in comparison to 273 
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observations.  It is therefore of interest to examine the sensitivity of the control forecast to 274 

different types of perturbations. 275 

At the time of forecast initialization (0000 UTC 10 May) there was an embedded 276 

shortwave trough over the western US and a broad ridge over the central US aloft (Fig. 2a). 277 

There was southerly flow and a warm front in central Texas at the surface (Fig. 2b).  By 0000 278 

UTC the negatively-tilted shortwave had propagated to the central US, inducing surface 279 

cyclogenesis and an intersecting dryline, cold front and warm front in the southern Plains (Fig. 280 

2c,d,e,f). An initial wave of observed scattered showers associated with the low-level warm 281 

advection developed in Arkansas and Missouri by 0600 UTC and moved eastward into 282 

Tennessee and northern Alabama by 1800 UTC (Fig. 3b,d,f).  Convection also developed near 283 

the Kansas/Nebraska border by 1200 UTC, moving eastward into northern Missouri by 1800 284 

UTC (Fig. 3d,f). At 0000 UTC more intense convection was occurring in the southern Plains.  285 

The control forecast predicted the initial wave of scattered showers, although with a 286 

southwestward displacement and with greater intensity than observed (Fig. 3a,b,c), as well as the 287 

development of convection along the Kansas-Nebraska border, although with more linear 288 

organization, weaker intensity and a slight northward displacement (Fig. 3c,d).  The most 289 

prominent difference between the forecast and observation was the absence of the intense 290 

convection over the southern Plains at 0000 UTC (Fig. 3g).  Storms eventually developed in the 291 

control forecast but they were several hours slower to develop than observed and did not extend 292 

as far south as observed (not shown). 293 

 294 
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b. 20 May 2010 295 

In contrast to the 10 May case, the 20 May case is selected because early in the control 296 

forecast (i.e., first ~12h) an MCS grew upscale from initially smaller scale convection.  The 297 

MCS evolution then influenced the regional-scale characteristics of subsequent convection, for 298 

example through the strength and location of its surface cold pool outflow boundary.  299 

At the time of forecast initialization (0000 UTC 20 May 2010) there was a slow-moving, 300 

broad trough aloft with an embedded shortwave rounding its base (Fig. 4a,c,e).  At the surface, a 301 

weaker surface low than in the 10 May case propagated from central Oklahoma into western 302 

Missouri between 0000 UTC 20 May and 0000 UTC 21 May without substantial intensification 303 

(Fig. 4b,d,f).  By 0600 UTC 20 May, cellular convection from the previous evening (Fig. 5b) 304 

was organizing into an MCS in eastern Oklahoma, Arkansas and Missouri that was dissipating 305 

by 1200 UTC (Fig. 5d,f).  The remnant outflow boundary was the focus for additional 306 

convection that developed the following afternoon (Fig. 5h,j).  Stratiform precipitation also 307 

developed by 1200 UTC, from southeastern Nebraska to southeastern Missouri (Fig. 5f,h), 308 

weakening later in the day (Fig. 5j). 309 

The control forecast reflects the upscale organization and intensification of convection, 310 

subsequent dissipation of the MCS, development of stratiform precipitation and regeneration of 311 

convection the following afternoon (Fig 5a,c,e,g,i).  However, the forecast MCS evolved a 312 

different structure than the observed MCS (Fig. 5c,e).  The coverage, timing and location of 313 

subsequent convection along the remnant outflow boundary was also qualitatively different than 314 

observed (Fig. 5g,i).   315 
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4.    Characteristics of perturbation growth 316 

The characteristics of the precipitation forecast perturbation evolution are evaluated using 317 

the change in perturbation energy with time in total and on the small, medium and large scales as 318 

well as the change in perturbation energy with spatial scale for selected fixed times.  When 319 

perturbations are related to the background flow, the background flow refers to the control 320 

forecast upon which the perturbations were added, which may be different than the observations.  321 

Precipitation observations are from the National Severe Storm Laboratory Q2 product (Zhang et 322 

al. 2011).  323 

An optimal ensemble design should contain members that are equally plausible, and 324 

therefore equally skillful (Leith 1974).  Although lower skilled members can add value to an 325 

ensemble (Eckel and Mass 2005) and this study focuses on forecast sensitivity rather than skill, 326 

the impact of the perturbations on forecast skill should also be considered when designing an 327 

ensemble system.  Among the forecasts evaluated systematically in this study, only the physics 328 

perturbations at some lead times (~2-5h and ~22-27h) and the RECRS perturbations during the 329 

first hour resulted in significant decreases in skill compared to the control forecast (not shown).  330 

The differences in skill resulting from physics perturbations are in large part related to 331 

differences in forecast bias resulting from the use of different physics schemes.  How to 332 

optimally sample model and physics error is still an open research question for SSEF design.  333 

The inclusion of LG and LG_RECRS perturbations in the case studies helps to understand the 334 

impacts of forecast biases resulting from different physics schemes and the sensitivity to IC 335 

perturbations of various scales.  The early loss of skill resulting from recursive filter 336 

perturbations is a result of spurious precipitation that formed over large areas on many cases (not 337 

shown).  This is clearly not desirable in an ensemble and it is suggested that the spatial scales 338 
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and amplitude of such perturbations should be more carefully studied before this perturbation 339 

method is used for ensemble forecasting.   340 

The following case studies and season-average results address the three research goals 341 

stated in section 1 by a comparison of LGPH (and LG) with RAND and RECRS, a comparison 342 

of RAND with RECRS, and a comparison of LGPH_RECRS (and LG_RECRS) with LGPH 343 

(and LG). 344 

 345 

a. 10 May 2010 346 

For the 10 May case, the control forecast error energy shows maxima in forecast error 347 

energy at lead times of about 10-15h and 24-27h (Fig. 6d).  The general trend of two error energy 348 

maxima superimposed on an overall increasing trend is found on all scales (Fig. 6a-c).  The 349 

magnitude of error energy is an order of magnitude greater on the medium and small scales than 350 

on the large scales.  Compared to the control forecast error energy, the perturbation energy for 351 

most lead times and methods is too small in magnitude (Fig. 6).  In general, those perturbations 352 

involving LG (i.e., LGPH, LGPH_RECRS, LG, LG_RECRS) capture about half of the total 353 

error energy while small scale IC perturbations (i.e., RAND and RECRS) capture about one 354 

quarter of the total error energy.  A particularly pronounced absence of medium scale 355 

perturbation energy with a scale of about 64-256 km at 24h for all perturbation methods shown 356 

in Fig. 7, compared to forecast error, is consistent with Fig. 3.  The medium scale storms in the 357 

southern Plains at this time (Fig. 3h) are absent in the corresponding forecast (Fig. 3g), 358 

contributing to the medium scale forecast error energy.  However, all perturbation methods also 359 

missed these storms (not shown) so the perturbation energy does not reflect that particular 360 

forecast error.  In addition, as shown in Fig. 7, compared to the control forecast error energy, the 361 
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perturbation energy for most lead times and methods is also too small in the spatial scale of 362 

maximum energy except for LGPH and LGPH_RECRS at 24h.   363 

On the 10 May case the evolution of perturbation energy on different scales depends 364 

strongly on the method of perturbation.  Compared to LGPH, which is currently used in the 365 

standard CAPS SSEF, RAND and RECRS show less pronounced growth for large and medium 366 

scales, but comparable growth for small scales (Fig. 6).  Without physics perturbations, LG 367 

perturbation energy is less than LGPH on medium and large scales at later lead times (Fig. 6).  368 

However, the qualitative comparison of RAND and RECRS to LGPH is consistent with the 369 

comparison to LG.  Between the two small scale perturbation methods, RECRS shows an 370 

increase of perturbation energy over RAND on the medium scales and on the small scales after 371 

~20h (Fig. 6b,c).  When small scale IC perturbations are combined with LGPH and LG, 372 

LGPH_RECRS and LG_RECRS are similar to LGPH and LG, respectively (Fig. 6).  373 

The characteristics of perturbation growth are also seen in the perturbation energy spectra 374 

at selected lead times (Fig. 7).  None of the perturbation methods generates much energy during 375 

the first 6h.  The perturbation method affects both the spectral width and the wavelength of 376 

maximum energy of the resulting precipitation forecast perturbation.  For example, at 12h the 377 

wavelength of maximum energy of 32 km for RAND (Fig. 7a) is smaller than the 64 km for 378 

LGPH (Fig. 7c) and RECRS (Fig. 7b).  The LGPH spectrum after 6h is broader than the spectra 379 

for RAND and RECRS (Fig. 7a,b,c), indicating perturbations across a wider range of scales in 380 

LGPH.  The RECRS spectrum is also broader than the RAND spectrum (Fig. 7a,b).  When 381 

combining the small scale IC perturbation with LGPH, the wavelength of maximum energy for 382 

LGPH_RECRS after 6h (Fig. 7d) tends to be larger than LGPH (Fig. 7c).  However, such 383 
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difference was not observed for the combined small and large scale IC-only perturbations (LG 384 

and LG_RECRS; Fig. 7e,f).  385 

The perturbations involving RECRS (i.e., RECRS, LGPH_RECRS and LG_RECRS) 386 

show perturbation energy maxima at 16-32 km wavelength at 1h (Fig. 7).  Such maxima 387 

correspond to the spurious small scale precipitation mentioned above.  This spurious 388 

precipitation may be a result of adding unrealistically large perturbations on such scales, a lack 389 

of realistic coupling between the temperature and moisture perturbations, or some other 390 

imbalance resulting from the temperature and humidity perturbations in RECRS.  The lack of 391 

spurious precipitation in the RAND perturbations may be a result of diffusion quickly reducing 392 

the amplitudes of the small scale perturbations when the perturbations are of grid scale.  393 

In summary, for the 10 May case the perturbation methods considered, especially small 394 

scale IC perturbations, do not reflect the forecast error magnitude or temporal variability.  The 395 

shape of the perturbation energy spectrum also does not reflect the shape of the forecast error 396 

energy spectrum for many lead times and perturbation methods.  Compared to the standard 397 

LGPH perturbation in CAPS SSEF, RAND and RECRS show less perturbation growth at 398 

medium and large scales, resulting in narrower perturbation energy spectra with a smaller 399 

wavelength of maximum energy at some lead times.  When the physics perturbation is 400 

eliminated from LGPH, LG generally has less perturbation energy than LGPH at later lead times 401 

on medium and large scales.  However, the smaller perturbation growth by RAND and RECRS 402 

at medium and large scales is also seen compared to LG.  The difference between RAND and 403 

RECRS is mainly on medium scales where perturbation energy is increased for RECRS, 404 

resulting in a broader spectrum at some lead times.  The impact of adding small scale IC 405 

perturbations to LGPH and LG is generally small.  The relative lack of medium and large scale 406 
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forecast perturbations in RAND and RECRS compared to LG and LGPH, and the minimal 407 

impact of combining small and large scale perturbations, suggests a relative insensitivity of this 408 

forecast at such scales to random small scale IC perturbations compared to larger scale 409 

perturbations such as LGPH and LG.  As shown below, this result is case-dependent.   410 

b. 20 May 2010 411 

As in the 10 May case, the 20 May case shows forecast error energy with a maximum at 412 

early lead times followed by a larger maximum at ~24-27h (Fig. 8d).  The error energy on 20 413 

May does not show an increasing trend as clearly as on the 10 May case.  This may be due to the 414 

already much larger error energy on the 20 May case than on the 10 May case at early lead times, 415 

especially on small and medium scales (Fig. 8b,c).  Although the error energy during the first 416 

maximum is again under-represented by the forecast perturbations, the perturbation energy 417 

follows the error energy more closely on this case during the second maximum than on the 10 418 

May case.  Compared with the 10 May case where all perturbation methods generate maximum 419 

error energy on smaller scales than the forecast error energy during the first 12h, only a few 420 

perturbation methods (RAND, LG, RECRS) fail to capture the error energy maximum 421 

wavelengths at some lead times (Fig.9).  By 24h, all perturbation methods reflect the maximum 422 

error energy on the 64 km wavelength scale on the 20 May case. 423 

The evolution of perturbation energy on the 20 May case is generally less dependent on 424 

the method of perturbation than on the 10 May case.  There is not a consistent separation 425 

between LGPH and RAND/RECRS on medium and large scales during most of the forecast 426 

period (Fig. 8a,b).  RAND and RECRS have even more perturbation energy than LGPH on small 427 

scales at ~20-27h.  Eliminating the impact of physics perturbations, small scale (RAND/RECRS) 428 

and large scale (LG) IC perturbations have similar perturbation energy (Fig. 8).  During the early 429 



 

19 

 

forecast hours RECRS has more perturbation energy than RAND on small and medium scales 430 

(Fig., 8b,c).  In contrast to the 10 May case, this difference diminishes and RAND and RECRS 431 

become similar by ~10-12h.  Combining the small scale IC perturbation with LGPH also shows a 432 

larger impact compared to the 10 May case.  In particular, LGPH_RECRS shows greater 433 

perturbation energy than LGPH at early lead times on small scales (Fig., 8c), most lead times on 434 

medium scales (Fig., 8b), and at the 1h lead time, corresponding to regional variation in the 435 

spurious precipitation response to RECRS, on large scales (Fig., 8a).  These differences are even 436 

more pronounced when only the IC perturbations are considered (i.e., LG_RECRS vs. LG).   437 

The impact of physics perturbation is also evaluated by comparing LG and LGPH.  The 438 

differences between LG and LGPH are most pronounced on medium scales at early lead times 439 

and small scales at later lead times for this case (Fig.  8b,c).  On the medium scales LG and 440 

LGPH become similar after ~15h, suggesting that medium scale forecast sensitivity is dominated 441 

by the IC, rather than physics, perturbations at later lead times.  LGPH_RECRS energy is also 442 

less than RECRS alone at 1h for large and small scales (Fig. 8).  Since LG_RECRS is more 443 

similar to RECRS at 1h, this seemingly counter-intuitive result is due to a damping effect of the 444 

LGPH physics configuration which is different from that used in RECRS.  The physics 445 

configuration of LGPH showed less systematic bias in the LGPH forecast than RAND and 446 

RECRS forecasts at these lead times (not shown).  It is not clear whether this damping effect is 447 

related to the differences in microphysics or boundary layer parameterization.  This also explains 448 

why LG is more similar to RECRS/RAND than LGPH for small scales at later lead times (Fig. 449 

8c).   450 

The perturbation energy spectra are also generally less sensitive to the perturbation 451 

method on 20 May than on 10 May (Fig. 9).  A prominent difference from 10 May is that in the 452 
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20 May case the small scale IC perturbations energy grow substantially, creating total energy 453 

that is similar or greater to larger scale IC (with or without physics) perturbations (Fig. 9).  At 6 454 

and 12h the wavelength of maximum energy for LGPH and LGPH_RECRS is again larger than 455 

for RAND and RECRS (Fig., 9a,b,c,d).  This difference is largely due to the physics 456 

perturbations since the LG and LG_RECRS spectra (Fig. 9e,f) at these times are more similar to 457 

the RAND and RECRS spectra.  The differences between RAND and RECRS spectra are more 458 

pronounced in the first 6h due to the spurious precipitation.  Combining the small scale RECRS 459 

perturbation with the large scale IC and physics perturbations slightly broadens the spectra (i.e., 460 

LGPH vs. LGPH_RECRS and LG vs. LG_RECRS).    461 

The different sensitivities of the 10 and 20 May cases to different perturbations are 462 

illustrated subjectively with representative RAND, LGPH and LG forecast perturbations at the 463 

24h lead time (Fig. 10).  On 10 May it is primarily the convective scale details of an incipient 464 

MCS over southeast Kansas, and the small scale features within the stratiform precipitation 465 

farther north that are substantially affected by the RAND perturbation (Fig. 10a).  However, the 466 

LGPH perturbation alters the mesoscale structure of the stratiform precipitation region, and more 467 

dramatically changes the structure and location of the incipient MCS which is displaced ~100 km 468 

to the northwest (Fig. 10b).  The LG perturbation shows a similar displacement, although the 469 

amount of displacement in the forecast perturbation by LG is less than that by LGPH and in the 470 

opposite direction (Fig., 10c).  In contrast, even the mesoscale characteristics and location of the 471 

MCS forecast over the southern part of the domain on 20 May are substantially changed by the 472 

RAND perturbation (Fig. 10d) at least as much as the LG and LGPH perturbations (Fig. 10e,f).  473 

In summary, the perturbation energy is again smaller than the error energy at early lead 474 

times but, unlike the 10 May case, is similar to the error energy after ~15h.  Unlike the 10 May 475 
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case, RAND/RECRS show similar or greater energy compared to LGPH.  The distribution of 476 

perturbation energy across spatial scales is generally more similar among the different 477 

perturbation methods on this case than on the 10 May case.  Also in contrast to the 10 May case, 478 

combining the small scale IC perturbations with larger scale IC and physics perturbations shows 479 

a clear impact in terms of the magnitude of perturbation energy growth.  These results suggest 480 

that small scale IC errors on this case contribute to the forecast uncertainty at least as much as 481 

the larger scale IC and physics errors.  Therefore, adding small scale IC perturbations to the 482 

larger scale IC and physics perturbations may be advantageous to the SSEF design in certain 483 

situations. 484 

c. Season average results 485 

On average, the forecast error energy grows approximately linearly on the large scale 486 

with much less magnitude than on smaller scales (Fig. 11).  On medium and small scales, the 487 

forecast error energy follows the diurnal cycle of convection, with maxima during the early 488 

forecast hours and during the following afternoon (Fig. 11b,c).  The medium scale afternoon 489 

maximum of the second day persists into the evening while the small scale maximum decreases 490 

after ~23h (i.e., ~2300 UTC; Fig. 11b,c).  All perturbation methods result in less total energy 491 

than the forecast errors (Fig., 11d).  The under-estimation of forecast errors is most pronounced 492 

for medium and large scales and for the RAND and RECRS perturbations (Fig., 11a,b,c). 493 

Differences among the average perturbation energies in Fig. 11 are tested for statistical 494 

significance using one-sided permutation resampling (Hamill 1999) at the 95% confidence level.  495 

On medium and large forecast scales, LGPH has significantly more perturbation energy than 496 

RAND and RECRS, except at early lead times due to the spurious precipitation of RECRS and 497 

except at 19-24h on the medium scale where the difference between LGPH and RECRS is not 498 
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significant (Fig. 11a,b).  Only LGPH and LGPH_RECRS account for a substantial fraction of the 499 

error energy on large scales (Fig. 11a).  On small scales LGPH is slightly, but significantly, 500 

greater than RAND at 3-9h and is markedly less than RAND and RECRS at 16-30h (Fig. 11c).  501 

The reduced LGPH perturbation energy compared to RAND and RECRS on small scales at 16-502 

30h is a systematic result of the physics-related bias difference discussed for the 20 May case.  503 

Besides the first few hours, dominated by spurious precipitation for RECRS, significantly greater 504 

energy for RECRS than RAND is found at most lead times for large and medium scales and at 505 

several lead times for small scales (Fig. 11a,b,c).  This difference is qualitatively most 506 

pronounced on the medium scales (Fig., 11b).  On average, the medium scale differences 507 

between LGPH and RAND/RECRS are less pronounced than on the 10 May case.  The 508 

RAND/RECRS medium scale perturbation energy is 50% or more of the LGPH perturbation 509 

energy on average at most lead times.  This suggests systematic upscale growth of the small 510 

scale IC errors throughout the 30h forecast period.  However, the differences between LGPH and 511 

LGPH_RECRS on average are generally small and/or not significant, again excluding early lead 512 

times dominated by spurious precipitation (Fig. 11).   513 

The total average perturbation energy from all perturbation methods becomes similar 514 

after ~16h (Fig. 11d), 4h later than the 11h time scale of insensitivity to the small scale IC 515 

perturbation method suggested by Hohenegger and Schär (2007a).  The differences between 516 

RAND and RECRS perturbation energy, especially on the medium scales, throughout the 517 

forecast period suggests that the impact of the structure of small scale IC perturbations may 518 

persist longer into the forecast than expected.   519 

The RAND and RECRS perturbations do not reflect the spectral evolution of error energy 520 

as well as LGPH (Fig. 12a,b,c).  LGPH already approximately reflects the error energy 521 
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maximum of ~32-128 km wavelength by 6h (Fig. 12c).  However, RAND and RECRS still do 522 

not even reflect the error energy maximum of 64 km wavelength at 12h (Fig. 12a,b).  By 24h, all 523 

methods reflect the error energy maximum of 32 km wavelength (Fig. 12).  At later lead times, 524 

LGPH generally has a broader spectrum, with more energy on the larger scales, than RAND and 525 

RECRS (Fig. 12a,b,c).  Except for the very early lead times where RECRS and LGPH_RECRS 526 

are dominated by the spurious precipitation, there are not substantial differences in perturbation 527 

energy spectra between RAND and RECRS or between LGPH and LGPH_RECRS. 528 

5.    Summary and discussion 529 

The purpose of this study is to understand the multiscale characteristics of the evolution 530 

of different sources of perturbations on convection-allowing precipitation forecasts for two case 531 

studies and for 34 forecasts on average, for the purpose of guiding the optimal SSEF design.  In 532 

particular, three main goals are addressed. First, the impact of small scale IC perturbations 533 

(RAND and RECRS) is compared to the impact of larger scale IC and physics perturbations 534 

(LGPH and LG) that are currently used in the CAPS Spring Experiment SSEF.  Second, two 535 

methods of generating small scale IC perturbations (RAND and RECRS) are compared to each 536 

other.  Third, LGPH is compared to a method of combining the small and large scale IC 537 

perturbations (LG_RECRS) and combining multiscale IC and physics perturbations 538 

(LGPH_RECRS). 539 

It is found that the relative impacts of the different types of perturbation are case-540 

dependent.  On the 10 May case the evolution of the precipitation systems in the background 541 

forecast are driven primarily by a synoptic scale disturbance.  After the first few hours, the 10 542 

May forecasts containing large scale IC perturbations, with or without physics perturbations, 543 

have more perturbation energy than the small scale IC-only perturbations, RAND and RECRS, 544 
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on medium and large scales while the small scale forecast perturbation energy is similar for all 545 

methods.  As a result, the perturbation energy spectra are generally broader for LG and LGPH 546 

than RAND and RECRS.  On this case the RECRS method creates more forecast perturbation 547 

energy than RAND at most lead times for the medium scales and for many lead times after ~20h 548 

for the small scales.  LGPH_RECRS and LG_RECRS do not increase the perturbation energy 549 

relative to LGPH and LG, respectively, on this case.  In contrast, the 20 May case has ongoing 550 

convection in the background forecast at the initial time that grows upscale into an MCS.  The 20 551 

May forecasts are generally less sensitive to the scale of IC perturbations, with LG and LGPH 552 

not showing a clear increase of perturbation energy, relative to RAND and RECRS, on any scale.  553 

The perturbation energy spectra are also less sensitive to the perturbation method on 20 May 554 

than on 10 May.  There is less forecast energy for LGPH than for RAND and RECRS on small 555 

scales at ~20-27h due to the physics scheme differences.  On 20 May, RECRS shows increased 556 

perturbation energy, relative to RAND, for only the first ~12-15h on small and medium scales.  557 

Unlike the 10 May case, the 20 May case shows a greater impact of combining small scale IC 558 

perturbations with larger scale IC and physics perturbations, with perturbation energy at ~20-26h 559 

for LGPH_RECRS and LG_RECRS being larger than LGPH and LG, respectively.  560 

One of the main differences in perturbation evolution between the two cases is the greater 561 

sensitivity to the small scale IC perturbations, relative to the larger scale IC and physics 562 

perturbations, on the 20 May case.  This is consistent with past case studies suggesting that lower 563 

predictability generally results from the release of deep moist convective instability (e.g., 564 

Hohenegger et al. 2006).  However, Zhang et al. (2006) found less sensitivity of the mesoscales 565 

to small scale random IC perturbations for a warm season heavy precipitation event than a large 566 

scale winter cyclone event.  This contrasts with the results in the present study.  Reasons for this 567 
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difference may include the direct consideration of precipitation forecasts, instead of wind and 568 

temperature differences as in Zhang et al. (2006), as well as differences in the forcing 569 

mechanisms of the precipitation systems.  For example, our 20 May case is characterized by 570 

upscale growth of convection due to internal storm dynamics rather than the large scale moisture 571 

transport interacting with topography in Zhang et al. (2006).    572 

The perturbations are evaluated over a large number of forecasts to better understand 573 

their systematic behavior, independent of the many factors of individual cases that can affect the 574 

predictability.  Averaged over 34 forecasts, there is a diurnal cycle of forecast error and 575 

perturbation energy on the small and medium scales.  Compared to RAND and RECRS, the 576 

forecast sensitivity is dominated by LGPH and LGPH_RECRS perturbations on large and 577 

medium scales.  However, on medium scales RAND and RECRS alone can generate at least half 578 

as much forecast perturbation energy as LGPH throughout the forecast period.  This sensitivity 579 

of the medium forecast scales to small scale IC perturbations is more similar to the 20 May case 580 

than the 10 May case.  This similarity is consistent with the expectation that during the late 581 

spring and early summer season convective episodes are often dominated by localized and/or 582 

diurnal forcings, such as those on the 20 May case, rather than large scale forcing like the 10 583 

May case (Stensrud and Fritsch 1993).  Also similar to the 20 May case, perturbation energy for 584 

LGPH and LGPH_RECRS is systematically reduced on small scales during the diurnal 585 

convective maximum due to the different biases of the physics schemes.  The most prominent 586 

difference between RAND and RECRS is an increase of medium scale perturbation energy at all 587 

times for RECRS.  RECRS also shows greatly increased energy at 1-2h due to spurious 588 

precipitation.  Refinement of the RECRS method or investigation of better methods to generate 589 

small scale IC perturbations would therefore be necessary before inclusion in an ensemble 590 
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forecast system.  On average, LGPH_RECRS does not create significantly more perturbation 591 

energy than LGPH on any scale after the first few hours which are dominated by the spurious 592 

precipitation.   593 

The dominant impact of large scale IC and physics perturbations suggests that the current 594 

CAPS ensemble configuration, sampling only large scale IC and physics errors, already samples 595 

the primary forecast sensitivity.  The comparable, although lesser, impact of small scale IC-only 596 

perturbations on medium scales also implies a process of upscale growth of the initially small 597 

errors that can substantially contribute to the medium scale forecast sensitivity.  However, the 598 

method of generating multi-scale IC perturbations represented by LGPH_RECRS does not show 599 

a systematic increase in medium scale perturbation energy, relative to LGPH.  The three most 600 

likely reasons for this lack of impact are that (1) better methods of combining multiple scales of 601 

IC perturbation need to be developed, (2) there is only an advantage of including small scales in 602 

the IC perturbations under certain conditions such as rapid upscale error propagation (e.g., the 20 603 

May case), or (3) the downscale energy cascade of the large scale IC perturbations implicitly 604 

accounts for small scale errors that are not explicitly sampled.  605 

More work is needed to understand how to realistically and efficiently sample, and 606 

optimally combine, all scales of uncertainty, from synoptic to convective, into IC/LBC 607 

perturbations, along with physics perturbations, for SSEFs.  The methods of defining the small 608 

scale IC perturbations in this study are not flow-dependent, may not reflect the actual analysis 609 

errors, and can result in unbalanced initial fields that are detrimental to short term forecasts.  For 610 

example, the RAND perturbations exhibit no initial spatial structure and result in less growth 611 

than the RECRS perturbations.  The RECRS perturbations are defined to have a fixed, uniform 612 

spatial structure and amplitude but create spurious precipitation at early lead times.  The 613 
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differences between RAND and RECRS, especially on the medium forecast scales, show the 614 

importance of the spatial structure of small scale IC perturbations.  Flow-dependent methods 615 

should be developed to better sample the small scale error structure in the ICs.  Future work will 616 

investigate the use of ensemble based data assimilation and its variants (e.g., Wang et al. 2008) 617 

to provide flow-dependent multi-scale IC perturbations for SSEFs.  In addition to IC/LBC 618 

perturbation methods, different physics perturbations may also yield different results.  619 

Investigation of physics perturbation methods such as using different physics schemes and 620 

different parameters within a fixed scheme (Duda et al. 2013) is left for future study.  While this 621 

study focuses primarily on the spatial scales of forecast perturbation, the questions of which 622 

variables should be perturbed and what the covariance should be among the perturbed variables 623 

for SSEF design remains an open question.  Ensemble-based data assimilation may also be 624 

useful to address such questions. 625 
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List of Figures 801 

FIG. 1. Difference between control forecast and observed 1-h accumulated precipitation, at 0600 802 

UTC 20 May 2010 using forecast initialized at 0000 UTC 20 May 2010, showing (A) the 803 

total precipitation forecast and (B)-(K) the anomalies on each scale identified by the 2D 804 

Haar wavelet decomposition. 805 

FIG. 2. Synoptic scale conditions at (A), (B) 0000 UTC 10 May, (C), (D) 1200 UTC 10 May and 806 

(E), (F) 0000 UTC 11 May. In (A), (C) and (E), 500 hPa geopotential height of the 807 

control member forecast initialized at 0000 UTC 10 May is shown. In (B), (D) and (F) 808 

the mean sea level pressure, surface fronts and surface observations from the 809 

Hydrometeorological Prediction Center surface analysis archive are shown 810 

(http://www.hpc.ncep.noaa.gov/html/sfc_archive.shtml). 811 

FIG. 3. 1-h accumulated precipitation from the control forecast in (A), (C), (E) and (G) and from 812 

observations in (B), (D), (F) and (H). Valid times are (A,B) 0600 UTC 10 May, (C,D) 813 

1200 UTC 10 May, (E,F) 1800 UTC 10 May and (G,H) 0000 UTC 11 May. The red 814 

outlines show the verification domain. 815 

FIG. 4. As in Fig. 2, except for (A), (B) 0000 UTC 20 May, (C), (D) 1200 UTC 20 May and (E), 816 

(F) 0000 UTC 21 May. 817 

FIG. 5. As in Fig. 3, except valid at (A), (B) 0100 UTC 20 May, (C), (D) 0600 UTC 20 May, 818 

(E), (F) 1200 UTC 20 May,(G), (H) 1800 UTC 20 May and (I), (J) 0000 UTC 21 May.  819 

FIG. 6. Average squared difference (i.e., energy) between control forecast and observed hourly 820 

accumulated precipitation (CNerror), and between each perturbed forecast and the control 821 

forecast, during the 10 May case for (A) large scales only, (B) medium scales only, (C) 822 

small scales only and (D) without any scale decomposition or filtering. 823 
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FIG. 7. Perturbation energy as a function of wavelength for the 10 May case at lead times of 1, 3, 824 

6, 12 and 24 h for (A) RAND, (B) RECRS, (C) LGPH,  (D) LGPH_RECRS, (E) LG and 825 

(F) LG_RECRS. The CNerror energy is the dashed line in all panels. 826 

FIG 8. As in Fig. 6, except for the 20 May case. 827 

FIG 9. As in Fig. 7, except for the 20 May case. 828 

FIG 10. Forecast perturbations at the 24 h lead time (perturbed forecasts minus the control 829 

forecasts shown in Fig. 3g and 3g) for (A) RAND on the 10 May case, (B) LGPH on the 830 

10 May case, (C) LG on the 10 May case, (D) RAND on the 20 May case, (E) LGPH on 831 

the 20 May case and (F) LG on the 20 May case. 832 

FIG. 11. As in Fig. 6, except averaged over the entire experiment period. Statistical significance 833 

at the 95% confidence level, based on permutation resampling, is indicated as follows. 834 

Markers on the RAND, RECRS and LGPH_RECRS lines (circles, triangles and squares, 835 

respectively) indicate a significant difference from the LGPH line. Markers (asterisks) 836 

above all the lines indicate a significant difference between RAND and RECRS. 837 

FIG. 12. As in Fig. 7, except averaged over the entire experiment period. 838 
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 843 
FIG. 1. Difference between control forecast and observed 1-h accumulated precipitation, at 0600 844 

UTC 20 May 2010 using forecast initialized at 0000 UTC 20 May 2010, showing (A) the total 845 

precipitation forecast and (B)-(K) the anomalies on each scale identified by the 2D Haar wavelet 846 

decomposition. 847 
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 849 
FIG. 2. Synoptic scale conditions at (A), (B) 0000 UTC 10 May, (C), (D) 1200 UTC 10 May and 850 

(E), (F) 0000 UTC 11 May. In (A), (C) and (E), 500 hPa geopotential height of the control 851 

member forecast initialized at 0000 UTC 10 May is shown. In (B), (D) and (F) the mean sea 852 

level pressure, surface fronts and surface observations from the Hydrometeorological Prediction 853 

Center surface analysis archive are shown 854 

(http://www.hpc.ncep.noaa.gov/html/sfc_archive.shtml). 855 
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 857 
FIG. 3. 1-h accumulated precipitation from the control forecast in (A), (C), (E) and (G) and from 858 

observations in (B), (D), (F) and (H). Valid times are (A,B) 0600 UTC 10 May, (C,D) 1200 UTC 859 

10 May, (E,F) 1800 UTC 10 May and (G,H) 0000 UTC 11 May. The red outlines show the 860 

verification domain. 861 
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 863 
FIG. 4. As in Fig. 2, except for (A), (B) 0000 UTC 20 May, (C), (D) 1200 UTC 20 May and (E), 864 

(F) 0000 UTC 21 May. 865 

 866 
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 867 
FIG. 5. As in Fig. 3, except valid at (A), (B) 0100 UTC 20 May, (C), (D) 0600 UTC 20 May, 868 

(E), (F) 1200 UTC 20 May,(G), (H) 1800 UTC 20 May and (I), (J) 0000 UTC 21 May. 869 

 870 
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 873 

 874 
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 875 
FIG. 6. Average squared difference (i.e., energy) between control forecast and observed hourly 876 

accumulated precipitation (CNerror), and between each perturbed forecast and the control 877 

forecast, during the 10 May case for (A) large scales only, (B) medium scales only, (C) small 878 

scales only and (D) without any scale decomposition or filtering. 879 
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 881 
FIG. 7. Perturbation energy as a function of wavelength for the 10 May case at lead times of 1, 3, 882 

6, 12 and 24 h for (A) RAND, (B) RECRS, (C) LGPH, (D) LGPH_RECRS, (E) LG and (F) 883 

LG_RECRS. The CNerror energy is the dashed line in all panels. 884 
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 886 
FIG 8. As in Fig. 6, except for the 20 May case. 887 
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 889 
FIG 9. As in Fig. 7, except for the 20 May case. 890 
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 892 
FIG 10. Forecast perturbations at the 24 h lead time (perturbed forecasts minus the control 893 

forecasts shown in Fig. 3g and 3g) for (A) RAND on the 10 May case, (B) LGPH on the 10 May 894 

case, (C) LG on the 10 May case, (D) RAND on the 20 May case, (E) LGPH on the 20 May case 895 

and (F) LG on the 20 May case. 896 
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 898 
FIG. 11. As in Fig. 6, except averaged over the entire experiment period. Statistical significance 899 

at the 95% confidence level, based on permutation resampling, is indicated as follows. Markers 900 

on the RAND, RECRS and LGPH_RECRS lines (circles, triangles and squares, respectively) 901 

indicate a significant difference from the LGPH line. Markers (asterisks) above all the lines 902 

indicate a significant difference between RAND and RECRS. 903 
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 905 
FIG. 12. As in Fig. 7, except averaged over the entire experiment period. 906 
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