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ABSTRACT

Convection-allowing ensemble forecasts with perturbations to model physics, dynamics, and initial (IC) and

lateral boundary conditions (LBC) generated by the Center for the Analysis and Prediction of Storms for the

NOAA Hazardous Weather Testbed (HWT) Spring Experiments provide a unique opportunity to under-

stand the relative impact of different sources of perturbation on convection-allowing ensemble diversity. Such

impacts are explored in this two-part study through an object-oriented hierarchical cluster analysis (HCA)

technique.

In this paper, an object-oriented HCA algorithm, where the dissimilarity of precipitation forecasts is

quantified with a nontraditional object-based threat score (OTS), is developed. The advantages of OTS-based

HCA relative to HCA using traditional Euclidean distance and neighborhood probability-based Euclidean

distance (NED) as dissimilarity measures are illustrated by hourly accumulated precipitation ensemble fore-

casts during a representative severe weather event.

Clusters based on OTS and NED are more consistent with subjective evaluation than clusters based on

traditional Euclidean distance because of the sensitivity of Euclidean distance to small spatial displacements.

OTS improves the clustering further compared to NED. Only OTS accounts for important features of pre-

cipitation areas, such as shape, size, and orientation, and OTS is less sensitive than NED to precise spatial

location and precipitation amount. OTS is further improved by using a fuzzy matching method. Application of

OTS-based HCA for regional subdomains is also introduced. Part II uses the HCA method developed in this

paper to explore systematic clustering of the convection-allowing ensemble during the full 2009 HWT Spring

Experiment period.

1. Introduction

Since ensemble forecasting was recognized as a prac-

tical way to provide probabilistic forecasts (Leith 1974),

global-scale medium-range ensemble forecasting has un-

dergone dramatic advancement (e.g., Toth and Kalnay

1993; Molteni et al. 1996; Houtekamer et al. 1996; Hamill

et al. 2000; Wang and Bishop 2003, 2005; Wang et al.

2004, 2007; Wei et al. 2008). Meso/regional-scale short-

range ensemble forecasting has also been studied for

over a decade (e.g., Du et al. 1997; Stensrud et al. 2000;

Hou et al. 2001; Stensrud and Yussouf 2003; Eckel and

Mass 2005; Clark et al. 2008, 2009; Bowler and Mylne

2009; Berner et al. 2011; Hacker et al. 2011). The extent

to which results based on mesoscale ensembles are ap-

plicable when convective motions are explicitly included

is not known. For example, cumulus parameterization in
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mesoscale ensembles has been shown to dominate pre-

cipitation forecast uncertainty resulting from model

physics (Jankov et al. 2005). Additionally, growth rates

of convective-scale perturbations that may not be re-

solved at mesoscale resolution can be highly nonlinear

(Hohenegger and Schär 2007).

Since 2007, the Center for Analysis and Prediction of

Storms (CAPS) at the University of Oklahoma has run

convection-allowing,1 or storm-scale ensemble forecasts

(SSEF) over a near-conterminous U.S. (CONUS) do-

main during the National Oceanic and Atmospheric

Administration (NOAA) Hazardous Weather Testbed

(HWT) Spring Experiments (Xue et al. 2007, 2008, 2009,

2010; Kong et al. 2007, 2008, 2009, 2010). The CAPS

Spring Experiment datasets provide a unique opportunity

to study many scientific issues for convection-allowing

forecasts, as listed in Xue et al. (2009), and have helped

answer many questions related to SSEF (Kong et al. 2007,

2008, 2009, 2010; Clark et al. 2009, 2010a,b; Coniglio

et al. 2010; Kain et al. 2010; Schwartz et al. 2010; Xue

et al. 2010).

The above studies have examined the impacts of

convection-allowing resolution, model physics, and initial

and lateral boundary condition (IC/LBC) perturbations on

spread, skill, and statistical consistency of nonprecipitation

variables as well as precipitation forecast bias and skill.

New postprocessing methods for SSEFs have also been

shown to improve skill over traditional methods (Clark

et al. 2009; Schwartz et al. 2010). Yet, many research

questions on SSEFs still remain to be answered by the

datasets.

This two-part study uses the SSEFs produced during

the 2009 Spring Experiment to study how the ensemble

member forecasts are clustered and to relate the clusters

to how the ensemble members were generated. This is

done with a hierarchical cluster analysis technique (HCA;

Anderberg 1973; Alhamed et al. 2002). Such studies can

help us to understand the impact and importance of the

sources of uncertainty in model physics, model dynam-

ics, and IC/LBCs on ensemble diversity for a convection-

allowing ensemble, which will be discussed in detail in

Johnson et al. (2011, hereafter Part II).

A requirement for HCA is a suitable measure of the

dissimilarity or ‘‘distance’’ between forecasts. For the

high-resolution precipitation forecasts emphasized in

this study traditional metrics of measuring the distance

between forecasts based on a point-wise comparison,

such as equitable threat score or mean square (or ab-

solute) error, are inappropriate. Traditional metrics are

inappropriate because of the small horizontal scale of

features compared to the horizontal scale of acceptable

spatial errors (Baldwin et al. 2001). This limitation of

point-wise metrics is further exaggerated by a double

penalty whereby high-amplitude small-scale features

with small spatial errors are penalized once for missing

the correct location and again for forecasting in the in-

correct location (Baldwin et al. 2001). As a result, tra-

ditional metrics can disagree with subjective evaluations

(Davis et al. 2006).

In this paper, an object-oriented HCA method is de-

veloped. In this new HCA method, the distance between

precipitation forecasts is quantified using an object-

oriented measure based on the Method for Object-based

Diagnostic Evaluation (MODE; Davis et al. 2006). The

new distance measure allows for improved automated

clustering of precipitation forecasts over traditional

distance measures because the object-oriented distance

is not based on a point-wise comparison of the forecasts.

Instead, distance is based on features of discrete ob-

jects within the forecasts, which is more appropriate

for comparing precipitation fields at high resolution

(Baldwin et al. 2001; Davis et al. 2006; Gilleland et al.

2009).

This two-part paper is organized as follows. This paper

develops the object-oriented HCA method and illustrates

it with a representative case from 13 May 2009, during the

2009 NOAA HWT Spring Experiment. Part II uses the

new HCA method, developed in this part, to explore

systematic clustering of the ensemble members over the

entire 2009 NOAA HWT Spring Experiment. Section 2

of the present paper introduces the forecast and obser-

vation data, followed by a brief overview of the severe

weather case examined in section 3. The HCA algo-

rithm is described in section 4, followed by a discussion

of bias adjustment in section 5. HCA results using

different distance measures are compared in section 6.

Section 7 shows how the results change when focused

on a smaller region and section 8 presents a summary

and discussion.

2. Convection-allowing ensemble and verification
data

Recent advances in computational resources have al-

lowed CAPS to produce experimental real-time SSEF for

several weeks for the NOAA HWT Spring Experiment

over a near-CONUS domain at a convection-allowing

resolution. During the spring of 2009, the ensemble

1 Convection-allowing resolution refers to grid spacing less than

or equal to 4 km, which allows vertical redistribution of heat and

moisture to be effectively represented by grid-scale convection

(Weisman et al. 1997), making cumulus parameterization un-

necessary. The term convection resolving is avoided because the

convective scale details are not necessarily adequately resolved

(Bryan et al. 2003; Petch 2006).
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consisted of 20 members, with 10 members from the Ad-

vanced Research Weather Research and Forecasting

model (ARW-WRF; Skamarock et al. 2005), 8 members

from the WRF Nonhydrostatic Mesoscale Model

(NMM; Janjić 2003), and 2 members from the CAPS

Advanced Regional Prediction System (ARPS; Xue et al.

2000, 2001, 2003). The grid spacing is 4 km and none of

the forecasts use cumulus parameterization. A more de-

tailed description of the ensemble configuration can be

found in Xue et al. (2009). The dataset consists of 28 sets

of forecasts run out to 30 h, initialized at 0000 UTC of

weekdays from 30 April 2009 to 5 June 2009 after dis-

carding 2 days due to incomplete data. Each member is

labeled according to its model core and IC perturbation

(e.g., ARWN1, NMMN2, etc.). The details of how en-

semble members were generated are listed in Table 1.

Quantitative precipitation estimates (QPE) from the

National Severe Storm Laboratory (NSSL) Q2 product

are used for verification of precipitation forecasts and

referred to as the observations. The NSSL QPE is in-

terpolated from a 1-km grid to the same 4-km grid as the

model forecasts for direct comparison. The QPE is ob-

tained from radar estimates as described in Zhang et al.

(2005). Data are only examined over a subdomain within

the full forecast grid (Fig. 1) to reduce the impact of lat-

eral boundary conditions.

3. Description of case

We selected a case from 13 May 2009 to introduce

a new HCA framework because a significant severe-

weather outbreak occurred over a large area. Intense

convection developed in the afternoon along a cold front

extending from western Oklahoma to northwest Wis-

consin where surface dewpoints were in the mid- and

upper 60s (8F) and strong winds aloft were indicated by

a strong 500-hPa height gradient (Fig. 2). Several tor-

nado and severe hail reports between 2300 UTC 13 May

and 0100 UTC 14 May are found in the Storm Prediction

Center (SPC) storm log (available online at http://www.

spc.noaa.gov). Forecasts initialized at 0000 UTC 13 May

2009, valid at 0000 UTC 14 May 2009, are the focus of

much of this paper and are shown in Fig. 3 for reference

throughout the paper.

The 13 May 2009 case is used, together with expected

scales and features of interest for forecasting intense

TABLE 1. Details of ensemble configuration with columns showing the members, ICs, LBCs, whether radar data are assimilated (R), and

which microphysics (MP) scheme [Thompson et al. (2008), Ferrier (1994), WRF Single Moment 6-class (WSM6; Hong et al. 2004), or Lin

et al. (1983)], PBL scheme [Mellor–Yamada–Janjic (MYJ; Janjić 1994), Yonsei University (YSU; Noh et al. 2003), or turbulent kinetic

energy (TKE)-based (Xue et al. 2000) scheme], shortwave radiation (SW) scheme [Goddard (Tao et al. 2003), Dudhia (1989), or the

Geophysical Fluid Dynamics Laboratory (GFDL; Lacis and Hansen 1974) scheme], and Land Surface Model (LSM) [Rapid Update Cycle

(RUC; Benjamin et al. 2004) or Noah (NCEP–Oregon State University–Air Force–NWS Office of Hydrology; Ek et al. 2003)] was used

with each member. NAMa and NAMf are the direct NCEP-North American Mesoscale (NAM) analysis and forecast, respectively, while

the CN IC has additional radar and mesoscale observations assimilated into the NAMa. Perturbations added to CN members to generate

the ensemble of ICs, and LBCs for the SSEF forecasts are from NCEP SREF (Du et al. 2006). SREF members are labeled according to

model dynamics: nmm members use WRF-NMM, em members use ARW-WRF (i.e., Eulerian mass core), etaKF members use Eta Model

with Kain–Fritsch cumulus parameterization, and etaBMJ use Eta Model with Betts–Miller–Janjic cumulus parameterization.

Member IC LBC R MP PBL SW LSM

ARWCN CN NAMf Y Thompson MYJ Goddard Noah

ARWC0 NAMa NAMf N Thompson MYJ Goddard Noah

ARWN1 CN 2 em emN1 Y Ferrier YSU Goddard Noah

ARWN2 CN 2 nmm nmmN1 Y Thompson MYJ Dudhia RUC

ARWN3 CN 2 etaKF etaKFN1 Y Thompson YSU Dudhia Noah

ARWN4 CN 2 etaBMJ etaBMJN1 Y WSM6 MYJ Goddard Noah

ARWP1 CN 1 em emN1 Y WSM6 MYJ Dudhia Noah

ARWP2 CN 1 nmm nmmN1 Y WSM6 YSU Dudhia Noah

ARWP3 CN 1 etaKF etaKFN1 Y Ferrier MYJ Dudhia Noah

ARWP4 CN 1 etaBMJ etaBMJN1 Y Thompson YSU Goddard RUC

NMMCN CN NAMf Y Ferrier MYJ GFDL Noah

NMMC0 NAMa NAMf N Ferrier MYJ GFDL Noah

NMMN2 CN 2 nmm nmmN1 Y Ferrier YSU Dudhia Noah

NMMN3 CN 2 etaKF etaKFN1 Y WSM6 YSU Dudhia Noah

NMMN4 CN 2 etaBMJ etaBMJN1 Y WSM6 MYJ Dudhia RUC

NMMP1 CN 1 em emN1 Y WSM6 MYJ GFDL RUC

NMMP2 CN 1 nmm nmmN1 Y Thompson YSU GFDL RUC

NMMP4 CN 1 etaBMJ etaBMJN1 Y Ferrier YSU Dudhia RUC

ARPSCN CN NAMf Y Lin TKE Two-layer Noah

ARPSC0 NAMa NAMf N Lin TKE Two-layer Noah
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precipitation, to tune the configuration of some MODE

parameters. Results are also compared to several other

cases with minimal additional tuning to verify that the

parameters perform well on other cases with diverse

forecast scenarios (e.g., 2 May 2009 and 2 June 2009).

These other cases are not shown because the discussion

of the 13 May 2009 case is representative of the other

cases as well.

4. Method of clustering

This section first describes the HCA algorithm and the

traditional measures of distance that are used to cluster

ensemble forecasts. A newly defined HCA using a non-

traditional object-oriented distance measure is then in-

troduced.

a. HCA algorithm

The hierarchical clustering analysis (HCA) is a method

of identifying potentially important relationships in a com-

plex dataset in order to facilitate hypothesis development

(Jain and Dubes 1988; Gong and Richman 1995). HCA

consists of initially identifying each forecast as a single-

element cluster then iteratively merging two clusters into

one until all forecasts are in the same cluster (e.g., Alhamed

et al. 2002). HCA is selected for the present study because

it requires no a priori assumptions about how many clusters

exist (Jain and Dubes 1988), efficient and widely used al-

gorithms (e.g., Ward 1963) are available, and primary clus-

ters as well as secondary subclusters can be simultaneously

identified (Fovell and Fovell 1993).

Ward’s method (Ward 1963; Jain and Dubes 1988) is

selected as the specific objective clustering algorithm be-

cause initial results showed better agreement with a manual

clustering of forecasts based on our subjective evaluations

(hereafter referred to as subjective clustering) compared to

other potential methods. In Ward’s algorithm, the distance

between (i.e., dissimilarity of) single-forecast clusters is

quantified with the squared Euclidean distance. The dis-

tance between multiple-forecast clusters is quantified as the

increase of the error sum of squares (ESS; Ward 1963) that

would result from merging them into a single cluster. The

two clusters with the smallest distance between them are

merged at each step. For convenience, we define a new

FIG. 1. Outer box is the model domain and inner box is the analysis

domain used in the present study.

FIG. 2. (a) Surface analysis valid at 0000 UTC 14 May 2009 from the Hydrometeorological Prediction Center (HPC; see online at http://

www.hpc.ncep.noaa.gov/html/sfc_archive.shtml) and (b) the North American Regional Reanalysis of 500-hPa geopotential height at

0000 UTC 14 May 2009 (obtained from NOMADS online archive; Rutledge et al. 2006).
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FIG. 3. 24-h forecasts of 1-h accumulated precipitation (mm) valid at 0000 UTC 14 May 2009 for ensemble

members (a) ARWCN, (b) ARWC0, (c) ARWN1, (d) ARWN2, (e) ARWN3, (f) ARWN4, (g) ARWP1,

(h) ARWP2, (i) ARWP3, (j) ARWP4, (k) NMMCN, (l) NMMCO, (m) NMMN2, (n) NMMN3, (o) NMMN4,

(p) NMMP1, (q) NMMP2, (r) NMMP4, (s) ARPSCN, (t) ARPSC0, and (u) observations (OBS).
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quantity, called variability, in this paper, in place of the

ESS. The variability is defined as

ESS }
2

N
�
N

i51
�
N

j51
dij, (i 6¼ j) [ variability, (1)

where N is the number of forecasts in the cluster, i and j

are the index of each forecast in the cluster in turn, and

dij is the distance between forecasts i and j. It can be

shown that the variability is proportional to the ESS

when the distance between individual forecasts in the

cluster dij is the squared Euclidean distance.

Hierarchical clustering is visualized graphically as a den-

drogram (e.g., Fig. 4) with the ensemble of forecasts along

the bottom horizontal axis. The merging of forecasts and

clusters is depicted as two solid lines joining into one as the

clustering proceeds from the bottom to the top of the

dendrogram. The vertical axis is a cumulative measure of

variability, summed over all clusters at that level. The dis-

tance between merged clusters is the increase of variability

resulting from the merge. Therefore, the difference in

the vertical axis values, yi 2 yi21, is the distance between

the clusters merged at the ith iteration. In the dendro-

gram, lower-level clusters contain more similar forecasts

than higher-level clusters.

b. Traditional and neighborhood probability
Euclidean distance measure for HCA

Traditional distance measures are commonly defined

in terms of a point-wise comparison of two fields. The

standard measure for Ward’s algorithm is squared Eu-

clidean distance (ED), which is defined between two

forecasts, i and j, of a variable x at K grid points, where

the index k refers to each grid point in turn:

EDij 5 �
K

k51
(xk

i 2 xk
j )2. (2)

Thus, the traditional implementation of Ward’s algo-

rithm uses dij 5 EDij in Eq. (1).

A neighborhood method (Ebert 2008) is applied to

the forecasts before computing the ED with the goal of

FIG. 4. Dendrogram of raw forecasts of 1-h accumulated precipitation valid at 0000 UTC 14

May 2009, using ED as the distance measure.
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reducing the impact of small spatial differences, and the

corresponding double penalty, on ED. This provides

a baseline for comparison to an object-oriented distance

defined in section 4c. The neighborhood probability

method used in the present study follows that of Schwartz

et al. (2010) [see also Theis et al. (2005)]. To apply the

neighborhood probability method, each field of 1-h ac-

cumulated precipitation is converted to a probability

field. The resulting value at each point is defined as the

percentage of grid points within a radius of 30 km that

have hourly accumulated precipitation greater than

10 mm. The ED between these neighborhood proba-

bility fields [neighborhood squared Euclidean distance

(NED)] is used as a distance measure between forecasts.

A threshold of 10 mm is chosen to emphasize heavy

rainfall events. The threshold is applied over a radius of

30 km, which is equal to 7.5 times the model grid spac-

ing. Such parameter settings provide good balance be-

tween smoothing of features on unpredictable scales and

retaining the larger-scale structures, most consistent

with a subjective interpretation of the forecasts (e.g.,

Fig. 5).

c. Object-oriented distance measure based on MODE

MODE identifies objects in a gridded field by first

smoothing the raw forecast into a convolved field. A

threshold is then applied so that each contiguous area in

the convolved field that exceeds a user-specified thresh-

old defines the area of an object (Davis et al. 2006). User-

specified attributes describing each object, such as shape,

size, or other properties of interest, are then calculated. In

the new HCA framework, instead of using ED, the dis-

tance between two precipitation forecasts is determined

by comparing the attributes of objects in the two fields.

Thus, the forecasts are no longer a set of spatial locations

with a forecast value associated with each grid point, but

are a smaller set of objects with several attributes asso-

ciated with each object. Advantages of MODE include its

easy adaptability to specific applications and the fact that

it is maintained and made freely available by the National

Center for Atmospheric Research as part of their Model

Evaluation Tools package (available online at http://www.

dtcenter.org/met/users/).

As in the matching between a verification field and

a forecast field that MODE was originally applied to,

tunable parameters must be predefined. In our appli-

cation of MODE for HCA, those tunable parameters

are selected based on features and scales of interest, in-

cluding the location, structure, and organization of in-

tense precipitation on meso- and storm scales. Subjective

evaluation of the quality of the HCA results also played

a role in parameter selection. The parameters were tuned

to give subjectively reasonable matching of objects on

several independent cases with a variety of weather sce-

narios in addition to the 13 May 2009 case emphasized in

this paper. For a detailed description of the parameters

involved and how they were chosen in this study, please

refer to Davis et al. (2009) and appendix A of this paper.

The object-oriented distance measure used to quan-

tify distance between forecasts for the HCA, referred to

here as the object-based threat score (OTS), is a modi-

fication of the traditional threat score for use with the

FIG. 5. Forecast from NMMP4 member, valid at 0000 UTC 14

May 2009 showing (a) the raw forecast with the same color scale as

in Fig. 3, (b) the neighborhood probability field with a radius of

30 km and a threshold of 10 mm, and (c) the neighborhood prob-

ability field with a radius of 30 km and a threshold of 6.5 mm.
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MODE algorithm. The OTS is defined as a weighted

sum of the area of corresponding objects in both fields

divided by the total area of all objects in both fields [see

Davis et al. (2006) and appendix A for matching algo-

rithm and interest functions]:

OTSij 5
1

Ai 1 Aj

�
�
P

p51
wp(a

p
i 1 a

p
j )

�
, (3)

where Ai is the total area of objects in field i, Aj is the

total area of objects in field j, P is the number of pairs of

corresponding objects that have area of a
p
i and a

p
j ,

and wp is the weight applied to object pair p. As defined

in appendix A, Eq. (A1), the degree of similarity be-

tween a pair of objects is defined by a quantity called

‘‘total interest,’’ which has a value between 0 and 1.

Given an object in one field, the corresponding object in

the opposing field is defined as the object with the highest

total interest value. In practice, the corresponding object

pairs are assigned as follows. First, the total interests

between all possible pairs of objects from the opposing

fields, i and j, are calculated and sorted from highest to

lowest. Then, the objects of the first pair (i.e., with highest

total interest) are considered to correspond to each other

and all other pairs containing one of those two objects are

removed from the list. The process is then repeated with

the next pair remaining in the sorted list until the list is

empty. This process ensures that each object can corre-

spond to at most one object in the opposing field. Thus,

P 5 min(Mi, Mj), where Mi and Mj are the number of

objects in field i and j, respectively.

OTS can be considered in a binary or a fuzzy context.

In a binary context wp 5 1 if the total interest between

corresponding objects is greater than a matching thresh-

old and wp5 0 otherwise. The matching threshold in the

binary context is defined as 0.6 based on good agreement

of the resulting clusters with the subjective clustering.

The effectiveness of the matching threshold depends on

the choice of attributes and interest functions compris-

ing the total interest. Several thresholds were tried [in-

cluding 0.7 used in Davis et al. (2009)] and we found

a threshold of 0.6 provided better clustering results in

our study. In a fuzzy context, wp is equal to the total

interest for that pair of corresponding objects, and thus

varies continuously between 0 and 1. We call it ‘‘fuzzy’’

because unlike the binary case, there is not a clear dis-

tinction between similar and dissimilar. Binary OTS

equal to 1 occurs when all objects in both fields are suf-

ficiently similar to a unique object in the opposing field to

be considered a match and both fields contain the same

number of objects. Conversely, binary OTS equal to

0 occurs when none of the objects in either field are

sufficiently similar to be considered a match to an object

in the opposing field. In contrast, fuzzy OTS is only equal

to 1 when the two fields are identical and approaches 0 as

the interest between every possible pair of objects ap-

proaches zero. When used as a distance measure for

HCA, OTS is first subtracted from 1.

The binary OTS (i.e., wp is either 1 or 0) has been

referred to previously as the area weighted critical suc-

cess index (AWCSI; Weiss et al. 2009) and the ‘‘fraction

of rain area within matched objects’’ (Davis et al. 2009,

see their Table 4). To the author’s knowledge, it has not

previously been applied in a fuzzy context. Davis et al.

(2009) note the limitations of using a binary decision to

determine matched objects and define a median of maxi-

mum interest (MMI) to measure the distance between

forecasts and observations based on the distribution of

(fuzzy) total interest values. Our initial results suggest that

the MMI is less suitable than the fuzzy OTS for the present

application (not shown). The OTS terminology is used

here for brevity and because ‘‘area weighted’’ is implied by

analogy to the traditional threat score, which can be in-

terpreted as the intersection area divided by the union

area.

d. Applicability of distance defined by the OTS
in HCA

Ward’s algorithm for HCA merges the two clusters at

each step that result in the smallest increase of variability

as defined in Eq. (1), with dij 5 EDij. In the object-oriented

framework the forecasts are not represented as a gridded

field of values so EDij is undefined. We, therefore, define

an object-oriented measure of variability by replacing the

ED with the OTS so that now dij 5 OTSij in Eq. (1). This

modification of Ward’s algorithm is referred to as object-

oriented HCA. Section a of appendix B demonstrates that

object-oriented variability is a reasonable measure of

within cluster variability. Section b demonstrates that

the traditional algorithm for implementing Ward’s al-

gorithm applies to object-oriented variability.

5. Bias adjustment for HCA

A commonly occurring characteristic of precipitation

forecasts at convection-allowing resolution is a large

positive bias that can depend on the physics configura-

tion (Schwartz et al. 2010). HCA of ensemble forecasts

of precipitation amount, and therefore the amplitude

bias, are of interest to many users such as hydrological

prediction centers. However, in this study we focus on

the location, structure, and organization of the pre-

cipitation forecasts from the perspective of operational

forecasters at the SPC (as described in appendix A). To

minimize the impact of amplitude bias and focus on

3680 M O N T H L Y W E A T H E R R E V I E W VOLUME 139



other aspects of the forecasts, the forecasts are adjusted

for known biases before they are clustered. Object at-

tributes related to the intensity of rain rate and intensity

distribution within objects are also not included in the

determination of the object-oriented distance to be

consistent with this focus.

For the NED-based HCA, the neighborhood proba-

bility forecasts are adjusted to account for bias by tuning

a different precipitation threshold for each member.

This threshold is determined based on the total area

within the verification domain (Fig. 1) that the neigh-

borhood probability exceeds 0.25, averaged over all days

at the same 24-h forecast range. The bias-adjusted thresh-

old for each member is tuned so this average area is within

5% of that of the observations using a 10-mm threshold

for the observations. Results are not sensitive to a range

of the neighborhood probability chosen (0.25–0.35, not

shown).

For the OTS-based HCA, the forecasts are adjusted to

account for bias in a similar manner, using a method based

on the determination of thresholds in Skok et al. (2009).

Skok et al. (2009) used MODE thresholds to ensure that

the total area of objects is consistent with the total area of

rainfall exceeding a threshold of interest on average. In

contrast to the method in Skok et al. (2009), the goal here

is to ensure that the total area of MODE objects from

forecasts in each ensemble member is consistent with the

total area of MODE objects from the observations on

average. A MODE threshold of 6.5 mm results in a total

area of objects, averaged over 26 days, nearly twice as

large in the NMM control forecasts as in the ARW con-

trol forecasts, and nearly 3 times as large in the NMM

control forecasts as in the observed fields (Table 2).

Even among members with the same model there are dif-

ferences as large as a factor of 2 between the average total

area of MODE objects for different members (Table 2).

Qualitatively similar results were found in Davis et al.

(2009) for a threshold of 3 mm h21 using a different set

of forecasts. The thresholds are therefore adjusted for

each member until the average area for each member

is within 5% of the observation average (Table 2).

An observation threshold for MODE of 6.5 mm is

chosen to be lower than the 10-mm threshold used for the

NED. While MODE objects subjectively appear more

reasonable on many cases (not shown) with the lower

6.5-mm threshold, 10 mm creates NED fields that look

more similar to the raw fields than with 6.5 mm (Fig. 5).

This is consistent with the fact that the MODE thresh-

olds are applied to a convolved field while the NED

thresholds are applied to raw fields. Compared to clus-

ters without bias adjustment (not shown), bias-adjusted

clustering is more consistent with subjective clustering.

The bias adjustment methods adopted are intended for

a diagnostic understanding of ensemble clustering.

Further work is needed for real-time applications of

bias-adjusted clustering where the bias can be esti-

mated from the latest months preceding the current

forecast.

6. Understanding differences in HCA with ED,
NED, and OTS from a case study

Clusters of 24-h forecasts of 1-h accumulated pre-

cipitation, initialized at 0000 UTC 13 May 2009, are

created using ED, NED, binary OTS, and fuzzy OTS as

distance measures and subjectively evaluated in this

section. The ED and NED distance measures are sen-

sitive to effects of small spatial differences but not the

structure of forecast features. In contrast, the object-

oriented measures are able to appropriately cluster fore-

casts that are spatially close but do not quite coincide in

location, particularly when features have similar struc-

ture. The OTS is also found to create more reasonable

clusters when considered in a fuzzy, rather than binary,

context. The results in this section are representative of

other independent cases that were examined (not shown)

and demonstrate the effectiveness of object-oriented HCA

for clustering high-resolution ensemble precipitation

forecasts.

TABLE 2. Total area (number of grid points) of all objects in the

verification domain, averaged over 26 days, for each ensemble

member. The first column is for using 6.5-mm threshold for all

members. The second column is for using different thresholds as

shown in the third column for the purpose of bias adjustment.

Member

6.5-mm

threshold area

Bias-adjusted

threshold area

Bias-adjusted

threshold

ARWCN 3178 2064 8.5

ARWC0 3014 1983 8.5

ARWN1 3770 2110 9.0

ARWN2 2070 2070 6.5

ARWN3 2175 2050 6.75

ARWN4 3972 2011 10.0

ARWP1 2538 2033 7.5

ARWP2 2403 2143 7.0

ARWP3 3549 2053 9.0

ARWP4 2964 2000 8.5

NMMCN 5859 2006 14.0

NMMC0 5711 1985 14.0

NMMN2 3862 2013 10.5

NMMN3 3747 2045 10.5

NMMN4 5041 2012 13.0

NMMP1 5453 2027 14.0

NMMP2 3471 2143 9.5

NMMP4 3739 2049 10.25

ARPSCN 3289 2044 9.0

ARPSC0 3135 1991 8.8

OBS 2055 2055 6.5
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a. Comparison of ED to NED for the HCA

Clustering based on ED (i.e., EDHCA) is first com-

pared to clustering based on NED (i.e., NEDHCA).

Figure 4 shows the dendrogram for the EDHCA, valid at

0000 UTC 14 May 2009 (see Fig. 3 for the corresponding

ensemble forecasts). The only clusters that subjectively

make sense occur where large precipitation maxima are

precisely collocated in those members only. For example,

NMMN2, NMMP4, and ARWN1 are clustered together,

which makes sense because only those forecasts show an

east–west-oriented rainfall maximum in northern Illinois

and a thin east-northeast–west-southwest-oriented band

of weaker precipitation across northern Missouri.

The EDHCA can be sensitive to small placement

differences of otherwise similar features. For example,

NMMCN and NMMC0 are not clustered together even

though they look very similar subjectively. Both have

a maximum along the northern Missouri–Illinois border

with a thin band extending to the Oklahoma–Kansas

border, along with smaller isolated maxima in western

Oklahoma and along the Illinois–Indiana border. How-

ever, the EDHCA does not cluster them together because

of the dominating influence of small spatial differences

in the high-amplitude maxima near the Missouri–Illinois

border, in spite of their similar structure (Fig. 3).

The EDHCA can also be sensitive to the amount of

precipitation, which can result in subjectively unrealistic

clusters. High-amplitude, small-scale, features are rarely

located at precisely the same grid point. When using the

EDHCA, such features are thus typically compared to

grid points without precipitation in the opposing field,

rather than being compared to a corresponding feature.

Thus, the ED is largely determined by the amplitude of

such features. This effect is further magnified by the

double penalty. Therefore two forecasts with a lot of

precipitation tend to have a larger ED than two fore-

casts with little precipitation. The smaller ED between

forecasts with low precipitation causes the cluster of

forecasts that have dissimilar structure of forecast fea-

tures but less precipitation than the other forecasts

(ARWN2, NMMP1, and ARWP1). The sensitivity to

amplitude can create unrealistic clusters even for collo-

cated features. For example, for our application, we em-

phasize interpreting the forecasts in terms of convective

mode and organization. Although amplitude differences

between these collocated features are relatively un-

important in our application, they are still emphasized by

the EDHCA.

In contrast to ED, NED makes use of nearby grid

points and acts as a type of smoothing, which relaxes the

strict spatial sensitivity of ED (Ebert 2008). The NEDHCA

(Fig. 6) therefore results in improvement over the

EDHCA. For example, the EDHCA clusters ARWP1

with ARWN2 and NMMP1 as a result of the relatively

small amount of forecast precipitation shared by these

members (Fig. 4). In contrast, the NEDHCA clusters

ARWP1 with ARWCN, which is subjectively more

reasonable because ARWP1 and ARWCN both show

weaker disorganized showers over a broad area in Illi-

nois and Missouri. Furthermore, unlike the EDHCA,

which clusters ARWP2 with NMMN4 and OBS that

subjectively look different, the NEDHCA clusters

ARWP2 with NMMN2 and NMMP4. This is another

example of subjectively more reasonable clustering by

the NEDHCA than the EDHCA because these three

members forecast the heavy precipitation to be focused

mainly in north-central Illinois.

The NEDHCA clusters subjectively appear more

reasonable than the EDHCA clusters but they are far

from perfect. For example, NMMCN and NMMCO are

subjectively similar in terms of structure. However, like

the EDHCA, this is not reflected in the NEDHCA

(Fig. 6). The NEDHCA also suffers the same problems as

the EDHCA as a result of the sensitivity to precipitation

amount rather than storm structure. For example, neither

NMMN4 nor NMMP1 is subjectively similar to ARWN2.

However, they cluster at a low level in the NEDHCA

(Fig. 6) because these three members have low precip-

itation relative to the other forecasts. The relatively

low precipitation in these forecasts reduces the double

penalty induced by small spatial errors. Although the

sensitivity to the overall precipitation amount by the

EDHCA and the NEDHCA can be ameliorated by us-

ing a normalization such as standardized anomalies be-

fore clustering (Alhamed et al. 2002), the object-oriented

distance measure as shown in section 6b, is more flexible

and effective in clustering the forecasts in terms of the

structure and mode of the features. The difference is that

the object-oriented distance is based on a comparison of

object attributes rather than a point-wise comparison. Nor-

malization only accounts for domain total precipitation

amount and not small spatial errors that still dominate

high-resolution precipitation forecasts.

b. Comparison of the NEDHCA to the OTSHCA

The OTS-based HCA (i.e., OTSHCA) further im-

proves the clustering. This is a result of two main ad-

vantages of the OTSHCA over the NEDHCA. First, the

OTSHCA is sensitive to the structure of features (i.e.,

size, shape, and orientation). Second, the OTSHCA is

less sensitive than the NEDHCA to precise spatial lo-

cation and precipitation amount.

One advantage of the OTSHCA, relative to the

NEDHCA, is the ability to take into account structural

similarity of features, regardless of their spatial location.
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For example, the ED and NEDHCA (Figs. 4 and 6, re-

spectively) show cophenetic proximity2 between NMMCN

and NMMC0 of 0.89 and 0.75, respectively. This implies

a lack of relative similarity between these forecasts, which

is not consistent with the subjective analysis of these

members in section 6a. In contrast, the OTSHCA (Fig. 7)

shows cophenetic proximity between NMMCN and

NMMC0 of 0.15, which is more consistent with their

structural similarity.

A second advantage of the OTSHCA, relative to the

NEDHCA, is a reduced sensitivity of the OTSHCA to

precise spatial location and precipitation amount. This

reduced sensitivity is due to the OTS being based on

a comparison of object attributes rather than a point-wise

comparison of precipitation values. Furthermore, since

the OTS is defined by user-selected tunable parameters,

amplitude differences between particular features can be

ignored or limited through the choice of object attributes

and interest functions. This improves the resulting HCA

because subjective clustering for this application is con-

cerned with storm structure and approximate location but

not necessarily precipitation amount. For example, neither

NMMN4 nor NMMP1 is subjectively similar to ARWN2.

However, they cluster at a low level in the NEDHCA

because of the low overall precipitation amount (Fig. 6). In

comparison, ARWN2 has a relatively large OTS distance

to NMMP1 and NMMN4 and therefore they cluster at

relatively high level in the OTSHCA (Fig. 7), which is

subjectively more reasonable. The result is a cophenetic

proximity between ARWN2 and NMMP1 (NMMN4) of

0.73 (1.0) in the OTSHCA (Fig. 7) instead of 0.08 (0.13) in

the NEDHCA (Fig. 6).

c. Comparison of binary and fuzzy OTS for HCA

Both the binary OTSHCA and the fuzzy OTSHCA

have the advantages over the NEDHCA that are discussed

FIG. 6. Dendrogram of forecasts of 1-h accumulated precipitation valid at 0000 UTC 14 May

2009, using bias-adjusted NED as the distance measure.

2 Cophenetic proximity (Jain and Dubes 1988) is the height on

the dendrogram where two members first merge into the same

cluster, as a fraction of total dendrogram height. It is an indication

of the dissimilarity of the members relative to the dissimilarity to

other members in the hierarchical clustering.
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in section 6b. However, the fuzzy OTSHCA has two

additional advantages over the binary OTSHCA

because the fuzzy OTS does not require a matching

threshold.

The first advantage of the fuzzy OTSHCA, relative to

the binary OTSHCA, is that it avoids a discontinuity in

the distance calculation among a large group of forecasts.

This is illustrated in Fig. 8 showing forecasts from

ARWN3, NMMN3, and NMMP4. Both the binary and

fuzzy distances between NMMN3 and NMMP4 are quite

low, indicating similar forecasts, largely because the total

interest between the large object in northern Illinois in

both forecasts is 0.81. NMMN3 and ARWN3 have simi-

larly small distances between them so it is reasonable to

expect that NMMP4 and ARWN3 are similar. However,

NMMP4 has the maximum possible binary OTS distance

to ARWN3 of 1.0. In contrast, the fuzzy OTS distance

between NMMP4 and ARWN3 is only 0.234 (0.219)

larger than the fuzzy OTS distance between NMMP4 and

NMMN3 (ARWN3). The difference in the binary OTS

distance is due to the total interest between the large

objects in northern Illinois being 0.57 between ARWN3

and NMMP4. Since this is just below the matching

threshold of 0.6 there is a large and discontinuous dif-

ference in the binary OTS, while the difference in the

fuzzy OTS is gradual and continuous. In general, there is

sometimes a large subjective difference between two

forecasts that has little impact on the binary OTS distance

to a third forecast. Other times a small subjective differ-

ence between two forecasts has a large impact on the

binary OTS distance to a third forecast. This does not

occur for the fuzzy OTS because there is no matching

threshold.

The second advantage of the fuzzy OTS is that it is

conceptually more robust than the binary OTS since it

can discriminate marginal matches and nonmatches

from very good matches and completely spurious ob-

jects, respectively. In contrast, the binary OTS will give 2

forecasts (A and B) an equal distance of 0.0 to a third

forecast (C) if all objects in A and B match all objects in

FIG. 7. Dendrogram of forecasts of 1-h accumulated precipitation valid at 0000 UTC 14 May

2009, using bias-adjusted fuzzy OTS as the distance measure.
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C, even if the objects in A are subjectively much more

similar to the objects in C than are the objects in B. In

such a case the fuzzy distance between A and C would be

smaller than the fuzzy distance between B and C while the

binary distance for both would be the same. This limita-

tion of binary OTSHCA cannot be avoided by raising the

matching threshold because then the limitation would be

that all unmatched objects are treated equally. Figure 8

also illustrates this second advantage since the binary

OTS distance between ARWN3 and NMMP4 gives no

weight to the large object in northern Illinois, even though

the total interest is close to the matching threshold. In

contrast, the fuzzy OTS distance gives partial weight to

this object for almost being a match.

7. Regional OTS HCA

Although the OTSHCA can be applied to the full ver-

ification domain (Fig. 1) to mimic subjective impressions

of overall similarity among ensemble members, for certain

practical applications a local or regional OTSHCA may be

more appropriate. For example, on the 13 May 2009 case

the fact that the forecasts from ARWN2 and NMMP2 are

entirely different in the Mississippi and Ohio River Valley

region is irrelevant when evaluating the potential for, and/

or organization of, convection in the southern plains.

Therefore this section demonstrates a method to apply the

object-oriented HCA to a particular geographic region.

The 13 May 2009 case can be divided into two regional

forecasting problems (Fig. 9). The first problem is fore-

casting the mode and organization of convection in the

Midwest. The second problem is forecasting the potential

for convection in the southern plains and the southward

extent of convection along the cold front. For this ex-

ample we choose two center points so the regions within

600 km of the center point encompass most of the pre-

cipitation forecast by all members in the Midwest and

southern plains with minimal overlap. Objects with a

centroid more than 600 km from the center point are

excluded from the calculation of the OTS. A sharp dis-

tance threshold would make the results very sensitive to

small spatial differences in objects with a centroid close

to the edge of the region. Therefore full weight is only

given to the area of objects with a centroid less than

300 km from the center point. Otherwise, a factor, de-

creasing linearly from 1.0 at 300-km distance to 0.0 at

FIG. 8. MODE objects and OTS distances for 1-h accumulated precipitation forecasts valid at 0000 UTC 14 May 2009 for (a) ARWN3,

(b) NMMN3, and (c) NMMP4.

FIG. 9. Regions selected for clustering of forecasts valid at 0000 UTC 14 May 2009. The

center of the region is the white dot and the shaded area is the region within 600 km of the

center: (a) north region and (b) south region.
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600-km distance, is multiplied by the area of objects

before performing calculations of OTS.3

The fuzzy OTS dendrogram for the southern plains

region (Fig. 10) demonstrates the effectiveness of re-

gional OTSHCA. The majority of clusters in the northern

region are unchanged from the full domain OTSHCA in

this case, and therefore not shown. The majority of pre-

cipitation on this case was forecast in the northern region

so the results in section 7 are already dominated by this

region. In the southern region (Fig. 10), members NMMN4

and NMMP4 are clustered with close cophenetic prox-

imity of less than 0.05 while the same members have the

most distant possible cophenetic proximity of 1.0 in the full

domain OTSHCA (Fig. 7). This change makes sense when

focusing on the southern region because both members

have a thin line of convection in southeast Kansas and

a small isolated cell in western Oklahoma. Other clusters

that form at a low dendrogram height in Fig. 10 are also

more representative of subjective impressions over the

southern plains than the clusters from the full domain

OTSHCA (Fig. 7) where the same members do not merge

until much higher on the dendrogram (e.g., cluster of

ARWP1, ARWP2, and NMMP1, or cluster of ARWCN

and ARWP3). Similarly, members with little subjec-

tive similarity in the southern plains (e.g., ARWC0 vs

ARPSCN) that have close cophenetic proximity in the

full domain OTSHCA (Fig. 7) have much more distant

cophenetic proximity in the regional OTSHCA (Fig. 10).

8. Summary and discussion

This paper is the first of a two-part study that seeks

a systematic understanding of the impacts and relative

importance of different sources of uncertainty within

the 2009 CAPS Spring Experiment convection-allowing

ensemble through an automated hierarchical clustering

analysis (HCA). Instead of using the traditional squared

FIG. 10. Dendrogram of 1-h accumulated precipitation forecasts valid at 0000 UTC 14 May 2009

using fuzzy OTS as the distance measure and focusing on the southern region.

3 A localization based on decreasing weight with increasing

distance from a point of interest is conceptually similar to locali-

zation used in data assimilation (e.g., Janjic et al. 2011).
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Euclidian distance (ED), an object-based threat score

(OTS) is defined in a fuzzy context and used to quantify

dissimilarity of precipitation forecasts in the HCA. The

fuzzy OTS is defined as the sum of the area of all paired

objects from two fields, weighted by a fuzzy value be-

tween 0 and 1 representing their degree of similarity,

divided by the total area of all objects in the two fields.

The objects are identified using MODE where each

member is tuned to use a different convolved threshold

for object identification in order to account for different

forecast biases in each member. The fuzzy OTS is then

used to quantify the dissimilarity among ensemble mem-

bers to conduct an HCA on convection-allowing hourly

accumulated precipitation forecasts over a large verifi-

cation domain as well as smaller regional domains. The

effectiveness of the fuzzy OTSHCA is illustrated by

comparison to the EDHCA, the neighborhood Euclid-

ian distance (NED) HCA, and the binary OTSHCA

during a severe weather event on 13 May 2009.

The fuzzy OTSHCA results in clusters that are more

consistent with subjective clustering than the EDHCA,

the NEDHCA, and the binary OTSHCA. The EDHCA

is the least effective on the representative case of 13 May

2009. Only features with similarity at a precise grid point

are clustered with the EDHCA while the similarity is

otherwise determined by the precipitation amount, as

expected from previous studies noting the impact of the

double penalty (e.g., Baldwin et al. 2001). The NEDHCA

shows some improvement by relaxing the strict gridpoint

precision required of the EDHCA. The bias-adjusted

NEDHCA shows even further improvement by removing

the impact of systematic differences in precipitation

amount. However, the bias-adjusted NEDHCA is still

sensitive primarily to the location of precipitation fea-

tures as well as the precipitation amount. The binary

OTSHCA improves the clustering further to be more

consistent with the subjective clustering due to its capa-

bility to explicitly account for the size, shape, and orienta-

tion of precipitation areas. The fuzzy OTSHCA is the most

effective clustering method because it retains the positive

qualities of the binary OTSHCA without suffering from the

discontinuity issue in the clustering that was caused by the

use of a prespecified matching threshold in the binary OTS.

Compared to the binary OTSHCA, there are at least

two advantages of the fuzzy OTSHCA arising from the

absence of a matching threshold. One advantage is that

large, discontinuous changes in the fuzzy OTS do not

occur for small changes in the forecast. Another ad-

vantage is that all matched (and unmatched) objects are

not treated equally allowing better and worse matches to

be discriminated with the fuzzy OTS.

By demonstrating a relatively effective method of

clustering convection-allowing precipitation forecasts,

this paper provides a framework for a more systematic

examination of the ensemble clustering tendencies. This

is undertaken in Part II with a goal of understanding the

impacts and importance of different ensemble pertur-

bations in the 2009 CAPS Spring Experiment ensemble

to inform future researchers and designers of convection-

allowing ensembles.
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APPENDIX A

MODE Configuration

While the MODE algorithm closely follows the de-

scription in Davis et al. (2009), there are numerous tunable

parameters to be specified. The minimum object area is

specified at 16 grid points (4Dx 3 4Dy). A smoothing ra-

dius of four grid points is also applied to the raw forecasts

to smooth features on unresolved scales. The attributes

used to describe objects and their associated weights and

confidence values are shown in Table A1. The degree of

similarity between attributes of different objects (i.e., in-

terest value) is quantified using interest functions shown in

Fig. A1.

The ensemble in this particular study was developed

and used in the context of real-time forecasting of severe

weather so the forecasts are subjectively interpreted from

the perspective of operational forecasters at the Storm

Prediction Center (SPC). The SPC forecasters typically

use convection-allowing model guidance for predicting
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the location and timing of convective initiation, storm

modes, and the potential for evolution into a larger-scale

system (Weiss et al. 2004; Coniglio et al. 2010). Thus, the

precise amplitude and location of forecast features are of

only secondary relevance to this study relative to the struc-

ture, organization, and approximate location of intense

convection. The flexibility of the object-oriented approach

allows us to focus on this specific application although

different users might emphasize different features.

The emphasis of this study on the structure, organiza-

tion, and approximate location of intense convection not

only motivates our use of object-oriented distance mea-

sures, but also guides our choice of the object attributes

(Table A1) of area, centroid location, orientation angle,

and aspect ratio. Area is selected to represent the amount

of upscale organization of convective systems. Orien-

tation angle and aspect ratio are selected to represent

convective mode (e.g., linear or cellular). Centroid lo-

cation is selected because approximate location is also

important. Approximate, rather than precise, location is

emphasized by assigning objects with up to 40-km cen-

troid distance an interest value of 1.0 (Fig. A1). A linear

form of all interest functions is chosen for simplicity in

lieu of established guidelines otherwise. The x intercept

in Figs. A1c,d was selected to be consistent with sub-

jective impressions of how well the total interest [Eq. (A1)]

described the degree of similarity over a large number of

different object pairs.

A total interest I is defined for the rth object pair is

a weighted sum of the interest values of each of the S

object attributes, denoted by s index (Davis et al. 2009):

Ir 5

�
S

s51
cswsFsr

�
S

s51
csws

. (A1)

In Eq. (A1), c is the confidence in an attribute, w is the

weight assigned to an attribute, and F is the interest

value of the attribute for the object pair (e.g., Fig. A1).

Since the interest values of each attribute are defined

between 0 and 1 and the effective weight applied to each

interest value summed over all attributes is equal to 1,

the only constraint on c and w is that they are non-

negative. The total interest I is a value between 0 and 1.

In Table A1, confidence for angle difference follows

Davis et al. (2009) to give less weight to angle difference

when objects are not linear, while confidences for angle

difference and aspect ratio difference are also multiplied

by the product of area ratio (AR) and centroid distance

interest (CDI). Thus, the effective weights become half

location and half size for objects that are far apart or very

different in area and become one-third location, one-third

size, and one-third structure (aspect ratio and angle) for

objects of similar size in similar locations. This was done

because as size or location becomes less similar there is

less confidence that the objects represent the same fea-

ture, so it is less relevant whether they have similar

structure. The default confidence for centroid distance,

equal to the area ratio, is used resulting in small weight to

centroid distance interest when the area ratio is very

small. The confidence value for area ratio is a function of

centroid distance (CD), so that objects that are extremely

far apart (i.e., CDI of 0.0) but happen to have similar size

(i.e., AR about 1) have a near zero interest (rather than

0.5) since those objects do not correspond to each other.

APPENDIX B

Non-Euclidean Distance Measure in Ward’s
Algorithm

a. Correspondence between object-oriented
variability and ensemble spread

Object-oriented variability, as defined in Eq. (1) with

dij 5 OTSij, is intended to provide an automated com-

parison of spread in different groups of forecasts in

a way that mimics how a subjective analyst would com-

pare them manually. In this way it is consistent with the

intended use of MODE as a way to mimic a subjective

TABLE A1. Attributes and parameter values used for MODE fuzzy matching algorithm [centoid distance (CD), centroid distance interest

(CDI), area ratio (AR), and aspect ratio (T)].

Attribute Weight Confidence

Centroid distance 2.0 AR

Area ratio 2.0 1.0 if CD # 160 km

1 2 [(CD 2 160)/640] if 160 km , CD , 800 km

0.0 if CD $ 800 km

Aspect ratio diff 1.0 CDI 3 AR

Orientation angle diff 1.0 CDI 3 AR 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 1 b2
p

Where a and b are
(T 2 1)2

T2 2 1

" #
0:3 for the two objects being compared
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analysis (Davis et al. 2009). For example, consider the

three clusters of three members in Fig. B1 from the 13

May 2009 north region, which have object-oriented var-

iability for Figs. B1a,b,c of 1.36, 1.11, and 0.66, re-

spectively.B1 The cluster in Fig. B1a subjectively appears

to have a lot of spread since it includes forecasts both

with and without an object in east-central Illinois, while

the forecasts in Missouri range from a single linear ob-

ject, to several small objects, to nothing at all. The

cluster in Fig. B1b has less spread subjectively because

all the forecasts have a large rain area although they have

large differences in placement. The forecasts in Fig. B1c

have the least spread subjectively because they all have

a large object in northern Illinois and have similar

placement and structure of objects in Missouri. In other

words, higher variability corresponds to larger sub-

jective impressions of spread. Most other cases that were

subjectively examined exhibited the same correspondence

between object-oriented variability and subjective im-

pressions of spread.

FIG. A1. Functions mapping attribute value to interest value for the (a) area ratio, (b) centroid distance, (c) aspect

ratio difference, and (d) angle difference.

B1 Note that dij 5 OTSij in Eq. (1) is here based on a regional

subdomain centered over western Illinois. The regional emphasis is

achieved when calculating the OTS [Eq. (3)] by giving full weight

to objects within 300 km of the region’s center and linearly de-

creasing the weight given to the area of each object between 300

and 600 km from the center. This is reflected in Fig. B1 by not

showing objects located more than 600 km from the center of the

region (Fig. 9b) and using lighter shading for partially weighted

objects between 300 and 600 km from the center.
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b. Implementation of object-oriented HCA

Object-oriented HCA can be implemented with the

same algorithm commonly used for the traditional Ward’s

algorithm. Ward’s algorithm is commonly implemented by

defining the distance Dij between clusters i and j, where j

is the new cluster resulting from merging clusters k and l

from the previous step, as follows (Anderberg 1973; Jain

and Dubes 1988):

Dij 5
Nk 1 Ni

Nk 1 Nl 1 Ni

� �
Dik 1

Nl 1 Ni

Nk 1 Nl 1 Ni

� �
Dil

2
Ni

Nk 1 Nl 1 Ni

� �
Dkl, (B1)

where Ni, Nj, and Nk are the number of elements in

clusters i, j, and k, respectively. Note that the distance

between clusters of multiple forecasts Dij and the dis-

tance between individual forecasts dij are only equal for

clusters of size N 5 1. The advantage of Eq. (B1) is that

it is efficient for large datasets because the variability

[Eq. (1)] does not have to be calculated for each possible

merge of two clusters. Anderberg (1973) shows that, for

the special case where dij 5 EDij in Eq. (1),B2 merging

the two clusters with the smallest Dij is equivalent to

merging the two clusters associated with the smallest

increase of variability.

We now show that the above equivalence is true for

any distance measure dij between the individual fore-

casts. In other words we will show that Dij in Eq. (B1)

can also be defined as the variability of the new cluster

minus the variability of each of the old clusters:

FIG. B1. MODE objects in forecasts valid at 0000 UTC 14 May 2009 for (a) (top to bottom) NMMN4, NMMP1, and ARWN2; (b) (top

to bottom) ARWP3, ARPSC0, and NMMP2; and (c) (top to bottom) NMMN3, NMMP4, and ARWP2. The variability of (a)–(c),

defined by Eq. (1) with dij 5 OTSij, is given at the top of each. Objects within 300 km of center of the north region (defined in Fig. 9a) are

shaded black and objects centered between 300 and 600 km of the center of the north region, making a partial contribution to OTS, are

shaded gray.

B2 Anderberg (1973) uses the error sum of squares (ESS) instead

of variability. The two can be shown to be proportional making the

clustering result equivalent.
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Dij 5
2

Nij

�
N

ij

m51
�
N

ij

n51
dmn 2

2

Ni

�
N

i

m51
�
N

i

n51
dmn

2
2

Nj

�
N

j

m51
�
N

j

n51
dmn, (B2)

where dmn is the distance between the individual fore-

casts m and n.

The equivalence of Eqs. (B1) and (B2) can be proved

if the following is true:

Dij 2
Nk 1 Ni

Nk 1 Nl 1 Ni

� �
Dik 2

Nl 1 Ni

Nk 1 Nl 1 Ni

� �
Dil

1
Ni

Nk 1 Nl 1 Ni

� �
Dkl 5 0, (B3)

with each of Dij, Dik, Dil, and Dkl in Eq. (B3) being

defined by Eq. (B2). Noting that Nj 5 Nk 1 Nl and Nij 5

Ni 1 Nk 1 Nl, and substituting Eq. (B2) into the left-

hand side of Eq. (B3), the left-hand side becomes

2

Ni 1 Nj

�
N

i
1N

j

m51
�

N
i
1N

j

n51
dmn 2

2

Ni

�
N

i

m51
�
N

i

n51
dmn 2

2

Nj

�
N

j

m51
�
N

j

n51
dmn

2
Nk 1 Ni

Ni 1 Nj

 !
2

Ni 1 Nk

�
N

i
1N

k

m51
�

N
i
1N

k

n51
dmn 2

2

Ni

�
N

i

m51
�
N

i

n51
dmn 2

2

Nk

�
N

k

m51
�
N

k

n51
dmn

0
B@

1
CA

2
Nl 1 Ni

Ni 1 Nj

 !
2

Ni 1 Nl

�
N

i
1N

l

m51
�

N
i
1N

l

n51
dmn 2

2

Ni

�
N

i

m51
�
N

i

n51
dmn 2

2

Nl

�
N

l

m51
�
N

l

n51
dmn

0
B@

1
CA

1
Ni

Ni 1 Nj

 !
2

Nj

�
N

j

m51
�
N

j

n51
dmn 2

2

Nk

�
N

k

m51
�
N

k

n51
dmn 2

2

Nl

�
N

l

m51
�
N

l

n51
dmn

0
B@

1
CA.

If we then expand the fourth and seventh terms using the

summation identity,

�
N

a
1N

b

m51
�

N
a
1N

b

n51
dmn 5 �

N
a

m51
�
N

a

n51
dmn 1 �

N
b

m51
�
N

b

n51
dmn

1 2 �
N

a

m51
�
N

b

n51
dmn,

we can collect like terms, many of which cancel after

using Nij 5 Ni 1 Nj and Nj 5 Nk 1 Nl. After dividing

both sides of Eq. (B3) by 2/Nij, the left-hand side of Eq.

(B3) becomes

�
N

ij

m51
�
N

ij

n51
dmn 2 �

N
i

m51
�
N

i

n51
dmn 2 �

N
j

m51
�
N

j

n51
dmn

2 2 �
N

i

m51
�
N

k

n51
dmn 2 2 �

N
i

m51
�
N

l

n51
dmn 5 �

N
ij

m51
�
N

ij

n51
dmn

2 �
N

i

m51
�
N

i

n51
dmn 2 �

N
j

m51
�
N

j

n51
dmn 2 2 �

N
i

m51
�
N

j

n51
dmn 5 0.

Therefore, Eqs. (B1) and (B2) are equivalent.

REFERENCES

Alhamed, A., S. Lakshmivarahan, and D. J. Stensrud, 2002: Cluster

analysis of multimodel ensemble data from SAMEX. Mon.

Wea. Rev., 130, 226–256.

Anderberg, M. R., 1973: Cluster Analysis for Applications. Aca-

demic Press, 359 pp.

Baldwin, M. E., S. Lakshmivarahan, and J. S. Kain, 2001: Verifi-

cation of mesoscale features in NWP models. Preprints, Ninth

Conf. on Mesoscale Processes, Ft. Lauderdale, FL, Amer. Meteor.

Soc., 255–258.

Benjamin, S. G., G. A. Grell, J. M. Brown, T. G. Smirnova, and

R. Bleck, 2004: Mesoscale weather prediction with the RUC

hybrid isentropic-terrain-following coordinate model. Mon.

Wea. Rev., 132, 473–494.

Berner, J., S.-Y. Ha, J. P. Hacker, A. Fournier, and C. Snyder, 2011:

Model uncertainty in a mesoscale ensemble prediction system:

Stochastic versus multiphysics representations. Mon. Wea. Rev.,

139, 1972–1995.

Bowler, N. E., and K. R. Mylne, 2009: Ensemble transform Kalman

filter perturbations for a regional ensemble prediction system.

Quart. J. Roy. Meteor. Soc., 135, 757–766.

Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution

requirements for the simulation of deep moist convection.

Mon. Wea. Rev., 131, 2394–2416.

Clark, A. J., W. A. Gallus Jr., and T. C. Chen, 2008: Contributions

of mixed physics versus perturbed initial/lateral boundary

DECEMBER 2011 J O H N S O N E T A L . 3691



conditions to ensemble-based precipitation forecast skill.

Mon. Wea. Rev., 136, 2140–2156.

——, ——, M. Xue, and F. Kong, 2009: A comparison of pre-

cipitation forecast skill between small convection-allowing and

large convection-parameterizing ensembles. Wea. Forecasting,

24, 1121–1140.

——, ——, ——, and ——, 2010a: Growth of spread in convection-

allowing and convection-parameterizing ensembles. Wea.

Forecasting, 25, 594–612.

——, ——, ——, and ——, 2010b: Convection-allowing and

convection-parameterizing ensemble forecasts of a mesoscale

convective vortex and associated severe weather environment.

Wea. Forecasting, 25, 1052–1081.

Coniglio, M. C., K. L. Elmore, J. S. Kain, S. J. Weiss, M. Xue, and M. L.

Weisman, 2010: Evaluation of WRF model output for severe

weather forecasting from the 2008 NOAA Hazardous Weather

Testbed Spring Experiment. Wea. Forecasting, 25, 408–427.

Davis, C., B. Brown, and R. Bullock, 2006: Object-based verification

of precipitation forecasts. Part I: Methodology and application

to mesoscale rain areas. Mon. Wea. Rev., 134, 1772–1784.

——, ——, ——, and J. Halley-Gotway, 2009: The Method for

Object-Based Diagnostic Evaluation (MODE) applied to

numerical forecasts from the 2005 NSSL/SPC Spring Program.

Wea. Forecasting, 24, 1252–1267.

Du, J., S. L. Mullen, and F. Sanders, 1997: Short-range ensemble

forecasting of quantitative precipitation. Mon. Wea. Rev., 125,

2427–2459.

——, J. McQueen, G. DiMego, Z. Toth, D. Jovic, B. Zhou, and

H. Chuang, 2006: New dimension of NCEP Short-Range En-

semble Forecasting (SREF) system: Inclusion of WRF mem-

bers. Preprints, WMO Expert Team Meeting on Ensemble

Prediction System, Exeter, United Kingdom, WMO, 5 pp.

Dudhia, J., 1989: Numerical study of convection observed during the

winter monsoon experiment using a mesoscale two-dimensional

model. J. Atmos. Sci., 46, 3077–3107.

Ebert, E. E., 2008: Fuzzy verification of high resolution gridded

forecasts: A review and proposed framework. Meteor. Appl.,

15, 51–64.

Eckel, F. A., and C. F. Mass, 2005: Aspects of effective mesoscale,

short-range ensemble forecasting. Wea. Forecasting, 20, 328–350.

Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann,

V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation

of Noah land surface model advances in the National Centers

for Environmental Prediction operational mesoscale Eta

model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk

ice scheme. Part I: Description. J. Atmos. Sci., 51, 249–280.

Fovell, R. G., and M. Y. C. Fovell, 1993: Climate zones of the

conterminous United States defined using cluster analysis.

J. Climate, 6, 2103–2135.

Gilleland, E., D. Ahijevych, B. G. Brown, B. Casati, and E. E.

Ebert, 2009: Intercomparison of spatial forecast verification

methods. Wea. Forecasting, 24, 1416–1430.

Gong, X., and M. B. Richman, 1995: On the application of cluster

analysis to growing season precipitation data in North America

east of the Rockies. J. Climate, 8, 897–931.

Hacker, J. P., and Coauthors, 2011: The U.S. Air Force Weather

Agency’s mesoscale ensemble: Scientific description and per-

formance results. Tellus, 63A, 1–17.

Hamill, T. M., C. Snyder, and R. E. Morss, 2000: A comparison of

probabilistic forecasts from bred, singular vector, and per-

turbed observation ensembles. Mon. Wea. Rev., 128, 1835–

1851.

Hohenegger, C., and C. Schär, 2007: Predictability and error

growth dynamics in cloud-resolving models. J. Atmos. Sci., 64,

4467–4478.

Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach

to ice microphysical processes for the bulk parameterization of

clouds and precipitation. Mon. Wea. Rev., 132, 103–120.

Hou, D., E. Kalnay, and K. K. Droegemeier, 2001: Objective ver-

ification of the SAMEX ’98 ensemble forecasts. Mon. Wea.

Rev., 129, 73–91.

Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and H. L.

Mitchell, 1996: A system simulation approach to ensemble

prediction. Mon. Wea. Rev., 124, 1225–1242.

Jain, A. K., and R. C. Dubes, 1988: Algorithms for Clustering Data.

Prentice Hall, 304 pp.
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