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ABSTRACT

In this two-part paper, the impact of level-II Weather Surveillance Radar-1988 Doppler (WSR-88D)
radar reflectivity and radial velocity data on the prediction of a cluster of tornadic thunderstorms in the
Advanced Regional Prediction System (ARPS) model is studied. Radar reflectivity data are used primarily
in a cloud analysis procedure that retrieves the amount of hydrometeors and adjusts in-cloud temperature,
moisture, and cloud fields, while radial velocity data are analyzed through a three-dimensional variational
(3DVAR) data assimilation scheme that contains a 3D mass divergence constraint in the cost function. In
Part I, the impact of the cloud analysis and modifications to the scheme are discussed. In this part, the
impact of radial velocity data and the mass divergence constraint in the 3DVAR cost function are studied.

The case studied is that of the 28 March 2000 Fort Worth tornadoes. The addition of the radial velocity
improves the forecasts beyond that experienced with the cloud analysis alone. The prediction is able to
forecast the morphology of individual storm cells on the 3-km grid up to 2 h; the rotating supercell
characteristics of the storm that spawned two tornadoes are well captured; timing errors in the forecast are
less than 15 min and location errors are less than 10 km at the time of the tornadoes.

When forecasts were made with radial velocity assimilation but not reflectivity, they failed to predict
nearly all storm cells. Using the current 3DVAR and cloud analysis procedure with 10-min intermittent
assimilation cycles, reflectivity data are found to have a greater positive impact than radial velocity. The use
of radial velocity does improve the storm forecast when combined with reflectivity assimilation, by, for
example, improving the forecasting of the strong low-level vorticity centers associated with the tornadoes.
Positive effects of including a mass divergence constraint in the 3DVAR cost function are also documented.

1. Introduction

This is the second part of a two-part study investi-
gating the impact of radar data on the prediction of a
cluster of tornadic thunderstorms. In Hu et al. (2006,
hereafter Part I), the conventional data are analyzed
via a three-dimensional variational (3DVAR) analysis
system, while reflectivity data are used through a cloud
analysis procedure that defines hydrometeor and cloud
fields and makes adjustments to in-cloud temperature
and moisture fields.

The 3DVAR analysis system used in this study is
developed within the Advanced Regional Prediction
System (ARPS) model (Xue et al. 1995, 2000, 2001)
framework and documented in Xue et al. (2003) and
Gao et al. (2002, 2004). The cloud analysis procedure
has evolved from that used in the Local Analysis and
Prediction System (LAPS; Albers et al. 1996) with pre-
vious enhancements documented in Zhang et al. (1998)
and Zhang (1999). This cloud analysis is a component
of both the ARPS 3DVAR system and the ARPS Data
Analysis System (ADAS; Brewster 1996). In the ex-
periments by Xue et al. (2003, hereafter Xue03), the
ADAS and an early version of ARPS cloud analysis
were used with Weather Surveillance Radar-1988
Doppler (WSR-88D) level-III [Next Generation Radar
(NEXRAD) Information Dissemination Service
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(NIDS)] data to provide initial conditions for the ARPS
to predict the Fort Worth, Texas, tornadic thunder-
storm cases of 28 March 2000. Since then, several im-
provements have been made to the cloud analysis pro-
cedure.

Using the ARPS 3DVAR instead of the ADAS as
the analysis tool, the level-II instead of level-III radar
data, together with an improved version of the ARPS
cloud analysis and an updated version of the ARPS
model, experiments in Part I studied the impact of the
improvements in the cloud analysis procedure and of
each modification individually on the same Fort Worth
case.

It is found that the detailed storm information in the
initial temperature and hydrometeor fields added by
the cloud analysis using radar reflectivity data is critical
for successful storm forecast. The experiment with a
complete set of recent modifications to the cloud analy-
sis improves the prediction of the main tornadic thun-
derstorm. Part I also documented the impact by each
individual modification in the cloud analysis scheme on
the assimilated state and the evolution of the storms in
the forecast. In this second part (Part II), we examine
the impact of radial velocity data through a series of
assimilation experiments. The organization of this pa-
per is as follows. In section 2, we briefly introduce the
ARPS 3DVAR system, including the important aspects
of radial velocity analysis and the mass divergence con-
straint. In section 3, we describe the tornado outbreak
case briefly and the design of experiments. Detailed
results are presented in section 4, and a summary is
provided in section 5.

2. The ARPS 3DVAR system

a. The basic scheme

Following Gao et al. (2004), the standard cost func-
tion of 3DVAR can be written as

J�x� �
1
2

�x � xb�T B�1�x � xb�

�
1
2

�H�x� � yo�TR�1�H�x� � yo� � Jc�x�, �1�

where the first term on the right-hand side measures
the departure of the analysis vector, x, from the back-
ground, xb, weighted by the inverse of the background
error covariance matrix B. In the current ARPS
3DVAR system, the analysis vector x contains the three
wind components (u, �, and w), potential temperature
(	), pressure (p), and water vapor mixing ratio (q�).
The second, observation term, measures the departure
of the analysis from the observation vector, yo. The
analysis is projected to the observation space by the

forward observation operator, H, and the observation
term is weighted by the inverse of observation error
covariance matrix R that includes both instrument and
representativeness errors. The forward operator errors,
especially those for conventional data, should be small
and are usually neglected. Term Jc(x) in Eq. (1) repre-
sents dynamic or equation constraints.

Transforming control variables from x to v, according
to B1/2v � (x � xb), the standard cost function is
changed into incremental form for new control vari-
able v:

Jinc�v� �
1
2

vTv �
1
2

�HB1�2v � d�TR�1�HB1�2v � d�

� Jc�v�, �2�

where H is the linearized version of H and d 
 yo �
H(xb). In the current system, the cross correlations be-
tween variables are not included in the background
error covariances. The spatial covariances for back-
ground error are modeled by a recursive filter. Follow-
ing common practice, observation errors are assumed
to be uncorrelated; hence the corresponding covariance
matrix, R, is diagonal, and its diagonal elements are
specified according to the estimated observation errors.
Correlated observation errors are usually removed
through bias correction procedures before or within the
analysis procedure (e.g., Harris and Kelly 2001).

Considering that we are dealing with flows at vastly
different scales and different data types also represent
very different spatial scales, the ARPS 3DVAR allows
for the use of multiple analysis passes, with each one
including different data types and using different filter
scales. In our case, the selection of the filter scales is
guided by the density of observational data to which
filter is applied. We call this a multiscale analysis pro-
cedure.

b. Radar radial velocity data

For the radial velocity observations, the forward op-
erator, or H in Eq. (1), that projects the velocity into
the radial direction is

Vr �
�x � x0�u � �y � y0�v � �z � z0�w

r
, �3�

where u, �, and w are the wind components in Cartesian
coordinates (x, y, z); (x0, y0, z0) are the coordinates of
radar; and r is the distance from the radar location to
the observation points of radial velocity. In the ARPS
3DVAR, the observed radial velocity data are first in-
terpolated to analysis grid points through preprocess-
ing, and therefore no further spatial interpolation is
needed in this forward operator. The actual preprocess-
ing program also includes quality control (velocity
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dealiasing, clutter removal, etc.) and takes into account
the spherical geometry of the earth and the curved path
of the radar beam.

c. Mass divergence constraint

In the ARPS 3DVAR, the following weak mass di-
vergence constraint is imposed on the analyzed wind
field:

Jc �
1
2

�c
2D2, �4�

where �c is a weighting coefficient that controls the
relative importance of this penalty term in the cost
function. Here D has the form of

D � ����u

�x
�

���

�y � � �
��w

�z
, �5�

where � is the mean air density at given height levels,
and  and � are weighting coefficients for the horizon-
tal and vertical terms, respectively. Different choices of
the  and � values will be tested in a set of analysis
experiments to be presented later. This constraint acts
to couple the wind components together during the
analysis. When  � � � 1, the constraint acts to mini-
mize the three-dimensional mass divergence and en-
force anelastic mass continuity. Gao et al. (1999, 2004)
found, for their case of near-unity grid aspect ratio (�x
� �z), that the 3D formulation is effective in producing
reasonable analyses of vertical as well as the horizontal
velocity in their dual-Doppler wind analyses.

When used in a finite-difference form, we found that
the vertical mass divergence term in Eq. (5) dominates
the adjustment of Jc in cases where the vertical grid is
stretched to a large �x to �z (grid aspect) ratio at the
low levels. For example, when �x � �y � ��z, Eq. (5)
is discretized as

D �
���u� � �����

	�z
�

���w�

�z
. �6�

When the grid aspect ratio, �, is large, say over 100, as
in our case near the surface, a small adjustment in the
vertical velocity can offset a large change in the hori-
zontal wind divergence. The result is that little change
due to this constraint is made by the minimization to
the horizontal wind components. One possible solution,
as used here, is to use different values of  and � or
even set � to zero to alleviate this artifact of discreti-
zation.

To illustrate the above points, we conducted three
experiments, in which a single radial velocity observa-
tion (taken to be along the x direction) is analyzed,

using (a) no mass divergence constraint ( � � � 0), (b)
using a 2D mass constraint ( � 1, � � 0), and (c) using
a fully 3D mass divergence constraint ( � � � 1).
Further, to isolate the effect of the constraint, we do not
include spatial filtering in these tests. The results of
these experiments are plotted in Fig. 1. It can be seen
that without the constraint, no y (or cross beam) com-
ponent of velocity is produced by the analysis; that is,
the analysis is purely univariant (Fig. 1a). In this case no
vertical velocity is created either (not shown). When
the 2D mass divergence is used, a single radial velocity
observation induces a horizontal flow pattern that is
nearly nondivergent (Fig. 1b) while no vertical velocity
develops (not shown). When a complete 3D divergence
appears in Jc, most of the wind adjustment due to the
constraint occurs in vertical velocity, as is shown by Fig.
1c, while little adjustment occurs to the y (horizontal
cross-beam) component (Fig. 1d), a result very similar
to the unconstrained case. In addition, when the spatial
filtering (via recursive filter) is applied, the analysis ap-
pears smoother and the analysis increment spreads over
a larger area but the general behavior remains the same
(not shown).

The main goal of including mass divergence con-
straint in the radial velocity analysis is to derive wind
information perpendicular to radar beams. From the
above analysis, the three-dimensional mass divergence
constraint cannot achieve the desired effect in the hori-
zontal flow when the grid aspect ratio is large, which is
unfortunately true in our case. This was not an issue in
our earlier variational dual-Doppler wind analyses
(Gao et al. 1999, 2004) and has therefore not been rec-
ognized until now. For the above reason, the weak two-
dimensional mass divergence constraint is used in the
control and related experiments and an additional set
of experiments is performed to examine the impact of
different formulations of the constraint on the analysis
and forecast. Since it is a weak constraint, zero mass
divergence is not strictly satisfied; the analysis has some
flexibility in determining the amount of adjustment to
different wind components, depending on the weight-
ing coefficients.

3. Fort Worth tornado case and design of forecast
experiments with ARPS

The same tornadic thunderstorm outbreak case stud-
ied in Part I is used here to examine the impact of radial
velocity data and mass divergence constraint. This case
consists of an F2 (maximum winds 51 to 70 m s�1) tor-
nado that struck downtown Fort Worth, Texas, at
around 6:15 P.M. LST 28 March (0015 UTC 29 March)
2000. The tornado vortex developed directly over the
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city, descended, and stayed on the ground for at least 15
min. A second tornado from the same cell touched
down in south Arlington, approximately 25 km east of
Fort Worth, about 45 min later, at around 7:00 P.M. LST
28 March (0100 UTC 29 March) 2000.

Using the same configuration as Part I, assimilation
and prediction experiments are conducted. These ex-
periments use two one-way nested grids with horizontal
grid spacing of 9 and 3 km. The two grids cover areas of
1000 km � 1000 km and 450 km � 300 km, respectively.
Full model physics are employed in the forecasts of
both grids except for cumulus parameterization. On the

9-km grid, a 12-h model forecast is started from a single
3DVAR analysis at 1800 UTC 28 March and uses the
National Centers for Environmental Prediction
(NCEP) Eta 1800 UTC forecasts at 3-h intervals as
lateral boundary conditions.

On the 3-km grid, both WSR-88D full-volume (level
II) reflectivity and radial velocity data are analyzed in
10-min intermittent assimilation cycles that begin at
2200 UTC and continue for 1 h. The forecast, with the
same model settings as Part I, was started from the
assimilated initial condition at 2300 UTC and ended at
0200 UTC 29 March.

FIG. 1. Results of 3DVAR analyzing a single radial wind measurement (pointing in positive x direction) with
different mass divergence constraints. The background wind is zero. (a) Wind analysis without applying mass
divergence constraint, (b) the x–y cross section of u–� wind analyzed with a 2D (horizontal) mass divergence
constraint, (c) x–z cross-section of u–w wind after applying a 3D mass divergence constraint, and (d) as in (b) but
with a 3D mass divergence constraint. The wind units are m s�1.
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Three analysis passes are performed on the 3-km
grid, with each pass using different data types. For the
wind profiler data used in the first pass, a 120-km filter
scale is used. Filter scales of 75 and 9 km are used in the
second and third passes when surface data and radial
velocity data are used, respectively.

In this paper, results from eight 3-km experiments,
including a control, are reported (see Table 1). The first
three are designed to specifically investigate the impact
of assimilating radar data. The control experiment,
CNTLVR, includes both level-II reflectivity and radial
velocity data in its assimilation cycles. A two-
dimensional version of mass divergence constraint is
imposed. Two other experiments, namely CNTLZ and
VR, examine the effect of including reflectivity (de-
noted as Z) or radial velocity (denoted as Vr) data
alone. The experiments are otherwise the same as
CNTLVR.

The next five experiments are designed to examine
the role and effect of various formulations of the mass
divergence constraint in the 3DVAR cost function
(Table 1). They differ from CNTLVR in the use of the
constraint only. Experiment NoDiv does not include
any divergence constraint while experiments Div3Da
and Div3Db use a 3D formulation with different and
equal values of  and � in Eq. (5), respectively. Two
other experiments, Div2Da and Div2Db, test the sen-
sitivity of storm forecasts to weighting coefficient, �c,
with a 2D formulation (Table 1).

4. Results of assimilation and forecast experiments

In this section, we first discuss the forecast of control
experiment CNTLVR by comparing the forecast radar
reflectivity fields to the observed ones. The forecasts of
CNTLZ and VR are then analyzed to examine the ad-
ditional impact of radial velocity data. The results of
assimilation from these three experiments are also in-
tercompared. Finally, the results from the experiments

with different formulations of the mass divergence con-
straint are discussed.

a. Radar observations and forecasting results of
control experiment

Since both tornadoes occurred between 0000 and
0100 UTC 29 March in the Fort Worth area, we focus
our discussion of the forecast on this period. For direct
comparison with radar observations, we derive reflec-
tivity from model-predicted hydrometeor fields that
also take into account the ice phases, and the reflectiv-
ity equations follow mostly Smith et al. (1975), with the
actual formulations used given in Tong and Xue (2005).
The predicted reflectivity fields from the control run,
which includes both reflectivity and radial velocity
data, are mapped to the 1.45° radar elevation of the
KFWS radar (labeled in the plots) and plotted in the
right column of Fig. 2 at 15-min intervals for a 1-h
period starting from 0000 UTC 29 March. The corre-
sponding observed reflectivity fields are plotted in the
left column. Fort Worth and Arlington are labeled in
Fig. 2b.

At 0000 UTC 29 March, five individual thunder-
storms can be identified near Forth Worth from the
radar observations (Fig. 2a). They are labeled A, B, C,
C�, and D in the plots. Storm A is the storm that
spawned the downtown Fort Worth tornado at around
0015 UTC and the Arlington tornado 45 min later.
Storm B approached storm A from the west, during the
period 0000 to 0045 UTC (Figs. 2a,c,e,g) and then
merged with storm A to form a combined storm that we
relabel as F (Fig. 2i) at 0100 UTC. Storms C and C�
formed near the end of the assimilation window, prop-
agated toward storm A from the south and also merged
with storm A (Fig. 2, left column) by 0100 UTC. Storm
D was initially located near the northeast corner of Hill
County (see Fig. 2a for county locations) and later
propagated northeast into Ellis County. Storm D was
initiated during the assimilation window and remained

TABLE 1. List of 3-km experiments and their main characteristics.

Experiment
Use of

reflectivity
Use of

radial velocity

Mass divergence constraint

Dimension Weighting coefficients

CNTLVR Yes Yes 2D �c � 1000, � � 0
CNTLZ Yes No NA �c � 0
VR No Yes 2D �c � 1000, � � 0
NoDiv Yes Yes NA �c � 0
Div2Da Yes Yes 2D �c � 500, � � 0
Div2Db Yes Yes 2D �c � 2000, � � 0
Div3Da Yes Yes 3D �c � 1000, ��c � 100
Div3Db Yes Yes 3D �c � ��c � 1000
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strong throughout the period of tornadoes. The com-
plex interactions among these storm cells pose a major
challenge for accurate forecasting of the morphology of
these storms.

The 1-h model forecast at 0000 UTC 29 March also
depicts five storm cells in the vicinity of Fort Worth
(Fig. 2b). Four of them can be directly linked to an
observed one (Fig. 2a), but the one labeled C� has no
real-world counterpart. Storms A and B have location
errors of about 20–25 km while storms C and D have
position errors of less than 5 km. Observed storm C� is
missed by the forecast at its location near the southwest
corner of Tarrant County while the model placed a
storm cell, C�, farther to the south, in west-central

Johnson County. When we examine the forecast during
the first hour (2300–0000 UTC; not shown here), it is
found that all storm cells that existed at the beginning
of forecast underwent varying degrees of adjustment.
Storms A and B weaken initially and grow again from
2345 UTC, while storm C remains relatively weak until
about 2350 UTC. Given that little information on storm
C was provided by the radar or the assimilation process,
the model did a good job in initiating storm C. Apart
from some error in propagation speed (a little too fast),
storm D is well predicted throughout the period by the
model. Both the observed and predicted low-level re-
flectivity of storm D show clear hook echo shapes.

Figure 3 shows the predicted wind vector and vertical

FIG. 2. (left) Observed reflectivity fields at 1.45° elevation of the Fort Worth radar (marked as KFWS) based on
level-II data, and (right) predicted reflectivity at the same elevation from the control experiment CNTLVR, at
15-min intervals from 0000 to 0100 UTC 29 Mar 2000. Major storm cells are marked by capital letters. Fort Worth
and Arlington are marked as dots in (b). Tarrant County is highlighted and about 50 km � 50 km in size. The
domain shown is about 200 km on each side, representing the portion of 3-km grid between 100 and 300 km in
east–west direction and from 60 to 260 km in north–south direction. The reflectivity contours are at 15, 30, 45, and
55 dBZ and the shaded contour interval is 5 dBZ. Counties around Fort Worth are marked in (a).
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vorticity fields from the control experiment at the sur-
face (left column) and 3 km MSL (approximately 2.8
km AGL, right column) at the same times as the re-
flectivity fields shown in Fig. 2. From the surface wind
field at 0000 UTC, strong and fairly isolated conver-

gence centers are indicated for storms A, B, and D (Fig.
3a). The gust fronts associated with the downdrafts of
storms A and B are still relatively weak at this time
while a much stronger downdraft is found to the north-
west of A, associated with a storm that is decaying.

FIG. 2. (Continued)
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