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ABSTRACT

In this two-part paper, the impact of level-II Weather Surveillance Radar-1988 Doppler (WSR-88D)
radar reflectivity and radial velocity data on the prediction of a cluster of tornadic thunderstorms in the
Advanced Regional Prediction System (ARPS) model is studied. Radar reflectivity data are used primarily
in a cloud analysis procedure that retrieves the amount of hydrometeors and adjusts in-cloud temperature,
moisture, and cloud fields, while radial velocity data are analyzed through a three-dimensional variational
(3DVAR) data assimilation scheme that contains a 3D mass divergence constraint in the cost function. In
Part I, the impact of the cloud analysis and modifications to the scheme are discussed. In this part, the
impact of radial velocity data and the mass divergence constraint in the 3DVAR cost function are studied.

The case studied is that of the 28 March 2000 Fort Worth tornadoes. The addition of the radial velocity
improves the forecasts beyond that experienced with the cloud analysis alone. The prediction is able to
forecast the morphology of individual storm cells on the 3-km grid up to 2 h; the rotating supercell
characteristics of the storm that spawned two tornadoes are well captured; timing errors in the forecast are
less than 15 min and location errors are less than 10 km at the time of the tornadoes.

When forecasts were made with radial velocity assimilation but not reflectivity, they failed to predict
nearly all storm cells. Using the current 3DVAR and cloud analysis procedure with 10-min intermittent
assimilation cycles, reflectivity data are found to have a greater positive impact than radial velocity. The use
of radial velocity does improve the storm forecast when combined with reflectivity assimilation, by, for
example, improving the forecasting of the strong low-level vorticity centers associated with the tornadoes.
Positive effects of including a mass divergence constraint in the 3DVAR cost function are also documented.

1. Introduction

This is the second part of a two-part study investi-
gating the impact of radar data on the prediction of a
cluster of tornadic thunderstorms. In Hu et al. (2006,
hereafter Part I), the conventional data are analyzed
via a three-dimensional variational (3DVAR) analysis
system, while reflectivity data are used through a cloud
analysis procedure that defines hydrometeor and cloud
fields and makes adjustments to in-cloud temperature
and moisture fields.

The 3DVAR analysis system used in this study is
developed within the Advanced Regional Prediction
System (ARPS) model (Xue et al. 1995, 2000, 2001)
framework and documented in Xue et al. (2003) and
Gao et al. (2002, 2004). The cloud analysis procedure
has evolved from that used in the Local Analysis and
Prediction System (LAPS; Albers et al. 1996) with pre-
vious enhancements documented in Zhang et al. (1998)
and Zhang (1999). This cloud analysis is a component
of both the ARPS 3DVAR system and the ARPS Data
Analysis System (ADAS; Brewster 1996). In the ex-
periments by Xue et al. (2003, hereafter Xue03), the
ADAS and an early version of ARPS cloud analysis
were used with Weather Surveillance Radar-1988
Doppler (WSR-88D) level-III [Next Generation Radar
(NEXRAD) Information Dissemination Service
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(NIDS)] data to provide initial conditions for the ARPS
to predict the Fort Worth, Texas, tornadic thunder-
storm cases of 28 March 2000. Since then, several im-
provements have been made to the cloud analysis pro-
cedure.

Using the ARPS 3DVAR instead of the ADAS as
the analysis tool, the level-II instead of level-III radar
data, together with an improved version of the ARPS
cloud analysis and an updated version of the ARPS
model, experiments in Part I studied the impact of the
improvements in the cloud analysis procedure and of
each modification individually on the same Fort Worth
case.

It is found that the detailed storm information in the
initial temperature and hydrometeor fields added by
the cloud analysis using radar reflectivity data is critical
for successful storm forecast. The experiment with a
complete set of recent modifications to the cloud analy-
sis improves the prediction of the main tornadic thun-
derstorm. Part I also documented the impact by each
individual modification in the cloud analysis scheme on
the assimilated state and the evolution of the storms in
the forecast. In this second part (Part II), we examine
the impact of radial velocity data through a series of
assimilation experiments. The organization of this pa-
per is as follows. In section 2, we briefly introduce the
ARPS 3DVAR system, including the important aspects
of radial velocity analysis and the mass divergence con-
straint. In section 3, we describe the tornado outbreak
case briefly and the design of experiments. Detailed
results are presented in section 4, and a summary is
provided in section 5.

2. The ARPS 3DVAR system

a. The basic scheme

Following Gao et al. (2004), the standard cost func-
tion of 3DVAR can be written as

J�x� �
1
2

�x � xb�T B�1�x � xb�

�
1
2

�H�x� � yo�TR�1�H�x� � yo� � Jc�x�, �1�

where the first term on the right-hand side measures
the departure of the analysis vector, x, from the back-
ground, xb, weighted by the inverse of the background
error covariance matrix B. In the current ARPS
3DVAR system, the analysis vector x contains the three
wind components (u, �, and w), potential temperature
(	), pressure (p), and water vapor mixing ratio (q�).
The second, observation term, measures the departure
of the analysis from the observation vector, yo. The
analysis is projected to the observation space by the

forward observation operator, H, and the observation
term is weighted by the inverse of observation error
covariance matrix R that includes both instrument and
representativeness errors. The forward operator errors,
especially those for conventional data, should be small
and are usually neglected. Term Jc(x) in Eq. (1) repre-
sents dynamic or equation constraints.

Transforming control variables from x to v, according
to B1/2v � (x � xb), the standard cost function is
changed into incremental form for new control vari-
able v:

Jinc�v� �
1
2

vTv �
1
2

�HB1�2v � d�TR�1�HB1�2v � d�

� Jc�v�, �2�

where H is the linearized version of H and d 
 yo �
H(xb). In the current system, the cross correlations be-
tween variables are not included in the background
error covariances. The spatial covariances for back-
ground error are modeled by a recursive filter. Follow-
ing common practice, observation errors are assumed
to be uncorrelated; hence the corresponding covariance
matrix, R, is diagonal, and its diagonal elements are
specified according to the estimated observation errors.
Correlated observation errors are usually removed
through bias correction procedures before or within the
analysis procedure (e.g., Harris and Kelly 2001).

Considering that we are dealing with flows at vastly
different scales and different data types also represent
very different spatial scales, the ARPS 3DVAR allows
for the use of multiple analysis passes, with each one
including different data types and using different filter
scales. In our case, the selection of the filter scales is
guided by the density of observational data to which
filter is applied. We call this a multiscale analysis pro-
cedure.

b. Radar radial velocity data

For the radial velocity observations, the forward op-
erator, or H in Eq. (1), that projects the velocity into
the radial direction is

Vr �
�x � x0�u � �y � y0�v � �z � z0�w

r
, �3�

where u, �, and w are the wind components in Cartesian
coordinates (x, y, z); (x0, y0, z0) are the coordinates of
radar; and r is the distance from the radar location to
the observation points of radial velocity. In the ARPS
3DVAR, the observed radial velocity data are first in-
terpolated to analysis grid points through preprocess-
ing, and therefore no further spatial interpolation is
needed in this forward operator. The actual preprocess-
ing program also includes quality control (velocity
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dealiasing, clutter removal, etc.) and takes into account
the spherical geometry of the earth and the curved path
of the radar beam.

c. Mass divergence constraint

In the ARPS 3DVAR, the following weak mass di-
vergence constraint is imposed on the analyzed wind
field:

Jc �
1
2

�c
2D2, �4�

where �c is a weighting coefficient that controls the
relative importance of this penalty term in the cost
function. Here D has the form of

D � ����u

�x
�

���

�y � � �
��w

�z
, �5�

where � is the mean air density at given height levels,
and  and � are weighting coefficients for the horizon-
tal and vertical terms, respectively. Different choices of
the  and � values will be tested in a set of analysis
experiments to be presented later. This constraint acts
to couple the wind components together during the
analysis. When  � � � 1, the constraint acts to mini-
mize the three-dimensional mass divergence and en-
force anelastic mass continuity. Gao et al. (1999, 2004)
found, for their case of near-unity grid aspect ratio (�x
� �z), that the 3D formulation is effective in producing
reasonable analyses of vertical as well as the horizontal
velocity in their dual-Doppler wind analyses.

When used in a finite-difference form, we found that
the vertical mass divergence term in Eq. (5) dominates
the adjustment of Jc in cases where the vertical grid is
stretched to a large �x to �z (grid aspect) ratio at the
low levels. For example, when �x � �y � ��z, Eq. (5)
is discretized as

D �
���u� � �����

	�z
�

���w�

�z
. �6�

When the grid aspect ratio, �, is large, say over 100, as
in our case near the surface, a small adjustment in the
vertical velocity can offset a large change in the hori-
zontal wind divergence. The result is that little change
due to this constraint is made by the minimization to
the horizontal wind components. One possible solution,
as used here, is to use different values of  and � or
even set � to zero to alleviate this artifact of discreti-
zation.

To illustrate the above points, we conducted three
experiments, in which a single radial velocity observa-
tion (taken to be along the x direction) is analyzed,

using (a) no mass divergence constraint ( � � � 0), (b)
using a 2D mass constraint ( � 1, � � 0), and (c) using
a fully 3D mass divergence constraint ( � � � 1).
Further, to isolate the effect of the constraint, we do not
include spatial filtering in these tests. The results of
these experiments are plotted in Fig. 1. It can be seen
that without the constraint, no y (or cross beam) com-
ponent of velocity is produced by the analysis; that is,
the analysis is purely univariant (Fig. 1a). In this case no
vertical velocity is created either (not shown). When
the 2D mass divergence is used, a single radial velocity
observation induces a horizontal flow pattern that is
nearly nondivergent (Fig. 1b) while no vertical velocity
develops (not shown). When a complete 3D divergence
appears in Jc, most of the wind adjustment due to the
constraint occurs in vertical velocity, as is shown by Fig.
1c, while little adjustment occurs to the y (horizontal
cross-beam) component (Fig. 1d), a result very similar
to the unconstrained case. In addition, when the spatial
filtering (via recursive filter) is applied, the analysis ap-
pears smoother and the analysis increment spreads over
a larger area but the general behavior remains the same
(not shown).

The main goal of including mass divergence con-
straint in the radial velocity analysis is to derive wind
information perpendicular to radar beams. From the
above analysis, the three-dimensional mass divergence
constraint cannot achieve the desired effect in the hori-
zontal flow when the grid aspect ratio is large, which is
unfortunately true in our case. This was not an issue in
our earlier variational dual-Doppler wind analyses
(Gao et al. 1999, 2004) and has therefore not been rec-
ognized until now. For the above reason, the weak two-
dimensional mass divergence constraint is used in the
control and related experiments and an additional set
of experiments is performed to examine the impact of
different formulations of the constraint on the analysis
and forecast. Since it is a weak constraint, zero mass
divergence is not strictly satisfied; the analysis has some
flexibility in determining the amount of adjustment to
different wind components, depending on the weight-
ing coefficients.

3. Fort Worth tornado case and design of forecast
experiments with ARPS

The same tornadic thunderstorm outbreak case stud-
ied in Part I is used here to examine the impact of radial
velocity data and mass divergence constraint. This case
consists of an F2 (maximum winds 51 to 70 m s�1) tor-
nado that struck downtown Fort Worth, Texas, at
around 6:15 P.M. LST 28 March (0015 UTC 29 March)
2000. The tornado vortex developed directly over the
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city, descended, and stayed on the ground for at least 15
min. A second tornado from the same cell touched
down in south Arlington, approximately 25 km east of
Fort Worth, about 45 min later, at around 7:00 P.M. LST
28 March (0100 UTC 29 March) 2000.

Using the same configuration as Part I, assimilation
and prediction experiments are conducted. These ex-
periments use two one-way nested grids with horizontal
grid spacing of 9 and 3 km. The two grids cover areas of
1000 km � 1000 km and 450 km � 300 km, respectively.
Full model physics are employed in the forecasts of
both grids except for cumulus parameterization. On the

9-km grid, a 12-h model forecast is started from a single
3DVAR analysis at 1800 UTC 28 March and uses the
National Centers for Environmental Prediction
(NCEP) Eta 1800 UTC forecasts at 3-h intervals as
lateral boundary conditions.

On the 3-km grid, both WSR-88D full-volume (level
II) reflectivity and radial velocity data are analyzed in
10-min intermittent assimilation cycles that begin at
2200 UTC and continue for 1 h. The forecast, with the
same model settings as Part I, was started from the
assimilated initial condition at 2300 UTC and ended at
0200 UTC 29 March.

FIG. 1. Results of 3DVAR analyzing a single radial wind measurement (pointing in positive x direction) with
different mass divergence constraints. The background wind is zero. (a) Wind analysis without applying mass
divergence constraint, (b) the x–y cross section of u–� wind analyzed with a 2D (horizontal) mass divergence
constraint, (c) x–z cross-section of u–w wind after applying a 3D mass divergence constraint, and (d) as in (b) but
with a 3D mass divergence constraint. The wind units are m s�1.
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Three analysis passes are performed on the 3-km
grid, with each pass using different data types. For the
wind profiler data used in the first pass, a 120-km filter
scale is used. Filter scales of 75 and 9 km are used in the
second and third passes when surface data and radial
velocity data are used, respectively.

In this paper, results from eight 3-km experiments,
including a control, are reported (see Table 1). The first
three are designed to specifically investigate the impact
of assimilating radar data. The control experiment,
CNTLVR, includes both level-II reflectivity and radial
velocity data in its assimilation cycles. A two-
dimensional version of mass divergence constraint is
imposed. Two other experiments, namely CNTLZ and
VR, examine the effect of including reflectivity (de-
noted as Z) or radial velocity (denoted as Vr) data
alone. The experiments are otherwise the same as
CNTLVR.

The next five experiments are designed to examine
the role and effect of various formulations of the mass
divergence constraint in the 3DVAR cost function
(Table 1). They differ from CNTLVR in the use of the
constraint only. Experiment NoDiv does not include
any divergence constraint while experiments Div3Da
and Div3Db use a 3D formulation with different and
equal values of  and � in Eq. (5), respectively. Two
other experiments, Div2Da and Div2Db, test the sen-
sitivity of storm forecasts to weighting coefficient, �c,
with a 2D formulation (Table 1).

4. Results of assimilation and forecast experiments

In this section, we first discuss the forecast of control
experiment CNTLVR by comparing the forecast radar
reflectivity fields to the observed ones. The forecasts of
CNTLZ and VR are then analyzed to examine the ad-
ditional impact of radial velocity data. The results of
assimilation from these three experiments are also in-
tercompared. Finally, the results from the experiments

with different formulations of the mass divergence con-
straint are discussed.

a. Radar observations and forecasting results of
control experiment

Since both tornadoes occurred between 0000 and
0100 UTC 29 March in the Fort Worth area, we focus
our discussion of the forecast on this period. For direct
comparison with radar observations, we derive reflec-
tivity from model-predicted hydrometeor fields that
also take into account the ice phases, and the reflectiv-
ity equations follow mostly Smith et al. (1975), with the
actual formulations used given in Tong and Xue (2005).
The predicted reflectivity fields from the control run,
which includes both reflectivity and radial velocity
data, are mapped to the 1.45° radar elevation of the
KFWS radar (labeled in the plots) and plotted in the
right column of Fig. 2 at 15-min intervals for a 1-h
period starting from 0000 UTC 29 March. The corre-
sponding observed reflectivity fields are plotted in the
left column. Fort Worth and Arlington are labeled in
Fig. 2b.

At 0000 UTC 29 March, five individual thunder-
storms can be identified near Forth Worth from the
radar observations (Fig. 2a). They are labeled A, B, C,
C�, and D in the plots. Storm A is the storm that
spawned the downtown Fort Worth tornado at around
0015 UTC and the Arlington tornado 45 min later.
Storm B approached storm A from the west, during the
period 0000 to 0045 UTC (Figs. 2a,c,e,g) and then
merged with storm A to form a combined storm that we
relabel as F (Fig. 2i) at 0100 UTC. Storms C and C�
formed near the end of the assimilation window, prop-
agated toward storm A from the south and also merged
with storm A (Fig. 2, left column) by 0100 UTC. Storm
D was initially located near the northeast corner of Hill
County (see Fig. 2a for county locations) and later
propagated northeast into Ellis County. Storm D was
initiated during the assimilation window and remained

TABLE 1. List of 3-km experiments and their main characteristics.

Experiment
Use of

reflectivity
Use of

radial velocity

Mass divergence constraint

Dimension Weighting coefficients

CNTLVR Yes Yes 2D �c � 1000, � � 0
CNTLZ Yes No NA �c � 0
VR No Yes 2D �c � 1000, � � 0
NoDiv Yes Yes NA �c � 0
Div2Da Yes Yes 2D �c � 500, � � 0
Div2Db Yes Yes 2D �c � 2000, � � 0
Div3Da Yes Yes 3D �c � 1000, ��c � 100
Div3Db Yes Yes 3D �c � ��c � 1000
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strong throughout the period of tornadoes. The com-
plex interactions among these storm cells pose a major
challenge for accurate forecasting of the morphology of
these storms.

The 1-h model forecast at 0000 UTC 29 March also
depicts five storm cells in the vicinity of Fort Worth
(Fig. 2b). Four of them can be directly linked to an
observed one (Fig. 2a), but the one labeled C� has no
real-world counterpart. Storms A and B have location
errors of about 20–25 km while storms C and D have
position errors of less than 5 km. Observed storm C� is
missed by the forecast at its location near the southwest
corner of Tarrant County while the model placed a
storm cell, C�, farther to the south, in west-central

Johnson County. When we examine the forecast during
the first hour (2300–0000 UTC; not shown here), it is
found that all storm cells that existed at the beginning
of forecast underwent varying degrees of adjustment.
Storms A and B weaken initially and grow again from
2345 UTC, while storm C remains relatively weak until
about 2350 UTC. Given that little information on storm
C was provided by the radar or the assimilation process,
the model did a good job in initiating storm C. Apart
from some error in propagation speed (a little too fast),
storm D is well predicted throughout the period by the
model. Both the observed and predicted low-level re-
flectivity of storm D show clear hook echo shapes.

Figure 3 shows the predicted wind vector and vertical

FIG. 2. (left) Observed reflectivity fields at 1.45° elevation of the Fort Worth radar (marked as KFWS) based on
level-II data, and (right) predicted reflectivity at the same elevation from the control experiment CNTLVR, at
15-min intervals from 0000 to 0100 UTC 29 Mar 2000. Major storm cells are marked by capital letters. Fort Worth
and Arlington are marked as dots in (b). Tarrant County is highlighted and about 50 km � 50 km in size. The
domain shown is about 200 km on each side, representing the portion of 3-km grid between 100 and 300 km in
east–west direction and from 60 to 260 km in north–south direction. The reflectivity contours are at 15, 30, 45, and
55 dBZ and the shaded contour interval is 5 dBZ. Counties around Fort Worth are marked in (a).

704 M O N T H L Y W E A T H E R R E V I E W VOLUME 134



vorticity fields from the control experiment at the sur-
face (left column) and 3 km MSL (approximately 2.8
km AGL, right column) at the same times as the re-
flectivity fields shown in Fig. 2. From the surface wind
field at 0000 UTC, strong and fairly isolated conver-

gence centers are indicated for storms A, B, and D (Fig.
3a). The gust fronts associated with the downdrafts of
storms A and B are still relatively weak at this time
while a much stronger downdraft is found to the north-
west of A, associated with a storm that is decaying.

FIG. 2. (Continued)
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Vertical vorticity associated with A is still weak at the
surface. In the flow field at 3 km MSL, however, a strong
vorticity maximum is found within storm A (Fig. 3b).

Fifteen minutes later, at 0015 UTC, the time of the
formation of the Fort Worth tornado, both predicted
storms A and B are enhanced significantly (Fig. 2d).
The location error of the maximum reflectivity center
of storm A is reduced significantly, to within 10 km of
the observed one (Figs. 2c and 2d). The predicted lo-
cations of B and C are also very accurate at this time.
Spurious storm C� remains and appears as a strong re-
flectivity center. Storm D moved east a little too fast in
the 15-min period, with the reflectivity core entering
Ellis County by this time. The wind fields exhibit a
strong convergence center and a weak vorticity center
at the surface (Fig. 3c) but a strong vorticity center at 3

km MSL (Fig. 3d) associated with A. The convergence
and vorticity centers related to storm B are also en-
hanced. A new spurious storm south of storm B is gen-
erated by collision of gust fronts from storms B and C
(Figs. 2d and 3c). These results show that the main
storm A is predicted with high low-level reflectivity and
strong midlevel rotation and approaches Fort Worth
city from the northwest. Despite some delay in the in-
tensification of low-level rotation in the forecast, it con-
tains clear indications of the potential of a tornado from
this cell.

In reality, an F2 tornado spawned from storm A
struck downtown Fort Worth from 0015 to 0030 UTC.
At 0030 UTC, the control forecast gives good indica-
tions, in both reflectivity and wind fields, of possible
tornadogenesis from storm A. The predicted reflectiv-

FIG. 3. Predicted wind and vertical vorticity fields at (left) the surface and (right) 3 km MSL from control
experiment CNTLVR corresponding to the times of Fig. 2. The domains shown are the same as in Fig. 2. The
capital letters in the left column are the positions of the observed storms.
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FIG. 3. (Continued)
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ity matches very well with observation (Figs. 2e and 2f).
The southern flank of the predicted storm is sweeping
through Fort Worth city consistent with the observa-
tions at this time. The weaker surface vorticity center
found in Fig. 3c earlier has developed into a strong
vorticity center by 0030 UTC, with a maximum value of
about 1.5 � 10�3 s�1 (note that the grid resolution is 3
km, which is very coarse for the estimation of vorticity
associated with tornadoes), and the maximum is lo-
cated almost right over Fort Worth (Fig. 3e). Colocated
with the vorticity maximum is also strong surface con-
vergence, indicating the presence of strong near-surface
updraft and associated vertical stretching. An isolated
maximum vorticity center within storm A is even better
defined at 3 km MSL (Fig. 3f) but is not as strong as it
was at 0015 UTC. The intensification of ground-level
vorticity and slight weakening of midlevel rotation sug-
gest shifting of strong rotation to the lower levels, which
typically occurs during tornadogenesis and in the later
life cycle of tornadoes (see, e.g., Davies-Jones et al.
2001). The development of this strong, well-organized,
deep vorticity column during the period that coincides
with the Fort Worth tornado indicates good fidelity of
the predicted storm, even though the model resolution
is much too coarse to produce flow on the scale of a
tornado or even the tornado’s parent vortex. Simula-
tions starting from the analyzed initial conditions but at
much higher resolutions are planned.

At 0030 UTC, storm B is also reproduced well by the
forecast as seen from the reflectivity field. The spurious
storm cell to its south found at 0015 UTC has merged
with storm B by this time. The vorticity center related
to storm B is much weaker than that of storm A at both
the surface and 3 km MSL. Predicted storm C covers
the area of observed storms C and C�, and there is no
identifiable surface vorticity center associated with it.
Predicted storm D is located northeast of the observed
one by about 10 km because of its faster northeastward
propagation. At this time, the main characteristics of
the storm cells A through D are all very accurately
predicted by the model, and the representations are an
improvement over that reported in Xue03 as well as
that of control experiment of Part I, which did not in-
clude radial velocity data.

At around 0045 UTC, the reflectivity core of storm A
has moved to eastern Tarrant County, near Arlington,
and a well-organized, deep, and stronger vorticity col-
umn is nearly colocated with Arlington (Figs. 2g,h and
3g,h), which indicates high potential of tornadogenesis
at this area. The surface maximum vorticity is now
2.4 � 10�3 s�1, even higher than earlier. The model
successfully predicts storm B’s decay and merger with
storm A around this time. The predicted storm C lags

behind the observed one by nearly 30 km and does not
merge with storm A as the real one did. The forecast for
storm D matches the observed radar echoes well. At
the surface, the northwest side of outflow of storm D is
approaching storm A located to its northwest, which
probably contributed to the weakening of storm A and
its subsequently merged storm.

In reality, storms A, B, and C merged together and
formed storm F, which produced the Arlington tornado
at 0100 UTC 29 March (Fig. 2i). The model has some
success at forecasting this process, as the predicted
storms A and B did merge and storm C’s reflectivity
field became combined with A and B’s although its core
remain separate at 0100 UTC. Further, the predicted
reflectivity maximum center has a displacement to the
northeast (Fig. 2j). Predicted storm D remains strong,
as the observed one, and again is located slightly ahead
of the observed storm. At the surface, maximum vor-
ticity centers associated with the storms A and D are
still clearly identifiable (Fig. 3i), but the one associated
with the storm A is weaker with the former. At 3 km
MSL, the disturbances and vorticity that appear to be
associated with the decaying storm C may be too strong
(Fig. 3j); we do not have good data to verify their fi-
delity, however.

Based on the results of our control experiment, it can
be concluded that starting from an initial condition that
assimilates WSR-88D level-II data together with con-
ventional observations through the 3DVAR and cloud
analysis, the model is able to predict the timing, loca-
tion, and key characteristics of convective storms with
good accuracy. The accurate prediction of the develop-
ment of a strong, well-organized, deep vorticity column
associated with the tornadic storm in a period spanning
the two observed tornado outbreaks is especially en-
couraging. Our results also show that when several
storms are spaced closely, complex storm interactions
can occur, through, for example, gust front collisions.
Spurious cells can be triggered when such interactions
are incorrectly or inaccurately handled by the model.
Such a situation requires an accurate analysis of all as-
pects of the convective storms.

b. Forecasting results of experiment using
reflectivity only

In this subsection, the forecasting results from ex-
periment CNTLZ, which has been discussed in Part I,
are compared to those of CNTLVR. The two experi-
ments differ only in that CNTLZ does not include ra-
dial velocity data.

The predicted reflectivity fields from experiment
CNTLZ, as shown before, are plotted in Fig. 4 at 15-
min intervals for a half hour starting from 0015 UTC 29
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March. The predicted wind and vorticity fields at the
corresponding times are given in Fig. 5 for the surface
(left column) and 3 km MSL (right column).

During the period shown, CNTLZ also reproduced
the main characteristics of storm A quite successfully
(cf. Figs. 2c,e,g and 4) although the location errors are
somewhat larger than that of CNTLVR from 0030 to
0045 UTC (cf. Figs. 2d,f,h and 4). Both experiments
also give similar forecast for storm D and spurious
storm C�. Predicted storm B in experiment CNTLZ
appears as a large area of weak reflectivity at 0015 UTC
and disappears after that time. Instead of merging with
storm B, storm A is followed by and merges with a
strong spurious storm A�, which is triggered by a colli-
sion of the gust fronts from storms A, B, and C� at 0015
UTC (Fig. 5a). The forecast of CNTLZ also misses ob-
served storm C in this period. Overall, the forecast of
CNTLZ is not as good as that of CNTLVR and the
differences clearly demonstrate the positive impact of
assimilating additional radial velocity data in CNTLVR.

This positive impact can be seen more clearly in the
wind and vorticity field. The well-organized, deep col-
umn of strong vorticity that develops near Fort Worth
and moves to Arlington during this half hour in the
forecast of CNTLVR does not exist in the forecast of
CNTLZ (Figs. 3 and 5). CNTLZ does not develop a
strong surface vorticity center within Tarrant County,
and the 3 km MSL vorticity maxima found at 0015 and
0030 UTC have larger displacement errors. By 0045
UTC the 3 km MSL vorticity maximum is considerably
weaker than the one depicted in the control experi-
ment. The differences in morphology of these features
indicate that the forecast of the wind fields has been
improved significantly by assimilating radial velocity
data via our 3DVAR analysis.

The equitable threat scores (ETS; Schaefer 1990) of
predicted reflectivity at the 1.45° elevation for the 5-,
15-, 30-, and 45-dBZ thresholds are plotted in Fig. 6.
From the figure, we can see a tendency for the scores to
decrease quickly in the first hour of forecast then in-
crease in the second hour for all four thresholds. This U
shape of ETS curves for all cases is due to the imbal-
ance among different variables, especially for wind and
temperature, in the initial analysis. During the initial
period of forecast, significant adjustments occur in the
model among the cloud variables for them to better fit
the model dynamics and physics. Also, during the pe-
riod, the reflectivity is overpredicted and some spurious
cells are created. Thus, the ETS decreases during this
adjustment period. After the initial adjustment, the
main characteristics of observed cells are better cap-
tured in the forecast and the ETS score increases. The
reason of the lowest score at 0000 UTC is complex. It is

FIG. 4. Similar to right column of Fig. 2, except that they are
predicted reflectivity from experiment CNTLZ at 15-min intervals
from 0015 through 0045 UTC 29 Mar 2000.
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FIG. 5. Similar to Fig. 3, except that they are predicted wind and vorticity fields from experiment CNTLZ at
15-min intervals from 0015–0045 UTC 29 Mar 2000.
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related to the limitations of both analysis procedure
(the ability of generating balanced initial fields) and
model (the ability to establish a suitable balance quickly).

It can be seen that all scores in the 45-dBZ threshold
are better for CNTLVR than for CNTLZ from a little
after 0000 to 0100 UTC (Fig. 6d), in agreement with the
earlier subjective assessment of the forecast of cell cen-
ters. The improvement of CNTLVR over CNTLZ for
other thresholds are not as evident during this hour,
although the score is generally better at 0100 UTC,
while the score is lower at 0045 UTC for the other three
thresholds (The scores for experiment NoDiv will be
discussed later). Our subjective analysis does suggest
that the forecast of CNTLVR is superior at 0045 UTC,
however, and the high threshold (45 dBZ) ETS con-
firms this. The less than clear-cut signal from the ETS
suggests that the ETS should be used carefully for
evaluating forecasts containing discrete features, for
which propagation and mispositioning errors can have a
significant impact on the calculated scores.

c. Forecasting results of experiment using radial
velocity only

In the previous subsection, we found that radial ve-
locity data, when used (via the 3DVAR analysis) to-

gether with reflectivity data (via the cloud analysis), can
positively impact a storm forecast. In this subsection,
we present results from experiment VR in which the
cloud analysis with reflectivity data is not performed,
while radial velocity is assimilated the same way as in
control experiment CNTLVR.

The predicted reflectivity field from experiment VR
mapped to the elevation 1.45° is plotted in Fig. 7 at 0030
UTC 29 March, which is in between the times of the
two tornadoes. Compared to the observed reflectivity
(Fig. 2e), it can be seen that experiment VR completely
failed to predict storm cells around Fort Worth (Fig. 7).
There are two storm cells to the southwest of Tarrant
County and they originated from the 9-km forecast that
was used as the background for the initial 3-km analysis
at 2200 UTC. The storms do not match the observed
reflectivity, indicating a failure of forecast to build and
support storm cells in a short-term forecast. Still, some
positive impact of assimilating radial velocity data can
be found during and shortly after the assimilation
cycles. The fields of VR show weak reflectivity centers
to the northwest of Fort Worth at the end of assimila-
tion cycles. They decay, however, soon after the fore-
cast period begins (not shown).

The above results tell us that assimilating the radial

FIG. 6. Equitable threat scores of predicted reflectivity for the (a) 5-, (b) 15-, (c) 30-, and (d) 45-dBZ threshold
values from experiments CNTLVR, CNTLZ, and NoDiv.
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velocity alone via the current 3DVAR procedure is far
from enough to create a properly balanced storm in
this case. This is not very surprising because of the
limited availability of radial velocity data from a single
radar, and the lack of strong, reliable link between
radial velocity data with other model variables, par-
ticularly the buoyancy. More sophisticated equation
constraints that better couple model state variables to-
gether or flow-dependent background error covari-
ances should help. The former is true with four-dimen-
sional variational data assimilation (4DVAR) and the
latter with the ensemble Kalman filter method. Tong
and Xue (2005) found with observing system simulation
experiments (OSSE) that radial velocity has a greater
positive impact than reflectivity when assimilated using
ensemble Kalman filter method for a simulated super-
cell storm. Radial velocity also plays a key role in
4DVAR assimilation work as discussed by Sun and
Crook (1997).

Based on the above results, we conclude that the
assimilation of both radial velocity and reflectivity data
from a single Doppler radar via an inexpensive inter-
mittent assimilation procedure that involves the
3DVAR and cloud analyses is effective to build preex-
isting storms in a nonhydrostatic model at a marginally
storm resolving 3-km resolution. The forecast starting
from the assimilated initial condition is able to capture
most of the key characteristics of the observed storms
for a 2-h period. Although reflectivity data are found to
have a greater positive impact on the storm forecast
than radial velocity with the current analysis procedure,

the use of radial velocity along with reflectivity does
improve the quality of forecast. The impact of the radial
velocity assimilation was most evident in the strong
low-level vorticity centers associated with the expected
tornadogenesis.

The possible reason for the smaller impact of radial
velocity data is that the initial thermal, moisture, and
cloud field disturbances introduced by the reflectivity
can sustain during forecast and induce corresponding
changes in wind field but initial wind disturbances from
radial velocity disperse quickly in the form of acoustic
waves in the absence of proper balances with other
fields and among the three wind components them-
selves.

d. Comparison of assimilation results

To understand the above forecast results further, the
impact of assimilating radar observation on the assimi-
lated initial conditions are examined here. The vertical
velocity, w, fields at 5 km MSL from the assimilation
output of experiments CNTLVR, CNTLZ, and VR are
plotted in the left column of Fig. 8, while the corre-
sponding cross section of w along a line through storms
A and B are plotted in the right column of the same
figure.

At the end of the assimilation period, the strong,
isolated updraft centers related to storms A and B
are well established in both experiments CNTLVR
and CNTLZ (Figs. 8a–d). When only radial velocity
data are analyzed (experiment VR), the updrafts are
much weaker (Figs. 8e and 8f). Starting from these
initial conditions, the forecasts of CNTLVR and
CNTLZ are expected to be better. Still, for experiment
VR, the updrafts are colocated with the observed
cells, indicating that the 3DVAR analysis of radial ve-
locity does add useful storm information into the initial
fields.

Comparing CNTLVR and CNTLZ (Figs. 8a–d), the
updrafts of CNTLZ are much stronger than those of
CNTLVR. This indicates that the 3DVAR analysis of
radial velocity data acts to constraint the magnitude of
updraft. In CNTLVR, the updrafts of storms A and B
are dominant and show some hook shape on their
southern flank, while in CNTLZ much stronger up-
drafts exist, with the strongest one being associated
with a storm north of storm A. The radar observations
indicate that storms A and B are at their early stage of
development while the cells north of them are in a de-
caying stage. This suggests that the analysis of radial
velocity data correctly improves the relative strength
and structure of the cells in the initial condition and
contributes to the improvement of forecast.

FIG. 7. Similar to Fig. 2, except that it is predicted reflectivity
field from experiment VR at 0030 UTC 29 Mar 2000.
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Next, we will examine various formulations of the
mass divergence constraint.

e. Experiments on mass divergence constraint

All of the above experiments that assimilate radial
velocity data use a two-dimensional mass divergence as

a weak constraint. To better understand the impact of
the divergence constraint, five additional experiments,
namely, NoDiv, Div2Da, Div2Db, Div3Da, and
Div3Db, are conducted. For brevity, we mainly present
the results of these experiments at 0030 UTC 29 March,
corresponding to 1.5-h forecast time. The predicted re-

FIG. 8. (a), (c), (e) The vertical velocity fields at 5 km MSL and (b), (d), (f) cross section of vertical velocity
along the line in (a) from the assimilation output of experiments CNTLVR, CNTLZ, and VR.
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flectivity mapped to the same 1.45° radar elevation of
the KFWS radar is plotted in Fig. 9 for CNTLVR and
the above five experiments. The corresponding surface
and 3 km MSL wind and vorticity fields are plotted in
Fig. 10. The ETS scores for reflectivity for these experi-
ments are plotted in Figs. 11 and 12, together with those
for CNTLVR. The ETS scores for NoDiv are also plot-
ted in Fig. 6 instead for easier comparison with those of
CNTLVR and CNTLZ.

1) IMPORTANCE OF DIVERGENCE CONSTRAINT

Experiment NoDiv in which mass divergence con-
straint is not imposed at all is designed to separate the
effect of mass divergence from that of radial velocity
data. Comparing Fig. 9b with the corresponding obser-
vation in Fig. 2e, it is seen that storm A is overpredicted
by NoDiv in size and its location has a southward dis-
placement while storm B is completely missed. Storm D
is located too far to the east, by approximately 30 km,
and it is trailed by a spurious, though weaker, cell to its
west. Another spurious cell, labeled D� in the figure, is
found to the north-northeast of cell D. It is labeled D�
because it is a cell that split from storm D in the first
half hour of forecast (not shown). As shown in Fig. 9a
for this time and discussed in detail for other times
earlier, the forecast of CNTLVR is clearly more accu-
rate than that of NoDiv. The ETS of NoDiv for the
45-dBZ threshold are lower than both CNTLVR and
CNTLZ during the important period between 0000 and
0100 UTC (Fig. 6d).

The above comparisons demonstrate the importance
of including mass divergence constraint when analyzing
radial velocity data. This is because, as discussed ear-
lier, a single-Doppler radar observes wind along the
radial direction only. The cross-beam components can-
not be determined by the 3DVAR analysis without ad-
ditional information that links the three components.
Without any constraint, 3DVAR tends to make adjust-
ments of background winds along the radial direction
only, leaving the other components essentially un-
changed. The inclusion of a mass divergence constraint
forces the other wind components to respond to
changes along the radial direction. Further, large am-
plitude acoustic oscillations are found in the time series
plots of surface pressure in NoDiv (not shown). Impos-
ing the mass divergence constraint helps control such
noise. Treating the constraint as a weak constraint gives
the system necessary flexibility, as discussed for dual-
Doppler analysis by Gao et al. (1999). In the case of
dual-Doppler wind analysis, two of the three wind com-
ponents can be determined while the mass-continuity
equation gives the third, yielding an easier problem
than we have here.

2) SENSITIVITY TO WEIGHTING COEFFICIENT OF

DIVERGENCE CONSTRAINT

The sensitivity of storm forecast on weighting coef-
ficient, �c, of the mass divergence constraint in the cost
function is studied through experiments Div2Da and
Div2Db in which �c is half or double the value of
CNTLVR (Table 1), respectively. In the 1.5-h forecasts
of these three experiments (Figs. 9a,c,d), the storms
show a similar general pattern with several differences
in the fine structures. First, storms A and B in experi-
ment Div2Db are not separate as in the other two ex-
periments and in the real world. Second, the maximum
reflectivity center of storm A in Div2Db has greater
displacement errors. Third, storm D in Div2Da and
Div2Db has a greater eastward displacement error than
in CNTLVR. Although the pattern comparison shows
that the forecast of experiment CNTLVR is somewhat
better than that of Div2Da and Div2Db at this time, the
latter achieved generally better ETS (Fig. 11). For the
45-dBZ threshold, Div2Db outperforms the other two
at 0030 UTC, but overall, the scores of the three are
similar. In general, it appears that the analysis and fore-
cast are not very sensitive to the coefficient of the di-
vergence constraint for this case.

3) EFFECTS OF DIVERGENCE CONSTRAINT

FORMULATIONS

In section 2c, we illustrated the problem with using a
3D mass divergence constraint on a grid with large as-
pect ratios. In such a situation, the vertical part of the
mass divergence dominates the wind adjustment so that
horizontal wind components are little adjusted. This is
the main reason why a 2D mass divergence constraint is
used in all the earlier experiments. It should be pointed
out, however, the 2D mass-divergence constraint is not
really physical for convective-scale flows, which can ex-
hibit significant horizontal divergence beneath strong
updrafts. To study this problem further, two experi-
ments employing 3D mass divergence constraint are
performed. Experiment Div3Da uses different weight-
ing coefficients for the horizontal and vertical parts of
the 3D mass divergence constraint, while experiment
Div3Db uses the same weighting coefficient for both
parts, which is effectively a true 3D mass divergence
constraint. The exact values of the weighting coeffi-
cients are listed in Table 1.

As we expected, experiment Div3Db gives very simi-
lar forecast for main storm cells at 0030 UTC as experi-
ment NoDiv (Figs. 9b and 9f) because almost all wind
adjustment were applied to the vertical velocity, and
the adjustment is expected to be one order of magni-
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FIG. 9. Similar to Fig. 2, except that they are predicted reflectivity fields from experiments (a) CNTLVR, (b)
NoDiv, (c) Div2Da, (d) Div2Db, (e) Div3Da, and (f) Div3Db, at 0030 UTC 29 Mar 2000.
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tude smaller (because of large aspect ratio) than those
of the horizontal winds for the 3D mass divergence
constraint to be satisfied. The ETS of Div3Db and
NoDiv shown in Fig. 12 are also similar for most of the
times and threshold values, consistent with our subjec-
tive evaluation.

Experiment Div3Da decreases the weighting coeffi-
cient for the vertical divergence by a factor of 10 com-
pared to CNTLVR or the horizontal term in Div3Da.
Doing so decreases the effect of vertical velocity ad-
justment, thereby giving greater adjustments to the
horizontal winds. The forecast reflectivity field plotted
for Div3Da in Fig. 9 looks similar to that of Div2Db,
and is better than that of Div3Db, indicating the in-
creased role of adjustments to horizontal wind fields.

The ETS of experiment Div3Da for the 45-dBZ thresh-
old are in between those of experiments CNTLVR and
NoDiv (Fig. 12d).

The surface and 3 km MSL wind and vorticity fields
from the above five experiments, (i.e., NoDiv, Div2Da,
Div2Db, Div3Da, and Div3Db) are plotted in Fig. 10,
and they can be compared to the corresponding times
of CNTLVR in Fig. 3. Interestingly, all five experi-
ments predicted a well-defined column of high vorticity
over Fort Worth just as in experiment CNTLVR, but
their shape and intensity differ somewhat. However,
considering the fact that the forecast with no radial
winds (experiment CNTLZ) failed to produce this high-
vorticity column, we can credit the radial velocity for
the formation of this mesocyclone.

FIG. 10. Similar to Fig. 3, except that they are predicted wind and vorticity fields from experiments NoDiv, Div2Da, Div2Db,
Div3Da, and Div3Db, at 0030 UTC 29 Mar 2000.
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FIG. 10. (Continued)
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4) RESULTS OF ASSIMILATION FROM DIVERGENCE

CONSTRAINT EXPERIMENTS

The vertical velocity, w, fields at 5 km MSL from the
assimilation output of experiments CNTLVR, NoDiv,
Div2Da, Div2Db, Div3Da, and Div3Db are plotted in
Fig. 13. Although the strengths of updrafts vary signifi-
cantly among the different experiments, the updrafts of
storms A and B are dominant when compared to other
updraft centers in the same experiment. Also, the up-
draft of storm A shows two centers at this time in most
of the experiments, which reflects the splitting process
of storm A in this stage just as observed. These features
indicate that the analysis of radial velocity data can add
useful information to the intrastorm wind fields and
explain why the six experiments including radial veloc-
ity data produce a stronger low-level vorticity center
near the location and time of the Fort Worth tornado.

From Fig. 13, the effects of the mass divergence con-
straint in reducing the horizontal divergence and up-
draft intensity can also be clearly seen. Different from
the forecast, the strength of the initial updraft is signifi-
cantly affected by the weighting coefficients in the mass
divergence constraint (Figs. 13a–d). Again, the similar-

ity between the updrafts of NoDiv and Div3D indicates
the problem of applying a 3D constraint on a grid with
large grid aspect ratios (Figs. 13b and 13f).

In summary, we found in this section that the proper
implementation of a mass divergence constraint in the
3DVAR analysis increases the positive impact of radial
velocity data on the thunderstorm analysis and forecast.
But in terms of the predicted wind fields, the differ-
ences due to different divergence formulations are
much less than the impact of adding radial velocity. In
our case of large grid aspect ratios, especially at the low
levels, a 2D mass divergence constraint or a 3D formu-
lation with a small coefficient for the vertical compo-
nent is found to work most effectively.

5. Summary and discussion

In this second part, the impact of level-II WSR-88D
radial velocity data on the prediction of a cluster of
tornadic thunderstorms is studied. A similar assimila-
tion and forecast procedure as used in Part I is applied
to the 28 March 2000 Fort Worth tornado case. Radial
velocity data are used in a 3DVAR analysis that con-

FIG. 11. Same as Fig. 6 but for experiments CNTLVR, Div2Da, and Div2Db.
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tains a mass divergence constraint in the cost function,
and reflectivity data are assimilated through a complex
cloud analysis procedure.

Results from a total of eight 3-km experiments, which
examine the use and impact of level-II radial velocity
data from the KFWS radar, are discussed. The results
demonstrate that the ARPS 3DVAR is capable of suc-
cessfully analyzing observations from different sources,
including those from radiosonde (available at 1800
UTC), wind profiles, surface stations, and Doppler ra-
dars. Combined with intermittent assimilation cycles,
positive impact of radial velocity data is obtained for
the forecast of a cluster of thunderstorms.

The best prediction is obtained when both reflectivity
and radial velocity data are assimilated. The ARPS
model is able to predict individual storm cells on the
3-km grid up to 2 h into the prediction, and the super-
cell characteristics of the storm that spawned two indi-
vidual tornadoes are well predicted, with timing errors
of less than 15 min, and location errors of less than 10
km at the time of the tornadoes.

The comparisons of data denial experiments show
that reflectivity data have a greater positive impact on
the storm forecast than radial velocity data using the

current 3DVAR and cloud analysis procedure, while
the use of radial velocity along with the reflectivity via
the cloud analysis does incrementally improve the
storm forecast, especially in terms of the strong low-
level vorticity centers associated with the tornadogen-
esis. When radial velocity (in addition to conventional
data) is used without reflectivity, the model fails to
forecast nearly all storms around Fort Worth. The small
impact of using radial velocity alone is related to the
limitation of the current 3DVAR analysis procedure,
which does not make use of radar scans at multiple
times and uses only a simple mass divergence constraint
that does not solve the underdeterminedness problem
for single-Doppler wind analysis. Specifically, the lack
of buoyancy perturbations associated with the ongoing
convection limits the positive impact on the forecast.
This is overcome by the cloud analysis scheme, which is
effective in sustaining the model storms.

It is also found that the use of a mass divergence
constraint in the 3DVAR analysis increases the positive
impact of radial velocity data on the storm forecast.
This constraint acts to couple three wind components
together during the analysis. Without the constraint,
the radial velocity data tends to create too many hori-

FIG. 12. Same as Fig. 6 but for experiments CNTLVR, Div3Da, Div3Db, and NoDiv.
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zontal discontinuities or small regions of horizontal di-
vergence; the mass divergence constraint, though closer
to 2D in formulation, helps smoothing out the small-
scale features while keeping larger-scale divergence
little affected. The divergence at larger scales was ben-
eficial to the support of existing convection.

The rather good forecast of the tornadic thunder-
storm in the control experiment shows that a high-
resolution model like ARPS together with an adequate
system that assimilates WSR-88D level-II data is able
to initialize preexisting thunderstorms and predict them
with reasonable accuracy on the cell-by-cell basis for 2

FIG. 13. The vertical velocity fields at 5 km MSL from the assimilation output of
experiments CNTLVR, NoDiv, Div2Da, Div2Db, Div3Da, and Div3Db.
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to 3 h. The 3-km resolution used here is reachable op-
erationally in the near future, over large enough do-
mains. The need to assimilate radar data every or every
other radar volume scans (as done in this study) may
place a significant burden on operational systems. For
our future studies, we will investigate the impact of
assimilation frequency on the analysis and forecast. We
also point out that the 3DVAR-based procedure used
in this study is no more expensive than the ADAS-
based procedure used in Xue03.

Our conclusions here are mainly based on this single
case. Assimilation and forecast experiments with more
cases and over extended periods will be valuable in
arriving at statistically more reliable conclusions. Such
studies are planned. Still, we believe our case study
reported here represents an important step toward the
eventual goal of effective operational implementation.
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