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ABSTRACT

Forecasts generated by theCenter forAnalysis and Prediction of Stormswith 1- and 4-kmgrid spacing using

the Advanced Research Weather Research and Forecasting Model (ARW-WRF; ARW1 and ARW4, re-

spectively) for the 2009–11 NOAA Hazardous Weather Testbed Spring Experiments are compared and

verified. Object-based measures, including average values of object attributes, the object-based threat score

(OTS), and the median of maximum interest (MMI) are used for the verification. Verification was first

performed against observations at scales resolvable by each forecast model and then performed at scales

resolvable by both models by remapping ARW1 to the ARW4 grid (ARW1to4). Thirty-hour forecasts of 1-h

accumulated precipitation initialized at 0000 UTC on 22, 36, and 33 days during the spring of 2009, 2010, and

2011, respectively, are evaluated over a domain covering most of the central and eastern United States.

ARW1, ARW1to4, and ARW4 all significantly overforecasted the number of objects during diurnal con-

vection maxima. The overforecasts by ARW1 and ARW1to4 were more pronounced than ARW4 during the

first convection maximum at 1-h lead time. The average object area and aspect ratio were closer to obser-

vations for ARW1 and ARW1to4 than for ARW4. None of the models showed a significant advantage over

the others for average orientation angle and centroid location. Increased accuracy for ARW1, compared to

ARW4, was statistically significant for the MMI but not the OTS. However, ARW1to4 had similar MMI and

OTS as ARW4 at most lead times. These results are consistent with subjective evaluations that the greatest

impact of grid spacing is on the smallest resolvable objects.

1. Introduction

An advantage of convection-allowing forecasts is the

more realistic appearance of convection than when cu-

mulus parameterization is used (Bernardet et al. 2000;

Done et al. 2004; Clark et al. 2007; Weisman et al. 2008;

Clark et al. 2010; Coniglio et al. 2010). The advantages of

decreasing grid spacing beyond 4 km, relative to the

disadvantage of increased computational expense, are

still not fully understood and can be application

dependent (Weisman et al. 1997; Petch et al. 2002;

Adlerman and Droegemeier 2002; Bryan et al. 2003;

Roebber et al. 2004; Kain et al. 2008; Lean et al. 2008;

Roberts and Lean 2008; Schwartz et al. 2009; Bryan and

Morrison 2012). Weisman et al. (1997) argued that ex-

plicit depiction of convection at 4-km grid spacing may

be sufficient to resolve mesoscale convective features,

even though storm-scale details are not fully resolved.

Computational requirements currently preclude real-

time operational forecasts with subkilometer grid spac-

ing over a domain large enough to resolve meso- and

synoptic-scale features as well. However, within the

range of 1–4-km grid spacing Lean et al. (2008) found

greater accuracy with 1- than 4-km grid spacing. Roberts

and Lean (2008) also found an acceptable level of skill
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was attained on smaller spatial scales with 1-km grid

spacing than with 4-km grid spacing. However, Kain

et al. (2008) and Schwartz et al. (2009) found little added

value of 2-km, compared to 4-km, grid spacing for

second-day precipitation forecasts. Clark et al. (2012)

showed examples of more realistic storm structures, in

terms of simulated reflectivity for a squall-line case and

updraft helicity for a supercell case, with 1-km grid

spacing than with 4-km grid spacing for ;1-day lead

time. However, a systematic advantage of 1-km grid

spacing was not subjectively reported by the Spring

Experiment participants.

The impact of grid spacing in the range of 1–4 km has

been mainly evaluated using subjective and traditional

gridpoint or neighborhood-based measures, with an

exception of Kain et al. (2008), which also verified the

number of contiguous ‘‘reflectivity entities.’’ Objective

object-based methods (e.g., Ebert and McBride 2000;

Davis et al. 2006a), where attributes such as size, shape,

and location of objects are evaluated, have also been

proposed and applied to convection-allowing forecasts

(e.g., Davis et al. 2006b, 2009; Ebert and Gallus 2009;

Gallus 2010; Johnson et al. 2011a,b; Johnson and Wang

2012, 2013). These studies have shown that the object-

based methods can reduce the sensitivity to precise

gridpoint location while also being sensitive to storm

features and characteristics in a way that mimics sub-

jective evaluation.

Here, the impact of 1-km versus 4-km grid spacing in

the 2009–11 National Oceanic and Atmospheric Admin-

istration Hazardous Weather Testbed (NOAA HWT)

Spring Experiment forecasts is evaluated using object-

based methods. Two perspectives on the evaluation are

considered. First, the averaged number, size, shape, and

location of forecast objects over the entire verification

domain and forecast period are compared with that of

the observed objects. Second, the accuracy of fields of

forecast objects, compared to the corresponding fields

of observed objects at the same time, is evaluated over

the forecast period using two object-based verification

measures. The forecast and observation data and the

object-based methods are described in section 2. Results

of the average object attribute verification are presented

in section 3 and results of the object-based accuracy

measures are presented in section 4. Section 5 contains

a brief summary and conclusions.

2. Data and methods

a. Forecast and verification data

During the 2009–11NOAAHWTSpring Experiments,

the Center for Analysis and Prediction of Storms (CAPS)

produced experimental real-time convection-allowing

ensemble forecasts over a near–continental United

States (CONUS) domain, initialized at 0000 UTC (Xue

et al. 2009; Kong et al. 2009;Weiss et al. 2010, 2011). The

control member for the ensembles was run with the

Advanced Research Weather Research and Forecast-

ing Model (ARW-WRF, or ARW; Skamarock et al.

2005; 2008) at 4-km grid spacing (i.e., ARW4), with

Thompson et al. (2008) microphysics, Goddard short-

wave radiation (Tao et al. 2003), Noah land surface

model (Ek et al. 2003), and Mellor–Yamada–Janjic

boundary layer (Mellor and Yamada 1982; Janji�c 1994)

parameterizations. There was no cumulus parameteri-

zation. Vertical turbulence mixing was handled by the

boundary layer parameterization. Smagorinsky subgrid-

scale horizontal turbulence mixing was used. No ad-

ditional numerical diffusion was applied. The initial

condition analysis background and the lateral boundary

conditions were obtained from the operational North

American Mesoscale Model (Rogers et al. 2009). Ad-

ditional surface and radar data were assimilated using

the Advanced Regional Prediction System three-

dimensional variational data assimilation (3DVAR) and

cloud analysis package (Gao et al. 2004; Xue et al. 2003;

Hu et al. 2006). A separate high-resolution forecast,

ARW1, was generated with an identical configuration as

ARW4, except with 1-km grid spacing. Forecasts be-

tween the last week ofApril and themiddle of Junewere

generated on 22, 36, and 33 days in 2009, 2010, and 2011,

respectively. The ARW-WRF version was 3.0.1, 3.1.1,

and 3.2.1 in 2009, 2010, and 2011, respectively. The up-

grade from version 3.0.1 to 3.1.1 in 2010 included an

upgrade from the WRF version 2 Thompson micro-

physics scheme (Skamarock et al. 2005) to the WRF

version 3 Thompson microphysics scheme (Skamarock

et al. 2008). The forecast domain was enlarged in 2010

and 2011, compared to 2009, but a common verification

domain (shown in Fig. 3) is used in this study.

Quantitative precipitation estimates (QPEs) from the

National Severe Storms Laboratory (NSSL) Q2 product

(Zhang et al. 2011) on a 0.018 (;1 km) grid are used as

the verification data. Before generating the verifying

objects (i.e., observed objects) for the ARW1 forecasts,

the verifying QPE data are bilinearly interpolated to the

same ARW1 model grid. For the ARW4 forecasts, the

verifying QPE data are smoothed with a 2D Gaussian

filter with 1.5 km1 standard deviation before being

bilinearly interpolated to the ARW4 model grid. The

1 1.5 km was used to provide a cutoff wavelength (defined as a 1/4
power reduction in the filtered field at the cutoff wavelength;

Sakmann and Neher 2009, p. 485), of 2 times the grid spacing of the

4-km grid (i.e., 8 km).
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filtering is intended to avoid potential aliasing errors

with the bilinear interpolation (Weaver 1983, p. 288),

although results are not sensitive to the filtering because

of further smoothing when defining objects (section 2b,

below). The purpose of interpolating the verification

data to the corresponding forecast model grid is to avoid

biasing the results toward the observation resolution.

Therefore, the method of obtaining forecast objects is

identical to the method of obtaining the observed ob-

jects to which the forecast objects are compared.

An overview of the domain average precipitation

during the 2009–11 Spring Experiments is shown in

Fig. 1. All seasons exhibited a similar observed precipi-

tation diurnal cycle with maxima at early lead times and

at;24h (both around 0000 UTC), and minima at ;15h

(1500 UTC). The forecast precipitation was generally

similar between ARW1 and ARW4 except for sub-

stantially greater precipitation in ARW1 at 1–3 h, then

slightly less precipitation at ;5–15 h. The difference at

early lead times may be due to an enhanced impact of

horizontal resolution during the model ‘‘spinup’’ period

when the precipitation systems introduced with radar

data assimilation are adjusting to the model dynamics.

For example, Lean et al. (2008) found a reduced spinup

time for precipitation with a 1-km model compared to

a 4-km model. Johnson and Wang (2013) also found the

precipitation forecasts at early lead times to be sensitive

to other aspects of the model configuration such as

model dynamics core and microphysics scheme. There

were some changes in forecast bias among the seasons.

FIG. 1. Domain average accumulated precipitation during (a) 22 days from the 2009 SpringExperiment, (b) 36 days

from the 2010 Spring Experiment, (c) 33 days from the 2011 Spring Experiment, and (d) 91 days from the 2009–11

Spring Experiments.
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Underforecasting during hours ;5–15 was more pro-

nounced in 2010–11 than in 2009, whereas over-

forecasting during the 18–30-h diurnal cycle maximum

was more pronounced in 2009 than 2010–11. The dif-

ferences in forecast biases among seasons may be re-

lated to the upgrades of the WRF version and/or the

different flow patterns characterizing each season.

b. Definition of objects and attributes

The Method for Object based Diagnostic Evaluation

(MODE, available online at http://www.dtcenter.org/

met/users; Davis et al. 2006a) is used to identify forecast

and observed objects in gridded fields of hourly accu-

mulated precipitation. Features smaller than the ef-

fective resolution of the model are removed by first

averaging over a 4-gridpoint radius (16 km for ARW4

and 4 km for ARW1), following Davis et al. (2006a,b).

Each contiguous area in the smoothed field that exceeds

a certain threshold is then defined as an object. Fol-

lowing Johnson et al. (2011a), a threshold of 6.5mmh21

is used to mimic subjective identification of distinct

convective precipitation systems. This threshold and

smoothing was used in Johnson et al. (2011a) in the

similar context of determining the location, mode and

organization of resolvable convective features for the

purpose of severe storm forecasting. Following Davis

et al. (2006a,b), objects of less than a prespecified area,

here 16 (i.e., 4 3 4) grid points, are omitted to remove

objects smaller than the effective resolution of the

model forecasts (Skamarock 2004).2 This procedure is

intended to only evaluate the features that the models

can effectively resolve at their own resolution.

After defining the objects, attributes describing each

object are then calculated. In the context of the HWT

Spring Experiment we focus on attributes relevant for

severe weather forecasting, such as shape, size, and area,

which can indicate storm mode, following Johnson et al.

(2011a) and Johnson and Wang (2013). The specific at-

tributes calculated for this study are centroid location,

area, aspect ratio (the ratio of minor axis to major axis),

and orientation angle (of major axis in degrees coun-

terclockwise from zonal). Objects with an aspect ratio

of 1.0 are circular and objects with decreasing aspect

ratio are increasingly linear. The choice of attributes is

application-dependent andmay not be optimal for other

applications. Further details about object identification

with MODE can also be found in Davis et al. (2006a).

c. Object-based forecast accuracy measures

Objects are compared using a fuzzy logic algorithm

based on total interest, which quantifies the similarity of

paired forecast and observed objects (Davis et al. 2006a,

2009). The degree of similarity for each attribute of

a pair of objects is quantified with an interest value f.

Attributes with little similarity between objects have

a low interest value (see Fig. 3 in Johnson and Wang

2013). The interest values for all attributes are then

combined into a weighted average, called the total in-

terest I, for the pair of objects:

I5

�
S

s51

cswsfs

�
S

s51

csws

. (1)

In Eq. (1), S is the number of object attributes (here,

4) and cs and ws are the confidence and weight, defined

below and in Table 2 of Johnson and Wang (2013), as-

signed to the interest value of the sth attribute. The

weights are equally assigned as 2.0 each to size (area

ratio), location (centroid distance), and shape. The

weight for shape is further divided into 1.0 each for

aspect ratio and orientation angle (‘‘DEFAULT’’ in

Table 1). The confidence values, described in greater

detail in Johnson andWang (2013, their Table 2), can be

thought of as an additional weight that is not constant.

TABLE 1. Alternate values of attribute weight used for calculating total interest when testing the sensitivity of theOTS andMMI results

to the choice of weights. Each row shows the weighting factors and times of statistically significant differences betweenARW1 andARW4

for the default parameters used for the presented results and four sensitivity tests. The first column labels each test for consistency with

Fig. 8, the next four columns indicate the weight applied to each attribute, the sixth column lists the lead times at which the OTS is

significantly different between ARW1 and ARW4 for each test, and the seventh column is like the sixth, but for the MMI.

Expt Area ratio

Aspect ratio

difference Angle difference Centroid distribution

OTS significant

difference

MMI significant

difference

DEFAULT 2 1 1 2 None 1–30

TEST1 3 1 1 1 30 1–30

TEST2 1 1 1 3 None 1–30

TEST3 2 0 2 2 None 1–30

TEST4 2 2 0 2 None 1–6, 18–30

2 The effect of this criterion is minimal because the 4-point av-

eraging radius already removes most of such small objects.
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Total interest quantifies the overall degree of similarity

between twoobjectswith a fuzzy value between 0.0 and 1.0.

Whereas total interest I quantifies the similarity be-

tween two objects, two scores are adopted to quantify

the similarity between two fields with many objects. The

median of maximum interest (MMI; Davis et al. 2009) is

calculated by determining a maximum total interest for

each object in the forecast and observed fields, then

finding the median of all maximum total interests. The

maximum total interest is the highest total interest that

can be obtained by pairing the object with any object in

the field to which it is being compared.

The second score adopted is the object-based threat

score (OTS; Johnson et al. 2011a):

OTS5
1

Af 1Ao

(
�
P

p51

Ip(a
p
f 1 apo)

)
. (2)

The OTS is calculated by first determining pairs of

corresponding objects in the forecast and observed

fields. Then the summation over all P pairs of corre-

sponding objects of the area of the paired objects [in

Eq. (2), af and ao for forecast and observed object, re-

spectively] is calculated. The area of each paired object

is weighted by the pair’s total interest IP. The summation

is normalized by the total area of all objects (Af andAo).

Thus, the OTS is the fraction of object area contained in

paired objects, weighted by the degree of similarity of

those paired objects. Both the MMI and OTS have

a value of 1.0 for perfect forecasts and a minimum value

of 0.0. Unlike the MMI, a large object contributes to the

OTS more than a small object.

Statistically significant differences are determined at

the 95% confidence level using permutation resampling,

which does not require restrictive assumptions about the

distribution of the test statistic (Wilks 2006; Hamill

1999). For the verification of average object attributes

each object attribute of area, aspect ratio, and orienta-

tion angle is considered an independent sample, because

of the low correlation of nearby object attributes, while

centroid location attributes are grouped together if they

are within 800 km of another object, following Johnson

and Wang (2013). For the 1-km grid spacing forecasts

and observations, the aspect ratio attributes for objects

within 800 km of each other are also grouped together

because of insufficiently low correlation of nearby object

aspect ratios (not shown). For the verification with OTS,

MMI, and the total number of objects, all objects from

the same forecast are grouped together as an indepen-

dent sample, also following Johnson and Wang (2013).

Further details of the resampling method can be found

in Johnson and Wang (2013). Both the object-based

accuracy measures and the attribute-based statistics are

calculated at forecast lead times of 1, 3, 6, 12, 18, 24, and

30 h, from forecasts all initialized at 0000 UTC.

3. Verification of averaged object attributes

In general, ARW1 has more objects with smaller av-

erage area and smaller (less circular) average aspect

ratio than ARW4 (Fig. 2). Smaller and more irregular

features with finer resolution are subjectively apparent

in Fig. 3, which is representative of the objectively

identified differences between ARW1 and ARW4

described below.

Compared to their own verifying observations, both

forecast models overforecast the number of objects at

the 3-, 18-, 24-, and 30-h lead times (valid at 0300, 1800,

0000, and 0600 UTC, respectively; Fig. 2a). Thus, the

overforecasting is most pronounced and most significant

during the diurnal convective maxima. The overfore-

casting during the first convective maximum around 1-h

lead time is more pronounced for ARW1 than ARW4

with the former showing a statistically significant dif-

ference whereas the latter does not show a significant

difference from the observations (Fig. 2a). While both

ARW1 and ARW4 forecast objects have significantly

smaller average area than observed, the difference is less

pronounced for ARW1 than ARW4 (Fig. 2b). ARW4

objects are consistently and significantly more circular

than the corresponding observed objects at most lead

times (Fig. 2c). In contrast, the difference between the

ARW1 andOBS1 average aspect ratio is significant only

at the 1- and 12-h lead times. The too circular (linear)

average ARW1 aspect ratio at the 1-h (12 h) lead time is

consistent with the over (under) forecasting of the

number of objects (Fig. 2a) being associated mainly with

smaller objects, which tend to be more circular than

larger objects (e.g., Fig. 4). The more circular average

shape of ARW4 objects than ARW1 objects, relative to

their own corresponding observations, is likely a result

of 4-km grid spacing being too coarse to resolve the

observed irregular shapes of many of the smaller ob-

jects. The differences in orientation angle and centroid

location are generally not statistically significant at most

lead times (Figs. 2d–f). However, at early lead times

(i.e., 1 h in the zonal direction and 1–3 h in the meridi-

onal direction) there is a southeastward bias in average

centroid location for both ARW1 and ARW4. The bias

is only slightly reduced by the finer grid spacing of

ARW1 and remains significant in the meridional

direction.

The total number of objects and average aspect ratio

are evaluated separately for objects of different sizes at

the 24-h lead time, which is representative of other lead

times as well (Fig. 4). The larger number of objects in
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FIG. 2. Average attribute values of forecast (solid) and observed (dashed) objects on ARW1 (thick lines)

andARW4 (thin lines) grids, as a function of forecast lead time for (a) total number of objects, (b) object area,

(c) aspect ratio, (d) orientation angle, (e) zonal grid point of centroid, and (f) meridional grid point of centroid.

Asterisks indicate statistically significant difference between forecasts and corresponding observations at the

95% confidence level for ARW1 and ARW4 on the bottom and top horizontal axes, respectively. Larger

values in (e) and (f) are farther east and north, respectively.
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ARW1 is primarily due to a larger number of small

objects that are not resolved by ARW4 (Fig. 4a). The

increase in the number of small objects is balanced by

a decrease in the number of larger objects such that the

total area of objects in ARW1 and ARW4 is similar (not

shown), consistent with Kain et al. (2008). For both

ARW1 andARW4, the overprediction of the number of

objects occurs at all sizes and peaks around 32–128 km2

FIG. 3. A representative case of forecast [(a) ARW1 and (c) ARW4] and corresponding observed [(b) OBS1 and

(d) OBS4] objects. The forecasts were initialized at 0000 UTC 15 May 2009 and valid at 0000 UTC 16 May 2009.

FIG. 4. 24-h lead time forecast (solid) and observed (dashed) (a) total number and (b) average aspect ratio of

objects with area# 32 km2, 32, area# 64 km2, 64, area# 128km2, 128, area# 256 km2, 256, area# 512 km2,

512 , area # 1024 km2, 1024 , area # 2048 km2, 2048 , area # 4096 km2, 4096 , area # 8192 km2, and

area . 8192km2, for ARW1 (thick) and ARW4 (thin).
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for ARW1 and around 512–2048 km2 for ARW4

(Figs. 4a,b). The maximum number of objects occurs at

approximately the same grid-relative size of 32–128 km2

(i.e., 32–128 grid squares) for ARW1 compared to 512–

2048 km2 (i.e., 32–128 grid squares) for ARW4. The

ARW1 objects are less circular than the ARW4 objects.

These effects of grid spacing on forecasts extend to

objects larger than 4000 km2 (Fig. 4). Similar charac-

teristics are also seen in the corresponding ARW1 and

ARW4 verifying observations (Fig. 4, dashed lines),

which justifies comparing the forecast objects with the

observed objects defined using the corresponding grid

spacing (section 2b).

The sensitivity of these results to the use of a

6.5mm h21 precipitation threshold to define objects

is evaluated by calculating the identical statistics as

in Fig. 2 using precipitation thresholds of 12.7 and

2.54mmh21 (not shown). The values of the attributes

are affected by the threshold but the relative differences

between ARW1 and ARW4 and their corresponding

observations are similar to Fig. 2. This consistency sug-

gests that the comparison of ARW1 and ARW4 object

attributes shown in Fig. 2 is robust to the choice of

precipitation threshold. The relative differences be-

tweenARW1 andARW4 and between the forecasts and

the verifying observations in object attribute statistics

are also generally consistent during the three-season

period of study.

In the previous comparison, ARW1 and ARW4 are

verified against corresponding observed objects defined

on the same grid as the forecast objects in order to

emphasize spatial scales resolvable by each forecast

model. To further compareARW1 andARW4 on scales

that both can resolve, the object attributes are evaluated

after first remapping the ARW1 forecasts to the same

4-km grid as ARW4 (i.e., ARW1to4; Fig. 5). The re-

mapping consists of taking the average value of the

16 ARW1 grid boxes in the same area as each ARW4

grid box. The attributes of average object area and av-

erage aspect ratio are more similar to the observed ob-

jects for ARW1to4 than for ARW4 (Figs. 5b,c). Like

ARW1 (Fig. 2a), ARW1to4 shows greater overfore-

casting of the number of objects than ARW4 during

the diurnal convective maxima, especially at the 1-h

lead time. Although the ARW1to4 objects are on

average farther southeast than the ARW4 objects

(Figs. 5e,f) as a result of the overforecasting of the

number of objects being most common in the southeast

part of the domain (Johnson and Wang 2013), neither

ARW1to4 nor ARW4 is consistently or statistically

significantly more similar to the observations for orien-

tation angle and centroid location at most lead times

(Figs. 5d–f).

4. Verification of forecast accuracy

In contrast to the systematic agreement of forecast

and observed objects considered in the previous section

(i.e., forecast realism), this section evaluates the day-to-

day agreement between forecast and observed objects

(i.e., forecast accuracy) using the object-based verifica-

tion measures OTS and MMI. For the OTS, there is not

a statistically significant difference between ARW1 and

ARW4 (Fig. 6a). However, the ARW1 OTS is greater

than the ARW4 OTS at all but the 12-h lead time

(Fig. 6a), when significant underforecasting of the total

number of objects is found for ARW1 only (Fig. 2a). For

the MMI, ARW1 is significantly better than ARW4 at

all lead times (Fig. 6b). As defined in section 2c, the

MMI is impacted equally by all objects while the OTS is

impacted more strongly by the accuracy of large objects

than the accuracy of small objects. Therefore, the

greater magnitude and statistical significance of the

differences in MMI than the differences in OTS indicate

that the impact of horizontal grid spacing mainly affects

the accuracy of the smaller objects.

An example of the greater accuracy of the smallest

objects for ARW1 than ARW4 can be seen in Fig. 3. As

also noted subjectively on several other cases (not

shown), there are often large regions over which the

observation corresponding to ARW4 shows few or no

objects but the observation corresponding to ARW1

shows some very small objects (e.g., the Ohio River

valley region in Fig. 3). These observed objects are ab-

sent with 4-km grid spacing because they are smaller

than the effective resolution of the ARW4 forecasts (see

also section 2b). In such cases the ARW1 forecasts are

able to resolve similar storms at the same scale as the

observed storms (e.g., Figs. 3a,b), but the ARW4 fore-

casts release the static instability on an unrealistically

large spatial scale (e.g., Figs. 3c,d). In general, the

maximum total interest of the relatively small ARW1

objects is larger, on average, than that of the similar

sized ARW4 objects while little difference is found for

the larger objects (not shown).

To further evaluate the impact of decreasing the grid

spacing from 4 to 1 km on the forecast accuracy for the

spatial scales resolved by both forecast models, the

ARW1 forecasts are again remapped to the ARW4 grid

(i.e., ARW1to4). ARW1to4 and ARW4 are then both

compared to the observations on the 4-km grid. The

relative accuracy of the forecast models on scales that

are resolvable by both is then evaluated by comparing

the ARW4 OTS and MMI to ARW1to4 instead of

ARW1. The OTS and MMI are both not significantly

different between ARW4 and ARW1to4 at most lead

times (Fig. 7). However, there is a significantly higher
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FIG. 5. As in Fig. 2, but for ARW4 (thin lines) and ARW1to4 (thick lines). Asterisks along the bottom and top axes

denote statistical significance for ARW4 and ARW1to4, respectively.
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OTS andMMI forARW4 thanARW1to4 at the 1-h lead

time (Figs. 7a,b) and for the MMI at the 12-h lead time

(Fig. 7b). The 1-h lead time corresponds to greater

overforecasting of precipitation amount and total

number of objects for ARW1 than ARW4 (Figs. 1

and 2a). The 12-h lead time corresponds to significantly

greater underforecasting of the number of objects for

ARW1 than ARW4 (Fig. 2a). The loss of the MMI ad-

vantage for ARW1 when remapping the forecasts to the

4-km grid therefore further supports the suggestion of

Kain et al. (2008) that the advantage of increasing grid

spacing beyond 4 km for convection forecasts is pri-

marily on scales that are not fully resolvable with 4-km

grid spacing while having little impact on the larger and

more predictable scales. Note that Kain et al. (2008)

used different evaluation methods than this study.

The OTS and MMI are not evaluated at other

thresholds because the total interest parameters, chosen

for the specific application described in section 2b, were

determined to mimic a subjective evaluation of object

similarity at the 6.5mmh21 threshold only. Instead of

precipitation threshold, the sensitivity to the weighting

FIG. 6. Forecast accuracy of ARW1 (dashed) and ARW4 (solid) as measured by the (a) OTS and (b) MMI,

aggregated over all 91 forecasts. Statistically significant differences between ARW1 and ARW4 are indicated with

asterisks along the bottom horizontal axis.

FIG. 7. As in Fig. 6, but for ARW4 (solid) and ARW1to4 (dashed).
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factors applied to each attribute for the total interest

calculation is evaluated for the OTS and MMI results

(Table 1). The weighting factors were perturbed by

giving more weight to area and less weight to location

(test 1), more weight to location and less weight to area

(test 2), more weight to orientation angle and less weight

to aspect ratio (test 3), and more weight to aspect ratio

and less weight to orientation angle (test 4). The OTS

and MMI are affected by these changes (Fig. 8) but the

impact is similar for ARW1 and ARW4 so that the main

results comparing the accuracy of ARW1 and ARW4

are not sensitive to these similar but different choices of

the MODE parameters. The comparison of ARW1to4

and ARW4 shows similarly low sensitivity to the same

variations of weighting factors (not shown). The rela-

tive accuracy of ARW1 and ARW4 is consistent from

season to season (not shown), although the times of

statistical significance depend on the season and sam-

ple size.

5. Conclusions and discussion

The convection-allowing forecasts at 1- and 4-km grid

spacing (ARW1 and ARW4, respectively) produced by

CAPS during the 2009–11 NOAA HWT Spring Exper-

iments were verified and compared using two object-

based methods. The comparisons were performed for

observations at scales resolvable by each forecast model

(e.g., ARW1 vs OBS1 and ARW4 vs OBS4) as well as at

the scales resolvable by both models (e.g., ARW1to4 vs

OBS4 and ARW4 vs OBS4). The former allows a com-

parison that retains all resolvable features in the forecast

model without biasing the results toward the resolution

of the observation data. The latter attempts to answer

the question of whether the effects of moving from 4- to

1-km grid spacing are limited to the scales that are un-

resolvable at 4-km grid spacing or whether there are also

effects on scales resolved with both grid spacings.

First, a comparison of forecast object attributes was

used to assess the impact of grid spacing on the average

realism of precipitation forecast features of interest to

severe weather forecasting. Both ARW1 and ARW4

overforecasted the total number of objects during the

diurnal convective maxima. For the first convective

maximum around the 1-h lead time, the overforecasting

byARW1wasmore pronounced than that byARW4. In

contrast to the total number of objects, the attributes of

average area and average aspect ratio predicted by

ARW1 were more similar to the corresponding obser-

vations than those predicted by ARW4. Both models

showed a southeastward bias at very early lead times.

However, neither ARW1 nor ARW4 was more similar

to their verifying observations than the other. When

evaluating only the scales that both models can resolve,

ARW1to4 showed greater overforecasting of the total

number of objects than ARW4 during the convective

maxima, especially at the 1-h lead time. However,

ARW1to4more realistically forecasted the average area

and aspect ratio of objects than ARW4.

Second, object-based accuracy measures, OTS and

MMI, were used to evaluate the relative accuracy of

individual forecasts, instead of the average characteris-

tics of all objects. There was not a significant difference

between the OTS of ARW1 and ARW4 but the MMI

was significantly better for ARW1 than ARW4 at all

lead times. This difference between OTS and MMI was

FIG. 8. As in Fig. 6, but for the alternate choices of attribute weights defined in Table 1.
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caused by the greater relative sensitivity of MMI than

OTS to the accuracy of small objects. When only objects

resolvable by both forecast models were evaluated, the

differences in MMI between ARW1to4 and ARW4

were reduced compared to the differences between

ARW1 and ARW4. ARW1to4 was actually significantly

worse than ARW4 at the 1-h lead time for the OTS and

MMI and at the 12-h lead time for MMI. These differ-

ences corresponded to significant overforecasting

(underforecasting) at the 1-h (12 h) lead time for ARW1

only. Therefore, the advantages of 1-km versus 4-km

grid spacing, in terms of the accuracy of precipitation

forecast features of interest to severe weather fore-

casters, occur primarily on the scales resolved with 1-km

grid spacing but not with 4-km grid spacing. In other

words, the small-scale forecast improvements were not

found to translate upscale into larger-scale forecast

improvements. It is hypothesized that the large-scale

forecast errors attributable to the forecast model and

initial/lateral boundary condition errors may, in general,

dominate the large-scale forecast errors attributable to

resolution and its upscale influences. Similar discussion

is found in Kain et al. (2008). Although relatively little

impact on larger scale precipitation forecast skill was

shown systematically with 1-km grid spacing, it is pos-

sible that in some situations with pronounced upscale

error growth, larger-scale forecast skill improvements

over more localized regions may be achievable by in-

creasing resolution.

This study provides systematic and automated quan-

titative analysis of forecast characteristics relevant to

our particular application. The object-basedmethodwas

applied in the context of forecasting the locations,

modes, and organization of resolvable convective fea-

tures. While the ability to choose parameters appropri-

ate for this application can be considered an advantage

of the object-based approach, it also limits the ability to

generalize the results to other applications. For exam-

ple, hydrology users may be interested in the maximum

intensity attribute of objects, while forecasters inter-

ested in convective initiation may not be interested in

the smoothing or object area criteria and may use OBS1

when verifyingARW4.However, our results were found

to be relatively insensitive to our choices of object-based

parameters. The object attribute results were similar at

different thresholds and the forecast accuracy results

were similar using different weighting factors in the total

interest calculation in Eq. (1).
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