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ABSTRACT

Twenty-member real-time convection-allowing storm-scale ensemble forecasts with perturbations to

model physics, dynamics, initial conditions (IC), and lateral boundary conditions (LBC) during the NOAA

Hazardous Weather Testbed Spring Experiment provide a unique opportunity to study the relative impact of

different sources of perturbation on convection-allowing ensemble diversity. In Part II of this two-part study,

systematic similarity/dissimilarity of hourly precipitation forecasts among ensemble members from the spring

season of 2009 are identified using hierarchical cluster analysis (HCA) with a fuzzy object-based threat score

(OTS), developed in Part I. In addition to precipitation, HCA is also performed on ensemble forecasts using

the traditional Euclidean distance for wind speed at 10 m and 850 hPa, and temperature at 500 hPa.

At early lead times (3 h, valid at 0300 UTC) precipitation forecasts cluster primarily by data assimilation

and model dynamic core, indicating a dominating impact of models, with secondary clustering by micro-

physics. There is an increasing impact of the planetary boundary layer (PBL) scheme on clustering relative to

the microphysics scheme at later lead times. Forecasts of 10-m wind speed cluster primarily by the PBL

scheme at early lead times, with an increasing impact of LBC at later lead times. Forecasts of midtropospheric

variables cluster primarily by IC at early lead times and LBC at later lead times. The radar and Mesonet data

assimilation (DA) show its impact, with members without DA in a distinct cluster, through the 12-h lead time

(valid at 1200 UTC) for both precipitation and nonprecipitation variables. The implication for optimal en-

semble design for storm-scale forecasts is also discussed.

1. Introduction

Early studies on the impact of ensemble perturbations

beyond initial and lateral boundary conditions (ICs/

LBCs) have focused on cumulus-parameterizing (CP)

resolution1 or only limited sampling of sources of fore-

cast uncertainty (e.g., Arribas et al. 2005; Jankov et al.

2005; Gallus and Bresch 2006; Jankov et al. 2007;

Kong et al. 2007, Aligo et al. 2007; Clark et al. 2008;

Weisman et al. 2008; Palmer et al. 2009; Berner et al. 2011;

Hacker et al. 2011). Past studies of the impact of ensemble

perturbations found short-range mesoscale ensembles

with cumulus parameterization to be sensitive to both

model and physics uncertainty, in addition to IC uncer-

tainty (Stensrud et al. 2000; Wandishin et al. 2001). Studies

have also found that using multiple physics schemes and

other methods, such as stochastic energy backscatter,

to sample model uncertainty can improve the ensemble

forecasts at CP resolution (Palmer et al. 2009; Berner

et al. 2011). However, studies based on CP resolution en-

sembles (Stensrud et al. 2000; Hou et al. 2001; Wandishin

et al. 2001; Alhamed et al. 2002; Yussouf et al. 2004; Gallus

and Bresch 2006; Aligo et al. 2007; Palmer et al. 2009;

Berner et al. 2011; Hacker et al. 2011) are not necessarily
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1 CP resolution refers to grid spacing coarser than about 4 km,

which requires cumulus parameterization schemes to account for

subgrid-scale vertical redistribution of heat and moisture resulting

from moist convection (Molinari and Dudek 1992).
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applicable to convection-allowing2 ensembles. One dif-

ference is that cumulus parameterization has been shown

to dominate the precipitation forecast uncertainty re-

sulting from model physics in the CP ensembles (Jankov

et al. 2005) whereas in the convection-allowing ensemble

no cumulus parameterization is applied. Another differ-

ence is that growth rates of convective-scale perturba-

tions allowed in the convection-allowing forecasts can

be highly nonlinear (Hohenegger and Schär 2007). These

results motivate investigation of the impact of different

sources of ensemble perturbations at convection-allowing

resolution. Published studies of the impact of different

perturbations on ensemble behavior in the context of

convection-allowing ensemble forecasting on numerous

cases over a period of several weeks, with perturbations

that comprehensively sample uncertainty in the ICs,

LBCs, model dynamics, and multiple physics schemes

are scarce.

This paper is the second of a two-part series that takes

a step toward understanding the impacts and importance

of the sources of uncertainties in model physics, model

dynamics, IC, and LBCs for convection-allowing en-

semble forecasts. This is done with a hierarchical cluster

analysis (HCA; Alhamed et al. 2002; Anderberg 1973)

of the storm-scale ensemble forecasts (SSEFs) for the

2009 National Oceanic and Atmospheric Administra-

tion Hazardous Weather Testbed (NOAA HWT) Spring

Experiment. Some of the key issues for future study of

ensemble design and postprocessing are also briefly in-

ferred from the results of the HCA. Johnson et al. (2011a,

hereafter Part I) demonstrated that a new object-oriented

measure of the dissimilarity (distance measure) of two

precipitation forecasts improves automated clustering

compared to traditional distance measures for a severe

weather forecasting application. The improvement re-

sults from the object-oriented distance being based on

attributes of discrete objects rather than a point-wise

comparison of the forecasts. This paper (Part II) shows

composite dendrograms, constructed using the new object-

oriented HCA, from cases during the entire NOAA

HWT 2009 Spring Experiment3 to explore systematic

similarities and dissimilarities among the ensemble mem-

bers. HCA is also applied here to different lead times and

variables beyond precipitation to understand the impact of

different sources of perturbations as a function of lead

times and/or diurnal cycles and forecast variables.

Part I describes in detail the HCA algorithm used in

this study. HCA consists of initially identifying each fore-

cast as a single-element cluster then iteratively merging

two clusters together until all forecasts are in the same

cluster. HCA has been often used to study synoptic- and

larger-scale phenomena such as climate regimes (e.g.,

Kalkstein et al. 1987; Cheng and Wallace 1993; Fovell and

Fovell 1993; Weber and Kaufmann 1995). A review of the

use of cluster analysis in geophysical research in general is

found in Gong and Richman (1995).

HCA has also been applied in an ensemble forecasting

context on scales ranging from seasonal to mesoscale

(Brankovic et al. 1990; Palmer et al. 1990; Molteni et al.

1996; Alhamed et al. 2002; Nakaegawa and Kanamitsu

2006; Yussouf et al. 2004; Brankovic et al. 2008). These

studies have examined the inability of a seasonal forecast

ensemble to predict the most likely regime based on

cluster membership (Nakaegawa and Kanamitsu 2006),

the performance of cluster means relative to overall

ensemble mean for a global ensemble (Brankovic et al.

1990; Palmer et al. 1990), and the sensitivity of mesoscale

ensemble forecasts to model configuration (Alhamed et al.

2002; Yussouf et al. 2004). Although few studies have

examined ensemble behavior through a systematic clus-

tering of forecasts on multiple cases, ensemble cluster

analysis on individual cases has been applied both opera-

tionally and in a research setting (e.g., Tracton and Kalnay

1993; Atger 1999; Brankovic et al. 2008). For example,

cluster analysis has been proposed in operational settings

to condense the ensemble data by presenting a manage-

able subset of forecasts using cluster means (Tracton and

Kalnay 1993; Toth et al. 1997) or performing a classifica-

tion of the forecasts (Atger 1999). A notable exception to

the emphasis on individual cases is Yussouf et al. (2004).

Yussouf et al. (2004) showed that short-range (0–36 h),

mesoscale (20–48-km grid spacings) forecasts with cumu-

lus parameterization systematically clustered according to

models, each of which also had different physics, even

when similar ICs were used in different clusters. To the

authors’ knowledge, HCA has not been systematically

applied to convection-allowing forecasts for the purpose

of understanding the impact of ensemble perturbations.

This study applies an automated clustering method to

examine the systematic impact of ensemble perturbations

in a convection-allowing ensemble. Through the use of an

object-oriented distance measure, an automated approach

is possible, making the results more reproducible and more

easily applied to a large number of cases than manual,

2 Convection-allowing resolution refers to grid spacing less than

or equal to 4 km, which allows vertical redistribution of heat and

moisture to be effectively represented by grid-scale convection

(Weisman et al. 1997), making cumulus parameterization un-

necessary. The term convection resolving is avoided because the

convective-scale details are not necessarily adequately resolved

(Bryan et al. 2003; Petch 2006).
3 The 2009 Spring Experiment spans from 30 April 2009 to 5

June 2009. Forecasts were only run during the weekdays. A total of

26 forecasts was used in this study after discarding 2 days because of

incomplete data and 2 days because of negligible precipitation

being predicted.
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subjective evaluations. The paper is organized as follows.

Section 2 summarizes the 2009 NOAA HWT Spring Ex-

periment, storm-scale ensemble design and two methods

of summarizing systematic ensemble clustering. Section 3

presents the HCA results for hourly accumulated pre-

cipitation forecasts, while section 4 presents the HCA

results for other variables. Section 5 is a summary and

section 6 discusses implications for convection-allowing

ensemble design and postprocessing.

2. Description of the 2009 NOAA HWT Spring
Experiment ensemble and methods of
summarizing HCA

a. 2009 NOAA HWT Spring Experiment

The HWT is a collaborative effort between the Storm

Prediction Center (SPC), National Severe Storms Labo-

ratory, and the Norman, Oklahoma, National Weather

Service (NWS) forecast office to facilitate development

and transition to operations of new forecast technologies

(Weiss et al. 2009). Since 2000 the HWT has hosted an

annual Spring Experiment to provide model developers,

research scientists, and operational forecasters an op-

portunity to interact while evaluating and providing feed-

back on developing technologies in a simulated operational

forecasting environment (Weiss et al. 2009). For the

2009 NOAA HWT Spring Experiment, the Center for

Analysis and Prediction of Storms (CAPS) produced an

experimental real-time convection-allowing ensemble, 5

days a week for 6 weeks, over a near–conterminous U.S.

(CONUS) domain (Kong et al. 2009; Xue et al. 2009).

b. Ensemble overview

The ensemble consists of 20 members, with 10 mem-

bers from the Advanced Research Weather Research

and Forecasting model (ARW-WRF; Skamarock et al.

2005), 8 members from the WRF Nonhydrostatic Me-

soscale Model (NMM; Janjić 2003), and 2 members from

the CAPS Advanced Regional Prediction System

(ARPS; Xue et al. 2000, 2001, 2003). Each member has

4-km horizontal grid spacing and does not use cumulus

parameterization. For ARW-WRF and WRF NMM, 53

vertical levels are adopted. For ARPS, 43 vertical levels

are adopted. Besides using multiple models, members

are perturbed through the use of different ICs, LBCs,

and physics as summarized in Table 1. Microphysics per-

turbations include Thompson (Thompson et al. 2008),

Ferrier (Ferrier 1994), WRF Single Moment 6-class

microphysics (WSM6; Hong et al. 2004), and Lin (Lin

et al. 1983) schemes. Planetary boundary layer (PBL)

perturbations include Mellor–Yamada–Janic (MYJ;

Janjić 1994), Yonsei University (YSU; Noh et al. 2003),

and a diagnostic (turbulent kinetic energy) TKE-based

TABLE 1. Details of ensemble configuration with columns showing the members, ICs, LBCs, whether radar data is assimilated (R), and

which microphysics (MP) scheme [Thompson, Ferrier, WRF Single Moment 6-class (WSM6), or Lin microphysics], PBL scheme (MYJ,

YSU, or TKE-based scheme), shortwave (SW) radiation scheme (Goddard, Dudhia, or GFDL), and land surface model [LSM; Rapid

Update Cycle (RUC) or NCEP–Oregon State University–Air Force–NWS Office of Hydrology (Noah)] was used with each member.

Symbols identifying MP (@, $, and # for Thompson, Ferrier, and WSM6, respectively) and PBL (^ and & for MYJ and YSU, respectively)

schemes in other figures are also included in the brackets. Bold indicates an ARW member and italics indicates an NMM member. IC and

LBC acronyms are defined in section 2b.

Member IC LBC R MP PBL SW LSM

ARWCN CN NAMf Y Thompson (@) MYJ (^) Goddard Noah

ARWC0 NAMa NAMf N Thompson (@) MYJ (^) Goddard Noah

ARWN1 CN 2 em emN1 Y Ferrier ($) YSU (&) Goddard Noah

ARWN2 CN 2 nmm nmmN1 Y Thompson (@) MYJ (^) Dudhia RUC

ARWN3 CN 2 etaKF etaKFN1 Y Thompson (@) YSU (&) Dudhia Noah

ARWN4 CN 2 etaBMJ etaBMJN1 Y WSM6 (#) MYJ (^) Goddard Noah

ARWP1 CN 1 em emN1 Y WSM6 (#) MYJ (^) Dudhia Noah

ARWP2 CN 1 nmm nmmN1 Y WSM6 (#) YSU (&) Dudhia Noah

ARWP3 CN 1 etaKF etaKFN1 Y Ferrier ($) MYJ (^) Dudhia Noah

ARWP4 CN 1 etaBMJ etaBMJN1 Y Thompson (@) YSU (&) Goddard RUC

NMMCN CN NAMf Y Ferrier ($) MYJ (^) GFDL Noah

NMMC0 NAMa NAMf N Ferrier ($) MYJ (^) GFDL Noah

NMMN2 CN 2 nmm nmmN1 Y Ferrier ($) YSU (&) Dudhia Noah

NMMN3 CN 2 etaKF etaKFN1 Y WSM6 (#) YSU (&) Dudhia Noah

NMMN4 CN 2 etaBMJ etaBMJN1 Y WSM6 (#) MYJ (^) Dudhia RUC

NMMP1 CN 1 em emN1 Y WSM6 (#) MYJ (^) GFDL RUC

NMMP2 CN 1 nmm nmmN1 Y Thompson (@) YSU (&) GFDL RUC

NMMP4 CN 1 etaBMJ etaBMJN1 Y Ferrier ($) YSU (&) Dudhia RUC

ARPSCN CN NAMf Y Lin TKE 2-layer Noah

ARPSC0 NAMa NAMf N Lin TKE 2-layer Noah
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scheme (Xue et al. 2000). Land surface perturbations

include the Rapid Update Cycle (RUC; Benjamin et al.

2004) and Noah [(National Centers for Environmental

Prediction) NCEP–Oregon State University–Air Force–

NWS Office of Hydrology; Ek et al. 2003)] land surface

models. Shortwave radiation scheme perturbations in-

clude the Goddard Space Flight Center (Tao et al. 2003),

Dudhia (Dudhia 1989), and the Geophysical Fluid Dy-

namics Laboratory (GFDL; Lacis and Hansen 1974)

schemes.

The control members (labeled CN) obtain ICs from the

operational NCEP North American Mesoscale (NAM)

model 0000 UTC analysis with additional radar and

mesoscale observations assimilated using ARPS three-

dimensional variational data assimilation (3DVAR) and

cloud analysis package (Xue et al. 2003; Gao et al. 2004;

Hu et al. 2006). Radial velocity from over 120 radars in

the Weather Surveillance Radar-1988 Doppler (WSR-

88D) network, as well as surface pressure, horizontal

wind, potential temperature, and specific humidity from

the Oklahoma Mesonet, surface aviation observation,

and wind profiler networks were assimilated by ARPS

3DVAR. The ARPS cloud analysis package uses radar

reflectivity along with Geostationary Operational Envi-

ronmental Satellite (GOES) visible and infrared channel

4 data to estimate hydrometeor species and adjust in-

cloud temperature and moisture (Xue et al. 2009). For

more details of the ARPS cloud analysis, please refer

to Hu et al. (2006). One member from each of the three

models (ARWC0, NMMC0, and ARPSC0) used identical

configuration as the corresponding control member with

the same model (ARWCN, NMMCN, and ARPSCN,

respectively) but without assimilating additional radar

and Mesonet data.

Perturbed ICs were created by adding to the CN IC

positive and negative perturbation pairs derived from

the 3-h forecasts of the NCEP short-range ensemble

forecast (SREF) members4 indicated in Table 1. In Ta-

ble 1 NAMa and NAMf are the direct NCEP NAM

analysis and forecast, respectively, while the CN IC has

additional radar and mesoscale observations assimilated

into the NAMa. Perturbations added to CN members to

generate the ensemble of ICs, and LBCs for the SSEF

forecasts are from NCEP SREF (Du et al. 2006). SREF

members are labeled according to model dynamics: nmm

(i.e., Nonhydrostatic Mesoscale Model) members use

WRF-NMM, em (i.e., Eulerian mass core) members use

ARW-WRF, etaKF members use Eta Model with Kain–

Fritsch cumulus parameterization, and etaBMJ use Eta

Model with Betts–Miller–Janjic cumulus parameterization.

Further details on the CAPS 2009 ensemble can be

found in Xue et al. (2009) and Kong et al. (2009).

The results presented in sections 3 and 4 emphasize

physics perturbations associated with microphysics and

PBL scheme. The other physics perturbations do not

have a strong enough signal in the HCA results to con-

fidently make any additional inferences about the en-

semble design (not shown).

c. Composite dendrograms

Hierarchical clustering is displayed graphically as

a dendrogram, showing the step-by-step merging of

clusters. Each forecast is initially a one-element cluster,

listed along the bottom of the dendrogram. The distance

between (i.e., dissimilarity of) single-forecast clusters is

traditionally quantified with the squared Euclidean dis-

tance. The distance between multiple-forecast clusters is

quantified as the increase in variability, which quantifies

the diversity of the cluster that would result from merging

them into a single cluster. The two clusters with the

smallest distance between them are merged at each step.

The merging of forecasts and clusters is depicted as two

solid lines joining into one as the clustering proceeds

from the bottom to the top of the dendrogram. The ver-

tical axis is a cumulative measure of variability, summed

over all clusters at that level. The difference in vertical

axis values, yi 2 yi21, is therefore the distance between

the clusters merged at the ith iteration. Lower-level clus-

ters contain more similar forecasts than higher-level

clusters. For a more detailed description of the clustering

algorithm and dendrograms, please refer to section 4a of

Part I.

For each forecast, a separate dendrogram is generated.

After creating dendrograms for all forecasts, they are

composited into a single dendrogram so that we can an-

alyze systematic clustering of ensemble members over

the Spring Experiment period. To create the composites,

a normalized distance dN between ensemble members is

defined by subtracting the smallest distance between any

two members at the same lead time on the same day dmin

and dividing by the range of distances among all 20

members. The range is defined as the maximum distance

minus the minimum distance dmax 2 dmin. Mathemati-

cally, for an unnormalized distance d:

dN 5
d 2 dmin

dmax 2 dmin

. (1)

The normalized distance between each pair of mem-

bers is then averaged over all forecasts and used as

a composite distance measure. The composite distances

are used for HCA using the modified Ward’s algorithm4 NCEP SREF forecasts were initialized at 2100 UTC.
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described in Part I. The effect of the normalization is to

give equal consideration to each forecast even though

forecast to forecast variation in the distribution of dis-

tances is present. The composite dendrograms are in-

tended to focus on systematic forecast similarities, rather

than forecast similarities on any given forecast.

For the precipitation forecasts the distance measure

d is the fuzzy object-based threat score (OTS; defined in

Part I), while for nonprecipitation forecasts the distance

measure is the traditional squared Euclidean distance

(ED). As described in Part I, the Method for Object-

based Diagnostic Evaluation (MODE; Davis et al. 2006;

Part I) is a features-based algorithm for identifying and

comparing objects in a gridded precipitation field. MODE

is used to calculate the fuzzy OTS. For the precipitation

forecasts, forecasts with multiple members having no ob-

ject identified by the MODE algorithm are excluded be-

cause of the difficulty of defining a distance between such

forecasts. We excluded 2 of 26 days at 3-h lead time and 6

of 26 days at 12-h lead time.

Composite dendrograms are also created for forecasts

of 10-m wind speed, 850-hPa wind speed, and 500-hPa

temperature. Squared Euclidean distance is used as a dis-

tance measure for these nonprecipitation fields, consistent

with the traditional application of Ward’s algorithm

(Anderberg 1973). Each nonprecipitation forecast is

first normalized to have zero mean and unit variance, by

subtracting from each value the domain average of that

forecast and dividing by the domain average standard

deviation, as in Alhamed et al. (2002). Nonprecipitation

composite distances are computed using the average

normalized ED.

d. Relative merging height

Results from the composite dendrograms are also shown

using an alternative summary measure based on the frac-

tion of total height (hereafter, merging height) on a den-

drogram where some characteristic of the clusters first

appears.

For each forecast from each member, the merging

height where another member with different ICs, LBCs,

PBL scheme, model, or microphysics scheme, joins the

same cluster as that member is calculated. The merging

height that a member without radar and mesoscale data

assimilation (i.e., a member labeled C0) joins the same

cluster as a member with radar and mesoscale data as-

similation is also calculated. The median merging height

from the distribution of all members over all forecasts is

used to summarize the relative importance of the dif-

ferent types of ensemble perturbations on ensemble

diversity.

A lower median merging height for a given type of per-

turbation (e.g., PBL scheme perturbation) is interpreted

as the forecast having a lower sensitivity to that type of

perturbation. This is because low merging height in-

dicates that members with that perturbation in common

(e.g., members with YSU) are relatively less distinct from

members with a different perturbation (e.g., members with

MYJ). Likewise, higher values of median merging height

indicate an increased sensitivity of the forecast to that

type of perturbation since members with different pertur-

bations (e.g., YSU members vs MYJ members) are more

likely to remain in different clusters until closer to the

top of the dendrogram and are therefore relatively more

distinct from each other.

Tests using hypothetical dendrograms show that

composite dendrograms reflect the perturbation type

that produces more complete and cleaner separation of

members. In contrast, the median merging heights reflect

the perturbation type that more frequently produces

clusters based on that type of perturbation, even if clus-

ters based on that type of perturbation are not cleanly

separated.

3. HCA for hourly accumulated precipitation

In this section the fuzzy OTS (defined in Part I) com-

posite dendrograms of forecasts of hourly accumulated

precipitation at lead times of 3, 12, and 24 h (valid at 0300,

1200, and 0000 UTC, respectively) are presented in sec-

tion 3a. Section 3b presents results using the median

merging height.

a. Results of composite dendrograms

The composite dendrogram at 3-h lead time (Fig. 1a)

shows that the primary distinction between members is

the assimilation of radar and Mesonet data. The C0

members that did not assimilate the radar and Mesonet

data form a distinct cluster. The remaining members cluster

primarily by model dynamic cores with one cluster of all the

NMM members and another cluster of all the ARW

members. ARPS CN is also included in the ARW clus-

ter. Within the two main ARW and NMM clusters, all

members with common microphysics scheme also clus-

ter together.

The composite dendrogram at 12-h lead time (Fig. 1b)

also shows the WRF members clustered by model dy-

namic core. The C0 members again form a distinct clus-

ter, but its dissimilarity from the other members is less

than at the 3-h lead time. At the 12-h lead time the C0

cluster merges with the ARW cluster before the NMM

cluster merges with the ARW cluster. At the 12-h lead

time there is not a clear subclustering by either micro-

physics scheme or PBL scheme.

The composite dendrogram at the 24-h lead time (Fig.

1c) has 3 primary clusters of members with common
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model dynamic core (ARW, NMM, and ARPS). The

NMM cluster has two distinct subclusters, one contain-

ing all the NMM members with MYJ PBL scheme and

another containing all the NMM members with YSU

PBL scheme. The ARW cluster does not have subclusters

with a common physics configuration as distinctly as the

NMM members.

In summary, the composite dendrograms indicate that

systematic clustering of the object-oriented precipita-

tion forecasts is determined by the model dynamic core

more than the physics schemes. There is further sub-

clustering based on the microphysics schemes at early

lead times and an increasing impact of the PBL scheme

relative to microphysics scheme at later lead times. The

microphysics schemes have the most direct effect on

precipitation in the initial hours, especially for the pre-

cipitation initialized through radar data assimilation. In

contrast, the 24-h forecast is around the time of peak

afternoon precipitation associated with the diurnal cycle

(see, e.g., Clark et al. 2009). At such time the development

of the convective boundary layer has a strong effect on

convective initiation and subsequent evolution (e.g.,

Zhang and Zheng 2004; Xue and Martin 2006). The

composite dendrogram also indicates a decreasing im-

pact of radar and Mesonet data assimilation with in-

creasing forecast lead time.

FIG. 1. Composite dendrogram of forecasts for hourly accumulated precipitation over the verification domain at

the (a) 3-, (b) 12-, and (c) 24-h lead times. Please see Table 1 for the symbols denoting different PBL and microphysics

schemes and fonts denoting different models.
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These automated HCA results related to microphys-

ics and PBL schemes are also consistent with manual

subjective findings of Weisman et al. (2008) with limited

cases. Previous studies also show that the impact of radar

and mesoscale data assimilation on precipitation fore-

casts usually lasts for less than 12 h (Kong et al. 2009; Xue

et al. 2009; Kain et al. 2010), consistent with these com-

posite dendrograms. The sensitivity to model core is also

consistent with previous studies at CP resolution (e.g.,

Yussouf et al. 2004; Gallus and Bresch 2006).

b. Results of median merging height

The median merging heights (Fig. 2) for hourly pre-

cipitation forecasts show trends that are consistent with

the composite dendrograms (Fig. 1). Recall that higher

values of median merging height indicate an increased

impact of a type of perturbation on ensemble spread.

There are four specific systematic trends illustrated in Fig.

2 that are now discussed.

The first trend is that the dynamic cores have a larger

impact than the physics at all lead times. The second

trend is an increasing relative impact of the PBL scheme

perturbation with increasing lead time. At the 3-h lead

time radar data has the largest impact and the micro-

physics scheme has a larger impact than the PBL scheme.

As forecast time increases, the impact of the PBL scheme

increases more than the other types of perturbations and

becomes more dominant than the microphysics scheme

with increasing lead time. The increasing relative im-

pact of the PBL scheme perturbation is consistent with

composite dendrograms showing increasingly strong

subclustering by the PBL scheme, relative to the micro-

physics scheme, at 3-, 12-, and 24-h lead times (Fig. 1).

When median merging heights are plotted for only the

members with the ARW and NMM model separately,

both models show the PBL scheme becomes increasingly

more important with time (not shown). The increasing

trend is more pronounced when only considering the

NMM members than only the ARW members (not

shown). This difference is consistent with the composite

dendrogram showing more distinct subclusters by the

PBL scheme in the NMM members than the ARW mem-

bers at the 24-h lead time (Fig. 1c). The increasing im-

pact of the PBL scheme with forecast time is due to its

increased influence on the mesoscale environment that

supports precipitation systems. At the longer forecast

ranges these are often newly initiated systems that did not

exist at the initial time. While microphysics should con-

tinue to influence the precipitation forecasts, the pre-

cipitation systems themselves have to be supported by

the mesoscale environment in the first place.

The third trend is a diurnal cycle in the impact of the

model, PBL, and microphysics perturbations (Fig. 2). The

median merging height for all of these perturbation types

has a peak at the 24-h lead time, which corresponds with

the afternoon maximum in the diurnal convective cycle.

The fourth trend illustrated by the median merging

heights is the decreasing relative impact of radar and

Mesonet data assimilation with increasing forecast time

(Fig. 2). This trend is consistent with composite dendro-

grams, which show distinct clusters of members with and

without radar and Mesonet data assimilation at the 3- and

12-h lead times (Figs. 1a,b), but not at the 24-h lead time

(Fig. 1c). Median merging heights further reveal that the

impact of assimilating radar and Mesonet data on fore-

casts is greater than the model and physics perturbations

at early lead time and then becomes less important than

the model and physics perturbations at later lead times.

This trend is consistent with previous studies (Xue et al.

2009; Kong et al. 2009; Kain et al. 2010).

In summary, the results of median merging heights

show more impact of the model dynamic cores than the

physics throughout the forecast time, an increasing im-

pact of the PBL scheme with increasing forecast time,

a diurnal cycle in the impact of the models and physics

on the forecasts, and decreasing impact with time of radar

assimilation. These results are consistent with the com-

posite dendrograms and with the physical understanding.

The sensitivity of HCA results to the choice of clustering

algorithm is examined by comparing the median merging

heights using the unweighted pair group method

FIG. 2. Median height on dendrogram (as ratio of total height) that

each member’s forecast of hourly accumulated precipitation merged

into the same cluster as a member with a different PBL scheme (dash),

Microphysics scheme (dotted), model (solid), or radar data assimila-

tion (dashed–dotted) option as a function of forecast lead time.
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clustering algorithm (UPGMA; Jain and Dubes 1988)5

to the results described in this section. In general, the

results from UPGMA (Fig. 3) are consistent with those

from Ward’s algorithm.

c. Regional HCA

A composite dendrogram is also created based on re-

gional HCA, which follows the method described in Part

I (section 7). Regional subdomains are of interest because

of the localized nature of severe weather forecasts. Here,

the 0000 UTC verification time (i.e., 24-h lead time) is

emphasized for consistency with the HWT Spring Ex-

periment, which focused on day-1 severe weather fore-

casts (e.g., Schwartz et al. 2009) and the diurnal maximum

of convective instability. The approximate center of re-

gions where widespread intense convection (evaluated

subjectively) was either forecast by multiple ensemble

members or observed were considered potential regions

of interest. This resulted in 49 different regions to be

clustered since some forecasts contained multiple non-

overlapping regions of interest. Of the subjectively se-

lected 49 potential regions, regions in which more than 3

ensemble members did not have any forecast objects

identified by the MODE algorithm were removed from

consideration. This is because in such instances, maxi-

mum distances of 1.0 are often obtained as a result of

forecasting of no object, which contributed more noise

than signal to the overall results. Also eliminated were

regions where no severe weather was recorded in the SPC

storm reports log within about 300 km of the center of the

region within an hour before or after the forecast valid

time. These were removed because the focus of this study

is on intense convection, such as that of interest to the SPC

(reasons for this focus are also discussed in appendix A in

Part I). These objective criteria reduced the 49 potential

regions, identified using subjective criteria, to 34 regions.

Figure 4 shows that for the regional HCA composite,

the primary clustering is again based on models. In ad-

dition, the cluster of NMM members is again subclustered

based on the PBL scheme. This composite dendrogram

using regional domains is therefore consistent with the

full-domain composite (Fig. 1c).

4. HCA for 10-m wind speed and midtropospheric
variables

HCA for nonprecipitation variables of 10-m wind

speed, 850-hPa wind speed, and 500-hPa temperature is

performed using the traditional implementation of

Ward’s algorithm. Composite dendrograms for the

nonprecipitation variables are discussed in section 4a.

The results based on median merging heights are dis-

cussed in section 4b.

FIG. 3. As in Fig. 2, but using UPGMA instead of the modified

Ward’s algorithm.
FIG. 4. Composite dendrogram of forecasts of hourly accumu-

lated precipitation over 34 cases of regional subdomains at the 24-h

lead time.

5 UPGMA defines the distance between two clusters as the av-

erage distance between each possible pair of members from the two

clusters. This contrasts with Ward’s algorithm, which defines the

distance between clusters as the increase in variability resulting

from merging those two clusters.
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a. Results of composite dendrograms

1) 10-M WIND SPEED

At the 3-h lead time the 10-m wind speed composite

dendrogram shows primary clusters based on the PBL

scheme and radar and Mesonet data assimilation (i.e., an

MYJ cluster, a YSU cluster, and a C0 members cluster;

Fig. 5a).6 Secondary clustering is dependent on the PBL

scheme that the primary clustering is based on. The MYJ

cluster has subclusters determined by the model dy-

namic core (i.e., ARW and NMM subclusters). In con-

trast, for the YSU cluster, the subclusters do not show

distinct clusters based on models. For example, the two

pairs with common IC and LBC perturbation (i.e.,

subclusters of ARWP2 with NMMP2 and ARWP4 with

NMMP4) are paired together even though they use

different models. Figure 5a indicates stronger impact of

the PBL scheme than the dynamic core on the 10-m

wind speed forecast during the early forecast hours.

At the 24-h lead time the impact of the PBL scheme on

the diversity of 10-m wind speed forecasts has diminished

compared to the impact of the LBC perturbation (Fig.

5b). Unlike at earlier lead times when primary clusters

are based on the PBL scheme, at the 24-h lead time they

are clustered primarily by their LBCs. From left to right,

the four members in the first group, the three members in

the second group, the seven members in the third group,

and the four members in the fourth group share the same

NAM forecasts (NAMf in Table 1), the same ARW-

member SREF forecasts (emN1), the same ETA-member

SREF forecasts (etaKFN1 and etaBMJN1), and the same

NMM-member SREF forecasts (nmmN1), respectively,

for their LBCs. The secondary clusters at the 24-h lead

time (Fig. 5b) also suggest a stronger influence of the

synoptic-scale IC perturbations from SREF at later lead

times than at early lead times since members with

common IC are also subclustered. The impact of radar

and Mesonet data assimilation at the 24-h lead time is

minimal since the CN and C0 members cluster together

at a low level before merging with any other members.

2) MIDTROPOSPHERIC VARIABLES

Midtropospheric variables such as the 500-hPa tem-

perature tend to cluster according to the IC at early lead

times and the LBC at later lead times (e.g., Figs. 6a,b).

This clustering indicates a stronger relative impact of

the IC and LBC perturbations for midtropospheric vari-

ables than for near-surface wind speed and precipitation.

Temperature forecasts at 500 hPa are representative of

the other midtropospheric variables such as the 850-hPa

wind speed.

At the 3-h lead time (Fig. 6a), the primary distinction

between members, even for nonprecipitation midtropo-

spheric variables, is the assimilation of radar and Mesonet

data. At this time the C0 members form a distinct cluster.

FIG. 5. Dendrogram composited from 28 forecasts of 10-m wind

speed over the entire verification domain at the (a) 3- and (b) 24-h

lead times.

6 The two ARPS members are excluded from the 10-m wind

speed dendrograms because 10-m wind was not generated as an

output variable in ARPS during the 2009 Spring Experiment.
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This separate cluster is also seen at the 12-h lead time (not

shown). The remaining members tend to cluster based on

the ICs. Many pairs of members with the same IC (e.g.,

P4, N3, N4, P1, and P2) cluster together immediately but

none of these pairs then merge together based on com-

mon LBC. Recall that the ensemble ICs in 2009 were

obtained by adding SREF perturbations to the control

analysis. This is done in practice by adding and sub-

tracting half the difference between paired SREF 3-h

forecasts (valid at the initial time 0000 UTC) to the control

analysis. For example, the ARWN1 analysis is obtained by

subtracting from the ARWCN analysis the difference

between the SREF emP1 and SREF emN1 forecasts,

divided by 2. The resulting perturbations to u and y wind

components, potential temperature, and specific hu-

midity are rescaled to have a root-mean-square value of

1 m s21, 0.5 K, and 0.02 g kg21, respectively.

By the 24-h forecast time the primary clustering is

based on the LBCs. All members using NAM forecast

as LBC (ARWCN, ARWC0, NMMCN, NMMC0,

ARPSCN, and ARPSC0) are in a cluster while all mem-

bers using SREF emN1 forecast as LBC (ARWN1,

ARWP1, and NMMP1) are in a cluster and so on. Within

the primary clusters, members that also have the same

ICs (e.g., ARWP2 and NMMP2) form subclusters. The

composite HCA also revealed that clustering based on

the LBCs begins earlier at 500 than at 850 hPa (not

shown). The primary clusters in the 24-h composite sug-

gest a stronger impact of the LBC perturbation than the

other types of perturbation for the midtropospheric var-

iables at this lead time.

Temperature perturbations from the control forecast

at 500-hPa were examined in several forecasts to better

understand the primary clustering based on LBC late in

the forecasts (Fig. 6b). As a representative example, Fig. 7

shows the anomalies of ARWN3, ARWP3, and NMMN3

from the ARWCN control forecast, initialized at 0000 UTC

1 May 2009, for the 500-hPa temperature over the entire

forecast domain. While the control member, ARWCN,

obtains LBCs from NAM forecasts, the members ARWN3,

ARWP3, and NMMN3 obtain their LBCs from the fore-

casts of SREF member etaKFN1. ARWN3 and NMMN3

also have the same ICs while ARWN3 and ARWP3 have

IC perturbations of opposite sign as discussed above.

The members also have different physics configuration

as shown in Table 1.

The anomalies resulting from the IC perturbations are

still apparent after 3 h of forecast time, while anomalies

arising from the LBCs are just beginning to enter the do-

main (Figs. 7a–c). Areas that were inside the domain at the

initial time (northern plains, southern plains, and northern

Great Lakes) have anticorrelated anomalies of opposite

sign between ARWN3 and ARWP3 (Figs. 7a,b) but cor-

related anomalies of the same sign between ARWN3 and

NMMN3 (Figs. 7a,c). However, the anomalies (relative to

ARWCN) entering the domain from the LBCs in the

strong westerly flow (flow pattern is not shown) have both

similar shape and sign. The similarity between members

with common ICs at the 3-h lead time, ARWN3 and

NMMN3 in this example, causes the clustering of such

FIG. 6. Dendrogram composited from season-long forecasts of

the 500-hPa temperature over the entire verification domain at the

(a) 3- and (b) 24-h lead times.
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members at the 3-h lead time for the midtropospheric

variables.

After 12 h of forecast time the anomalies originating

from the LBCs already dominate the anomalies of all three

members (relative to ARWCN) as the LBCs begin to

spread across the interior domain (Figs. 7d–f). All three

members have a large-scale cold anomaly of more than 58C

over the northern Rockies, where the flow originated from

the western boundary, and a large-scale warm anomaly of

several degrees Celsius over the northern plains, where

the flow originated from the northern boundary. This

example further confirms the eventual primary clus-

tering of members based on the LBC forecasts as

shown by the 24-h composite dendrogram (Fig. 6b).

b. Results of median merging height

The impact of different types of perturbations on non-

precipitation forecast diversity, as a function of forecast

time, is examined in terms of median merging height

(Fig. 8). This subsection describes the relative impacts of

the different types of perturbation, the change in relative

impact at different lead times, the relative impact of the

same perturbation type for different variables, and the rel-

ative impact of IC versus LBC perturbation with increasing

lead times.

The relative impacts of different types of perturbation

implied by median merging heights are generally con-

sistent with those implied previously by the composite

FIG. 7. 500-hPa temperature forecasts initialized at 0000 UTC 1 May 2009, as anomalies from the ARWCN

forecast, for (a) ARWN3 at the 3-h lead time, (b) ARWP3 at the 3-h lead time, (c) NMMN3 at the 3-h lead time, (d)

ARWN3 at the 12-h lead time, (e) ARWP3 at the 12-h lead time, and (f) NMMN3 at the 12-h lead time.
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dendrograms. At early lead times, the 10-m wind speed

merging heights indicate the greatest impact is from

the PBL scheme. However, the 850-hPa wind speed

and 500-hPa temperature merging heights indicate

that the greatest impact is from radar data assimila-

tion (Fig. 8). At later lead times the relative impact of

the PBL scheme, microphysics scheme, and model is not

clear from the composite dendrograms (Figs. 5b and 6b).

However, the merging heights for both 10-m wind speed

and the midtropospheric variables indicate a greater im-

pact of the PBL scheme than the microphysics and model

(Fig. 8).

In terms of the variation of the impact of different

perturbations with forecast lead time, the impact of the

PBL scheme decreases at later lead times for 10-m wind

speed (Fig. 8a). The impact of the microphysics scheme

and model for 10-m wind speed and the impact of the

microphysics scheme, PBL scheme, and model for the

midtropospheric variables all have a peak at the 24-h lead

time, valid at 0000 UTC around which time the maximum

convective activity occurs. The impact of radar data as-

similation decreases with lead time for all of the non-

precipitation variables (Fig. 8).

The relative impacts of a given perturbation type for the

different forecast variables are also consistent with the

composite dendrograms. The impact of both the physics

and model perturbations is larger for 10-m wind speed

than for the other nonprecipitation variables (Fig. 8). The

impact of model perturbations for all nonprecipitation

variables is smaller than that for precipitation (Fig. 2).

FIG. 8. As in Fig. 2, but for (a) 10-m wind speed, (b) 850-hPa wind speed, and (c) 500-hPa temperature.
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Results are again similar when using UPGMA as a clus-

tering algorithm (not shown).

The impact of IC and LBC perturbation is examined

in a similar manner as that used for the model and physics

perturbations and is summarized for both precipitation

and nonprecipitation variables in Fig. 9. Figure 9 shows

the median merging height where members with different

IC merge together along with the median merging height

where members with different LBC merge together, for

precipitation and 10-m wind speed. Divergence of these

two lines indicates an increasing impact of the LBC rel-

ative to the IC. Figure 9 shows such divergence begins

around the 12-h lead time for 10-m wind speed. This

agrees with the timing of the first appearance of clusters

with common LBC noted in the composite HCA results.

Similar divergence with increasing lead time is observed

for the midtropospheric variables (not shown). Also

noteworthy in Fig. 9 is the later onset and smaller amount

of divergence of the IC and LBC merging heights, as well

as generally smaller values, for precipitation compared to

the nonprecipitation variables. These differences indicate

less impact of the IC and LBC perturbations for pre-

cipitation variables than the nonprecipitation variables.

Also, unlike the midtropospheric variables, the LBCs do

not dominate the hourly accumulated precipitation fore-

casts at the 24-h lead time, the peak of the diurnal cycle,

which suggests that the 24-h precipitation features are

mostly locally forced (e.g., Weckwerth and Parsons 2006).

The results in this section using median merging height

are, in general, consistent with the results from the

composite dendrograms, except the relative impact of the

PBL scheme and LBC perturbation for 10-m wind speed

forecasts at the 24-h forecast time. The composite den-

drogram indicates greater impact of the LBC than the PBL

scheme at the 24-h forecast time, with clean separations of

members based on the LBC (Fig. 5b). However, the me-

dian merging height of the PBL scheme is higher than or

comparable to that of the LBC at the 24-h forecast time

(Figs. 8a and 9). Examinations of the dendrograms of all

forecasts show that this is because both the PBL scheme

and LBC are important (not shown). Forecasts dominated

by the LBC typically have cleaner and more distinct clus-

ters than forecasts dominated by the PBL scheme, but the

PBL scheme–dominated forecasts occur more frequently

(19 out of 28 forecasts) than the LBC-dominated forecasts.

As discussed in section 2, the dominance of the LBC is

therefore reflected by the composite dendrogram and that

of the PBL scheme is reflected by the median merging

height. Subjective examination revealed that the forecasts

dominated by the LBC correspond to synoptic-scale dis-

turbances entering the domain from the lateral boundaries

during the forecast period. This occurred relatively in-

frequently during the second half of the 2009 Spring Ex-

periment as a result of a strong blocking pattern.

5. Summary

This paper is the second of a two-part study seeking a

better understanding of the impacts and relative importance

of different sources of uncertainty on forecast diversity

within a convection-allowing ensemble system produced by

the CAPS for the 2009 NOAA HWT Spring Experiment.

In this paper, an object-oriented HCA is used to identify

clusters of forecasts with a focus on the structure, organi-

zation, and location of intense convection. Traditional HCA

is used to identify clusters for nonprecipitation variables.

The systematic impacts of perturbations are summarized

with composite dendrograms and median merging heights

of members sharing different perturbations.

The composite dendrograms show that at the 3-h lead

time (valid 0300 UTC) hourly accumulated precipitation

forecasts cluster primarily by assimilation of radar and

mesoscale data. Additional subclustering then corresponds

to common model dynamics followed by common micro-

physics schemes. At the 24-h lead time (valid at 0000 UTC)

the clustering is primarily by the model dynamics with

secondary clustering by the PBL scheme for the NMM

members. At the 12-h lead time (valid at 1200 UTC) there

is primary clustering based on both the model dynamics

and radar and mesoscale data assimilation. Members

without assimilation of additional radar and Mesonet data

form a distinct cluster from members assimilating radar

and Mesonet data for the first 12 h of the forecasts.

FIG. 9. Median merging height that a member joins a cluster with

another member using different IC or different LBC for 10-m wind

speed and precipitation as a function of forecast lead time.
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Median merging height results are consistent with the

results of composite dendrograms. Median merging heights

for precipitation forecasts further reveal that the model

has a larger impact than the physics at all lead times,

the microphysics scheme has a larger impact than the

PBL scheme at the 3-h lead time, and the PBL scheme

has an increasing impact with time that eventually out-

weighs the impact of the microphysics scheme. The

impacts of the model and physics perturbations also

follow a diurnal cycle with a maximum during the af-

ternoon when convective activity is often greatest. The

impact of radar and mesoscale data assimilation de-

creases with time and becomes smaller than the model

and physics perturbations after the 12–18-h lead times.

The impact of the IC and LBC perturbations, as used in

the current ensemble system, did not show up clearly for

the precipitation forecasts, relative to the impacts of

other perturbations.

For the nonprecipitation variables, the composite

clusters reveal that forecasts of 10-m wind speed initially

(the 3-h lead time) cluster primarily by the PBL scheme,

with secondary clustering by the model in the MYJ PBL

scheme cluster. Eventually (by the 24-h lead time) the

clustering is primarily by the LBCs. Forecasts of the

midtropospheric variables (the 850-hPa wind speed and

the 500-hPa temperature) initially cluster by the ICs, and

eventually cluster by the LBCs. Radar data assimilation

initially results in separate composite clusters even for

the nonprecipitation variables.

The HCA results from median merging heights are

generally consistent with the HCA results from com-

posite dendrograms for the nonprecipitation variables

as well. For 10-m wind speed and the midtropospheric

variables, the median merging heights indicate a greater

impact of the PBL scheme than the model and micro-

physics scheme at all lead times. The relative impact of

the PBL scheme for 10-m wind speed decreases at later

lead times as the LBCs’ impact increases. For the mid-

tropospheric variables the median merging heights in-

dicate that the impact of the model and physics peak at

the 24-h lead time when the maximum convective activity

occurs. For all of the nonprecipitation variables, the im-

pact of radar assimilation decreases with forecast time.

The median merging heights also provide a quantita-

tive comparison of the relative impact of different per-

turbation types among the different forecast variables.

For example, the model and physics perturbations have

a larger impact on 10-m wind speed than the midtropo-

spheric variables. Finally, there is less impact of the IC

and LBC perturbations on precipitation forecasts than

the nonprecipitation forecasts.

More work is needed to further diagnose the physical

reasons causing the ensemble to cluster as it does.

6. Discussion: Implication for ensemble design,
verification, and postprocessing

In this study a newly developed object-oriented HCA

is applied to a convection-allowing ensemble during

the 2009 NOAA HWT Spring Experiment. The results

of the HCA can have several implications for future re-

search on how to optimally design and appropriately

verify, calibrate, and postprocess a convection-allowing

ensemble. The following only serves to discuss such im-

plication elucidated from the clustering analysis results.

Detailed and systematic studies are needed to answer

these questions. Studies on quantitatively verifying dif-

ferent subgroups of the ensemble members are ongoing

and are planned to be reported in future papers (Johnson

et al. 2011b).

a. Ensemble design

Our results suggest that the optimal design of the CAPS

2009 convection-allowing ensemble should depend on the

intended use of the ensemble. In this study we focus on

the structure and organization of features in hourly ac-

cumulated precipitation forecasts by using an object-

oriented framework. The HCA results imply that for next

day (i.e., 24 h) forecasts of intense convection, particular

attention should be paid to the models and PBL schemes.

At earlier lead times, for example for 3-h forecasts, in

addition to the models, more attention should be paid to

the microphysics schemes and radar data assimilation.

Users interested in short-term forecasts of near-surface

variables such as 10-m wind speed may find the greatest

improvements to ensemble design by optimizing the PBL

scheme perturbations while the LBC perturbation strat-

egy may be more relevant at later lead times. Users in-

terested in upper-level variables may benefit most from

an increased emphasis on the LBC perturbations for

longer lead times and the IC perturbations at short lead

times. Attention should also be paid to the interaction

between the model and physics perturbations as Figs. 1b

and 5a suggest that sensitivity to the physics schemes can

depend on the model dynamics and vice versa. Even for

a specific user and a particular modeling system, the

effectiveness of the ensemble design can also depend on

the large-scale flow regime (not shown). Thus, cautions

are warranted when extrapolating the results of this

study to other applications, seasons, and configurations.

However, it is worth noting that a composite OTS-HCA

of the 2010 CAPS ensemble (Xue et al. 2010), which was

configured differently than the 2009 CAPS ensemble,

showed the same primary clustering of precipitation fore-

casts by the model dynamics (not shown).

Another consideration for storm-scale ensemble de-

sign is the horizontal scale of both IC and LBC
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perturbations. The IC/LBC ensembles in this study

were generated by simply downscaling from coarser-

resolution SREF forecasts. More work is needed to ex-

plore how to optimally design the IC and LBC pertur-

bations that include all scales of uncertainty.

Future research should also further identify and

quantify the added value of radar data and Mesonet

observation assimilation. In a composite sense there is

a distinct cluster of the members without radar assimi-

lation for at least 12 h. The impact of assimilating the

observations is also likely dependent on the data as-

similation method adopted (e.g., Wang et al. 2008a,b).

b. Postprocessing, calibration, and verification

The presence of systematic clusters of ensemble mem-

bers violates the assumption that each member’s forecast

is a random (i.e., independent and equally likely) sample

of the distribution of possible future states of the atmo-

sphere (Leith 1974). This has implications for appropriate

postprocessing techniques since methods such as inter-

preting the percentage of members forecasting an event

as the forecast probability are not strictly appropriate.

This also implies a need for calibration since different

clusters of members can have different systematic be-

haviors. Such systematic differences should be accounted

for before combining the clusters into a single combined

probability density function of the ensemble forecast.

Future research should seek appropriate postprocessing

and calibration methods in the presence of unequally

likely and/or nonindependent members for the purpose

of explicit prediction of intense convection and its char-

acteristics.

Forecast verification can be interpreted as quantifying

the distance between a forecast and a verification field

instead of two forecast fields. Therefore this study is of

general relevance as a contribution to understanding the

ways that object-oriented methods can be applied to

convection-allowing forecasts. This study demonstrates

advantages of using object-oriented methods to measure

similarity/dissimilarity of fine-resolution precipitation

forecasts. By construction, the object-oriented method

in general is not able to identify a correct null forecast,

which should be kept in mind while interpreting verifi-

cation results. Future research should explore the use of

object-oriented products and verification methods in

a probabilistic framework to provide additional insight

into convection-allowing ensemble performance.
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