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ABSTRACT: The sensitivity of convective clouds to aerosols and their interactions with environment, combined with lim-
ited observational constraints in parameterizations, introduces significant uncertainties in atmospheric models. This study in-
vestigates the dependence of convective cloud microphysical properties on environmental conditions using a synergistic
approach that combines unique observations from the Tracking Aerosol Convection Interactions Experiment (TRACER)
and Experiment of Sea Breeze Convection, Aerosols, Precipitation, and Environment (ESCAPE) field campaigns, machine
learning techniques, and parcel model simulations with a superdroplet microphysics scheme. A random forest algorithm
identifies in situ vertical velocity w, temperature T, and surface fine-mode aerosol mass concentration as the three most im-
portant environmental conditions influencing cloud properties including liquid water content (LWC), number concentration
for particles with Dmax , 50 mm (Nc,,50), 50 mm # Dmax # 3000 mm (Nc,50–3000), and droplet effective diameter De. The re-
sults show that LWC, Nc,,50, and Nc,50–3000 significantly increase with w in updrafts. Across w bins, as T decreases, LWC,De,
and Nc,50–3000 increase, while Nc,,50 decreases, which are closely linked to the distance above cloud bases. Warmer cloud
bases yield higher LWC, greater Nc,50–3000, and smaller Nc,,50, while polluted environments produce greater Nc,,50. Parcel
model simulations successfully replicate these observed dependencies. The simulation results indicate that warmer cloud
bases enhance condensation generating larger droplets, and differences in droplet sizes are then amplified through collision–
coalescence, resulting in a greater Nc,50–3000. Polluted conditions result in a greater Nc,,50 primarily due to enhanced cloud
condensation nuclei activation despite increased collision–coalescence rates compared to pristine conditions. This study pro-
vides observed quantitative patterns characterizing cloud microphysical properties as a function of key environmental parame-
ters, offering valuable constraints for improving physics parameterizations and numerical models.

SIGNIFICANCE STATEMENT: This study explores how microscale characteristics of convective clouds change under
varying meteorological and aerosol conditions. By analyzing data from two major field campaigns, combined with ad-
vanced machine learning and physics-based models, we obtained the quantitative patterns linking cloud microscale char-
acteristics with key environmental factors. We also revealed the mechanisms by which warmer cloud bases produce larger
droplets, while polluted environments lead to an increase in smaller droplets. These insights provide critical guidance for
improving weather and climate models, helping to reduce forecast uncertainties. This study also highlights the value of in-
tegrating observations, machine learning, and numerical modeling to advance our understanding of cloud physics.

KEYWORDS: Convective clouds; Cloud microphysics; Aircraft observations; Idealized models; Aerosol indirect effect;
Machine learning

1. Introduction

Convective clouds play important roles in Earth’s weather
and climate systems, as they transport aerosols, moisture,

heat, and momentum through the troposphere, significantly
influencing large-scale atmospheric circulations, weather pat-
terns, radiative energy balance, and precipitation processes
(e.g., Battan 1953; Robert 1982; Hartmann et al. 1992; Tung
and Yanai 2002; Tromeur and Rossow 2010; Bony et al. 2015;
Huang et al. 2019; Oertel and Schemm 2021).

The Intergovernmental Panel on Climate Change (IPCC)
Sixth Assessment Report (AR6) highlights the challenge of
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accurately representing convective clouds in global climate
models (GCMs), noting low confidence in models’ ability to cap-
ture convective clouds and their interactions with the surround-
ing environments (Masson-Delmotte et al. 2021). Due to the
constraint of computing resources, current-generation GCMs
are still run at coarse resolutions, in which small-scale cloud pro-
cesses cannot be represented explicitly and shallow and deep
convection are typically handled by subgrid-scale parameteriza-
tions (Masson-Delmotte et al. 2021). However, even current ad-
vanced cloud-resolving models using advanced microphysics
schemes cannot realistically simulate convective clouds and
especially their microphysical properties (e.g., Morrison and
Milbrandt 2011; Fan et al. 2017; Xue et al. 2017; Falk et al.
2019; Huang et al. 2020, 2021; Li et al. 2023). Significant uncer-
tainties and limited observational constraints persist in the pa-
rameterizations of cloud microphysics and their interactions
with surrounding environments, in both numerical weather pre-
diction and Earth system models (Khain et al. 2015; Morrison
et al. 2020). Therefore, better understanding how environmen-
tal conditions, such as dynamic, thermodynamic, and aerosol
conditions, influence cloud microphysical properties, along with
improving the parameterization of these key processes using
observational constraints, is essential for improving the repre-
sentation of convective clouds in multiscale models (Guo et al.
2015; Hagos and Houze 2016; Rio et al. 2019; Masson-Delmotte
et al. 2021).

Previous field experiments, such as the Cloud, Aerosol, and
Monsoon Processes Philippines Experiment (CAMP2Ex) (Reid
et al. 2023); the Remote Sensing of Electrification, Lightning,
and Mesoscale/Microscale Processes with Adaptive Ground
Observations (RELAMPAGO) field campaign (Nesbitt et al.
2021); the Cloud, Aerosol, and Complex Terrain Interactions
(CACTI) field campaign (Varble et al. 2021); the Convective
Transport of Active Species in the Tropics (CONTRAST)
experiment (Pan et al. 2017); the Studies of Emissions, Atmo-
spheric Composition, Clouds and Climate Coupling by Regional
Surveys (SEAC4RS) field mission (Toon et al. 2016); the High
Altitude Ice Crystals–High Ice Water Content (HAIC–HIWC)
international field campaign (Strapp et al. 2016); the Midlatitude
Continental Convective Clouds Experiment (MC3E) (Jensen
et al. 2016); and the Deep Convective Clouds and Chemistry
(DC3) field campaign (Barth et al. 2015), mostly observed con-
vective clouds within mesoscale convective systems, although
CAMP2Ex and CACTI also sampled cumulus congestus clouds.
However, the inherent complexity of these convective systems
has posed challenges in fully understanding the intricate rela-
tionships between convective clouds and their surrounding envi-
ronments. Although the Ice in Clouds Experiment–Tropical
(ICE-T) project (Heymsfield and Willis 2014) sampled isolated
convective clouds, it was conducted primarily over tropical mari-
time regions with a limited range of meteorological and aerosol
conditions, and it focused mainly on upper-level ice formation
processes. In contrast, more recent campaigns such as the Track-
ing Aerosol Convection Interactions Experiment (TRACER)
(Jensen et al. 2023, 2025) and the Experiment of Sea Breeze Con-
vection, Aerosols, Precipitation, and Environment (ESCAPE)
(Kollias et al. 2025), both conducted in the vicinity of Houston,
Texas, in 2022, used ground-based and airborne probes to observe

numerous isolated convective cells under a wide range of meteoro-
logical and aerosol conditions. These efforts have provided unique
datasets and unprecedented opportunities to investigate how envi-
ronmental factors influence convective cloud properties in more
controlled and isolated conditions.

These comprehensive observational datasets from the
TRACER and ESCAPE field campaigns also open new oppor-
tunities for applying data-driven approaches to explore complex
relationships in cloud systems. Although artificial intelligence
(AI) and machine learning (ML) methods are not new and date
back to the last century (Haupt et al. 2022), recent advances in
computational power and data availability have driven an expo-
nential growth in their applications for Earth sciences over the
past few years. These techniques have become essential tools
for both researchers and engineers (McGovern et al. 2024).
Despite the promise of these technologies, significant chal-
lenges remain, particularly regarding their explainability, in
which AI/ML methods often take inputs and produce outputs
without providing users with physically interpretable insights
(McGovern et al. 2019). Additionally, since AI/ML methods
primarily identify statistical relationships in data, physical and
dynamical models are still indispensable for uncovering the
underlying physical mechanisms behind these relationships.

This study leverages the unique observations from the
TRACER and ESCAPE field campaigns, combined with ad-
vanced machine learning and physical models, to explore the
dependence of convective cloud microphysical properties on
surrounding environmental conditions including meteorologi-
cal and aerosol factors. It aims to address three key scientific
questions:

• What are the key environmental parameters influencing
isolated convective cloud microphysical properties?

• How do isolated convective cloud microphysical properties
vary with changes in these key environmental parameters?

• What mechanisms underlie the observed dependence of
isolated convective cloud microphysical properties on envi-
ronmental parameters?

The machine learning method used in this study, a random for-
est algorithm, trained on data from the TRACER and ESCAPE
field campaigns, identifies the key environmental parameters that
influence cloud microphysical properties. To explore the underly-
ing physical mechanisms, we employ a parcel model integrated
with a superdroplet microphysics scheme. This study aims to pro-
vide observed quantitative patterns that characterize convective
cloud microphysical properties as a function of key environmen-
tal parameters, while also offering a deeper understanding of the
physical mechanisms that shape these patterns. It will be valuable
for evaluating numerical models and constraining physics param-
eterization schemes in future studies.

The structure of the paper is as follows: Section 2 provides an
overview of the data and methods used in this study. Section 3
presents a detailed analysis of cloud microphysical properties
and their relationships with environmental parameters, integrat-
ing insights from observations, machine learning models, and
parcel model simulations to explore the underlying physical
mechanisms. Finally, conclusions are summarized in section 4.
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2. Data and methods

a. Data

This study leverages unique observations collected during the
TRACER and ESCAPE field campaigns conducted in the vicin-
ity of Houston, Texas, in 2022, to examine the dependence of
convective cloud microphysical properties on surrounding mete-
orological and aerosol conditions. TRACER was a long-term
campaign that employed a comprehensive suite of ground-based
instruments to continuously monitor convective cells, aerosols,
and meteorological conditions over an extended period (Jensen
et al. 2023). ESCAPE provided unique airborne in situ measure-
ments of convective cloud microphysics from two research air-
craft, supplemented by ground-based observations similar to
those employed in TRACER (Kollias et al. 2025).

1) CLOUD MICROPHYSICAL PROPERTIES

In this study, we utilize in situ observations from cloud micro-
physics probes aboard the National Research Council of Canada
(NRC) Convair-580 and Stratton Park Engineering Company
(SPEC) Learjet aircraft to derive cloud microphysical properties
from convection sampled during the ESCAPE field campaign.
The NRC Convair-580 conducted 13 research flights, and the
SPEC Learjet completed 11 flights (Fig. 1). These flights sam-
pled regions encompassing areas west and east of Houston,
Texas, the Gulf of America, and the coastal area of Louisiana
(Fig. 1). This extensive geographic coverage indicates that the

samples represent a diverse range of environmental conditions.
The cloud probes installed on the aircraft include the scattering
probes, cloud droplet probe, version 2 (CDP-2), and Fast CDP
(FCDP) on the NRC Convair-580 and SPEC Learjet, respec-
tively, and the optical array probe (OAP) 2-dimensional stereo
(2D-S) imaging probe on both aircraft. Details regarding the pa-
rameters of these probes are shown in Table 1. We analyze data
from both channels of the 2D-S probe, i.e., the horizontalH and
vertical V channels, which are perpendicular to each other. The
averaged size distributions and associated derived properties
from these channels are utilized in the analysis. We also ex-
amined data from the scattering probes FCDP on the NRC
Convair-580 and fast forward scattering spectrometer probe
(FFSSP) on the SPEC Learjet but found that the liquid wa-
ter content derived from CDP-2 on the NRC Convair-580
and FCDP on the SPEC Learjet were closer to the bulk meas-
urements from the Nevzorov hotwire cloud water content
probes on both aircraft, with ratios closer to 1 (not shown).
Consequently, data from the CDP-2 on the NRC Convair-580
and FCDP on the SPEC Learjet are used to characterize small
droplets with maximum dimension Dmax , 50 mm. Through
the examination of cloud samples collected during the ESCAPE
field campaign, we found insufficient ice-phase samples for statis-
tical analysis. Therefore, this study focuses exclusively on liquid-
phase clouds, particularly during the initial stage of convection.
We only include samples with number concentrations measured
by the CDP-2 or FCDP instruments that are $10 cm23, as
clouds with such high number concentrations have previously

FIG. 1. Research flight tracks of NRC Convair-580 (C-RF01–C-RF13) and SPEC Learjet
(L-RF01–L-RF11) during the ESCAPE field campaign.

TABLE 1. Cloud microphysics probes and their parameters.

Instrument Manufacturer Platform Range (mm) Resolution (mm) Reference

CDP-2a DMT NRC Convair-580 2–50 2 Lance et al. (2010)
2D-Sb SPEC NRC Convair-580 10–3000 10 Lawson et al. (2006)
FCDPc SPEC SPEC Learjet 2–50 2 Lawson et al. (2017)
2D-S SPEC SPEC Learjet 10–3000 10 Lawson et al. (2006)

aCloud droplet probe, version 2.
bTwo-dimensional stereo imaging probe.
c Fast cloud droplet probe.
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been shown to be water clouds (Lance et al. 2010; Hu et al. 2021,
2022). We also manually examined the cloud particle imager
(CPI) images for the selected cloud samples at temperatures ,
08C and found an almost complete absence of ice crystal images.
Therefore, the influence of ice crystals on the analyses presented
in this study can be considered negligible. Finally, a total of
16853 cloud samples meet the criteria for this study. The particle
size distributions derived from the CDP-2 or FCDP for particles
with Dmax , 50 mm and from the 2D-S for particles with
50 mm# Dmax # 3000 mm are used to estimate the number con-
centration for Dmax , 50 mm (Nc,,50) and the number concen-
tration for 50 mm # Dmax # 3000 mm (Nc,50–3000), respectively.
The 2D-S data on the NRC Convair-580 and SPEC Learjet
were processed as discussed by McFarquhar et al. (2023) and
Lawson et al. (2022a), respectively, using different processing
software. Statistical comparisons indicate substantial differences
in the derived particle size distributions for small size bins be-
tween the NRC Convair-580 and SPEC Learjet 2D-S data, while
size distributions for bins greater than 50 mm remain generally
consistent (not shown). Therefore, only the derived particle size
distributions for particles with 50 mm # Dmax # 3000 mm from
2D-S probes are used in this study. The liquid water content
(LWC) forDmax# 3000 mm is defined assuming spherical particles
by summing the third moment of the size distribution for Dmax #

3000 mm (Table 2). The effective diameterDe forDmax# 3000 mm
is defined as the ratio of the third moment to the second mo-
ment of the particle size distribution (Lacis and Hansen 1974;
McFarquhar and Heymsfield 1998; Huang et al. 2021).

2) METEOROLOGICAL ENVIRONMENTAL PARAMETERS

The meteorological environmental conditions surrounding
convective clouds, including dynamic and thermodynamic pa-
rameters, are described in Table 2. Different instruments and
reanalysis products were used to derive these parameters.
The air temperature T at the sample location was measured
using the Rosemount model 102 probe, with an uncertainty of
618C on the NRC Convair-580 and 60.58C on the SPEC
Learjet (Lawson and Cooper 1990) during the ESCAPE field
campaign. Vertical wind speed w was measured using Aven-
tech Aircraft Integrated Meteorological Measurement Sys-
tems (AIMMS)-20 Airdata probe, with an uncertainty of
60.35 m s21 on the NRC Convair-580 and 60.5 m s21 on the
SPEC Learjet (Beswick et al. 2008) during the ESCAPE field
campaign. An additional 54 dynamic and thermodynamic
parameters, including various types of convective available
potential energy (CAPE), convective inhibition (CIN), tem-
perature lapse rates, wind shear, and others, were derived
from atmospheric profile data using the thundeR package
(Taszarek et al. 2023). These selected dynamic and thermody-
namic parameters are well-known primary factors influencing the
initiation, development, and decay of convection (Emanuel 1994;
Stevens 2005; Giaiotti et al. 2007; Smith 2013). Since the
TRACER field campaign provided longer-term continuous
sounding observations compared to the ESCAPE campaign, the
sounding data from TRACER are used in this study. However,
due to the coarse spatiotemporal resolution of the soundings ob-
tained during the TRACER intensive observation period (IOP)

(1 June–30 September 2022), typically four times per day, hourly
profile data from the fifth generation European Centre for Me-
dium-RangeWeather Forecasts (ECMWF) atmospheric reanaly-
sis (ERA5), with a grid spacing of 0.258 (Hersbach et al. 2020),
are used to estimate all meteorological environmental parame-
ters in Table 2 except T and w. Taszarek et al. (2021) evaluated
convective parameters including those listed in Table 2, derived
from reanalysis datasets against rawinsonde data over Europe
and North America, highlighting ERA5 as one of the most reli-
able reanalyses for investigating convective environments.

To assess the quality of ERA5 data specifically for the
Houston region, the ERA5 profile data (air temperature,
relative humidity, and winds) were compared against the in-
dependent observations from a total of 798 balloon-borne
soundings at the ARM Mobile Facility 1 (AMF1) main site
(29.6708N, 95.0598W) and the ancillary upwind site (29.3288N,
95.7418W) in Houston, Texas, during the TRACER IOP. The
comparison presented in Fig. 2 shows that air temperature,
relative humidity, eastward wind u, and northward wind y are
generally consistent between the ERA5 and radiosonde pro-
files. The mean biases are about 20.108C, 1.57%, 0.01 m s21,
and 0.02 m s21 in the respective fields, which are within the
uncertainty range of the meteorological sensors used in radio-
sondes (Holdridge 2020). There is a negative temperature
bias of up to 20.458C within the boundary layer (Fig. 2a),
which can influence atmospheric stability. Although our eval-
uation primarily focuses on vertical profiles of fundamental
thermodynamic and kinematic variables, including air tem-
perature, relative humidity, and wind components (u, y), from
which the 54 meteorological parameters in this study are de-
rived, we also compared key derived stability parameters such
as CAPE and CIN from ERA5 against balloon-borne sound-
ings collected during the TRACER IOP (not shown). The re-
sulting biases align closely with those reported by Taszarek
et al. (2021), who conducted a comprehensive evaluation of
ERA5-derived sounding parameters, including those listed in
Table 2, against radiosonde observations over North America.
These findings support the reliability of ERA5 for investigat-
ing convective environments. There is a larger discrepancy in
mean bias in relative humidity for pressures less than 300 hPa
(nearly 10% at 200 hPa, Fig. 2b). However, the parameters de-
rived from the profile data in Table 2 are predominantly influ-
enced by variable values in the planetary boundary layer and
free troposphere, and values in the upper troposphere (at pres-
sures below 300 hPa) exert only a limited influence. Therefore,
the ERA5 reanalysis dataset is sufficiently accurate for defining
meteorological parameters.

The mean values (Mean), standard deviations (Std devs),
and coefficients of variation (CV 5 Std dev/Mean, represent-
ing relative dispersion) for environmental parameters are also
provided in Table 2. Considerable variability exists among
these parameters. For instance, vertical velocity (w, CV 5

3.92) and CIN (ML_CIN, CV 5 21.02) exhibit notably high
relative dispersion, whereas thermodynamic parameters such
as lifting condensation level temperature (TLCL, CV 5 0.12),
relative humidity at 0–2 km (RH_02km, CV 5 0.10), and pre-
cipitable water (PRCP_WATER, CV 5 0.12) show relatively
lower variability. These statistical measures effectively summarize
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TABLE 2. Cloud microphysical properties and environmental parameters, along with their respective Mean, Std dev, and CV. The
variables indicated by asterisks are the final set of input variables used in the random forest models after removing multicollinear
predictors.

Variable Description Units Mean Std dev CV

Nc,,50 Cloud droplet number concentration for Dmax , 50 mm cm23 232.50 289.26 1.24
Nc,50–3000 Cloud droplet number concentration for 50 mm # Dmax # 3000 mm cm23 1.02 3.69 3.63
LWC Cloud LWC for Dmax # 3000 mm g m23 0.65 1.05 1.62
De Cloud droplet effective diameter for Dmax # 3000 mm mm 43.19 102.90 2.38
w* Vertical wind speed at sample locations m s21 0.78 3.04 3.92
T* Air temperature at sample locations 8C 10.17 9.06 0.89
Maer* Surface mass concentration of fine-mode aerosols (sulfate, organic carbon,

and black carbon)
mg m23 3.49 2.22 0.64

TLCL Air parcel temperature at the LCL, derived from the parcel at 1000 hPa 8C 19.77 2.29 0.12
TCCL* Air parcel temperature at the CCL, derived from the parcel at 1000 hPa 8C 18.81 2.31 0.12
MU_CAPE CAPE, derived from the most unstable parcel J kg21 2310.11 900.39 0.39
MU_CAPE_3km* CAPE between surface and 3 km AGL, derived from the most-unstable parcel J kg21 76.33 57.24 0.75
MUCIN CIN, derived from the most-unstable parcel J kg21 218.38 23.20 21.26
MU_WMAX Estimated updraft speed (a square root of two times CAPE), derived from

the most-unstable parcel
m s21 66.73 12.95 0.19

MU_MIXR Mixing ratio at the height of the most-unstable parcel g kg21 16.59 1.63 0.10
MU_cold_cloud Depth of the most-unstable CAPE above freezing level m 7481.33 915.78 0.12
MU_warm_cloud Depth of the most-unstable CAPE below freezing level m 5003.79 634.43 0.13
MU_ECAPE* Entraining CAPE (ECAPE), derived from the most-unstable parcel J kg21 622.16 463.76 0.75
MU_ECAPE_3km* ECAPE between surface and 3 km AGL, derived from the most-unstable

parcel
J kg21 18.47 20.01 1.08

MU_EWMAX Estimated updraft speed (a square root of two times ECAPE), derived from
the most-unstable parcel

m s21 32.50 13.71 0.42

MUML_CAPE CAPE, derived from the most unstable 500-m mean layer parcel J kg21 1949.37 777.14 0.40
MUML_CAPE_3km CAPE between surface and 3 km AGL, derived from the most-unstable

500-m mean layer parcel
J kg21 54.14 45.67 0.84

MUML_CIN CIN, derived from the most-unstable 500-m mean layer parcel J kg21 227.16 29.52 21.09
MUML_WMAX Estimated updraft speed (a square root of two times CAPE), derived from

the most-unstable 500-m mean layer parcel
m s21 61.21 12.34 0.20

MUML_MIXR Mixing ratio at the height of the most-unstable 500-m mean layer parcel g kg21 16.09 1.45 0.09
MUML_cold_cloud* Depth of the most-unstable 500-m mean layer CAPE above freezing level m 7192.56 968.40 0.13
MUML_warm_cloud* Depth of the most-unstable 500-m mean layer CAPE below freezing level m 4752.94 648.77 0.14
MUML_ECAPE ECAPE, derived from the most-unstable 500-m mean layer parcel J kg21 551.17 411.39 0.75
MUML_ECAPE_3km ECAPE between surface and 3 km AGL, derived from the most-unstable

500-m mean layer parcel
J kg21 13.48 15.65 1.16

MUML_EWMAX Estimated updraft speed (a square root of two times ECAPE), derived from
the most-unstable 500-m mean layer parcel

m s21 30.56 12.97 0.42

SB_CAPE CAPE, derived from the surface-based parcel J kg21 2288.09 871.77 0.38
SB_CAPE_3km CAPE between surface and 3 km AGL, derived from the surface-based parcel J kg21 74.81 56.00 0.75
SB_CIN CIN, derived from the surface-based parcel J kg21 219.27 23.10 21.20
SB_WMAX Estimated updraft speed (a square root of two times CAPE), derived from

the surface-based parcel
m s21 66.44 12.70 0.19

SB_MIXR Mixing ratio at the height of the surface-based parcel g kg21 16.61 1.66 0.10
SB_cold_cloud Depth of the surface-based CAPE above freezing level m 7477.12 916.42 0.12
SB_warm_cloud Depth of the surface-based CAPE below freezing level m 4999.16 640.87 0.13
SB_ECAPE Entraining convective available potential energy, derived from the surface-

based parcel
J kg21 583.84 419.25 0.72

SB_ECAPE_3km ECAPE between surface and 3 km AGL, derived from the surface-based
parcel

J kg21 16.86 18.22 1.08

SB_EWMAX Estimated updraft speed (a square root of two times ECAPE), derived from
the surface-based parcel

m s21 31.69 12.79 0.40

ML_CAPE CAPE, derived from the mixed-layer parcel (defined by averaging potential
temperature and water vapor mixing ratio over the 0–500 m AGL layer,
and initialized from the surface)

J kg21 1912.78 729.20 0.38

ML_CAPE_3km CAPE between surface and 3 km AGL, derived from the mixed-layer parcel J kg21 51.86 44.00 0.85
ML_CIN* CIN, derived from the mixed-layer parcel J kg21 229.29 29.74 21.02
ML_WMAX Estimated updraft speed (a square root of two times CAPE), derived from

the mixed-layer parcel
m s21 60.70 11.88 0.20
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the range of environmental conditions associated with the cloud
samples analyzed in this study.

3) AEROSOL ENVIRONMENTAL PARAMETER

Due to its superior temporal and spatial continuity relative
to available observational aerosol datasets, the hourly aero-
sol reanalysis from the Modern-Era Retrospective Analysis
for Research and Applications, version 2 (MERRA-2)
(Gelaro et al. 2017), at a grid spacing of 0.58 3 0.6258, is used
to characterize the aerosol environment surrounding convec-
tive clouds. To evaluate the reliability of MERRA-2 aerosol
products, we compared them with available observational
datasets.

For evaluating temporal consistency, aerosol number con-
centrations measured by the ultrahigh sensitivity aerosol spec-
trometer (UHSAS; 100–1000 nm) during the TRACER IOP
were compared with surface aerosol mass concentrations from
the MERRA-2 3-hourly aerosol product, which provides mass
concentrations in multiple size bins. A 4-month time series com-
parison (June–September 2022) reveals reasonable consistency
between the two variables, with a correlation coefficient of 0.75
(not shown), suggesting that the surface mass concentration
from MERRA-2 can serve as a useful proxy for fine-mode
aerosol number concentration.

To further evaluate the spatial representativeness of the
MERRA-2 aerosol data, the accuracy of the MERRA-2
aerosol optical depth (AOD) at 550 nm was evaluated using
AOD data from both five Aerosol Robotic Network
(AERONET) program stations in the Houston region (repre-
sented by green dots in Fig. 3a) and National Oceanic and
Atmospheric Administration (NOAA) Geostationary Opera-
tional Environmental Satellite 17 (GOES-17) during the
TRACER IOP (Fig. 3a). The AERONET AOD data have an
estimated uncertainty of;0.02, determined as one standard de-
viation of the difference between the prefield calibration AOD

and the interpolated calibration AOD (Giles et al. 2019). The
GOES-17 AOD product includes four quality levels: no re-
trieval, low-, medium-, and high-quality retrievals. High-quality
AOD retrievals are recommended for quantitative applications
due to their overall superior performance, although they have a
higher uncertainty than the AERONETAOD, typically around
0.1 (https://www.star.nesdis.noaa.gov/atmospheric-composition-
training/documents/G17_ABI_AOD_ReadMe.pdf). Therefore,
only the high-quality AOD retrieval data from GOES-17 are
utilized and then regridded to match the MERRA-2 grid (rep-
resented by blue dots in Fig. 3a) for evaluation. Due to the
sensitivity of satellite-based measurements to surface reflec-
tance, high-quality GOES-17 AOD retrievals are unavailable
near the land–sea interface. Consequently, no comparison grid
cells with MERRA-2 are shown in these areas (Fig. 3a). The
root-mean-square error (RMSE) between MERRA-2 and
AERONET AOD is 0.060 with a mean difference of 0.03 and
a standard deviation of 0.05 (Fig. 3b). For the comparison be-
tween MERRA-2 and GOES-17 AOD, the RMSE is 0.066
with a mean difference of 0.02 and a standard deviation
of 0.06 (Fig. 3c). These differences exceed the uncertainty of
AERONET AOD (;0.02) but remain below that of GOES-17
AOD retrievals (;0.1). Despite some biases, the MERRA-2
AOD is generally consistent with both AERONET observa-
tions and GOES-17 retrievals, aligning closely with the 1:1 lines
(Figs. 3b,c), which effectively captures the spatial distribution of
aerosols and represents a range of aerosol environments from
clean to polluted conditions. In addition, aerosol number concen-
trations (100–1000 nm) measured by the UHSAS instrument
aboard the NRC Convair-580 aircraft during the ESCAPE field
campaign exhibit statistically significant positive correlations with
collocated total aerosol mass concentrations from MERRA-2,
integrated over a comparable size range (not shown). Their cor-
relation coefficients are 0.77 (p , 0.001) for 2-min averaged
UHSAS data and 0.58 (p , 0.01) for 10-min averages.

TABLE 2. (Continued)

Variable Description Units Mean Std dev CV

ML_MIXR Mixing ratio at the height of the mixed-layer parcel g kg21 16.10 1.43 0.09
ML_cold_cloud Depth of the mixed-layer CAPE above freezing level m 7180.99 963.56 0.13
ML_warm_cloud Depth of the mixed-layer CAPE below freezing level m 4732.72 642.55 0.14
ML_ECAPE ECAPE, derived from the mixed-layer parcel J kg21 513.37 368.28 0.72
ML_ECAPE_3km ECAPE between surface and 3 km AGL, derived from the mixed-layer parcel J kg21 12.00 14.05 1.17
ML_EWMAX Estimated updraft speed (a square root of two times ECAPE), derived from

the mixed-layer parcel
m s21 29.69 12.04 0.41

LR_01km* Temperature lapse rate between surface and 1 km AGL K km21 28.49 1.60 20.19
LR_03km Temperature lapse rate between surface and 3 km AGL K km21 26.52 0.90 20.14
LR_06km Temperature lapse rate between surface and 6 km AGL K km21 26.24 0.37 20.06
RH_01km Mean relative humidity between surface and 1 km AGL layer % 0.72 0.09 0.13
RH_02km Mean relative humidity between surface and 2 km AGL layer % 0.71 0.07 0.10
RH_14km Mean relative humidity between 1 and 4 km AGL layer % 0.62 0.13 0.20
RH_25km Mean relative humidity between 2 and 5 km AGL layer % 0.56 0.14 0.26
RH_36km Mean relative humidity between 3 and 6 km AGL layer % 0.51 0.15 0.30
BS_01km* Bulk wind shear between surface and 1 km AGL m s21 2.92 1.69 0.58
BS_03km Bulk wind shear between surface and 3 km AGL m s21 6.61 3.75 0.57
BS_06km* Bulk wind shear between surface and 6 km AGL m s21 7.38 3.62 0.49
PRCP_WATER* Precipitable water (entire column) mm 45.19 5.54 0.12
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Based on the comparisons with available observational
datasets, the MERRA-2 aerosol products adequately represent
both the spatial distribution and temporal evolution of aerosols
in the study region. AOD is commonly used as a proxy for
the concentration of cloud condensation nuclei (CCN)

(Andreae 2009; Koren et al. 2010), but its reliability remains a
topic of ongoing debate (Stier 2016; Veals et al. 2022; Varble
et al. 2023). Following previous studies (e.g., Hasekamp et al.
2019; Pan et al. 2021; Block et al. 2024), we derive the surface
mass concentrationMaer of fine-mode aerosols from MERRA-2

FIG. 2. Differences in (a) air temperature (8C), (b) relative humidity (%), (c) eastward wind (u; m s21), and
(d) northward wind (y ; m s21) between the ERA5 and balloon-borne soundings during the TRACER IOP. Blue
circles indicate the mean bias at each level, and red bars represent the 61 standard deviation.
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as an alternative CCN proxy. Specifically, we include sulfate, or-
ganic carbon, and black carbon components, while excluding
dust aerosol due to its generally hydrophobic nature and limited
effectiveness as CCN. Given the uncertainties in the MERRA-2
aerosol products, we intentionally avoid establishing quantita-
tive relationships betweenMaer and cloud microphysical proper-
ties. Instead, we categorize cloud samples into pristine and
polluted regimes based on Maer, thereby enhancing the robust-
ness of our analysis and conclusions.

b. Methods

1) RANDOM FOREST

A random forest is an ensemble learning algorithm that
builds multiple decision trees during training (Ho 1995;
Breiman 2001). Each decision tree is trained on a random
subset of both the training data and the predictors (or input
variables), introducing randomness that reduces overfitting
and enhances generalization. The random forest makes

FIG. 3. Comparison of AOD at 550 nm betweenMERRA-2, AERONET, andGOES-17 datasets during the TRACER IOP. (a) Locations
of AERONET stations (green dots) and grid cells for the comparison between GOES-17 and MERRA-2 (blue dots). Scatterplot of
(b) AERONET AOD (x axis) vs MERRA-2 AOD (y axis) and (c) GOES-17 AOD (x axis) vs MERRA-2 AOD (y axis) with density
coloring. In (b) and (c), the color intensity of the scatter points indicates the data point density as estimated by a Gaussian kernel density
estimate. The red line represents the 1:1 line. Key statistical metrics including RMSE, correlation coefficient, and total number of samples
are annotated on each plot. The inset plot shows the distribution of difference [MERRA-2 minus AERONET in (a) and MERRA-2 minus
GOES-17 in (b)] with a violin plot and box plot. The box plot indicates the 5th, 25th, 50th (median), 75th, and 95th percentiles. The mean
difference (red dot and annotation) and standard deviation (blue annotation) are also highlighted.
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predictions by aggregating the outputs of all individual deci-
sion trees, typically using majority voting for classification
problems or averaging for regression tasks (Biau and Scornet
2016; Rigatti 2017). The random forest algorithm is particularly
effective in handling noisy data, outliers, and large datasets and
excels when the data contain complex interactions or nonlinear
relationships (Biau and Scornet 2016; Genuer et al. 2017). A
key feature of the random forest is its ability to provide pre-
dictor importance metrics, which are especially useful for
identifying the environmental parameters that most strongly
influence cloud properties in this study. The random forest
has seen extensive application across atmospheric sciences, such
as in atmospheric chemical composition forecasts (Brokamp
et al. 2018; Grange et al. 2018), aviation turbulence diagnosis
(Williams 2014), urban surface roughness prediction (Duan and
Takemi 2021), ocean heat content anomaly mapping (Lyman
and Johnson 2023), and weather forecasting (Gagne et al.
2017; Herman and Schumacher 2018; Burke et al. 2020; Hill
et al. 2020; Loken et al. 2020; Mecikalski et al. 2021; Radford
and Lackmann 2023).

In this study, we employ the random forest algorithm im-
plemented in the open-source Python library, scikit-learn
(Pedregosa et al. 2011), available online (https://scikit-learn.
org). A random forest regression model is configured with
200 trees (n_estimators 5 200) and a fixed random seed
(random_state 5 42), while all other parameters are kept at
their default values. Obviously, covariability exists among the
meteorological and aerosol environmental parameters listed in
Table 2. To mitigate this redundancy, we applied hierarchical
clustering based on Spearman rank-order correlation coeffi-
cients among the input variables. A correlation threshold of
0.6 was used to define clusters (other thresholds were tested
and yielded consistent results). From each cluster, the variable
with the highest variance (representing the greatest informa-
tional content) was retained. This reduced set of input varia-
bles, indicated by asterisks in Table 2, was then used to train
random forest models to predict four cloud microphysical
properties (i.e., LWC,De, Nc,,50, and Nc,50–3000).

2) PARCEL MODEL

The machine learning model primarily identifies statistical re-
lationships between cloud microphysical properties and their
corresponding environmental conditions. However, to uncover
the physical mechanisms behind these relationships, physics-
based models are necessary. In this study, the open-source
Python package PySDM (Bartman et al. 2022), available on-
line (https://github.com/open-atmos/PySDM), is used to set up
an idealized parcel model to investigate the physical mecha-
nisms driving the observed dependencies of cloud microphysical
properties on environmental conditions. PySDM is designed to
simulate the dynamics of particle populations, such as aerosol,
cloud, and rain particles, immersed in moist air. It employs the
Lagrangian particle–based approach known as the superdroplet
method (SDM) to simulate the evolution of the particle size
spectrum, focusing on processes such as condensational and col-
lisional growth, fluid flow interaction, and chemical composition
changes. The SDM Monte Carlo algorithm, introduced by

Shima et al. (2009), is implemented to efficiently simulate colli-
sional growth within the Lagrangian framework (Bartman et al.
2022). This Lagrangian particle-based method is advocated as a
solution to the conceptual and practical challenges associated
with traditional bulk and bin microphysics parameterization
schemes (Morrison et al. 2020).

3. Results and discussion

a. Key environmental parameters

All environmental parameters indicated by asterisks in
Table 2 are used as predictors to train random forest models
to examine their relative importance in predicting cloud mi-
crophysical properties (i.e., LWC, De, Nc,,50, and Nc,50–3000)
(Fig. 4). The dataset is randomly split, with 80% used for
training and 20% reserved for testing. The importance here
is based on the mean decrease in impurity, computed as the
average reduction in node impurity (variance) attributed to
each feature across all trees and then normalized so that the
importance sum to one. In addition, permutation importance
is also used to further evaluate key predictors, and the identified
key environmental parameters remain consistent despite minor
differences in the order of variable importance (not shown).
Additionally, 100 iterations of Monte Carlo cross validation
are performed to ensure the robustness of the results. The
mean correlation coefficients (6standard deviation) from
100 forecasts are 0.72 (60.05) for LWC, 0.76 (60.03) for De,
0.74 (60.02) for Nc,,50, and 0.71 (60.04) for Nc,50–3000. The
corresponding mean biases (6standard deviation) across
the same 100 forecasts are 0.016 (60.014) g m23 for LWC,
0.24 (61.12) mm for De, 5.23 (63.34) cm23 for Nc,,50, and
0.048 (60.047) cm23 for Nc,50–3000, respectively. These biases
are relatively small compared to the mean values presented in
Table 2, indicating that the models adequately fit the data and
supporting the reliability of the subsequent variable impor-
tance analysis.

It should be noted that the primary goal of using Monte
Carlo cross validation is to evaluate the variability in variable
importance rankings and to ensure that the key parameters
influencing cloud microphysical properties are consistently
identified. While potential spatiotemporal correlations exist in
the dataset, these are likely reduced due to the ESCAPE cam-
paign’s focus on isolated convective cells. To further mitigate
such correlations, we also conducted 10-fold cross validation
using a time-ordered dataset. Although this approach resulted in
decreased forecast skill, the set of important variables remained
consistent with those identified throughMonte Carlo cross valida-
tion (not shown), reinforcing the robustness of the key environ-
mental predictors. The decrease in forecast skill when training on
one dataset and testing on a relatively independent one is ex-
pected. Forecast models generally perform best when trained on
datasets that span a broad range of environmental conditions, par-
ticularly when the target variables exhibit strong nonlinear depen-
dencies on the inputs. When the training data do not adequately
represent the conditions present in the test set, achieving high
forecast skill becomes inherently challenging.
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For predicting all cloud properties, the most important envi-
ronmental parameters are consistently found to be vertical ve-
locity w, air temperature T, and Maer, with importance scores
significantly higher than those of other environmental parame-
ters (Fig. 4). It is worth noting that an additional random forest
model was trained to simultaneously predict four cloud proper-
ties rather than each property individually. The combined model
allows us to assess whether certain environmental parameters,
such as w, T, andMaer, are universally important across all cloud
properties or only in specific cases. The results indicate that the
three most important environmental parameters remained con-
sistent with those identified when predicting cloud properties in-
dividually (not shown), suggesting that these parameters are
robust predictors that influence multiple cloud properties consis-
tently rather than just isolated cases. The importance of these
parameters highlights the critical role of dynamic and thermody-
namic conditions, as well as aerosol–cloud interactions, in cloud
development. The result is robust, as evidenced by the error
bars, which represent the standard deviation in variable impor-
tance across 100 Monte Carlo cross-validation runs. In predict-
ing LWC, w plays a particularly influential role (Fig. 4a),
underscoring the importance of dynamic conditions in modulat-
ing cloud water content. For predicting De, Maer and T become
more prominent (Fig. 4b), indicating the strong influence of
aerosol and thermodynamic conditions on droplet growth.
When predicting number concentrations (Nc,,50 and Nc,50–3000),
the relative importance of the parameters is largely consistent,
with w, T, and Maer being the most influential. This highlights
their combined impact, especially the dominant role of the dy-
namic condition w, in modulating cloud droplet concentrations.

Thus, the first scientific question is answered by identifying
the three key environmental parameters influencing cloud

properties: w, T, and Maer. Since w and T are in situ measure-
ments at the exact location the cloud microphysical properties
are derived, they are expected to exhibit stronger correlations
with in situ cloud properties. Aerosols Maer, which serve as
CCN, are critical for cloud particle formation. These three pa-
rameters directly govern the formation and growth of cloud
particles and are therefore expected to be more strongly corre-
lated with cloud microphysical properties. However, the ERA5-
derived parameters primarily characterize the broader-scale
thermodynamic and kinematic environment that influences con-
vective evolution and intensity at a larger scale. As such, their
influence on microphysical properties is more indirect, which
may explain why they are generally less important for predicting
microphysical properties compared to the more direct controls
provided by w, T, andMaer.

b. Cloud properties as a function of
environmental parameters

This section addresses the second scientific question, namely,
how cloud microphysical properties vary with changes in the key
environmental parameters identified by the random forest mod-
els (i.e., w, T, andMaer). Specifically, we examine the variation in
cloud microphysical properties within the w–T parameter space.
Given the greater uncertainty associated with Maer data com-
pared to the directly measured variables w and T, we primarily
use it to separate the aerosol environment into polluted and pris-
tine conditions in this study.

Figure 5 shows how cloud properties vary with changes in
both w and T, where the mean cloud properties are illustrated
for a two-dimensional grid of varying w and T bins. We focus
on the mean values of cloud properties within the w–T param-
eter space for bins containing a sample percentage greater

FIG. 4. Importance of top-10 environmental parameters in predicting (a) LWC, (b) De, (c) cloud droplet number
concentration for Dmax , 50 mm (Nc,,50), and (d) cloud droplet number concentration for 50 mm# Dmax # 3000 mm
(Nc,50–3000) using a random forest model. The horizontal bars represent the mean relative importance of various envi-
ronmental variables for each cloud property, with error bars showing the standard deviation of the importance scores
over 100 iterations of Monte Carlo cross validation.
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than 0.06% (corresponding to at least 10 samples) (Fig. 5).
The majority of samples are concentrated within the range of
w between 21 and 1 m s21 and T around 168 and 218C. The
number of samples decreases with decreasing temperature at
T , 08C, as ice-phase samples are excluded in this study and
liquid-phase samples diminish further with lower tempera-
tures below 08C. The cloud properties exhibit a consistent and
statistically significant variation with decreasing temperature.
Specifically, LWC,De, and Nc,50–3000 increase, while Nc,,50 de-
creases, as T decreases, across different w bins. For LWC, val-
ues can be more than twice as high in low |w| bins at T , 08C
compared to those at T$ 08C (Fig. 5a). Similarly,De is typically

about twice as high and can exceed four times as high in some
|w| bins at T , 08C compared to those at T $ 08C (Fig. 5b). In
contrast, Nc,,50 is approximately twice as high, while Nc,50–3000

is about half as high, at T $ 08C compared to those around 08C
(Figs. 5c,d). This suggests that larger cloud particles are found
at lower temperatures, while smaller particles are more com-
mon at higher temperatures, likely reflecting different growth
times of cloud particles as expected from parcel theory. To test
this hypothesis, we use TLCL as an estimate for the cloud-base
temperature and calculate the temperature difference between
sample locations and the cloud base as T 2 TLCL. New random
forest models are then trained, incorporating this additional

FIG. 5. Variation in cloud properties (a) LWC, (b) De, (c) Nc,,50, and (d) Nc,50–3000 in the w–T parameter space for
16 853 samples whereNc,,50 $ 10 cm23. The bin sizes for computing the variations for w and T are 2 m s21 and 2.58C,
respectively. Colored shading areas represent the mean value of each cloud property within each bin. Contours indi-
cate the sample percentage distribution at levels of 0.06%, 0.4%, 0.8%, 1.2%, 1.6%, and 2%. The triangles along the
x axis represent the sign of regression coefficients (slopes) between cloud properties and T in each w bin: upward-
pointing triangles (�) indicate the positive slopes (cloud properties increase as T increases) and downward-pointing
triangles (�) indicate the negative slopes (cloud properties decrease as T increases). The triangles along the left y axis
represent the sign of regression coefficients between cloud properties and negative w in each T bin, and the triangles
along the right y axis correspond to the regression coefficients between cloud properties and positive w: rightward-
pointing triangles (") indicate the negative slopes (cloud properties decrease as w increases) and leftward-pointing
triangles (3) indicate the positive slopes (cloud properties increase as w increases). Shading of every triangle indicates
the magnitude of the slope (darker 5 larger |slope|). Only regression coefficients with sample sizes greater than 30
and a statistical significance level of 0.05 are shown. The horizontal blue dashed line indicates 08C, and the vertical
blue dashed lines denote21 and 1 m s21 in each panel.
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environmental parameter T 2 TLCL. The updated relative im-
portance scores for the environmental parameters are shown in
Fig. 6. Notably, T 2 TLCL emerges as one of the three most im-
portant environmental factors influencing the four cloud micro-
physical properties, exceeding the importance of T in predicting
each property (Fig. 6). This confirms that the observed varia-
tions in cloud microphysical properties with temperature, as
shown in Fig. 5, are more closely linked to the distance above
the cloud base, reflecting the growth time of cloud particles. For
cloud properties as a function of vertical velocity w, LWC,
Nc,,50, and Nc,50–3000 significantly increase with increasing w in
updraft regions (Figs. 5a,c,d). This pattern corresponds to in-
creased cloud particle formation in updraft regions. The varia-
tion in De with changing w (Fig. 5b) is relatively weaker
compared to other cloud properties (Figs. 5a,c,d). This is consis-
tent with the result shown in Fig. 4, which indicates that w is the
third most important factor forDe, while it is the primary factor
influencing LWC,Nc,,50, and Nc,50–3000.

In general, the magnitude of the slope of cloud properties
except LWC with respect to w in updraft regions exhibits
greater variability across T bins in updraft regions (indicated
by the grayscale-filled triangles along the right y axis in Fig. 5)
compared to the variability of slopes with respect to T across
different w bins (triangles along the x axis in Fig. 5). This dif-
ference is especially pronounced for Nc,,50 and Nc,50–3000

(Figs. 5c,d). For Nc,,50, the 95th–5th percentile ratio of slope
magnitude with respect to w in updraft regions is 10.66,
whereas it is only 6.20 with respect to T. Furthermore, the
slope of Nc,,50 with respect to w in updraft regions increases
significantly at higher temperatures between 108 and 258C,
compared to temperatures lower than 108C (Fig. 5c). For
Nc,50–3000, the contrast is even more pronounced, where the
95th–5th percentile ratio of slope magnitude with respect to w
in updraft regions is 94.30, compared to just 2.51 for T. And
Nc,50–3000 shows steeper gradients with w in updraft regions at

lower temperatures near 08C and smaller gradients at temper-
atures higher than 108C (Fig. 5d). In contrast, the slope vari-
ability of LWC with respect to w in updraft regions across
different T bins is relatively modest (Fig. 5a), indicating a
more uniform sensitivity to w across temperature levels. This
consistency likely results from the combined influences of
both Nc,,50 and Nc,50–3000, whose sensitivities to w peak at dif-
ferent temperature levels. Taken together, these patterns sug-
gest that cloud droplet activation (reflected in Nc,,50) is more
sensitive to w at higher temperature (lower altitude) levels.
While droplet growth via collision–coalescence (reflected in
Nc,50–3000) responds more strongly to w at lower temperature
(higher altitude) levels, where condensational growth has
likely plateaued and coalescence processes become dominant.
In addition, the signs of the slopes of cloud properties with re-
spect to w in downdraft regions are inconsistent and exhibit
more complex behavior. Disentangling this complexity re-
quires a three-dimensional cloud-resolving model that explic-
itly represents the full range of convective cloud processes,
which needs further investigation in future studies.

Furthermore, a significant characteristic is that De generally
increases, while Nc,,50 decreases with increasing TLCL (not
shown), indicating a greater potential for the formation of
larger droplets associated with higher cloud-base tempera-
tures. To further elucidate this relationship and account for
uncertainties in the use of TLCL as a proxy for cloud-base tem-
perature, the differences in mean cloud properties between
the highest and lowest 30th percentiles of entire TLCL samples
across the w–T parameter space are displayed in Fig. 7. The
use of other percentiles, such as the 20th and 40th, yields con-
sistent results. The mean difference in TLCL between the high-
est and lowest 30th percentile groups is 5.368C, with standard
deviations of 0.698 and 1.288C, respectively. This suggests that
the variations in cloud properties observed in these groups
can effectively show differences between warmer and colder

FIG. 6. As in Fig. 4, but for random forest models trained with an additional environmental parameter T2 TLCL.
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cloud bases. The majority of statistically significant bins in the
w–T parameter space show predominantly positive differ-
ences for LWC (96.2%, Fig. 7a), De (100%, Fig. 7b), and
Nc,50–3000 (65.4%, Fig. 7d), while predominantly negative dif-
ferences are observed for Nc,,50 (96.6%, Fig. 7c). This indi-
cates that higher water contents, more large droplets, and
fewer small droplets are associated with warmer cloud-base
conditions compared to colder ones. Moreover, these signifi-
cant differences span a wide range of w and T bins, reinforc-
ing that the variations in cloud properties between warmer
and colder cloud bases are robust. Overall, the results suggest
that warmer cloud bases are conducive to droplet growth.

To explore the dependence of cloud properties on aerosol
conditions, we use various percentiles (i.e., 20th, 30th, and
40th) of entireMaer samples to divide the observed cloud sam-
ples into polluted and pristine groups to analyze their differ-
ences in cloud properties. Similarly, the differences in mean
cloud properties between the polluted and pristine conditions

in the w–T parameter space are examined. The predominant
statistically significant positive and negative differences in
LWC and De depend on the choice of Maer percentiles used
to separate cloud samples into polluted and pristine catego-
ries (not shown). However, the results for droplet number
concentrations Nc,,50 and Nc,50–3000 remain consistent across
different percentiles. Given the uncertainty in the MERRA-2
Maer product, we focus on the differences in mean cloud prop-
erties between the highest and lowest 20th percentiles of en-
tire Maer samples in the w–T parameter space (Fig. 8). The
mean Maer difference between the highest and lowest 20th
percentile groups is 4.85 mg m23, with standard deviations of
3.10 and 0.23 mg m23, respectively. These values provide a
high confidence in the separation of polluted and pristine con-
ditions, supporting the robustness of the results discussed
here. For increases in Maer, the most statistically significant
bins in the w–T parameter space show predominantly positive
differences for Nc,,50 (100%, Fig. 8c) and predominantly

FIG. 7. Differences (shaded pixels) in mean cloud properties between the highest and lowest 30th percentiles of en-
tire TLCL samples across the w–T parameter space for (a) LWC, (b)De, (c)Nc,,50, and (d) Nc,50–3000. The highest 30th
percentile group of TLCL has a mean of 22.328C with a standard deviation of 0.698C, and the lowest 30th percentile
group has a mean temperature of 16.968C with a standard deviation of 1.288C. Pixels outlined with black boxes repre-
sent the bins where the sample size is at least 10 in both groups and the mean differences are statistically significant at
the 0.05 level based on a t test. The total number of significant positive (orange) and negative (blue) differences is dis-
played in the top-right corner of each panel. The bin sizes for w and T are 2 m s21 and 2.58C, respectively. The horizon-
tal blue dashed line indicates 08C, and the vertical blue dashed lines denote21 and 1 m s21 in each panel.
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negative differences for Nc,50–3000 (100%, Fig. 8d). This sug-
gests that more small droplets form in polluted environments,
while more large droplets are present under pristine condi-
tions. In polluted environments, a higher aerosol concentration
increases the availability of CCN, leading to a greater number
of cloud droplets given the same water vapor and other condi-
tions. However, this also reduces droplet size due to increased
competition for available moisture during droplet growth if the
LWC is constant (Twomey 1974, 1977). But, as previously
mentioned, the predominance of statistically significant posi-
tive and negative differences in LWC and De between the pol-
luted and pristine conditions varies when using different Maer

percentiles (from 20th to 40th, not shown). This inconsistency
arises because LWC andDe are influenced by different powers
of droplet diameter: LWC is sensitive to the cubic power of di-
ameter, while De is influenced by both the square and cubic
powers. As a result, changes in the concentration of small and

large droplets (e.g., a shift toward smaller droplets) can affect
LWC andDe in a complex, nonlinear way, where the net effect
depends on the specific balance between the increase in small
droplets and the decrease in large ones. Despite these inconsis-
tent changes in LWC and De, more negative differences in De

between high and low Maer conditions are observed at lower
levels, while more positive differences appear at higher levels,
although the number of statistically significant samples is lim-
ited (Figs. 8a,b). This pattern suggests that droplet size differ-
ences between polluted and pristine conditions are primarily
driven by enhanced CCN activation in polluted environments
at lower levels, leading to more numerous but smaller drop-
lets due to limited condensational growth. At higher levels,
collision–coalescence processes become increasingly influ-
ential, resulting in the formation of larger droplets.

Overall, the observed variations in cloud microphysical
properties as a function of key environmental parameters

FIG. 8. Differences (shaded pixels) in mean cloud properties between the groups of the highest and lowest 20th per-
centile of entireMaer samples in the w–T parameter space for (a) LWC, (b)De, (c)Nc,,50, and (d)Nc,50–3000. The high-
est 20th percentile group of Maer has a mean of 6.80 mg m23 with a standard deviation of 3.10 mg m23, and the lowest
20th percentile group has a mean of 1.95 mg m23 with a standard deviation of 0.23 mg m23. Pixels outlined with black
boxes represent the bins where the sample size is at least 10 in both groups, and the mean differences are statistically
significant at the 0.05 level based on a t test. The total number of significant positive (orange) and negative (blue) dif-
ferences is displayed in the top-right corner of each panel. The bin sizes for w and T are 2 m s21 and 2.58C, respec-
tively. The horizontal blue dashed line indicates 08C, and the vertical blue dashed lines denote21 and 1 m s21 in each
panel.
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(i.e., w, T, and Maer) are clearly revealed in the w–T parame-
ter space. Generally, cloud properties LWC, Nc,,50, and
Nc,50–3000 increase with w in updraft regions. Across different
w bins, LWC,De, and Nc,50–3000 tend to increase as T decreases,
while Nc,,50 exhibits a decrease, which are closely linked to the
distance above cloud bases. Higher water content, more large
droplets, and fewer small droplets are associated with warmer
cloud-base conditions compared to colder ones. Additionally,
more small droplets form in polluted environments, while more
large droplets are observed under pristine conditions. Thus, the
results highlight the complex interactions between vertical ve-
locity, temperature, and aerosols, which together play a crucial
role in shaping cloud microphysics.

c. Mechanisms driving observed dependencies

The previous section presents the statistical relationships be-
tween cloud microphysical properties and their corresponding
environmental parameters. In this section, the parcel model in-
corporating the superdroplet microphysics scheme (Shima
et al. 2009; Bartman et al. 2022) described in section 2b is em-
ployed to investigate the physical mechanisms driving the ob-
served dependence of cloud microphysical properties on
environmental parameters.

A total of 442 parcel model simulations were conducted by
systematically varying the initial conditions of cloud-base tem-
perature, vertical velocity, and aerosol size distribution, based
either directly on observations or within observed ranges
(Fig. 5). The parcel initial temperatures, representing cloud-
base temperatures TCB, are set to 248, 238, 228, 218, 208, 198,
188, 178, 168, 158, 148, 138, and 128C, respectively. The parcel,
initialized at a pressure of 900 hPa and a relative humidity of
97%, rises adiabatically to 3-km height with a prescribed ver-
tical velocity of 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 12,
15, and 20 m s21. A sensitivity test was conducted using vary-
ing initial conditions of pressure and relative humidity, reveal-
ing some impacts on specific values. However, the primary
patterns and overall conclusions are consistent (not shown).
Two aerosol regimes, representing pristine and polluted con-
ditions, are considered. The corresponding aerosol size distri-
butions are derived from scanning mobility particle sizer
(SMPS) observations at the AMF1 site on 17 June 2022, dur-
ing the TRACER field campaign (Fan et al. 2024; Kuang et al.
2024). The pristine aerosol size distribution is represented by
three lognormal modes with total number concentrations of
359, 624, and 245 cm23; median radii of 9, 27, and 89.5 nm;
and geometric standard deviations of 1.6, 1.6, and 1.4, respec-
tively. The polluted aerosol size distribution consists of three
lognormal modes with total concentrations of 10 331, 825, and
425 cm23; median radii of 10.5, 30, and 79.5 nm; and geomet-
ric standard deviations of 1.5, 1.4, and 1.4, respectively. The
parcel model employs 200 superdroplets with a time step of
1 s, simulating only condensation and collision–coalescence
processes, which are the dominant microphysical processes
in the early stage convective clouds sampled during the
ESCAPE campaign.

To enable a consistent comparison with observations, we also
examine parcel model simulation samples withNc,,50 $ 10 cm23

at various heights above the cloud base in the w 2 T parameter
space. Evaluation shows that the parcel model generally re-
produces the observed patterns of cloud properties in the
w–T parameter space. Specifically, LWC and Nc,,50 increase
with increasing w, and LWC, De, and Nc,50–3000 increase while
Nc,,50 decreases as T decreases across different w bins (not
shown). Therefore, the parcel model simulations are further
used to investigate the mechanisms underlying the differences
across various cloud-base temperatures and aerosol conditions
(Figs. 9 and 10).

To investigate the differences between warmer and colder
cloud-base conditions, simulation samples with 218C # TCB #

238C and 158C # TCB # 178C are selected based on the mean
TLCL of the two groups shown in Fig. 7. The predominance of
statistically significant negative differences in Nc,,50 (100%,
Fig. 9a) and positive differences in LWC (100%, not shown),
De (100%, not shown), and Nc,50–3000 (96.8%, Fig. 9b) resem-
bles the observational analysis (Fig. 7). Under similar relative
humidity and aerosol conditions, air parcels originating from
warmer cloud bases contain more water vapor, leading to
greater condensation as air parcels ascend and cool to satura-
tion at the same temperature levels, thereby producing higher
LWC. Changes in De, however, reflect the net outcome of
competing changes in small and large droplet populations.
Consequently, our analysis below will focus on differences in
Nc,,50 andNc,50–3000, which more directly reveal shifts in drop-
let number concentrations. However, these differences within
the same T and w bin are actually between droplets with differ-
ent growth times. Within the same T and w bin, droplets origi-
nating from a warmer cloud base experience a longer growth
time compared to those from a colder cloud base, which likely
results in larger droplets in warmer cloud-base conditions, as
expected from an adiabatic growth model. Consequently, this
amplifies the differences in cloud properties between warmer
and colder cloud-base conditions in the w–T parameter space.
However, accurately determining observed cloud-base temper-
atures is challenging, whereas simulations easily provide them
as prescribed initial conditions. Thus, the differences in Nc,,50

and Nc,50–3000 are examined in the w–(T 2 TCB) parameter
space (Figs. 9c,d). Here, T 2 TCB represents the temperature
difference between the cloud sample locations and their corre-
sponding cloud-base temperatures. Within the same T 2 TCB

and w bin, droplets have, to some extent, similar growth times
since they are located at locations with the same temperature
difference from their cloud bases. The differences in Nc,,50 and
Nc,50–3000 between warmer and colder cloud bases decrease in
the w–(T 2 TCB) parameter space (Figs. 9c,d) compared to
those in the w–T parameter space (Figs. 9a,b). This suggests
that the influence of cloud-base temperatures on Nc,,50 and
Nc,50–3000 may appear overstated in the w–T parameter space
compared to the w–(T 2 TCB) parameter space, as the former
does not account for the vertical distance from cloud base, rep-
resented by T 2 TCB, which reflects the history of droplet
growth above cloud base according to parcel theory. However,
statistically significant negative and positive differences con-
tinue to dominate Nc,,50 (100% of bins) and Nc,50–3000 (79.2%
of bins) differences for warmer and colder cloud bases, respec-
tively (Figs. 9c,d), indicating the robustness of these differences.
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FIG. 9. Differences (shaded pixels) in mean cloud properties or process rates between warmer (218C# TCB # 238C)
and colder (158C # TCB # 178C) cloud-base sample groups in the (a),(b) w–T and (c)–(f) w–(T 2 TCB) parameter
spaces for (a),(c) Nc,,50, (b),(d) Nc,50–3000, (e) diameter of activated droplets Dact, and (f) droplet collision–coalescence
rate. Pixels outlined with black boxes represent the bins where the sample size is at least 10 in both groups and the
mean differences are statistically significant at the 0.05 level based on a t test. The total number of significant
positive (orange) and negative (blue) differences is displayed in the top-right corner of each panel. The bin size
for T or T 2 TCB is 2.58C. The bin center for w corresponds to the prescribed vertical velocities in the parcel model.
The horizontal blue dashed line indicates 08C, and the vertical blue dashed line denotes 1 m s21 in each panel.
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Examination of differences in the mean diameter of acti-
vated droplets Dact and collision–coalescence rates between
warmer and colder cloud bases in the w–(T2 TCB) parameter
space (Figs. 9e,f) reveals that collision–coalescence rates in
four paired bins show statistically significant increases, pri-
marily at lower levels in warmer cloud-base conditions, con-
tributing to the increase in droplet sizes. However, the
statistically significant positive difference in Dact plays a more
dominant role (94.5% of bins, Fig. 9e). Another set of parcel

model simulations was conducted by considering only the con-
densation process and turning off the collision–coalescence
process. The results still consistently show higher Nc,50–3000

and lower Nc,,50 in warmer cloud-base conditions compared
to colder ones, although the differences in Nc,,50 and Nc,50–3000

are reduced (not shown). This suggests that the greater amount
of water vapor available for condensation in warmer cloud-base
conditions results in higher condensation growth rates as air
parcels rise and cool. The rapid condensation depletes water

FIG. 10. As in Fig. 9, but for the differences between the polluted and pristine sample groups.
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vapor quickly, limiting the maximum supersaturation Smax that
can be achieved (not shown). As a result, fewer CCN particles
are activated, but those activated droplets grow larger due to re-
duced competition for water vapor. This is further supported by
observational evidence showing a predominance of statistically
significant positive differences in the effective diameter of cloud
droplets with Dmax , 50 mm (not shown) and negative differ-
ences in Nc,,50 (Fig. 7c) in warmer cloud-base conditions com-
pared to colder ones, primarily associated with condensation
growth. Subsequently, similar or slightly enhanced collision–
coalescence rates further amplify the size difference between
particles in warmer and colder cloud-base conditions. Ulti-
mately, statistically significant negative Nc,,50 and positive
differences Nc,50–3000 dominate (Figs. 9c,d), indicating a
higher number of large droplets in warmer cloud-base condi-
tions. These results highlight the crucial role of condensation
during the initial stages of droplet growth, contrasting with
previous studies that have predominantly emphasized the
collision–coalescence process (e.g., Lawson et al. 2022b).

Similarly, to investigate differences between polluted and pris-
tine conditions, differences in Nc,,50, Nc,50–3000, Dact, and the
droplet collision–coalescence rate are examined in the w–T
and w–(T 2 TCB) parameter spaces as shown in Fig. 10. As
discussed in the observational analysis of LWC and De

(Figs. 8a,b), responses to aerosol perturbations are complex
and nonlinear. Consequently, the predominance of statisti-
cally significant positive or negative differences between
polluted and pristine conditions in both LWC and De varies
depending on the chosen Maer percentile. In the parcel
model simulations, only 23.4% of bins in the w–T parameter
space exhibit statistically significant differences in LWC be-
tween polluted and pristine conditions. This limited sensitivity
may be a result of the use of an adiabatic parcel model, which
neglects mixing and other nonadiabatic processes. For simu-
lated De, statistically significant negative differences dominate
(88.5%, not shown), consistent with the observed pattern
(75%, Fig. 8b). These differences arise from changes in the
droplet size distribution, which influenceDe in a complex, non-
linear way. The net effect depends on the relative increase in
small droplets and decrease in larger ones. To better under-
stand these underlying shifts, we focus below on differences in
Nc,,50 and Nc,50–3000, which more directly reflect changes in
droplet number concentrations. The predominance of statisti-
cally significant positive differences in modeled Nc,,50 (99.5%,
Fig. 10a) and negative differences in modeled Nc,50–3000 (93.8%,
Fig. 10b) is consistent with the observed patterns in the w–T pa-
rameter spaces (Figs. 8c,d). These differences remain robust
even after removing the influence of droplets originating from
varying cloud-base temperatures in the w–(T2 TCB) parameter
space (100% for Nc,,50 and 92.5% for Nc,50–3000, Figs. 10c,d). In
polluted environments, a higher concentration of aerosols pro-
vides more CCN for activation as air parcels rise and cool. This
results in a higher concentration of small cloud droplets, as evi-
denced by the statistically significant positive differences in
Nc,,50 (100%, Fig. 10c) and negative differences in Dact (100%,
Fig. 10e). Although smaller droplets individually exhibit lower
collision efficiencies due to their reduced sizes and similar ter-
minal velocities, the overall collision–coalescence rate can be

maintained or even enhanced due to the increased droplet
number concentration. This is indicated by the statistically
significant positive differences in collision–coalescence rates as
a function of aerosol amount (100%, Fig. 10f). However, de-
spite the increase in collision–coalescence rates, this process
plays a secondary role in determining the difference in mean
droplet sizes between polluted and pristine conditions with the
statistically significant negative differences in De (not shown).
The dominant factor influencing droplet sizes is the initial high
concentration of small droplets resulting from enhanced CCN
activation in polluted conditions. This is further supported by
the predominance of statistically significant positive differences
in Nc,,50 and negative differences in Nc,50–3000 (Figs. 10a–d), in-
dicating a higher number of small droplets and a lower number
of large droplets in polluted environments. This is also sup-
ported by observational evidence showing a predominance of
statistically significant negative differences in the effective di-
ameter of cloud droplets with Dmax , 50 mm (not shown) and
positive differences in Nc,,50 (Fig. 8c) in polluted environments
compared to pristine ones, primarily associated with the con-
densation process. Therefore, the presence of pollution shifts
the cloud droplet spectrum toward smaller sizes, with collision–
coalescence processes playing a lesser role compared to the pri-
mary effect of increased CCN activation.

It should be noted that we primarily use the parcel model to
examine the dominant microphysical processes, namely, con-
densation (including evaporation) and collision–coalescence in
early stage convective clouds sampled during the ESCAPE
campaign, to help explain some observed patterns, particularly
those associated with warmer cloud-base conditions. However,
the adiabatic parcel model does not capture the full complex-
ity of convective cloud processes, as it omits several important
mechanisms such as entrainment-mixing, rain sedimentation,
and aerosol–cloud interactions. Accurately representing these
processes would require a three-dimensional cloud-resolving
model capable of explicitly simulating these convective clouds,
which is beyond the scope of the present study.

4. Conclusions

To investigate the dependence of convective cloud micro-
physical properties on meteorological and aerosol conditions,
a synergistic approach combining unique observations from
the TRACER and ESCAPE field campaigns, machine learn-
ing techniques, and parcel model simulations is employed.
The main findings are summarized as follows:

1) A random forest model identifies in situ vertical velocity,
temperature, and surface fine-mode aerosol mass concen-
tration as the three most important parameters affecting
the observed cloud microphysical properties.

2) Cloud properties LWC, Nc,,50, and Nc,50–3000 significantly
increase with increasing w in updraft regions. Across dif-
ferent w bins, LWC, De, and Nc,50–3000 tend to increase as
T decreases, while Nc,,50 exhibits a decrease, which are
closely linked to the distance above cloud bases, reflecting
different growth times of cloud particles. Higher values of
LWC, De, and Nc,50–3000, alongside lower values of Nc,,50,
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are associated with warmer cloud-base conditions com-
pared to colder ones, with the proportions of statistically
significantly different T–w bins at 96.2%, 100%, 65.4%,
and 96.6%, respectively. Additionally, higher values of
Nc,,50 (100% of statistically significantly different T–w
bins) and lower values of Nc,50–3000 (100% of statistically
significantly different T–w bins) are observed in polluted
environments compared to pristine conditions.

3) The parcel model, incorporating a superdroplet microphys-
ics scheme, successfully reproduces the observed dependen-
cies of cloud microphysical properties on environmental
parameters. The simulations underscore the crucial role of
cloud-base temperature and aerosol conditions in shaping
cloud microphysical properties (i.e., LWC, De, Nc,,50, and
Nc,50–3000). Warmer cloud bases enhance condensation rates,
leading to fewer but larger droplets due to reduced CCN acti-
vation [100% of statistically significant bins with lower Nc,,50

and 79.2% with higher Nc,50–3000 in the w– (T 2 TCB) param-
eter space], while collision–coalescence rates remain similar
to those in colder cloud bases. This indicates that warmer
cloud bases initially produce larger droplets through conden-
sation, with the subsequent collision–coalescence further
amplifying the size difference of particles between warmer
and colder conditions. In contrast, polluted environments
with higher aerosol concentrations produce a greater number
of smaller droplets due to increased CCN activation, as indi-
cated by 100% of statistically significant bins with lower
Nc,,50 in the w–(T 2 TCB) parameter space. Although colli-
sion–coalescence rates also increase in polluted conditions,
condensation (with 100% of statistically significant bins show-
ing smaller activated droplet diameters) remains the primary
mechanism driving the observed differences in cloud micro-
physical properties (Nc,,50 and Nc,50–3000) compared to pris-
tine conditions.

Combining observations, machine learning, and numerical
models provides a powerful approach for exploring and under-
standing the complex relationships between cloud properties
and environmental parameters. This study presents observed
quantitative patterns that characterize convective cloud micro-
physical properties as a function of key environmental parame-
ters, specifically temperature and vertical velocity, offering
valuable insights for evaluating numerical models and constrain-
ing physics parameterization schemes. The parcel model simula-
tions also reveal mechanisms linking cloud-base temperature,
aerosol conditions, and cloud microphysics, providing a deeper
understanding of how environmental conditions shape cloud
droplet properties and potentially influence cloud radiative and
precipitation processes. Future research should focus on deter-
mining whether cloud-resolving models can quantitatively repli-
cate these observed patterns and also tackle interactions
between convective clouds and their surrounding environments,
particularly aerosol–convection interactions, using data of iso-
lated convective cells under varying environmental conditions
observed during the TRACER field campaign. Given the
limited aerosol observations available for this study, surface
fine-mode aerosol mass concentration from the MERRA-2
reanalysis dataset is used as a proxy for CCN conditions. While

this is reasonable, future studies would benefit from more com-
prehensive, collocated aerosol and cloud observations.
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