2558

MONTHLY WEATHER REVIEW

Distributed Processing of a Regional Prediction Model

KeNNETH W. JOHNSON

Supercomputer Computations Research Institute, The Florida State University, Tallahassee, Florida

JeFF BAUER
Academic Computing and Network Services, The Florida State University, Tallahassee, Florida

GREGORY A. RICCARDI

VoLuMmE 122

Department of Computer Science and Supercomputer Computations Research Institute, The Florida State University, Tallahassee, Florida

KeLvIN K. DROEGEMEIER AND MING XUE

(Manuscript received 7 July 1993, in final form 14 March 1994)

ABSTRACT

This paper describes the parallelization of a mesoscale—cloud-scale numerical weather prediction model and
experiments conducted to assess its performance. The model used is the Advanced Regional Prediction System
(ARPS), a limited-area, nonhydrostatic model suitable for cloud-scale and mesoscale studies. Because models
such as ARPS are usnally memory and CPU bound, the motivation here is to decrease the computer time required
for running the model and/or increase the size of the problem that can be run. A domain decomposition strategy
using a network of workstations produced a significant decrease in elapsed time and increase in problem size
relative to a single-workstation run. The performance of the resulting program is described by derived formulas
(collectively known as a performance model), which predict the execution time and speedup for different
numbers of processors and problem sizes. The interprocessor communication speeds are shown to be the major
obstacle to achieving full processor use. The effect of faster communication networks on parallel performance
is predicted based on this performance model. Parallelization experiments using the ARPS code were run on a
cluster of IBM RS6000 workstations connected via Ethernet. The message-passing paradigm implemented here

Center for Analysis and Prediction of Storms and School of Meteorology, University of Oklahoma, Norman, Oklahoma

made use of the library of routines from the Parallel Virtual Machine software package.

1. Introduction

This paper describes the parallelization of the Ad-
vanced Regional Prediction System (ARPS) model of
the Center for Analysis and Prediction of Storms
(CAPS) (CAPS 1992; Droegemeier et al. 1992). The
ARPS is a limited-area, nonhydrostatic model suitable
for cloud-scale and mesoscale studies. Models such as
ARPS are usually CPU and memory bound; they re-
quire fast CPUs to complete a run in a reasonable time
and require large amounts of memory (real or virtual)
to accommodate the problem size. The motivation here
is to use parallel systems with these models to decrease
the computer time required for running the model and/
or increase the size of the problem that can be run. The
specific goals are to 1) determine how adaptable the

Corresponding author address: Dr. Kenneth W. Johnson, Super-
computer Computations Research Institute, 400 Dirac Science Li-
brary, The Florida State University, Tallahassee, FL 32306-4052.

- - Lt Oalaeas

ARPS code is to run on a distributed system, 2) quan-
tify the paraliei performance, and 3) detect botilenecks .
in the ARPS code and the hardware that prevent im-
proved parallel performance.

Parallelization experiments using the ARPS model
were run on a compute cluster. A compute cluster is a
system of networked computers, in this case worksta-
tions, having distributed memory. This computer sys-
tem was chosen since it is an emerging technology that
is becoming increasingly available to researchers be-
cause of its price/performance ratio (Buzbee 1993).
Parallel processing architectures are typically classified
as either single instruction multiple data (SIMD) or
multiple instruction multiple data (MIMD). Architec-
turally, compute clusters may be classified as distrib-
uted memory MIMD (dMIMD) systems. It is believed
that much of what is learned with this type of system
can be carried over to massively parallel processors
(MPP) having distributed memory architectures.

Parallel performance of the ARPS code is assessed
through numerical experiments and the use of an ana-

NovEMBER 1994

lytic performance model. The analytic performance
model is developed to analyze and predict the perfor-
mance of the parallel code. The analytic performance
model is developed to analyze and predict the perfor-
mance of the parallel code. The performance model
includes the effects of extra calculations and message
passing required by the parallel algorithm. The perfor-
mance model and the experimental results suggest that
significant speedups, relative to a single-CPU system,
can be achieved when the ARPS is run on a compute
cluster. The greatest obstacle to improved performance
is interprocessor communications.

In this paper details of the ARPS model and the par-
allel algorithm are described in section 2. Hardware and
software applied to the parallelization experiments are
described in section 3. Section 4 contains descriptions
of the analytic performance model. Results of the par-
allelization experiments are discussed in section 5. Fu-
ture work is described in section 6.

2. The numericai prediction model and its
parallelizationr

The ARPS model is a fully three-dimensional, non-
hydrostatic code designed for the prediction of meso-
scale to convective-scale weather (Droegemeier et al.
1991; CAPS 1992; Droegemeier et al. 1992). It was
developed at CAPS at the University of Oklahoma.
ARPS was designed as a scalable code that takes ad-
vantage of the parallelism inherent in the equations of
fluid flow. This parallelism can be distributed by the
user in many ways given knowledge of the target ar-
chitecture. The code is highly modular and makes use
of discrete operators to perform Eulerian derivatives
and averages. In this manner, the mathematical struc-
ture of the continuous equations is at least partly pre-
served, providing for ease of learning, modification,
and debugging.

The governing equations are the three-dimensional,
nonhydrostatic Navier—Stokes equations augmented
by equations for pressure, potential temperature, water
vapor, cloud water, rainwater, cloud ice, hail, and
snow. These equations in continuous space are shown
in appendix A. To allow for stretched grids and terrain,
the governing equations are transformed from Carte-
sian space to a curvilinear space. All computations are
done in the curvilinear space where the grid mesh is
uniform and orthcgonal. Space derivative terms are ap-
proximated with second-order quadratically conserva-
tive finite differences on the staggered Arakawa C grid.
Time marching is done using the leapfrog scheme. For
additional details on ARPS version 2.0, see Droege-
meier et al. (1991).

The ARPS moedel can be decomposed to run across
multiple processors using either the functional or do-
main-decomposition approaches. Functional decom-
position involves solving each prognostic and/or di-
agnostic equation on a separate processor. This decom-

JOHNSON ET AL.

2559

position potentially requires a large amount of
communication between processors. This is because
the updated prognostic fields must be transferred from
the processors they are being calculated on to all other
processors needing them after each time step. Domain
decomposition involves assigning subdomains of the
full computational grid to separate processors and solv-
ing all prognostic and/or diagnostic equations for that
subdomain on that processor. Using this type of decom-
position, interprocessor communications are required
only at the boundaries of the subdomain. The choice of
which decomposition to use must be made based on the
target multiprocessor architecture. Functional decom-
position seems least desirable on most shared memory
MIMD and dMIMD architectures. Memory contention
may be an issue for the former, whereas communica-
tions in the form of message passing may be a bottle-
neck for the latter. However, a functional decomposi-
tion of the ARPS code is the easiest to implement on
dMIMD systems. This simply requires that, during a
given time step, each governing equation be evaluated
over the entire domain on its own dedicated processor.
At the conclusion of a time step, each processor sends
its results to and receives results from all the other pro-
cessors. Since all prognostic variables for the entire
computational domain must be sent to each processor
after each time step, the ratio of computation to com-
munication time is low for this decomposition. This
leads to small speedups at best when implemented on
a dMIMD system as used here.

Domain decomposition of the ARPS code is a more
effective parallel processing approach for current dis-
tributed memory architectures. It requires breaking the
computational domain into subdomains in one or more
of the coordinate directions. Each subdomain is as-
signed to a processor that does the time-stepping cal-
culations in the subdomain. The ARPS model employs
an explicit solution technique. Therefore, as pointed out
by Kauranne (1990), no global information is required
at any particular grid point. The only additional infor-
mation needed by a subdomain during a time step is
the inner border of adjacent subdomains. These grid-
point values are needed to evaluate derivative terms in
the prognostic equations at points on the borders of a
subdomain using spatial finite differences (Fig. 1).
These data are resident and updated in the local mem-
ory of adjacent processors. They can be copied to the
memory of the current processor using message passing
techniques to be discussed shortly.

Several strategies exist for dividing the model grid
into subdomains. Figure 2 shows possible decomposi-
tions for a three-dimensional grid. Assuming no other
complicating factors, a logical strategy is to partition
in such a way as to minimize the surface area of each
subdomain relative to its volume (Fox et al. 1988).
This keeps the computation-to-communication ratio
high. The most natural decomposition from a coding
standpoint is a one-dimensional decomposition in the z

2560

—— Processor boundary

Inner border
Outer border

Fic. 1. Domain decomposition of grid showing inner and outer
borders of processors. Finite differencing on inner borders requires
information from adjacent processors (adapted from Fox et al. 1988).

. direction, that is, assigning a fixed number of consec-
utive x—y planes to each processor (Fig. 2a). However,
for most NWP grids, the computational domain is usu-
ally a parallelepiped with the least number of points in
the z direction. Further, one-dimensional decomposi-
tion in the z direction would be even less efficient if
vertical integrations or sums, such as those involving
_ columnwise physics, are a part of the model. This sug-
gests that a more efficient decomposition is a one-di-
mensional decomposition with cuts made in the x or y
directions (Figs. 2b,c) to minimize communications.
Two-dimensional decomposition involves decom-
posing in two coordinate directions simultaneously
(Fig. 2d). The decision to use a one-dimensional or

MONTHLY WEATHER REVIEW

VoLUME 122

two-dimensional decomposition depends, in part, upon
the characteristics of the communication network link-
ing the processors. A one-dimensional decomposition
will have longer but fewer messages than a two-di-
mensional decomposition. Thus, it may be more appro-
priate for a communication network with high message
start-up costs relative to transmission costs. A two-di-
mensional decomposition will transfer fewer total data,
at least for nearly square grids, despite a greater number
of messages. Thus, for a square grid, which is the most
likely case for NWP problems, a two-dimensional de-
composition may be the best choice when network
transmission rates are relatively slow. The work pre-
sented in this paper examines both types of decompo-
sitions.

The same code that runs on a uniprocessor was used
here on each processor with some modifications. These
modifications included changes to loop indices and ar-
ray sizes, and the addition of message-passing calls.
The present code permits one- or two-dimensional de-
composition in any of the coordinate directions.

The loop index and array size changes were needed
to account for the storage of the outer borders required
by each subdomain. Consider a one-dimensional de-
composition in the x direction (Fig. 2b). For a com-
putational domain of N, X N, X N, points, the N, ver-
tical planes are partitioned into P subdomains, each
containing (N,/P) + 2 contiguous y—z planes. The two
extra y—z planes in each subdomain contain inner bor-
der data from adjacent subdomains. To accommodate
these data, the dimensions of the arrays in local mem-
ory of each processor are extended by 2 in the direction
of the decomposition.

A scatter—gather routine was added to the model
code to accommodate the transfer of a processor’s bor-

z x

a) decomposition b) decomposition
z z

y y
x z) x
k} X
y Xy
9 decomposition d) decomposition

) 1))

X X

FIG. 2. One- and two-dimensional domain decomposition
strategies for a three-dimensional grid.

NOVEMBER 1994

der data to its neighbors. Regardless of the type of de-
composition, each processor has code that enables it to
determine the identity of its adjacent processors. The
gather routine collects a given processor’s inner border
data and sends it to the adjacent processors. This is
done by filling a buffer array with an appropriate plane
of data and sending the array as a single message. The
scatter routine receives the messages from the adjacent
processors and scatters that data to the current proces-
sor’s outer border memory locations.

The ARPS was coded to allow for the grid to change
shape with time. This gives it the potential to have
higher-resolution grids in regions where the fields have
large gradients. But, time-dependent grid changes re-
quire the calculation of Jacobians at each grid point.
This is because the model equations use the contravar-
iant form of the velocity components (see appendix
A), which are related to the physical velocity compo-
nents by means of the Jacobian of transformation.
Thus, the Jacobian calculations are duplicated on the
outer borders of each domain by the two processors
‘‘sharing’’ these border data. The Jacobians could be
precalculated at the beginning of each time step and
sent to each processor. However, to save communica-
tion costs, they are not sent from adjacent processors
but are recalculated when needed.

No explicit synchronization calls were added to the
parallelized code. Synchronization occurs indirectly
because of the message passing. Whenever a processor
gets ahead of the calculations being done on adjacent
processors, it has to wait until those processors can
complete their calculations and send their border values
to their neighbors.

As mentioned above, columnwise physics, and phys-
ics in general, could be a factor in the selection of the
type of decomposition. A potential disadvantage of do-
main decomposition is the possibility that one or more
processors will finish their work ahead of the rest (e.g.,
if only part of the domain contains clouds). This is
known as the load-balancing problem. Thus, although
each processor runs identical code, each may execute
a different number of instructions due to data-depen-
dent branching (e.g., branching associated with con-
densation, radiation, and turbulence). Processors hav-
ing to perform these additional calculations would lag
behind those that do not need to perform them. Thus,
after a time step, processors not doing microphysical
calculations, for example, would have to wait until the
other processors finished to exchange inner border data
with neighboring processors.

The issue of load balancing across processors did not
arise in the parallel experiments conducted here. This
is because all the subdomains were of equal size and,
thus, had the same amount of computation since all
microphysical processes were turned off for these ex-
periments. Also, all the node machines were dedicated
and of equal speed.

JOHNSON ET AL.

2561

3. Hardware and software

The ARPS parallelization experiments were run on
a cluster of IBM RS6000 workstations connected via
Ethernet. The workstation cluster is described more
fully in appendix B. All machines were run in a dedi-
cated mode to eliminate competition for cycles by other
users. The host machine ran the initialization portion
of the code and sent appropriate subdomains of the base
state and prognostic fields to the nodes. The node ma-
chines carried out the time stepping for their associated
subdomains.

Parallel processing generally requires special soft-
ware. A code written in Fortran for a sequential pro-
cessor usually will not run on a multiprocessor system
without modification either by the user or the computer.
Generally, it is easier to develop parallel software for
shared rather than for distributed memory machines. A
principal reason is that software technology for shared
memory systems is fairly well advanced, whereas com-
piler technology for AMIMD systems is still in its in-
fancy. For example, existing compilers generally do not
automatically partition data among processors for dis-
tributed memory MIMD systems. For systems such as
compute clusters, problem decomposition requires
communication between processors via message pass-
ing, which entails the insertion of subroutine calls in
the source code. For the dMIMD work reported here,
several message-passing libraries were available. The
Parallel Virtual Machine (PVM) package (Sunderam
1990) was selected. It supports process creation, mes-
sage passing, and synchronization between processors
through use of user interface primitives. Libraries that
interface with Fortran are available and were used.

4, Predicting parallel performance

Many factors influence the performance of an NWP
model in a multiprocessor environment. The task of
analyzing and predicting NWP model behavior can be
aided by the use of analytic performance models. Per-
formance models are mathematical expressions that
predict the execution time of a computer program. They
are generally functions of the operation count of the
algorithms used in the code, the communication time,
and constants related to machine and network charac-
teristics. The advantage of a performance model is that
predictions of program performance due to system
changes can be made, allowing one to forecast how
hardware changes could improve code execution. The
disadvantage is that the performance models are not as
accurate as actual measurements since estimates of ac-
tual system values are required to develop and validate
the performance model.

Two analytic performance models for the ARPS
code were derived to predict elapsed wall-clock time.
One performance model describes the behavior of the
sequential model, while the other describes the behav-
ior of the parallel code.

2562

a. Sequential performance model

First, consider the performance model for the se-
quential code. The ARPS can be viewed as having two
segments: an initialization portion, and an iteration por-
tion. The initialization portion reads in data and ini-
tializes arrays, while the iteration portion carries out
the time stepping. The total sequential execution time
T, can be expressed as '

Tseq = Tvinit + Titer’ (1)

where T, is the execution time for the initialization
portion and T, for the iteration portion of the code. As
shown in appendix C, this can be written for a run of
N, time steps on an N, X N, X N, grid as

Tseq = (174NXNsz + 1574NxNszNr)tcalm (2)

where 1., is the typical time to do a generic calculation
such as an add or multiply. It is obvious from (2) that
the iterative part of the code, represented by the second
term of (2), dominates the total execution time and
increases linearly with the number of iterations.

b. Multiprocessor performance model

An analytic performance model for the dMIMD proc-
essing paradigm using P processors also can be derived.
The following discussion is for a grid decomposed in the
x direction as described previously (Fig. 2b). Thus, there
are P subdomains of size N.N,N,/P. Similar results can
be obtained when decomposing into slabs in the other
directions, or even into cubelike subdomains resulting
from two-dimensional decomposition. The model also
can be applied to subdomains of unequal size, although
for simplicity, that is not presented here.

A performance model for the parallel execution of
ARPS must consider three issues not germane for the
sequential runs: nonparallelizable code in the model,
communications overhead, and software overhead due to
redundant decomposition calculations. The initialization
routines constitute the nonparallelizable portion of the
code. Although in principle this part of the code can be
parallelized, it was not done here since this part of the
model often changes from case to case. Only the iterative
part of the model is considered for parallelization here.

Communications overhead result from the transfer
of data to the outer borders of the subdomains from
adjacent processors. Software overhead results from
duplicated calculations of Jacobians on the outer bor-
ders of each subdomain (Fig. 1). The Jacobian terms
are needed for differencing and averaging in the direc-
tion of the decomposition (for the examples to be
shown here, both horizontal differencing and averaging
in the x direction).

The parallelized code’s total execution time when
run on P processors T, consists of the computational
time T, and the communication time T,omnm. When the
computations and communications cannot be over-

MONTHLY WEATHER REVIEW

VOLUME 122

lapped (as is the case for these experiments), the ex-
pression for total execution time is

TP = Tcalc + Tcomm-

Each of these terms has several components.

The code’s computational time T, has an initiali-
zation component T;,; and an iteration component T,
like the sequential code. Also included is a redundant
calculation time Ty,, resulting from the parallelization
of ARPS. Thus, the computational time 7T, can be
expressed as

(3)

T,
Tcalc = ﬂnit + (4)
As shown in appendix C, this can be expressed, for a
run of N, time steps on an N, X N, X N, grid decom-
posed in the x direction, as
N.NN,

Tese = (174N,N_sz + 1574 —p M

+ 1338NyNZN,> teac. (5)

The code’s total communication time 7T, when run
on P processors consists of an initialization cornmu-
nication time T},.. and an iterative communication time
Ticom- Time Ty, is required to send base-state fields
and initial values to each processor. Time Tiom is TE-
quired to send data to the outer borders of adjacent
processors in the iterative part of the code. The ex-
pression for total communication time is thus

Tcomm = Tbase + T'itcom- (6)

The communication time required to transfer a
packet of information from one processor to another
depends on the start-up time, the size of the message,
and the transmission rate. The start-up time is assumed
to be independent of message size. With values for
these parameters, communication times may be calcu-
lated in the performance model.

Initial communication in the ARPS model involves
sending appropriate subdomains of the base-state
fields, coordinate arrays, and prognostic fields to the
local memory of each processor. Node-to-node com-
munication during the iterative part of model execution
requires only that data on the inner borders of a sub-
domain of a given processor be transferred to adjacent
processors after each time step. When these factors are
taken into account, the total communication time Toomm
can be expressed-as (see appendix C)

N,
Teomm = (P — 2)[35tstart + 4'1NyNz<F + 2)t"m]
N,
+2 |:3Ststan + 41N_VNZ(7)- + l)tmms]

+ 2N, tyan + 22N,N,N,tiuns, (7)

NOVEMBER 1994

JOHNSON ET AL.

2563

Message size & times for different values of NPROC

Round trip time (seconds) .

T T

NPROC=12,16

NPROC=11

NPROC=8,9

NPROC=7
NPROC=6

NPROC=5
NPROC=4

NPROC=3
NPROC=2

0 20000

40000 60000

Message size in bytes

FIG. 3. The effect of message size and number processors
on communication time when using Ethernet.

where ., is a start-up time, and f,,,; a transmission
rate. The derivation of (7) assumes no bottlenecks or
slowdowns due to all the processors sending their mes-
sages simultaneously. With this assumption, P does not
appear in the last two terms of (7), which represent the
iterative communication time Tj.,,. Thus, communi-
cation time during the iterative part of a model run is
independent of the number of processors used. If this
assumption is not valid, T, would be an explicit func-
tion of P. Consequences of this are addressed later.

The time needed to initialize the ARPS model and
send base-state and initial fields to the nodes generally
will be small compared to that of the iterative portion
of the code. Under this assumption the first term in (5)
and the first two terms in (7) are small and can be
dropped. This allows the analytic performance model
to be written as

TP = Tcalc + Tcomm

N.N,N,
= (1574 —S N+ 1338N_VNZN,> Feae

+ 2Nttstart + ZZNVNthttrans' (8)

Useful measures of performance in addition to exe-
cution time include speedup and efficiency. It is gen-
erally thought that elapsed wall-clock time is the most
important metric for NWP and forecasting (Droege-
meier et al. 1992). However, speedup and efficiency
can be used to determine how effectively the computers
are being used. Speedup S is the ratio of the execution
time of a sequential run to the execution time of a P
processor run. Efficiency is the ratio of the speedup to

the number of processors. The maximum speedup pos-
sible on P processors is P. The analytic model of
speedup for this problem is

T

- Zseq
S = T,
L, 1381 1 1
~ |P 1574 N, 1574 N,N,N,
' 1 - |
X (% + 1IN,N, ‘“““)] . (9)
cale calc

The first term in (9) gives the speedup due to grid
decomposition, while the second term arises due to the
duplicate computations. The remaining terms are re-
lated to communication between processors. The first
two terms in parentheses give the communication time
for sending data to adjacent processors. Note that (9)
is similar to Amdahl’s law, where the first term is anal-
ogous to the time for parallel processing and the other
terms are analogous to the time for sequential (scalar)
computation. From (9), it is seen that the effects of
duplicate calculations on speedup decrease as the num-
ber of points in the direction of decomposition (here,
the x direction) increase for a fixed number of proces-
sors. This is because the ratio of computation to dupli-
cate computation increases. The effect of communica-
tions on speedup varies according to grid size and the
ratio of computational speed to communications speed.
As the grid size increases and/or the computation-to-
communication ratio increases, so does the speedup for
a fixed number of processors. Thus, speedup is limited
primarily by the computation-to-communication ratio.

2564

The above discussion of speedup focused on prob-
lems of fixed size and, thus, fixed-size speedup. Fixed-
size speedup is determined by holding fixed the prob-
lem size (i.e., the number of grid points) and varying
the number of processors, the goal being to solve the
fixed-size problem faster. As the number of processors
increases, the amount of work done by each processor
decreases while the communication time remains con-
stant, thus decreasing the computation-to-communica-
tion ratio. In contrast, a problem can be scaled up by
increasing the problem size as processors are added.
This leads to a scaled speedup where the goal is to solve
the largest problem within a given time. In this case,
the amount of work done by each processor remains
constant, independent of the number of processors
added. In this way the computation-to-communication
ratio remains constant.

Use of the performance models requires that the vari-
ables # ¢, fyan, and .y, be determined either from sys-
tem hardware characteristics or measurements. Here
they were determined empirically. The value for .,
was determined from single processor runs of the code.
The values of ¢, and ¢,,,, were determined by making
multiprocessor runs mimicking the communications
pattern of the decomposition. Messages of various sizes
were sent back and forth between processors, and
round-trip times for the message passing were mea-
sured (Fig. 3). Predicted timings using these values are
given in the next section.

When using Ethernet for communications, as was
done here, the communication time is not independent
of the number of processors. As the number of proces-
sors trying to send messages to adjacent processors in-
creases, the time for a message to get from the sending
processor to the receiving processor also increases. Ex-
perimentation has verified that ¢, and #,,, are func-
tions of P when using Ethernet. The magnitude of the
communication-time increase, as a function of P, was
determined by sending messages between increasing
numbers of processors and measuring the time the mes-
sages took to make a round-trip. As seen in Fig. 3, the
greater the number of processors trying to communi-
cate simultaneously, the greater the time for a message
to travel between processors. The slopes and intercepts
of the curves in Fig. 3 were determined and used as
part of the communications model within the analytic
performance model.

5. Parallel performance of the ARPS model,
version 2.0

a. Parallelization experiments

Parallelization experiments were run for functional
and domain decomposition strategies using the ARPS
model code. The functional decomposition experi-
ments showed little speedup and, in some cases, a slow-
down. As discussed in section 2, this poor performance

MONTHLY WEATHER REVIEW

VoLuwmvE 122

is due to the large amount of data that must be trans-
ferred to each processor during each time step. Thus,
this decomposition was not considered further.

Parallelization experiments using one- and two-di-
mensional domain decomposition were run to examine
fixed-size speedup and scaled speedup. Single-dimen-
sion decomposition experiments were done with de-
composition in the x direction and in the z direction.
For the x-decomposition experiments, two different
values of N, were used. Subdomain sizes with N, = 31
ranged from 2 X 31 X 32 to 16 X 31 X 32 points per
processor, resulting in grid sizes up to 256 X 31 X 32
points for 16 processors. With N, = 62, subdomain size
ranged from 4 X 62 X 32 to 8 X 62 X 32 points,
producing grid sizes up to 128 X 62 X 32 points for
16 processors. For the z decompositions, only fixed-
size grids of 32 X 31 X 32 and 64 X 62 X 32 total
points are considered. The 32 X 31 X 32 grid was de-
composed with subdomain sizes ranging from 32 X 31
X 2 to 32 X 31 X 16 points. The 64 X 62 X 32 grid
was decomposed with subdomains of 64 X 62 X 4 and
64 X 62 X 2 points. The x-decomposition cases with
N, = 62 and the z-decomposition cases were done prin-
cipally to explore communication issues.

The subdomain sizes of 16 X 31 X 32 and 8 X 62
X 32 points described above represent the largest sub-
domain that will fit in the memory of each processor,
15 872 grid points. Subdomains larger than this will
cause time consuming paging of data in and out of
memory. However, the larger memory of the host ma-
chine allowed sequential jobs to run with grids as large
as 32 X 62 X 32 points.

Two-dimensional decomposition experiments were
done with decomposition in the x and v directions. Sub-
domain sizes of 16 X 16 X 31 and 8 X 8 X 31 points
per processor were used. Subdomain arrangements
were restricted to those producing whole grids with
square dimensions. This restriction, although arbitrary,
is reasonable since whole grids with rectangular di-
mensions are more efficiently decomposed with one-
dimensional decompositions in the direction of the long
axis. The two-dimensional experiments used either 4
or 16 processors, resulting in total grid sizes of up to
64 X 64 X 31 points.

The time step, grid increment, and number of time
steps were held constant for all decomposition experi-
ments, regardless of the number of grid points used.
The time step was 0.15 s (note that ARPS 2.0 does not
employ a mode-splitting time integration scheme as
will later versions of ARPS—hence, the small time
step), the grid increment was 500 m, and the number
of time steps was 100. Thus, as the number of points
increased in a given direction, so did the physical
length of the grid in that direction. This was done to
prevent computational stability issues due to the Cour-
ant—Friedrichs—Lewy (CFL) condition from compli-
cating the study of parallel performance. The CFL cri-
terion states that Az < o« min(Ax, Ay, Az), where «

NOVEMBER 1994

TaBLE 1. Wall-clock time in seconds for a 1D decomposition in
the x direction (N, = 31). The results of the fixed-size problems
follow the diagonals from top left to bottom right. The results of the
scaled-size problems follow along the rows from left to right.

Number of processors

JOHNSON ET AL.

2565

TaBLE 3. Wall-clock time in seconds for a 1D
decomposition in the z direction.

Number of processors

Total grid size

Subdomain size per node

(number of points per node) 1 2 4 8 16
32 X 31 X 32 (31 744) 839

16 X 31 X 32 (15 872) 411 459 514 568 665

8 X 31 X 32 (7936) 203 256 282 358 413

4 X 31 X 32 (3968) 102 155 188 246 278

2 X 31 X 32(1984) 58 104 138 187 204

is a proportionality constant, the Courant number, that
depends upon the speed of the fastest wave. Keeping
the same physical domain size while adding points
would result in a higher-resolution grid. Due to the CFL
criterion, this would require a shorter time step and,
thus, more iterations of the model to achieve the same
forecast time. The impact of this criterion on wall-clock
time and speedup will be discussed later in this section.

Wall-clock times for the x-decomposition experi-
ments are shown in Tables 1 and 2. Tables 3 and 4
show timings for the z decompositions and the two-
dimensional decompositions, respectively. The results
of the scaled-size problems follow along the rows of
Tables 1, 2, and 4. The fixed-size problems, where the
size of the physical domain remains constant, follow
the diagonals of the tables from top left to bottom right.
For example, the case of a 16 X 31 X 32 grid on a
sequential processor (Table 1) is the same size as the
8 X 31 X 32 points per processor problem using two
processors. Similarly, the 16 X 31 X 32 points per pro-
cessor problem on 8 processors is the same size as the
8 X 31 X 32 problem on 16 processors.

b. Fixed-size experiments

The fixed-size runs showed a speedup with increas-
ing numbers of processors (subdomains). The results
of the fixed-size experiments for one-dimensional de-
composition in the x direction are shown in Fig. 4 for
three different grid sizes: 32 X 31 X 32, 64 X 62 X 32,

TaBLE 2. Wall-clock time in seconds for a 1D decomposition in
the x direction (N, = 62). The results of the fixed-size problems
follow the diagonals from top left to bottom right. The results of the
scaled-size problems follow along the rows from left to right.

Number of processors

(number of points) 1 2 4 8 16
32 X 31 X 32 (31 744) 839 434 271 189 183
64 X 62 X 32 (126 976) 825 667

and 96 X 93 X 32. Shown are the measured timings
obtained by running the code on the compute cluster,
and predicted timings obtained from the analytic per-
formance model. The predicted timings agree closely
with the measured timings. The slight difference be-
tween the timings is most likely due to the inaccuracies
involved in obtaining the fitted curves in Fig. 3, which
are used in the performance model. The timings for the
32 X 31 X 32 case show a result similar to that pre-
dicted by Amdahl!’s law in that the timing curve appears
to approach an asymptote.

Timings for the 64 X 62 X 32 and 96 X 93 X 32
grids suggest an asymptotic behavior similar to that for
the 32 X 31 X 32 case (Fig. 4). Again, predicted versus
measured timings are in close agreement. The experi-
ments for the 64 X 62 X 32 grid could not use fewer
than 8 processors due to memory constraints. Similarly,
experiments for the 96 X 93 X 32 grid case could not
be run with fewer than 16 processors.

The fixed-size speedup determined from these runs
is 4.11 using 16 processors and 32 X 31 X 32 total grid
points (Fig. 5), and 2.19 using 8 processors and 16
X 31 X 32 total grid points. The fixed-size speedup of
4.11 is 25.7% of the possible linear speedup. Under
ideal conditions with no limiting factors, the wall-clock
time would have been 52 s instead of the measured
204 s. Analysis of the 152-s loss shows that 125 s are
due to interprocessor communication, 21 s are due to
duplicate calculations, and 6 s are due to initialization.
This sort of loss for fixed-size problems, where com-
munication is responsible for the biggest loss and du-
plicate computations for the next biggest loss, is typ-
ical.

The effect of communication can be further illus-
trated by comparing calculation time with communi-
cation time as a function of the number of processors
(Fig. 6). It is obvious that the calculation times (solid

TABLE 4. Wall-clock time in seconds for a 2D
decomposition in x and y directions.

Subdomain size per node

(number of points per node) 1 2 4 8 16
32 X 62 X 32 (63 488) 1584
16 X 62 X 32 (31 744) 864

8 X 62 X 32 (15 872) 410 513 563 695 800

4 X 62 X 32 (7936) 210 316 366 428 551

Number of processors

Subdomain size per node

(number of points per node) 1 4 16
16 X 16 X 31 (7936) 178 241 431
8 X 8 X 31 (1984) 44 92 192

2566

2500 LI R B | S S A SO D S S O B
N 1 —O— 32x31x32(M)
_ C A —{— 64x62x32(M)
8 2000 E——] e 96 X93X32(M)
2 Y \ — & -32x31x32(P)
P o — i~ -64x62x32(P)
E 1500 ——\ b — & —96x93x32(P)
x ~ \ \3\ - B
8 0 N]
Q
§ 1000 . & 1
500 : _E
0 : | I U 14 L Ll I | L1 I;J L 1 :
0 4 8 12 16 20

Number of processors

FIG. 4. Measured (M) and predicted (P) wall-clock
time for fixed-size problem.

curves) decrease with increasing numbers of proces-
sors since the number of points per subdomain also
decreases. However, because of the dependence of the
communication time on the number of processors, the
communication time increases. As stated earlier, this is
a characteristic of using Ethernet for the communica-
tion network. Faster communication networks would
permit the use of more processors before this effect
would become significant.

The effect of various decompositions on communi-
cation time can be shown by comparing the wall-clock
times for two decompositions, where the subdomains
are of equal size but different dimension. Consider the
results of a decomposition using a 16 X 31 X 32 point
subdomain, shown in the second row of Table 1, versus
that using a subdomain of 8 X 62 X 32 points, as shown
in the third row of Table 2. The grid size is the same
for corresponding entries in each of the two rows, yet
the wall-clock times for the cases where N, = 62 are
higher than for the cases where N, = 31. This is due to
the greater communication time needed to transfer the
larger shared subdomain boundaries. In the N, = 62
case, the shared data planes are twice as large, resulting
in twice the communications cost.

Greater communication efficiency can be realized
when decomposing along the larger dimension of a
nonsquare grid. This is typically the grid situation for
most NWP grids where the horizontal dimension is
greater than the vertical. A horizontal decomposition is
also most efficient when processes in the model require
vertical integration (e.g., radiation). The x-decompo-
sition results for the fixed-size problem shown above
can be compared with a z decomposition to illustrate
this point. For example, for a 64 X 62 X 32 grid, com-
pare the 8-processor x decomposition (row 3, column
4 in Table 2) with the z decomposition (row 2, column
4 in Table 3). Similarly, for a 64 X 62 X 32 grid,
compare the 16-processor x decomposition (row 4, col-
umn 5 in Table 2) with the z decomposition (row 2,
column 5 in Table 3). As expected, for the same size

MONTHLY WEATHER REVIEW

VOLUME 122

grid, the wall-clock time for the grids decomposed in
the z direction are greater than those decomposed in the
x direction. This is because of the additional commu-
nication time in the former.

Wall-clock times for the two-dimensional decom-
position experiments are smaller than for comparable
one-dimensional decomposition experiments with
equal numbers of processors and grid points (Table 4).
For example, the wall-clock time for the case of 32
X 32 X 31 total grid points over 16 processors (& X 8
X 31 subdomains) is 192 s. This is 6% faster than the
one-dimensional decomposition run. This speedup re-
sults from shorter message lengths that, in turn, result
in less communication time and fewer duplicate com-
putations.

c. Scaled-size experiments

The scaled-speedup experiments used one- and two-
dimensional domain decompositions similar to the
fixed-size experiments. The size of the subdomain on
each processor was held fixed as more processors were
added. Consider a one-dimensional decomposition in
the x direction for the case of an 8 X 62 X 32 gridpoint
subdomain with up to 16 processors, giving a total grid
size of 128 X 62 X 32 points. The results for this case
are shown in Figs. 7 and 8. The predicted values in
these figures were obtained from the analytic perfor-
mance model by using the appropriate values for the
whole domain size (N,, N,, N,) and the number of pro-
cessors P. The speedup is then the ratio of sequential
execution time to parallel execution time as previously
defined. In Fig. 7 the predicted timings agree closely
with the measured timings. As with the fixed-size case,
the discrepancies between timings relate to the inac-
curacies involved in obtaining the fitted curves in Fig.
3. As seen in Fig. 7 and the second row of Table 2, the
wall-clock time increases as the number of processors

R N S | T T 7 T
14 [| —O— Linear /
t —O— 32x31x32 (M) i
12 - —o— 32x31x32 (P-fc)
210 2
3
§ 8 - : //]
i~
Q L _
I //
A - 4
o -
2 H
Otgl;‘\;l l | 1 1 1 1 1
0 2 4 6 8 10 12 14 16

Number of processors

FiG. 5. Measured (M) and predicted (P-fc) speedup for fixed-size
problem. The predicted speedup (P-fc) is for a network 100 times
faster than Ethernet.

NOVEMBER 1994

—O— Tealc_32x31x32(M) - - >~ - Tcom_32x31x32(M)
—{3— Tcalc_64x62x32(M)- - +- - Tcom_64x62x32(M)
—O— Tcalc_96x93x32(M) - - A- - Tcom_96x93x32(M)
600 T T T I T T T T 1 ¥ 1] T ¢ T T]
- ' A]
—~ 500 —— f i]
[$] - C ; 4
3 c \ 3
[400 - _
£ = \\ 3
¥ 300[- .
k<) C]
L C]
S 200f -
= C 3
100~ - =
- - de--"77 !]
0 C)I(1 >F [T EAE SR R N IR B R
0 4 8 12 16 20
Number of processors
FIG. 6. Analysis of calculation versus communication

time for fixed-size problem.

increases. Theoretically, the time to run the ARPS
model should not change with the number of processors
P unless the nonparallelizable part of the code depends
upon P. For this decomposition, the nonparallelized
initialization portion of the ARPS is a function of grid
size and thus a function of the number of processors.
Also, the communication time is a function of the num-
ber of processors (as shown in Fig. 3). Thus, these two
factors contribute to an increase in wall-clock time as
the number of processors increases. This is evident in
both the measured and predicted timings. The scaled-
problem speedup of 8.20 for the case of 128 X 62 X 32
total points on 16 processors is 51.2% of the possible
linear speedup of 16. The 390-s difference between the
ideal wall-clock time and the measured time is attrib-
utable primarily to communication costs. Of the total
wall-clock time of 800 s, interprocessor communica-
tions take 319 s, duplicate calculations take 43 s, and
initialization takes 28 s.

The scaled-sized experiments using two-dimensional
decomposition showed behavior similar to that of the
one-dimensional decompositions. However, for similar
size grids, the wall-clock times for the two-dimensional
decompositions were smaller. For example, the case of
a32 X 31 X 32 grid decomposed in the x direction over
4 processors had a wall-clock time of 282 s (row 3,
column 3 in Table 1) versus 241 s for the two-dimen-
sional decomposition of a 32 X 32 X 31 gridpoint run
on 4 processors (row 1, column 1 in Table 4). This
difference is primarily the result of shorter message
lengths. This leads to less communication time even
though there are more messages in the latter. Also, as
mentioned earlier, duplicate calculations are also a fac-
tor in the decreased time. Shorter messages imply that
the length of the subdomain borders is also shorter,
leading to fewer grid points where duplicate calcula-
tions are required.

JOHNSON ET AL.

2567

= T T T T T T T T T T T T ! T T T =

800 | Mﬁ 3

S 00 E /%O_(E
= 600) 3
gL -
X g E
& 400F E
o ot =
S E
200 —O— Tp 8x62x32 (M)

E —0O— Tp 8x62x32 (P) [

0 E L1 L1 I B T B
0 4 8 12 16 20

Number of processors

FiG. 7. Measured (M) and predicted wall-clock time when using
Ethernet (P) and a *‘fast communication network”” (P-fc) 100 times
faster than Ethernet.

Besides those discussed above, the factor that can
most affect wall-clock time and limit the scalability of
models like the ARPS is the CFL criterion. As de-
scribed earlier, this criterion relates the dependence of
the number of time steps to grid spacing. The fixed-
size and scaled speedup experiments carried out here
all used grids with the same grid spacing. In practice,
it is more likely that one would wish to decrease the
grid spacing to increase the model’s resolution as the
problem size is scaled up. However, changes in grid
spacing can have an important deleterious effect on ex-
ecution times adding considerably to the execution time
of a problem because additional time steps are needed
to reach the same forecast time.

The analytic performance model was used to esti-
mate the wall-clock time of the ARPS for a scaled-up
problem, while the physical domain size was held con-
stant. These estimates are plotted in Fig. 9. The curve
for the measured values, labeled (M), is the same as
that in Fig. 7. Scaling up a problem in the x direction,

16 LN L SN S T ; T TR
14 | | —o— Linear p
L | —O— 8x62x32 (M) _
12 | —o— 8x62x32 (P-fc) /’
2 10 ~
S / 4
°© - /
(] o
g ° 3
) — / // -
° / -~ B]
4 =
2 T
0 | | | 1 | 1 1 1 1

0 2 4 6 8 10 12 14 16
Number of processors

FiG. 8. Measured (M) and predicted (P-fc) speedup for scaled
problem. The predicted speedup (P-fc) is for a ‘‘fast communications
network’” 100 times faster than Ethernet.

2568

12000|rw]|||1l|v||||»||~
T[—o—Tp 8x62x32 (M) /j]
10000 [-{ —3—T1p (P-CFL)
~|——Tp (P-CFL,fc)

8000 [

6000 |-

4000 |-

8 12 16 20
Number of processors

Wallclock time (sec)
T
L1

O 7T
IS

FiG. 9. Measured (M) wall-clock time and predicted wall-clock
time for scaled problem when CFL condition is considered. Projec-
tions using Ethernet (P-CFL) and a ‘‘fast communication network”’
(P-CFL, fc) 100 times faster than Ethernet are shown.

for example, with 16 processors results in a grid with
16 times more points in that direction over the same
physical length. As a result, the grid spacing is one-
sixteenth of what it is for a single processor. Thus, 16
times more iterations of the model are needed to reach
the same forecast time, as illustrated by the curve la-
beled ‘‘P-CFL”’ in Fig. 9.

6. Summary and conclusions

A finite-difference cloud model, the Advanced Re-
gional Prediction System, was implemented on a compute
cluster. Effects of grid decomposition strategies and com-
munication speeds on model speedup were examined.
Speedups were shown to be most affected by communi-
cation speeds. It was shown that the interprocessor com-
munications time can be reduced by choosing appropriate
decompositions and using faster networks. Generally,
communication speeds much greater than that of the Eth-
ernet are required to obtain significant model speedups.

Speedups can be enhanced by choosing appropriate
decompositions. In general, decomposing along the x
and/or y directions as opposed to the z direction is most
effective since the former are usually the longest di-
mensions in NWP problems. Two-dimensional decom-
positions in these directions can be even more effective.

The measured and predicted timings for the paral-
lelized code run on the compute cluster may seem dis-
appointing at first glance. The best speedup achieved
was 9.89 for a scaled problem using 16 processors.
However, the speedup results presented here represent
a worst-case scenario for the measured and predicted
values for several reasons. First, a typical problem
probably would require thousands of time steps as op-
posed to the 100 time steps used here. This would fur-
ther amortize start-up costs due to initialization. Sec-
ond, all measured and predicted timings were based on
Ethernet network speeds. The projections from the an-

MONTHLY WEATHER REVIEW

VOLUME 122

alytic performance model (Figs. 5 and 8) suggest that
speedups could double if gigabit network speeds (i.e.,
speeds 100 times faster than Ethernet) are used. Net-
works with this speed will be available in the near fu-
ture. Third, the Ethernet communication times were
shown to be a function of the number of processors,
and the projections from the analytic performance
model using fast communications assumed this depen-
dence. However, communication times will be virtually
independent of the number of processors with higher-
speed networks. Thus, the projected model perfor-
mance probably is an underestimate.

It was shown that the wall-clock time of scaled prob-
lems also can be greatly affected by the CFL criterion.
This is due to the additional time steps needed to satisfy
the criterion. However, even when the CFL criterion is
considered, significant speedups can be achieved using
faster communication networks.

Current wall-clock times of the ARPS on the com-
pute cluster are a factor of 4 slower than running the
same size problem on a single processor of a Cray Y-
MP. Thus, even using faster networks, at least ancther
factor of 2 in speedup will be needed if clusters of
workstations are to compete with present-day super-
computers. This does not, however, detract from the
effectiveness of using clusters as platforms for devel-
oping and testing MPP codes. Further, a factor not
brought out by timing and speedup figures is that large
memory is easier to provide with a compute cluster than
for a sequential computer. Jobs that are too large to fit
in the memory of a sequential machine or that would
page in and out of memory may be distributed over 2
or more processors and run without paging. This could
lead to significant speedups.

Several issues remain to be addressed for the paral-
lelization of the ARPS model. The parallelized code
must actually be run on a compute cluster with faster
communications when it becomes available to verify
projected model performance. The issue of load bal-
ancing across processors needs to be studied, especially
as it is affected by microphysical calculations. There
also is the issue of whether codes parallelized to run on
a compute cluster can be easily ported to MPPs. These
issues will be the focus of future work.

Acknowledgments. The authors wish to acknowledge
Dennis Duke, Tom Green, Randy Langley of the Su-
percomputer Computations Research Institute and Neil
Lincoln of SSESCO for their helpful suggestions dur-
ing this research, and Karen Johnson for comments on
the manuscript. Portions of this research were con-
ducted with the support of the Supercomputer Com-
putations Research Institute, which is partially funded
by the U.S. Department of Energy through Contract
DE-FC05-85ER250000. G. Riccardi was supported by
the Office of Naval Research Contract NO0014-63-1-
0463. K. Droegemeier and M. Xue were supported by
Grant ATM88-09862 from the National Science Foun-

NoveMBER 1994

dation to the Center for Analysis and Prediction of
Storms, University of Oklahoma.

APPENDIX A
ARPS Model Equations

The ARPS model, as used in the parallelization
experiments, was version 2.0. This model is three-

0
E(p*u)——[o€

JOHNSON ET AL.

0 , A .
(p* MU)+a—n(p*uV)+ C(p*uW)] [f(p*U)+an(p*V)+

2569

dimensional, compressible, and nonhydrostatic. The con-
tinuous form of the model equations are transformed from
Cartesian space (x, y, z) to a curvilinear system (&, 7, {)
to include terrain effects. In ARPS version 2.0, the physical
grid is allowed to change with time; therefore, the coor-
dinate transformation Jacobians are time dependent.

The zonal momentum equation is

C(p*W)]

— vz 0 y gyz d vz a — vz '
_[éE(PJ};c)*'a*g(P J},c;)] “[(PJ§£)+ (P JC{)] [i(l’-’{n)‘F C(P an)]

The meridional momentum equation is

2 (o) = —[%(p*vu)+ —(p*vv)+

a zx d) gz d 1 yx
[é(PJnr,)+ g(P'Jng)]—[a (PJc:)Jr (P J;e)] [BC (PTen) + <;(p an)]

The vertical momentum equation is

0 0
—_ *k - _ * C o * (3
at(pw)— [(pwU)+an(pwV)+

+ p*fu+ G'*D,. (Al)
FyW ¢ *Ue +— £V) + W
C(pv)] [g(p) (p*V©) C(p)]
— p*fu+ G'*D,. (A2)

FyW ¢ *UY + — (p*V°) + *Y
z;(pw)] [g(p)+ (p) C(P)]

23
-2 U~ pUT) ~ T (pUZ) + 0B+ GUD,. (A3)
65 T) 43 ag én ws
where the thermal and water buoyancy B is given by
9’ + 7,
B=gi|1l+= 1—— 1.0 = g/(e + ¢,) L+ —14. (A4)
9 1.0 - qwu/(6 + qv) 1+ v + 2 qliquid+ice

The thermodynamic energy equation is

0 0
5(p*9>=—[5 (PHOUD + 5 (p8V) + 5 c

¢ 2 ¢
+ [ge (PPUO + 5 (VO + o

The pressure equation is

6 Koyt n ’ < a — ! .
29_:(” p')=-— —[p*(p+p)U]+—[p*(p+p)V‘]+(9

23

3

(p*gW*)]

C (p*We)] + G'2Dy + sources/sinks. (A5)

C(ppW)}

* 0 9 9
+ <gp1/2> gw+ (p+p')[—(,o*U‘) +—(p*V)] +p’ ac (p*W*°)

aG 1/2V('

_ 5252 aGIIZU(‘
o€

BGI/ZW(']

eV 0 LdE
78

6 dr Edt)' (A6)

an

2570

The water substance equations are

MONTHLY WEATHER REVIEW

VOLUME 122

0 0 1o} d
— = | = c —_ * 3 . I
at(p*qw) [(p*qU°) + an(p quV) + o (p*quW)]

23

0 , 0 :
+ q{— (p*US) + o5 (p*V) +
U

23

where ¥ = v (vapor), ¢ (cloud), r (rain), i (cloud ice),
h (hail), and s (snow). In the equations above, u, v,
and w are the Cartesian velocity components in the zo-
nal, meridional, and vertical directions, respectively; p
is pressure; @ is potential temperature; g is water sub-
stance; D is subgrid-scale mixing terms; p is density;
and p* = pG'?, where the overbar indicates the 3D
base state and the prime indicates departure from the
base state.

These equations use the contravariant form of the
velocity defined as
Ue - ulyy + vl + wii

Gl/2
o uJge + ol + wli
Ve= G2
. udi, ol + wlg,
we= St e T e, (A8)

where U<, V°, W¢ are the contravariant velocity com-
ponents in the £, 7, and { directions, respectively. The
J’s are the Jacobians of transformation and G ' is the
three-dimensional Jacobian of transformation. It is
terms involving the Jacobians that lead to the need for
redundant calculations on the outer boundaries of the
subdomains.

The discrete version of the model uses quadratically
conservative second-order finite differences in time and
space. The grid system is the Arakawa C grid.

APPENDIX B
Compute Cluster

The workstation cluster consisted of 17 IBM RS6000
workstations connected via Ethernet. The host machine
was a model 530 with 128 MB of memory, while the
node machines were identical model 320Hs, each with
32 MB of memory. The clock speed for the model 530
and the model 320H is 25 MHz. The machines were
placed on a separate strand of the Ethernet to minimize
network traffic not associated with the parallelization
experiments.

APPENDIX C
Performance Models
a. Sequential performance model

The performance model for the sequential code of
the ARPS treats the code as having an initialization

9

ac (p*W‘)] + Gl/z(Dq\I’ + Sq\Il)’ (‘A7)

portion and an iteration portion. The total sequential
execution time 7., can be expressed as

Tseq = T'init + ntera (cjla)

where T, is the execution time for the initialization
portion and T, for the iteration portion of the code.
This may be approximated by

Tseq = (Ninii + Niter')tcalca (C:Ib)

where N, is the number of floating point operations in
the initialization portion of the code, N, is the total
number of floating point operations for the iterative
portion of the code, and ¢, is the typical time to do a
generic calculation such as an add or multiply. For the
ARPS code, N, and Ny, for a run of N, time steps on
an N, X N, X N, grid are

Niie = (71 adds + 97 multiplies + 5 divides

+ 1 exponential)N, N,N, (C2)
and
Nier = (725 adds + 805 multiplies

+ 44 divides)N,.N,N.N,. (C3)

If the add, multiply, divide, and exponential operations
are grouped together, the total number of operations for
a sequential run of the code on a uniprocessor computer
for N, time steps on an N, X N, X N, grid is

Nseq = Ninil + Niter
= 174N,N,N, + 1574N,N,N,N,. (C4)

It then follows that the model for sequential execution
time (C1b) can be rewritten as

Teq = (174N.Ny,N, + 1574AN.N,N.N)t.s.. (C5)

b. Multiprocessor performance model

An analytic performance model for the parallelized
version of ARPS using P processors is derived for a
grid decomposed in the x direction as shown in Fig. 2b.
Thus, there are P subdomains of size N.N,N,/P.

The parallelized code’s total execution time when
run on P processors Tp consists of the computational
time T, and the communication time Tqy,. Assuming
computations and communications cannot be over-
lapped, the expression for total execution time is

TP = Tcalc + Tcomm‘ (C6)

NOVEMBER 1994

The code’s computational time T, has an initiali-
zation component T;; and an iteration component T,
like the sequential code. Also included is a redundant
calculation time Ty,, resulting from the parallelization
of ARPS. Thus, the computational time 7T, can be
expressed as

Thver

calc = Tmlt +— P

+ Taup. (CTa)

As with (C1) this may be approximated by

Ni er
Tculc = (Ninil + Pt + Ndup) calcs (C7b)

where Ny, is the total number of floating point opera-
tions for redundant calculation of Jacobian terms. The
operations counts, N,,; and N, in (C7b), are the same
as for (C1b). For a run of N, time steps on an N, X N,
X N, grid decomposed in the x direction,

Nawp = 2(295 adds + 374 multiplies)N,N.N,. (C8)

If the add, multiply, divide, and exponential operations
are grouped together in (C2), (C3), and (C8), then
the total number of operations for a parallel run of the
ARPS code on P processors for N, time steps on an N,
X N, X N, grid is

N iter

Np = Nipi + P

+ Ngup

N,N,N,

= 174N,N,N, + 1574 == N, + 1338N,N,N,.

(C9)

Note that this is an overestimate since the first and last
subdomains need only one extra data plane. Thus, for
those subdomains, the coefficient in (C8) would be 1
instead of 2. It then follows from (C7b) and (C9) that
the computational time expressed in terms of 7, is

N,N,N,
ka—(l74NNN+1574 P N,

+ 1338NNN> e (C10)

The code’s total communication time 7 o, when run
on P processors consists of an initialization commu-
nication time T}, and an iterative communication time
Ticom- Time Ty, is required to send base-state fields
and initial values to each processor. Time T, 1S re-
quired to send data to the outer borders of adjacent
processors in the iterative part of the code. The ex-

pression for total communication time is thus
Tcomm = Tbase + Tvitcom~ (Cl l)

The communication time required to transfer a
packet of information from one processor to another

JOHNSON ET AL.

2571

depends on the start-up time, the size of the message,
and the transmission rate. The start-up time is assumed
to be independent of message size. With values for
these parameters, communication times may be calcu-
lated in the performance model.

Initial communication in the ARPS model involves
sending appropriate subdomains of the base-state
fields, coordinate arrays, and prognostic fields to the
local memory of each processor. In ARPS version 2.0,
there are 7 base-state fields, 6 coordinate gridpoint
fields, and 11 prognostic fields. Subdomains of the base
fields and two time levels of the coordinate fields and
prognostic fields have to be sent from the host to the
appropriate nodes before time integration can begin.
Thus, Ty, for a decomposition in the x direction, can
be expressed in terms of a start-up time f, and a trans-
mission rate fy,,, as

N,
Tbase = (P - 2)[35t5ld.\1 + 41N N(— + 2>tlrans]

+ 2[35&3“ + 41N, N(N + 1>t‘ra,,5:| . (Cl2a)

Node-to-node communication during the iterative part
of model execution requires only that data on the inner
borders of a subdomain of a given processor be trans-
ferred to adjacent processors per time step. For the de-
composition illustrated here, the amount of data trans-
ferred between processors depends on the grid size of
a vertical plane, N, X N,, and the number of prognostic
fields—in this case 11. Thus, the maximum number of
words to be transferred per border is 11N, N,. The ini-
tialization communication time T, can be written as

T‘itcom = z(tstan + lleNzttrans)Nt- (C12b)

Thus, the total communication time T,qpn,, 18

N,
Lomm - (P - 2)[35tstm + 41NVN1(?A + 2>tlrans:|

N,
2[35[5,3,1 + 41Nsz<—[',— + l)ttrans]

+ 2Ntyan + 22N, N, N t1ys. (C13)
The results above allow the analytic performance
model to be written as
TP = Tcalc + Tcomm

N.N,N,
= [174NN, N+ 1574=""=N,+1338N,N. N] e
N,
+(P—2)[35:stm+41Nsz(7;+2)zm]

N,
+2 [SStsm+4lNyNz<—I;+ 1) tms]

+ 2N tgan + 22N, NN typpes. (C14)

2572

REFERENCES

Amdahl, G. M., 1967: Validity of the single-processor approach to
achieving large-scale computer capabilities. AFIPS Conf. Pro-
ceedings, 30, Reston, VA, 483--485.

Buzbee, B., 1993: Workstation clusters rise and shine. Science, 261,
852-853.

CAPS, 1992: ARPS Version 3.0 User's Guide. Center for Analysis
and Prediction of Storms, University of Oklahoma, 183 pp.
[Available from the Center for the Analysis and Prediction of
Storms, Univ. of Oklahoma, Norman, OK].

Droegemeier, K. K., M. Xue, P. V. Reid, J. Straka, J. Bradley III,
and R. Lindsay, 1991: The Advanced Regional Prediction Sys-
tem (ARPS) version 2.0, Theoretical and numerical formula-
tion. CAPS Report No. CAPS91-001, 55 pp.

K. W. Johnson, K. Mills, and M. O’Keefe, 1992: Ex-

3 >

MONTHLY WEATHER REVIEW

VOLUME 122

periences with the scalable-parailel ARPS cloud/mesoscalz pre-
diction model on massively parallel and workstation cluster ar-
chitectures. Parallel Supercomputing in Atmospheric Science.
Proc. Fifth Workshop on the Use of Parallel Processors in Me-
teorology, G.-R. Hoffman and T. Kauranne, Eds., World Sci-
entific Publishing, 99-129.

Fox, G. C., M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon,
and D. W. Walker, 1988: Solving Problems on Concurrent Pro-
cessors. Vol. 1. General Techniques and Regular Problems.
Prentice Hall, 592 pp.

Kauranne, T., 1990: Asymptotic parallelism of weather models.
The Dawn of Massively Parallel Processing in Meteorology,
G.-R. Hoffman and D. K. Maretis, Eds., Springer-Verlag, 303—
314.

Sunderam, 1990: PVM: A framework for parallel distributed com-
puting. Concurrency: Practice and Experience, 2, 315-339.

