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Abstract Planetary boundary layer (PBL) structure over the ocean and the model capability to simulate
such structure are less well‐understood than their counterparts over land. In this study, observations and WRF
simulations are examined to study the boundary layer structure over the Southern Ocean, focusing on the
coupling between the oceanic boundary layer and the cloud layer above. Based on the lower tropospheric
vertical profiles and cross‐sections, three cloud‐boundary layer coupling modes are identified including a
coupled mode with a weak positive surface heat flux (type 1), and two decoupled modes in the presence of either
a negative surface heat flux driving a shallow stable boundary layer (type 2) or a strong positive surface heat flux
(type 3). Numerical simulations are conducted for representative cases of each mode using the conventional
YSU PBL scheme without and with the cloud‐induced top‐down mixing option (referred to as YSUtopdown), as
well as the MYNN and the MYNN eddy‐diffusivity mass‐flux scheme (MYNN‐EDMF) that adopts a holistic
treatment of mixed‐layer thermals and shallow convective clouds. The MYNN‐EDMF scheme offers the best
representation of the decoupled type 3 mode where its capability to simulate different vertical extents of local
mixing and nonlocal mass flux is found to be essential. Two key parameters in MYNN‐EDMF dictating shallow
cloud formation are also identified. The YSUtopdown scheme develops a deeper boundary layer than the YSU
scheme and exhibits more consistency with observations for the coupled type 1 mode. For the decoupled type 2
mode, all four schemes perform similarly well.

Plain Language Summary While the continental planetary boundary layer (PBL) structure and
model capability to simulate it are relatively well understood, PBL structure and model performance over
oceans in the presence of clouds are less known. In this study, observational data and model simulations are
examined to study the boundary layer structure over the Southern Ocean, focusing particularly on the coupling
between the surface‐based boundary layer and a single cloud layer above. Three cloud‐boundary layer coupling
modes over the Southern Ocean are identified: 1. Coupled cloud‐boundary layer in the presence of weak surface
positive flux; 2. Decoupled cloud‐boundary layer in the presence of surface negative flux; and 3. Decoupled
cloud‐boundary layer in the presence of strong surface positive flux. Model simulations were conducted for
selected representative cases using both conventional and mass‐flux type PBL schemes. The advantages of each
scheme are identified for each coupling mode and the root causes are attributed to specific model treatments.
The result underscores the advantages of mass‐flux PBL schemes in capturing complex cloud‐boundary layer
interactions with strong surface heat flux, as commonly observed in regions influenced by cold air advection.
Such an examination helps to understand model performance and motivates future improvements in Earth
system models.

1. Introduction
The planetary boundary layer (PBL) is the lowest part of the atmosphere that is directly influenced by the presence
of the earth surface and responds to surface forcings within a short time scale through turbulent mixing. PBL
flows exhibit prominent diurnal variations with the daytime and nighttime PBLs often referred to as the
convective boundary layer (CBL) and the stable boundary layer (SBL), respectively. Turbulent processes in the
PBL dictate the exchange of energy, moisture, and trace gases between the earth surface and the atmosphere, and
the subsequent transport and dispersion, playing an essential role in modulating the ambient weather, climate, and
air quality. Numerical Weather Prediction (NWP) models normally parameterize turbulent mixing in the
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atmosphere (both within the PBL and the free troposphere) using a PBL scheme, since their spatial resolutions are
usually too coarse to resolve the energetic turbulent eddies. PBL schemes are therefore critical for reproducing the
bulk boundary layer structures and vertical profiles in the whole atmospheric column, as well as their subsequent
effects on weather and air quality simulations. Uncertainties associated with the PBL schemes remain one of the
main sources of inaccuracies in weather and air quality simulations. Many studies (Garcia‐Diez et al., 2013; Hu
et al., 2010, 2013; LeMone et al., 2013; Nielsen‐Gammon et al., 2010; Shin & Hong, 2011; Xie et al., 2012) have
evaluated the performance of various PBL schemes, with most of them focusing on continental clear‐sky PBL. In
comparison, much less is known about the performance of PBL schemes in the presence of clouds and over the
ocean (Angevine et al., 2012; Huang et al., 2013; Yang et al., 2019).

Boundary layer and cloud processes are strongly coupled (Deardorff, 1980; Ghate et al., 2015; Lock et al., 2000;
Randall, 1980; Yamaguchi & Randall, 2012). The former plays a critical role in the development and dissipation
of boundary layer clouds (Yang et al., 2019), while cloud processes may also feedback on the mixed layer
structure (van Stratum et al., 2014) as well as boundary layer turbulence (Hu et al., 2011). Cloud top radiative and
evaporative cooling can significantly reduce the cloud top temperature and generate negative buoyancy (Finger &
Wendling, 1990; Morrison et al., 2011; Pinto, 1998; Solomon et al., 2011; Wang et al., 2001; Zuidema
et al., 2005), thus inducing upside‐down boundary layers, in which turbulence is dominantly produced aloft and
transported downward (Banta et al., 2006; Mahrt & Vickers, 2002), as opposed to the conventional boundary
layer where turbulence is mainly generated near the surface and transported upward. Cloud‐induced upside‐down
boundary layers can occur over both mid‐latitude (Albrecht et al., 1985; Angevine et al., 2012; Wilson &
Fovell, 2018) and high‐latitude regions (Hu et al., 2011). The cloud‐top‐cooling‐driven turbulence can be
essential to the maintenance (Lilly, 1968), growth and dissipation of clouds (Yang & Gao, 2020). Excessive
turbulence at the cloud top may also heat and dry the cloud layer too much, leading to the early dissipation of the
cloud (Yang et al., 2019). Whether PBL schemes can handle these boundary layer and cloud processes appro-
priately remains to be examined.

Conventional PBL schemes often solve equations for the first moment only (first‐order closure) or simultaneously
solve equation of turbulence kinetic energy (one‐and‐a‐half order closure). They can be generally classified into
local and nonlocal schemes (Arya, 2001; Stull, 1988). Local schemes estimate turbulent fluxes at each grid point
in space using the values and/or local gradients of atmospheric variables at the same point, whereas nonlocal
schemes include turbulent fluxes based on the quantities of atmospheric variables and their gradients at multiple
levels in space (Cohen et al., 2015; Hu et al., 2010). Nonlocal turbulent fluxes are usually parameterized using a
counter‐gradient term (Deardorff, 1966, 1972; Priestley & Swinbank, 1947; Shin & Hong, 2015) or a transilient
matrix (Pleim, 2007) with conventional schemes. In CBL where turbulent fluxes are dominated by large eddies
that act across many model levels in the vertical, the assumption of local schemes that fluxes depend only on local
values and local gradients becomes invalid (Hu et al., 2010). Traditional local schemes (e.g., the Mellor–
Yamada–Janjić (MYJ, Janjic, 1990) or the quasi‐normal scale elimination (QNSE, Sukoriansky et al., 2005)) tend
to underestimate temperature and growth of CBL, while non‐local schemes, such as the asymmetrical convective
model, version 2 (ACM2, Pleim, 2007), the Yonsei University (YSU, Hong et al., 2006) scheme and the more
recently updated Mellor–Yamada Nakanishi and Niino (MYNN, Nakanishi & Niino, 2006) scheme simulate
deeper and warmer continental CBLs than MYJ and QNSE (Bright & Mullen, 2002; Clark et al., 2015; Coniglio
et al., 2013; Draxl et al., 2014; LeMone et al., 2013; Shin & Hong, 2011; Xie et al., 2012). In addition, nonlocal
PBL schemes can reproduce the slightly stable upper CBL with proper treatment/partitioning between local and
nonlocal fluxes, while local schemes often predict too thick a superadiabatic layer near the surface and fail to
predict a slightly stable upper CBL (Hu et al., 2019; Wang et al., 2016). Whether these conclusions derived over
continental cloud‐free PBL still apply to cloud‐topped boundary layers is unknown. To improve the represen-
tation of cloud‐topped boundary layers by the YSU scheme, Wilson and Fovell (2018) added extra mixing and
entrainment induced by cloud‐top cooling in YSU (the resulting scheme is referred to as YSUtopdown). YSU-
topdown appears advantageous in reproducing stratocumulus clouds (Lee et al., 2018) and near‐surface clouds
(Yang et al., 2019), but its performance is not widely examined yet.

Some recent PBL schemes seek a unified representation of both boundary layer and in‐cloud turbulence, instead
of separate parameterizations by PBL and cumulus schemes (Ching, 1981; Cotton et al., 1995; Golaz et al., 2002;
Larson et al., 2012). Besides a more consistent parameterization of atmospheric turbulence in general, the unified
treatment also reconciles the coupling between the PBL and cumulus schemes at the cloud base (Zheng, Rose-
nfeld, & Li, 2021), and is advantageous for modeling constituent transport from the boundary layer to the free
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atmosphere through cloud venting (Ching, 1981; Cotton et al., 1995; Golaz et al., 2002; Larson et al., 2012).
Notably, a class of schemes known as the eddy‐diffusivity mass‐flux (EDMF) schemes synthesize the gradient‐
diffusion component from a PBL scheme with the mass flux model from a cumulus scheme to form a unified and
holistic representation of boundary layer and shallow cumulus convection (Angevine, 2005; Siebesma
et al., 2007; Soares et al., 2004; Suselj et al., 2019; Tan et al., 2018), and the approach has also been extended to
include deep convection (Suselj et al., 2022). Within the PBL, the mass flux term replaces the traditional counter‐
gradient correction term (Deardorff, 1972) to realize nonlocal transport by large eddies. A recently developed
MYNN‐EDMF scheme by Olson, Kenyon, Angevine, et al. (2019) is shown to be advantageous in the simulation
of shallow‐cumulus‐topped boundary layer (Angevine et al., 2018), which remains a challenge in both NWP and
climate models.

The Southern Ocean sits between the Antarctic ice sheet and the rest of the world, and is often covered by low
clouds including stratocumulus and cumulus clouds (Jensen et al., 2000; Mace & Protat, 2018b; Muhlbauer
et al., 2014). The majority of clouds over the Southern Ocean are quite tenuous and nonprecipitating (Mace &
Protat, 2018a). Extratropical cyclones develop in this region frequently (Simmonds et al., 2003), which produce
both baroclinic and convective (further divided into closed, open, and disorganized mesoscale cellular convec-
tive) clouds in different periphery areas of cyclones and associated fronts (Ahn et al., 2017; Lang et al., 2022;
McCoy et al., 2017; Papritz et al., 2015). Thus, the macrophysics and microphysics of the clouds over the
Southern Ocean show a strong horizontal variability on the scales of tens of kilometers (e.g., Huang et al., 2015;
Lang et al., 2022; McCoy et al., 2017). The cloud cover over the Southern Ocean plays an important role in
regulating the global climate due to its strong negative shortwave radiative effect (Hyder et al., 2018; Kay
et al., 2016; Trenberth & Fasullo, 2010; Zelinka et al., 2020). However, most general circulation models (GCMs)
and NWPmodels produce large biases in clouds and shortwave radiation when compared to satellite observations
(Bender et al., 2017; Bodas‐Salcedo et al., 2008, 2014, 2016; Huang et al., 2015; Lang et al., 2018, 2021;
Schuddeboom et al., 2019; Williams et al., 2013). Uncertainties in reproducing the interactions between the
boundary layer and clouds are at least partially responsible for the biases (Cheng & Xu, 2011; Field et al., 2014;
Huang et al., 2014; Truong et al., 2020). Even though incremental model improvements for handling these
processes have been achieved, substantial uncertainties still remain (Bodas‐Salcedo et al., 2012; Furtado &
Field, 2017; Kay et al., 2016; Pelucchi et al., 2021; Ramadoss et al., 2024; Xu & Cheng, 2013). Three field
campaigns over the Southern Ocean during austral summer between late 2017 and early 2018 (McFarquhar
et al., 2021; Sanchez et al., 2023) collected comprehensive boundary layer data, providing a great opportunity to
examine the boundary layer‐cloud interaction and to evaluate model capability in reproducing such processes.

In this study, the Weather Research and Forecasting (WRF) model Version 4.5.2 (Skamarock et al., 2021;
Skamarock & Klemp, 2008) is used to perform simulations over the Southern Ocean (see Figure 1 for the spatial
coverage), focusing on three single cloud layer soundings/cases with different cloud‐boundary layer coupling
modes. The performance by four PBL schemes, including both conventional and mass‐flux type schemes, is
examined and explained.

The rest of this paper is organized as follows: In Section 2, observational data, model configurations, and the
numerical experiment design are described. In Section 3, cloud‐boundary layer coupling modes over the Southern
Ocean are first summarized, followed by the performance and root causes of PBL schemes to simulate different
cloud‐boundary layer coupling modes. The impact of two critical parameters on reproducing the cloud‐boundary
layer coupling modes is also discussed. Finally, Section 4 contains a summary of the main findings and discussion
of the significance and limitations of this study.

2. Data, Model Configuration and Numerical Experiment Design
2.1. In Situ and Remote Sensing Observations Used for This Cloud‐Boundary Layer Coupling Study

In situ soundings launched from two ships and released from one aircraft during three field campaigns over the
Southern Ocean during austral summer between late 2017 and early 2018 (McFarquhar et al., 2021; Sanchez
et al., 2023) are used to examine the cloud‐boundary layer structure. The three field campaigns are.

1. The Measurements of Aerosols, Radiation and Clouds over the Southern Ocean (MARCUS) field campaign
between 21 October 2017 and 23 March 2018, during which balloons were launched from the Australian
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Figure 1. (a) Spatial distribution of column integrated clouds in the first domain simulated by WRF with the MYNN‐EDMF
PBL scheme at 7 UTC on 18 February 2018, a case examined in detail in Figures 12–20. The one‐way nested second domain
boundary is marked. (b) Himawari‐8 satellite image at the same time retrieved from https://catalog.eol.ucar.edu/maps/
socrates.

Journal of Geophysical Research: Atmospheres 10.1029/2025JD043679

HU ET AL. 4 of 31

 21698996, 2025, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025JD

043679 by U
niversity O

f O
klahom

a, W
iley O

nline L
ibrary on [03/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://catalog.eol.ucar.edu/maps/socrates
https://catalog.eol.ucar.edu/maps/socrates


Antarctic supply vessel Aurora Australis as it transited between Hobart, Tasmania, Australia and the Antarctic
stations Mawson, Davis and Casey (Desai et al., 2023; Hu, Lebo, et al., 2023; Xi et al., 2022).

2. The Clouds Aerosols Precipitation Radiation and atmospheric Composition over the Southern Ocean
(CAPRICORN) campaign between 11 January to 21 February 2018, during which balloons were launched
over the ocean south of Tasmania from the Research Vessel (R/V) Investigator, an Australian Marine National
Facility.

3. The Southern Ocean Cloud Radiation and Aerosol Transport Experimental Study (SOCRATES) during 15
January to 26 February 2018, during which dropsondes were released from the NSF–NCAR Gulfstream V
(GV) aircraft that flew primarily north‐south transects from Hobart, Australia, to within approximately 650 km
of the Antarctic coast.

High‐quality profiles of temperature, water vapor, wind, and cloud layers (as indicated by ∼100% relative hu-
midity, RH) from these soundings (McFarquhar et al., 2021; Sanchez et al., 2023) are used for model evaluation
and classification of the cloud‐boundary layer coupling modes.

Remote‐sensing data sets from ship‐based radar and two satellites (the Cloud‐Aerosol Lidar and Infrared Path-
finder Satellite Observation (CALIPSO) and Himawari‐8) are used to determine cloud properties (e.g., coverage,
vertical distribution) for comparison against simulations. Reflectivity from the marine W‐band (95 GHz) cloud
radar (Lindenmaier et al., 2018) deployed on the Aurora Australis during the field campaign MARCUS
(McFarquhar et al., 2021) is used for examining cloud vertical distribution. Clouds over the Southern Ocean often
produce radar reflectivity less than − 20 dBZ (Mace & Protat, 2018a, 2018b; Noh et al., 2019). The CALIPSO
lidar data, 532 nm total (parallel + perpendicular) attenuated backscatter (Winker et al., 2010) is also used to
examine cloud distribution over the Southern Ocean region surveyed by the NSF/NCAR GV aircraft on 18
February 2018. Cloud liquid water path (LWP) during the daytime and cloud top temperature (CLTT) during
nighttime from Japan's new‐generation geostationary weather satellite Himawari‐8 (Smith & Minnis, 2020) are
used to examine cloud spatial distribution. LWP can be directly compared with simulated column‐integrated
cloud water. Given that the LWP retrieval requires satellite radiances at visible and shortwave infrared wave-
length channels (Wang et al., 2024), retrieved LWP is only reliable for clouds occurring during daytime. During
nighttime, only the CLTT derived from Himawari infrared channels is used.

2.2. Model Configurations

The boundary layer structure is first examined with soundings from the three Southern Ocean field experiments
and similar soundings/cases are grouped. The WRF model version 4.5.2 (Skamarock et al., 2021; Skamarock &
Klemp, 2008) is used to perform simulations with two one‐way nested domains using 15‐ and 3‐km horizontal
grid spacings centered on the Southern Ocean (see Figure 1 for domain coverage). A total of nine sounding cases
are examined (summarized in Figures 2–4), including 1 December 2017, January 10, 21–23 March 2018 detected
by the Aurora Australis from the MARCUS experiment, and 17–18 February 2018 detected by the RV Inves-
tigator/GV aircraft from the CAPRICORN and SOCRATES experiments. For 21–23 March 2018, the inner
domain is shifted east to ensure it can encompass the soundings from the Aurora Australis. The prevailing cloud
type over the area of investigations on these days are stratiform clouds or scattered shallow cumulus clouds, as
revealed by the Himawari‐8 satellite images and simulations (e.g., Figure 1). These cases are representative of
single‐layer clouds sampled during the three field campaigns. During these cases, the same boundary layer
structure stayed for at least 1–2 days. Thus, the models are more likely to reproduce such a boundary layer
structure than some fast‐evolving, short‐lived cases. The WRF simulations are initialized at 00 UTC of the
previous day of each sounding to allow at least 24‐hr model spin‐up before being evaluated against observations.
The nine sounding cases are categorized into three cloud‐boundary layer coupling modes (Hu et al., 2021) as
assembled in Figures 2–4 respectively and are described in Section 3. These cases are based on individual
soundings. Two soundings collected by NSF–NCAR GV aircraft dropsondes on 18 February 2018 are ∼700 km
apart. Three cases (1 December 2017; 10 January 2018; 18 February 2018) representing each mode are selected
for detailed analysis.

The WRF simulations use the ERA‐Interim data of 0.7° resolution (Dee et al., 2011) for initial and boundary
conditions, which follows previous studies focusing on boundary layer structures using the WRF model (Hu
et al., 2019; Huang et al., 2014; Lang et al., 2021). Given that our 15‐km grid spacing outer grid is rather large
(about 4,500 × 4,000 km2) and our time integrations are only two days, the solutions on the nested 3 km grid that
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Figure 2. Simulated and observed profiles of (left to right) RH, virtual potential temperature (θv), water vapor mixing ratio, and wind speed (WSP)/vectors for (top to
bottom) four coupled cloud‐boundary layers on 1 December 2017, 18 February 2018, 23 March 2018, detected by the Aurora Australis, R/V Investigator, NSF/NCAR
GV, and Aurora Australis respectively. Simulated PBL top is marked by a dashed line. Sounding latitude/longitude are marked at top‐right corner.
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we are most interested in are not very sensitive to the reanalysis data used to provide the lateral boundary con-
ditions. Both domains use 48 stretched vertical levels topped at 100 hPa with 17 layers in the lowest 1 km above
the surface to resolve boundary layer processes. For each case, four sensitivity experiments were conducted with

Figure 3. Simulated and observed profiles of (left to right) RH, virtual potential temperature (θv), water vapor mixing ratio, wind speed (WSP)/vectors for (top to bottom)
three decoupled cloud‐boundary layers in presence of surface negative sensible heat flux on 10 January 2018, 21 March, and 22 March 2018, detected by the Aurora
Australis. Simulated PBL top is marked by a dashed line. Sounding latitude/longitude are marked at top‐right corner.
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varied PBL schemes, while other physics parameterizations were kept the same, including the revised MM5
Monin‐Obukhov surface layer scheme (Jiménez et al., 2012), the Rapid Radiative Transfer Model for GCMs
(RRTMG) longwave and shortwave radiation scheme (Iacono et al., 2008), the Morrison microphysics scheme

(Morrison et al., 2009), and the scale‐aware Grell‐Freitas cumulus scheme
(Grell & Freitas, 2014) that is used on both the 15‐km outer domain and the 3‐
km inner domain for deep moist convection. Four PBL schemes are examined
in this study, including three conventional and one EDMF‐type schemes, that
is, the YSU scheme, YSU with cloud‐induced top‐down mixing (YSUtop-
down), the MYNN scheme, and the MYNN‐EDMF scheme which extends
the MYNN scheme by including a nonlocal mass flux term.

2.3. Parameter Sensitivity Experiments With MYNN‐EDMF

To understand the behavior of the mass flux treatment of MYNN‐EDMF,
additional parameter sensitivity experiments are conducted by varying two
key parameters in the mass flux treatment (summarized in Table 1). The two
parameters are identified based on previous studies and recommendation by
the MYNN‐EDMF developer (personal communication with J. Olson, Feb.
2023). In a previous study (Berg et al., 2021), the sensitivity of simulated
turbine‐height winds to MYNN‐EDMF parameters was examined.

Figure 4. Simulated and observed profiles of (left to right) RH, virtual potential temperature (θv), water vapor mixing ratio, and wind speed (WSP)/vectors for (top to
bottom) two decoupled cloud‐boundary layers in presence of surface positive sensible heat flux at 6 and 7 UTC on 18 February 2018, detected by NSF/NCAR GV
dropsondes. Simulated PBL top is marked by a dashed line. Sounding latitude/longitude are marked at top‐right corner.

Table 1
Configurations for Sensitivity Simulations With the MYNN‐EDMF PBL
Scheme Varying the Empirical Coefficient for the Fractional Entrainment of
Individual Plumes (cε) and Capping Height of Individual Convection
Plumes (hp)

MYNN‐EDMF simulations hp(m) cε(m s− 1)

Control 3,500 0.33

Experiment 2 500 0.33

Experiment 3 2,500 0.33

Experiment 4 4,500 0.33

Experiment 5 3,500 0.2

Experiment 6 3,500 0.55

Experiment 7 3,500 0.9
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Simulations in a fully developed convective boundary layer were shown to be most sensitive to cε, an empirical
coefficient in parameterizing the fractional entrainment of individual plumes (εi), which is given by

εi =
cε
widi

, (1)

where wi and di are the updraft speed and plume diameter of the i th updraft (Tian & Kuang, 2016). cε is set to
0.33 m s− 1 in the default MYNN‐EDMF in WRF version 4.5.2. Berg et al. (2021) noted that cε is determined
empirically and may vary on the order of 0.1 m s− 1. In this study, it is allowed to vary among 0.2, 0.55, 0.9, and
0.33 m s− 1 (see Table 1).

The second parameter examined is related to the capping height of individual convective plumes. To constrain
only parameterizations of shallow cumulus clouds and not overlapping too much with mid‐level and deep
convection, which are handled separately by the cumulus scheme, the mass flux of individual plumes is limited to
occur only within 3,500 m above the surface (hp) in the MYNN‐EDMF scheme in WRF version 4.5.2 (personal
communication with J. Olson, 2023). The limit is imposed on the updraft velocity wi as

w∗
i (z) = wi(z) exp(−

max(z − min(zi + 2000,hp), 0)
1000

), (2)

wherew∗
i is the vertical velocity of the ith updraft after the capping limit is imposed, zi is the boundary layer depth.

For example, for hp = 500 m, w∗
i at z = 1,000 m shall be limited to exp(− 0.5)wi or 0.6wi, where wi is obtained

from the bulk plume equations. Our previous simulations of clouds over the Amazon region appear quite sensitive
to hp (Hu, Huang, et al., 2023). In our sensitivity experiments here, hp is allowed to vary among 500, 2,500, and
4,500 m.

3. Results
3.1. Identification of Three Cloud‐Boundary Layer Coupling Modes

The boundary layer structure reflected by the soundings from the three Southern Ocean field experiments (i.e.,
MARCUS, CAPRICORN, and SOCRATES) are first visually examined and simulated for the nine cases
described in Section 2.2. The WRF simulations with the MYNN‐EDMF PBL scheme capture the main boundary
layer and cloud layer structure in terms of profiles of potential temperature, water vapor mixing ratios, wind
speed/vectors, and RH for these cases, even though biases exist for certain details (Figures 2–4). The simulated
PBL tops are marked in Figures 2–4 to aid classification. The classification of cloud‐boundary layer coupling
modes is conducted based on the boundary layer height zi and the cloud layer, while also taking into consideration
the surface sensible heat fluxHs. The boundary layer height zi simulated by MYNN‐EDMF is defined as the level
where potential temperature first exceeds the minimum potential temperature within the boundary layer by 1.5 K
(often referred to as the 1.5‐theta‐increase method). When applied to observed temperatures, this method has been
shown to produce zi estimates that are unbiased relative to profiler‐based estimates (Nielsen‐Gammon, 2008). For
stable boundary layers, the PBL top is defined as the location where turbulent kinetic energy (TKE) drops below
the max of 0.02 m2 s− 2 and 1/40 of first layer TKE following recommendation by Pichugina and Banta (2010).
The cloud layer is defined as the altitude where RH exceeds 0.95. Surface sensible heat flux Hs is obtained from
WRF simulations with theMYNN‐EDMF PBL scheme. The nine cases are categorized into three cloud‐boundary
layer coupling modes, which are

1. The coupled cloud‐boundary layer under weakly positive Hs (∼20 W m− 2) as shown in Figure 2;
2. The decoupled cloud‐boundary layer in the presence of negative Hs and a shallow SBL as shown in

Figure 3; and
3. The decoupled cloud‐boundary layer in the presence of relatively large Hs (>40 W m− 2), higher clouds, and a

thick mixed layer as shown in Figure 4.

For type 1 mode, the boundary layer top is located at about 1–1.4 km, coinciding with the cloud base height where
RH reaches 100%, indicating a cloud‐topped boundary layer (Figure 2). In this mode, the clouds and the un-
derlying boundary layer are considered coupled. For type 2 mode, a shallow SBL (∼300 m thick) develops under
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negative Hs, while a separate/decoupled cloud layer is maintained at 1–2 km above the surface (Figure 3). The
characteristic low‐level jets (LLJs) develop with a jet nose located at the top of SBL at less than 300 m above the
surface. This LLJ can be explained by the inertial oscillation theory, according to which wind oscillation
amplitude peaks at the top of the boundary layer (Blackadar, 1957; Klein et al., 2016; Shapiro & Fedor-
ovich, 2010). For type 3 mode, a thick surface‐based boundary layer (∼1 km thick) develops while a separate/
decoupled cloud layer is maintained at 1.2–2 km above the surface (Figure 4). The cloud base is higher than the
PBL top by more than ∼200 m. In the following, three representative cases (1 December 2017; 10 January 2018;
18 February 2018), one for each mode, are selected for detailed analysis, WRF simulations with different PBL
schemes are examined in terms of the causes for reproducing (or not reproducing) the three cloud‐boundary layer
coupling modes.

3.2. Coupled Cloud‐Boundary Layer in the Presence of Weakly Positive Hs

On 1 December 2017, a cyclone developed over the Southern Ocean off Casey. To the northeast of the cyclone, a
low‐level ridge at 800 hPa developed and penetrated to the southwest of Hobart (Figure 5f). When the Aurora
Australis approached Hobart on its trip back from Davis, it passed a region with southerly winds (Figure 2) on the
northeast side of the ridge, thus cold air advection occurred (Figure 5a) and thin scattered clouds developed in the
region as indicated by the distribution of cloud top temperatures detected by Himawari‐8 (Figure 5h). In the
presence of cold air advection over the relatively warmer ocean (creating near‐surface instability as indicated by
temperature gradient, SST‐T2, Figure 5d), there was positive surface sensible heat flux of∼20Wm− 2 (Figure 5b)
and latent heat flux of >80 W m− 2 (Figure 5g) at the sounding location. The four PBL schemes simulate a cloud‐
topped boundary layer at 12 UTC (22 local time), reproducing the coupled cloud‐boundary layer mode (Figure 6).
The cross‐sections of cloud hydrometers in Figure 7 more clearly illustrate the coupled cloud‐boundary layer: the
simulated boundary layer top passes through the scattered clouds over 49.5–39.5oS, a region as wide as more than
1,000 km. Cloud radar reflectivity data between 46.1oS and 45.3oS (when the Aurora Australis sailed during 05–
16 UTC) verify the cloud layer at an altitude between 0.9 and 1.7 km in the region (Figure not shown). The
MYNN‐EDMF reproduces the boundary layer top gradients of RH, potential temperature, and water vapor with
the best agreement, particularly in terms of their altitude at this sounding location (Figure 6). The YSU scheme
underestimates the boundary layer height by ∼300 m, leading to an overestimation of water vapor mixing ratios
by ∼1 g kg− 1 in the boundary layer (Figure 6). Consequently, it overestimates RH in the boundary layer and the
simulated boundary layer top clouds are lower than observations by ∼300 m (Figure 6). With the additional top‐
down mixing from cloud‐top cooling, YSUtopdown simulates a deeper boundary layer (Figures 6 and 7), likely
due to the enhanced entrainment process associated with the additional top‐downmixing facilitating the boundary
layer growth. As a result, YSUtopdown shows better agreement with the sounding profiles than YSU. The moist
bias of water vapor of 1 g kg− 1 in the boundary layer from YSU is reduced and the boundary layer top cloud is
elevated close to the altitude of the observed clouds (Figure 6). These results are consistent with previous studies
showing that the YSU scheme underestimates entrainment near the top of the cloud‐topped boundary layer and
YSUtopdown can alleviate such an underestimation (Ghonima et al., 2017; Wilson & Fovell, 2018).

3.3. Decoupled Cloud‐Boundary Layer in the Presence of Negative Hs With a Shallow Surface‐Based BL

On 9–10 January 2018, a stationary cyclone persisted over the Southern Ocean off Casey and northwesterly flow
and thus warm air advection persisted between Casey and Australia. When the warm air impinged on the colder
air mass (Figure 8a), a baroclinic cloud zone formed (Figure 8e), as confirmed by the Himawari‐8 cloud top
temperature (Figure 8h). To the northeast of the baroclinic cloud zone, a high‐pressure ridge at 500 hPa developed
and penetrated to the southeast of Hobart and consequently a surface anticyclone developed over the ocean
southeast of Hobart (Figure 8f) when the Aurora Australis approached Hobart on its trip back from Casey on Jan.
10. Northerly offshore winds prevailed over the ocean to the south and southwest of Hobart (Figures 2 and 8),
where it was sampled by the soundings from Aurora Australis (Figure 9). Since the air over Australia is relatively
warmer, the northerly winds led to warm air advection. In the presence of warm advection over the colder ocean,
there was weak latent heat flux (<20 W m− 2, Figure 8g) and negative surface sensible heat flux of ∼− 20 W m− 2

(Figure 8b). In the presence of such negative heat flux and atmospheric stability as indicated by SST‐T2
(Figure 8d), the near‐surface turbulence was suppressed, and the boundary layer was shallow and stable (200–
300 m). Because of the attenuation of near surface turbulent mixing, winds above the stable boundary layer
accelerated and a LLJ formed at the top of the boundary layer (Figure 9) according to the inertial oscillation theory
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Figure 5. Spatial distribution of simulated (a) T2, (b) sensible heat flux (HFX), (c) mass flux vertical velocity (EDMF_W) at the first model layer above ground,
(d) difference between sea surface temperature and temperature at 2 m (SST‐T2), (e) integrated cloud water, (f) sea level pressure (SLP), (g) latent heat flux (LH), and
(h) cloud top temperature (CLTT) from the Himawari satellite at 12 UTC on 1 December 2017. The location of the Aurora sounding is marked by a star.

Journal of Geophysical Research: Atmospheres 10.1029/2025JD043679

HU ET AL. 11 of 31

 21698996, 2025, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025JD

043679 by U
niversity O

f O
klahom

a, W
iley O

nline L
ibrary on [03/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



(Blackadar, 1957; Klein et al., 2016; Shapiro & Fedorovich, 2010). This LLJ formation mechanism is very similar
to that over some other coastal regions, including the Baltic Sea (Smedman et al., 1995; Tjernström & Smed-
man, 1993), and the eastern coast in the US (Helmis et al., 2013; Mahrt et al., 2014), where offshore winds lead to
advection of relatively warm air over generally colder sea surface. Frictional decoupling due to the strong stability
induces the LLJ, producing an analogy to the well‐known nocturnal boundary layer jet elucidated by
Blackadar (1957).

To further confirm the role of near‐surface stability and vertical mixing in the development of these LLJs, WRF
sensitivity simulations with YSU are conducted in which the stability dependence of the eddy diffusivity is
systematically varied. In YSU, the velocity scale used to calculate eddy diffusivity is inversely proportional to a
non‐dimensional profile function, ϕm. For the stable boundary layer (z/L> 0) in YSU ϕm is implemented as

ϕm = 1 + α
z
L
, (3)

where L is the Monin‐Obukhov length. The coefficient α, which describes the dependence of eddy diffusivity on
the stability parameter z/L, plays an important role for simulating LLJs. Its default value in YSU is 5 (Hu
et al., 2013; Nielsen‐Gammon et al., 2010). Sensitivity simulations with a varying between 0.01 and 5 are
conducted following the approach proposed by Klein et al. (2016) to modulate stable boundary layer mixing and
to minimize the impact on convective boundary layer and other large scale dynamics. These sensitivity simu-
lations are meticulously designed to illustrate the impact of near‐surface vertical mixing on LLJ development.
Decreasing α in the YSU PBL scheme causes stronger vertical mixing in the stable boundary layer, leading to
weaker LLJs at the top of the stable boundary layer (Figure 10). Thus, these sensitivity simulations illustrate the
relationship between near‐surface vertical mixing strength and LLJ strength, and thus prove that these shallow
marine LLJs develop due to weakened near‐surface mixing and increased stability as a result of warm advection,
corroborating previous studies (Mahrt et al., 2014). Synoptic scale wind shears, which trigger upper layer jets as
shown in other studies (Truong et al., 2023), may only play a secondary role in the development of the shallow
LLJs lower than 950 hPa in the case shown in Figure 9.

Above the shallow stable boundary layer, there was a decoupled/separated cloud layer at about 1.4–2 km as
indicated by the 100% RH (Figure 9) and radar reflectivity of ∼–35 dBZ at 18 UTC (Figure 11). All the four PBL
schemes reproduce such a decoupled cloud‐boundary layer, including the shallow boundary layer with an LLJ at
its top and the decoupled cloud layer above 1.4 km (Figure 9). The difference between the PBL schemes is small
(Figure 9) due to similar eddy diffusivity in the stable boundary layer (Hu et al., 2013). Note that from 12 to 18
UTC on January 10, the Aurora Australis traveled from 46°S to 45.07°S and the cloud‐boundary layer coupling

Figure 6. Profiles of (left to right) RH, virtual potential temperature (θv), Water vapor mixing ratio in a coupled cloud‐
boundary layer at 12 UTC on 1 December 2017 observed by Aurora sounding and simulated by WRF with four PBL
schemes. Sounding latitude/longitude are marked at top.
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transitioned from a coupled mode to a decoupled mode (Figure 11). Around 12 UTC, clouds developed across the
boundary layer top at ∼0.9 km over the region around 46°S as shown in the simulated cross‐sections. YSU-
topdown simulates a deeper boundary layer than YSU by ∼100 m in this region similar to the case explained in
Section 3.2. When the Aurora Australis traveled northward from 46°S to 45.07°S during 12–18 UTC, warm
advection associated with northerly winds leads to development of a shallow stable boundary layer and a
decoupled cloud layer at 1.4–1.9 km as indicated by the simulations and radar reflectivity. All four PBL schemes
generally reproduce the vertical cloud distribution during the transition from the coupled to decoupled cloud‐
boundary layer from 46°S to 45.07°S during 12–18 UTC (Figure 11).

3.4. Decoupled Cloud‐Boundary Layer in the Presence of Strong Positive Hs, With Deeper Surface‐
Based PBL

3.4.1. Analysis Using Observational Data and Simulations With Four PBL Schemes

On 18 February 2018, when the NSF/NCAR GV flew back over the Southern Ocean to Australia, a cyclone to the
south of Australia moved eastward. On the western side of the cyclone, an anticyclone developed over the ocean
to the southwest of Tasmania, Australia. Thus, southwesterly winds (that led to cold air advection) between the
cyclone and anticyclone prevailed over the ocean to the south of Tasmania (Figures 4 and 12, refer to Truong
et al. (2020) for detailed synoptic conditions of this case). The tongue of cold air south of Tasmania appears as
cumuliform clouds (see the Himawari‐8 visible image at 7 UTC in Figure 1 and LWP in Figure 12h), which was

Figure 7. South‐north cross‐sections of cloud hydrometer in a coupled cloud‐boundary layer at 12 UTC on 1 December 2017 simulated byWRFwith four PBL schemes,
(a) YSU, (b) YSUtopdown, (c) MYNN, (d) MYNN‐EDMF. The star on x‐Axis marks the location of supply vessel Aurora Australis (45.47oS, 142.3oE). Simulated PBL
top is marked by a dashed line.
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Figure 8. Spatial distribution of simulated (a) T2, (b) sensible heat flux (HFX), (c) mass flux vertical velocity (EDMF_W) at the first layer, (d) SST‐T2, (e) integrated
cloud water, (f) sea level pressure (SLP), (g) latent heat flux (LH), and (h) cloud top temperature (CLTT) from the Himawari satellite at 18 UTC on 10 January 2018. The
location of the Aurora sounding is marked by a star.
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sampled by the dropsonde from the GV at 7 UTC (Figure 13). The CALIPSO backscatter coefficient measured at
3 hr earlier (4 UTC) also indicates scattered cumuliform clouds with cloud tops at 1.8–2.5 km between 45 and
50°S (Figure 14e). Such clouds often develop in the cold tongues of mesoscale cyclones over the Southern Ocean
(Papritz et al., 2015). In the presence of cold advection over the warmer ocean, there was strong surface latent flux
(>80 W m− 2, Figure 12g) and sensible heat flux (>40 W m− 2, Figure 12b), which produced a deeper surface‐
based PBL (>1 km). All the PBL schemes simulate a thick PBL (Figure 13) and scattered clouds (Figures 12,
14 and 15). Compared to the Himawari observation, WRF simulations reproduce the spatial distribution of LWP
with lower LWP in the cold tongue. The WRF simulation shows an underestimation of cloud cover. Such an
underestimation appears to be a common issue of many NWP and climate models when simulating stratiform

Figure 9. Profiles of (left to right) RH, virtual potential temperature (θv), Water vapor mixing ratio, and wind speed in a decoupled cloud‐boundary layer at 18 UTC on 10
January 2018 observed by Aurora sounding and simulated by WRF with four PBL schemes.

Figure 10. Profiles of (left to right) RH, virtual potential temperature (θv), Water vapor mixing ratio, and wind speed in a decoupled cloud‐boundary layer at 18 UTC on
10 January 2018 observed by the Aurora Australis sounding and simulated by WRF with the YSU PBL schemes with different α values.
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clouds in the presence of cold advection, which is related to uncertainties in model treatments such as micro-
physics schemes (Duynkerke & Teixeira, 2001; Field et al., 2014; Jakob, 1999; Liu et al., 2011; Morrison &
Pinto, 2006).

Figure 11. South‐north cross‐sections of cloud hydrometer following track of supply vessel Aurora Australis on 10 January 2018 simulated by WRF with four PBL
schemes, (a) YSU, (b) YSUtopdown, (c) MYNN, (d) MYNN‐EDMF, (e) reflectivity from the W‐band (95 GHz) cloud radar deployed on Aurora. The star on x‐Axis
marks the location of supply vessel Aurora Australis (45.07oS, 145.38oE) at 17:47 UTC when the sounding of Figure 9 was launched. Simulated PBL top is marked by a
dashed line. Note that the simulation is extracted from the hourly outputs to match the radar time.
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Figure 12. Spatial distribution of simulated (a) T2, (b) sensible heat flux (HFX), (c) mass flux vertical velocity (EDMF_W) at the first layer, (d) SST‐T2, (e) integrated
cloud water, (f) sea level pressure (SLP), (g) latent heat flux (LH), and (h) cloud liquid water path (LWP) from the Himawari satellite at 7 UTC on 18 February 2018. The
location of the NSF/NCAR GV dropsonde is marked by a star. The track of CALIPSO at 4 UTC is marked in panel (e).
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This study focuses on the impact of uncertainties in PBL schemes on the cloud‐boundary layer coupling mode.
While YSU and MYNN simulate a coupled cloud‐boundary layer, MYNN‐EDMF simulates a decoupled cloud‐
boundary layer between 50.2 and 44.8°S, a region as wide as 500 km in south‐north direction at both 4 UTC
(CALIPSO track time, Figure 14) and 7 UTC (GV dropsonde time, Figures 13 and 15). A cloud layer is main-
tained above the PBL and is clearly separated from the PBL in the MYNN‐EDMF simulation, while the cloud
layer is maintained across the PBL top in the simulations with other PBL schemes (Figure 15). The cloud top
simulated by MYNN‐EDMF at 4 UTC appears consistent with the CALIPSO backscatter cross‐section that in-
dicates cloud tops at 1.8–2.5 km (Figure 14). The decoupled cloud‐boundary layer simulated with the MYNN‐
EDMF shows the best agreement with the NSF/NCAR GV dropsonde data, which shows a two‐layer struc-
ture, with a surface‐based PBL up to∼1 km, and an overlaying mixed layer topped at∼2 km, above which the RH
reaches ∼100% indicating the presence of clouds (Figure 13). Note that there is horizontal variability in the
soundings, however, the cloud‐boundary layer coupling status is not affected by the horizontal variability as
shown in hydrometer cross‐sections (Figures 14 and 15). Cross‐sections for RH and potential temperature are also
examined. The horizontal variability of RH closely follows that of hydrometers with intermittent high RH due to
scattered cloud formation. The cross‐section of RH further illustrates that the cloud layer (area with RH > 95%) is
clearly separated from the boundary layer top in the MYNBN‐DEMF simulation (Figure 16), which shows the
best agreement with the GV dropsonde (Figure 13). The horizontal variability of potential temperature (Figure 17)
appears less intermittent than RH and hydrometers likely due to the mixing process.

Conventional PBL schemes, such as the YSU and theMYNN, transport surface moisture to the PBL top where the
temperature is low, and clouds develop near the PBL top. Above the PBL, since vertical mixing is weak in the free
troposphere in conventional PBL schemes (Hu et al., 2012), moisture is hard to be transported further upward, and
clouds are unlikely to develop above. Thus, clouds simulated by these conventional PBL schemes stay near the
PBL top. In contrast, the MYNN‐EDMF scheme adds a mass flux (MF) component for the representation of
nonlocal updrafts from the surface up to the cloud layer, in addition to the MYNN eddy‐diffusivity (ED) local
mixing closure. The local mixing within the surface‐based PBL and the mass flux nonlocal mixing may have
different vertical extents (Olson, Kenyon, Angevine, et al., 2019; Olson, Kenyon, Djalalova, et al., 2019; Pergaud
et al., 2009). Thus, while MYNN‐EDMF simulates a surface‐based PBL with a depth of 1 km, in the presence of
strong surface positive flux the nonlocal mass flux develops in the region (as indicated by the spatial distribution
of mass flux vertical velocity at the first layer in Figure 12), and the convective updrafts penetrates 2 km above the
surface (as indicated by the profile of updraft velocity in Figure 18). As a result, the nonlocal flux is able to deposit
moisture at 2 km where a cloud layer develops that is decoupled from the 1 km‐deep PBL below in a region as
wide as 500 km in the south‐north direction (Figure 15). Thus, the MYNN‐EDMF scheme captures the 2‐layer

Figure 13. Profiles of (left to right) RH, virtual potential temperature (θv), Water vapor mixing ratio in a decoupled cloud‐
boundary layer at 07 UTC on 18 February 2018 observed by GV dropsonde (45.959oS, 146.953oE) and simulated by WRF
with four PBL schemes.
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PBL structure as indicated by potential temperature and water vapor mixing ratio better than other conventional
PBL schemes. The latter simulate larger gradients of potential temperature and moisture above the surface‐based
PBL because they have weaker mixing in the free troposphere (Figure 13).

Figure 14. Cross‐sections of cloud hydrometers along the CALIPSO track shown in Figure 12e at 04 UTC on 18 February 2018 simulated by WRF with four PBL
schemes, (a) YSU, (b) YSUtopdown, (c) MYNN, (d) MYNN‐EDMF. (e) backscattering coefficient at 532 nm from CALIPSO. Simulated PBL top is marked by a
dashed line.
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3.4.2. Sensitivity Experiments With the MYNN‐EDMF Scheme

The primary difference between MYNN‐EDMF and other convectional PBL schemes is that MYNN‐EDMF has
an additional mass flux nonlocal mixing treatment, which plays a critical role in reproducing the decoupled cloud‐
boundary layer in the presence of strong surface sensible heat fluxes. Such a conclusion is clearly proven by the
different performance between MYNN‐EDMF (simulating decoupled cloud‐boundary layer) and MYNN
(simulating coupled cloud‐boundary layer), because the only difference between these two experiments is the
mass flux treatment and thus its effect is isolated. The effect is most apparent over 50.2–44.8°S, a region as wide
as 500 km.

To further understand the behavior of the mass flux treatment of MYNN‐EDMF, additional parameter sensitivity
experiments are conducted by varying two selected empirical parameters, the empirical capping height of indi-
vidual plumes (hp), and the empirical coefficient for the fractional entrainment rate of individual plumes (cε). By
limiting hp to 500 m, moisture above the PBL quickly decreases and the model underestimates moisture at 2 km
above the surface where clouds develop in the observations (Figure 19). As a result, clouds above the PBL
disappear and instead the cloud layer develops across the boundary layer top over 50.2–44.8°S, similar as in other
conventional PBL schemes (Figure 20a). When setting hp to 2,500 m or 4,500 m, more moisture is deposited at
2 km above the surface where a separate cloud layer develops that is decoupled from the PBL below (Figures 20b

Figure 15. South‐north cross‐sections of cloud hydrometer at 07 UTC on 18 February 2018 simulated by WRF with four PBL schemes, (a) YSU, (b) YSUtopdown,
(c) MYNN, (d) MYNN‐EDMF. The location of the NSF/NCAR GV dropsonde (45.959°S, 146.953°E) is marked by a star on x‐Axis. Simulated PBL top is marked by a
dashed line.
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and 20c), similar to the default MYNN‐EDMF in WRF with hp of 3,500 m (Figure 15d). Thus, hp plays a critical
role in the vertical transport of moisture and deposits moisture in either within PBL or above PBL.

Entrainment rate also plays a critical role in simulating the type 3 decoupled mode. With cε set to 0.2 m s− 1, the
decoupled cloud‐boundary layer is simulated over 50.2–44.8oS (Figure 20d), similar as the default MYNN‐EDMF
with cε set to 0.33 m s− 1. When cε is increased to 0.55 or 0.9 m s− 1, WRF appears to underestimate the upward
transport ofmoisture to 2 km and underestimate themoisture deposit at 2 km, thus a separated cloud layer is not able
to develop at 2 km. Instead clouds only develop across the boundary layer top and thus a coupled cloud‐boundary
layer is simulated over 50.2–44.8°S as in the conventional PBL schemes (Figures 20e and 20f). It appears cε is
highly related to the updraft penetration depths. With larger cε (>0.55 m s− 1), plumes cannot penetrate as deep as
suggested by the observations, likely because strong entrainment already dissipates the plume energy before the
plumes are able to penetrate as high as 2 km. The parameter of cε is essentially an assessment of the strength of
turbulent kinetic energy (TKE). Since shallow cumulus generally does not have a large turbulent strength, such a
large of cε (0.9) may not be physical. Nevertheless, these sensitivity simulations with hp and cε further confirm that
the advantage of the MYNN‐EDMF scheme over other convectional PBL schemes to reproduce the decoupled
cloud‐boundary layer in the presence of strong surface positive flux is due to its mass‐flux treatment.

4. Conclusions and Discussion
The boundary layer structure, particularly in terms of the coupling mode between the boundary layer and cloud
layer, over the Southern Ocean is examined using WRF simulations, sounding data collected during three field

Figure 16. Same as Figure 15, but for relative humidity (RH).
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experiments, and satellite observations. Nine single cloud layer cases over
Southern Ocean with similar characteristics, including 1 December 2017,
21–22 March 2018, 23 March 2018, 10 January 2018 detected during the
MARCUS experiment, and 17–18 February 2018 detected during the
CAPRICORN and SOCRATES experiments, are simulated using theWRF
model with three conventional and one mass‐flux type PBL schemes. With
the assistance of WRF simulations, the nine cases can be classified into
three cloud‐boundary layer coupling modes: 1. Coupled cloud‐boundary
layer in the presence of weak surface positive flux; 2. Decoupled cloud‐
boundary layer in the presence of surface negative flux, with a very
shallow surface‐based PBL; and 3. Decoupled cloud‐boundary layer in the
presence of single‐layer high clouds and stronger surface positive flux,
with thicker surface‐based PBL. The major differences between Mode 1
and 3 are the magnitude of surface positive sensible heat flux and cloud
layer height, with Mode 1 having a cloud layer at ∼1 km, and Mode 3
having a cloud layer as high as 2 km that is above (decoupled from) the
boundary layer top at ∼1 km above the surface. The height difference
betweenMode 1 and 3 boundary layers and their transitions were discussed
previously (Jones et al., 2011; Miller & Albrecht, 1995; Nicholls, 1984;
Wood, 2012), but we provide a physically more intuitive classification in
this study. Mode 1 represents a well‐mixed cloud‐topped PBL, common

Figure 17. Same as Figure 15, but for potential temperature (θ).

Figure 18. Profiles of mass flux vertical velocity (EDMF_W) at 07 UTC on 18
February 2018 at a GV dropsonde location simulated byWRFwith the MYNN‐
EDMF PBL scheme. Simulated PBL top is marked by a dashed line.
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over subtropical and midlatitude oceans with weak cold advection (Wood, 2012). These stratocumulus decks are
climatically significant for Earth's radiative balance (Andrews et al., 2012; Hartmann et al., 1992; Qu et al., 2014).
Mode 2 is a highly stratified PBL, frequently occurring under warm air advection over mid‐latitude oceans.
Previous studies (Zhang et al., 2023; Zheng & Li, 2019; Zheng, Zhang, Rosenfeld, et al., 2021) highlight the role
of such decoupling in prolonging cloud lifetimes, which has implications for cloud feedbacks. Mode 3 is similar to
the cumulus‐topped boundary layer (Wood, 2012) and often occurs during subtropical stratocumulus‐to‐cumulus
transitions driven by strong surface fluxes that deepen the PBL, a process referred to as the deepening‐warming
decoupling (Bretherton & Wyant, 1997; Sandu & Stevens, 2011; Wyant et al., 1997; Zheng et al., 2020).
Accurately modeling this mode is crucial for improving simulations of stratocumulus‐to‐cumulus transitions, a
persistent challenge in global climate models (Albrecht, 1993; Chung & Teixeira, 2012; Teixeira et al., 2011;
Wang, 1993; Wang et al., 2015). Our cloud‐boundary layer coupling classification, corroborating a similar
classification proposed by Zheng et al. (2020), highlights the importance of cold/warm advection and the
resulting positive/negative fluxes and near‐surface stability on cloud‐boundary layer coupling modes. These
prerequisite conditions are related to shifts in winds and humidity that are induced by storm track at times (Hande
et al., 2012). Comparing to the more extensively researched marine counterpart, continental stratocumuli occur
less frequently (Mechem et al., 2010) and simulating stratocumulus‐to‐cumulus transitions over continents may
be even more challenging due to the large magnitude and variability of surface fluxes (Ghonima et al., 2016;
Hannak et al., 2017; Pedruzo‐Bagazgoitia et al., 2020).

Figure 19. Profiles of (left to right) RH, virtual potential temperature (θv), Water vapor mixing ratio in a decoupled cloud‐
boundary layer at 07 UTC on 18 February 2018 observed by GV dropsonde (45.959°S, 146.953°E) and simulated by WRF
with perturbed parameters (top) hp = 500, 2,500, 4,500, (bottom) cε = 0.2, 0.55, 0.9 in MYNN‐EDMF, see Table 1 for the
model configuration.
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The performance of four PBL schemes, including three conventional schemes (YSU, YSUtopdown, andMYNN),
and one mass flux type PBL scheme MYNN‐EDMF is examined for three selected cases with one case repre-
senting one cloud‐boundary layer coupling mode. For cases with the different cloud‐boundary layer coupling
modes, different PBL schemes provided the best consistency with observations. The YSUtopdown scheme has
more consistency with observations than the YSU scheme for the type 1 coupling mode to simulate the higher

Figure 20. South‐north cross‐sections of cloud hydrometer at 07 UTC on 18 February 2018 simulated by WRF with perturbed parameters in MYNN‐EDMF:
(a) hp = 500, (b) hp = 2,500, (c) hp = 4,500, (d) cε = 0.2, (e) cε = 0.55, (f) cε = 0.9, see Table 1 for the model configuration. The location of the NSF/NCAR GV
dropsonde (45.959°S, 146.953°E) is marked by a star on x‐Axis. Simulated PBL top is marked by a dashed line.
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cloud‐topped boundary layer. With the additional top‐down mixing from cloud‐top radiative cooling considered,
YSUtopdown simulates an enhanced entrainment process at the boundary layer top, which facilitates a deeper
boundary layer growth, thus simulating higher boundary layer top clouds. The MYNN‐EDMF scheme consid-
ering nonlocal mass flux in addition to a local eddy diffusivity treatment is more consistent with observations than
the conventional PBL schemes for the type 3 coupling mode because of the different vertical extent of local
mixing and nonlocal mass flux in presence of sufficient surface flux. In the presence of strong surface positive
flux, the nonlocal mass flux penetrates through the boundary layer top. As a result, the nonlocal flux is able to
deposit moisture in the free troposphere where a cloud layer develops that is decoupled from the PBL down
below. Sensitivity simulations altering two parameters in the mass flux treatment in MYNN‐EDMF are con-
ducted, the empirical capping height of individual plumes (hp), and the empirical coefficient for the fractional
entrainment of individual plumes (cε). hp and cε play an important role in simulating the cloud‐boundary layer
structure. Altering hp and cε can lead to MYNN‐EDMF simulating either coupled or decoupled cloud‐boundary
layers. These parameter sensitivity simulations further confirm that the advantage of the MYNN‐EDMF scheme
over other convectional PBL schemes in reproducing the decoupled cloud‐boundary layer in the presence of
strong surface positive flux is due to its mass‐flux treatment. For the type 2 coupling mode, different PBL schemes
perform similarly. These regional scale WRF simulations also essentially illustrate the impact of near‐surface
temperature gradients (i.e., the difference between SST and surface air temperature, either as a result of air
advection or SST change) on the cloud‐boundary layer coupling modes. These simulations corroborate previous
idealized simulations applying a linear increasing/decreasing SST (Zheng, Zhang, & Li, 2021; Zheng, Zhang,
Rosenfeld, et al., 2021), which proposed a similar cloud‐boundary layer coupling classification as a function of air
advection (Zheng et al., 2020).

The investigation of the three cloud‐boundary layer coupling modes of this study is limited by the number of
available soundings. For example, for the de‐coupled mode on 18 February 2018, the model simulations suggest a
de‐coupled cloud layer above the boundary layer over 50.2–44.8°S, a region as wide as 500 km in the south‐north
direction, where there is only one sounding available from the dropsonde released from the NSF–NCAR GV
aircraft. In addition, the dropsonde location is not at the center of the decoupled region where the decoupling
characteristic is the most prominent (Figure 15d). In the prominent decoupling region, the cloud layer is higher
than the PBL top by >1 km. More frequent soundings in the most representative regions can help investigate the
development of these coupling modes and calibrate PBL schemes. Note that when using different PBL top
diagnosing approaches, the resulting PBL height may differ by as much as 200–300 m (Hu et al., 2010; Liu &
Liang, 2010). While most methods are primarily used for the continental PBL (Nielsen‐Gammon et al., 2008), the
Liu‐Liang method uses different threshold parameters to diagnose PBL top over ocean and land (Liu &
Liang, 2010). In addition to the PBL top diagnosed by PBL schemes, we also examined the PBL top diagnosed by
the Liu‐Liang method (Figure not shown). Over the ocean when the cloud layer is decoupled from the boundary
layer, the PBL top diagnosed by the Liu‐Liang method is ∼200 m lower than the model‐diagnosed PBL likely
because the Liu‐Liang method cut off the PBL height immediately into the inversion layer considering weaker
convections over the ocean (Liu & Liang, 2010) while the model includes more of the inversion layer into the
PBL. Over the continent the PBL heights diagnosed by the two are similar. Over the land‐ocean interface and
regions where the cloud layer and boundary layer are coupled, the PBL top diagnosed by the Liu‐Liang method is
oscillating. Diagnosing PBL height in such environments warrants future research attention. Nevertheless, our
PBL mode classification method is physically more intuitive and superior to traditional stratification‐based
classifications (e.g., Jones et al., 2011) and the uncertainties associated with PBL‐top diagnosing methods
cannot change the coupling mode (with clouds developing cross PBL top) or decoupling mode (with the PBL top
and cloud layer separated by as far as >1 km) discussed in this study.

This study examines the cloud‐boundary layer coupling modes using simulations with a 3 km grid spacing. The
choice of 3 km resolution is a trade‐off between the need to include the widespread cloud system and limited
computational resources. While the overall circulations of fully developed mesoscale cellular convections having
the sizes of tens of kilometers can be resolved by the 3 km grid, the representation of detailed structures of the
mesoscale cellular convection as well as its associated physical processes could certainly benefit from increased
resolutions in future studies (Stevens et al., 2020).
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Data Availability Statement
Sounding data (UCAR, 2024) were downloaded from NCAR's Earth Observing Laboratory, https://data.eol.ucar.
edu/master_lists/generated/socrates/. The marine W‐band (95 GHz) cloud Radar data (Lindenmaier et al., 2018)
was downloaded from https://doi.org/10.5439/1973911. The Cloud‐Aerosol Lidar and Infrared Pathfinder Sat-
ellite Observation (CALIPSO) satellite data (Winker et al., 2010) were downloaded from https://search.earthdata.
nasa.gov/search/granules?p=C2445512043‐LARC_ASDC. The Himawari data (NASA/LARC/SD/
ASDC, 2018) were downloaded from https://doi.org/10.5067/HIM08/CERES/GEO_ED4_SH_V01.2. The ERA‐
Interim data used in this study were obtained from European Centre for Medium‐Range Weather Fore-
casts (2009). Model data produced from this study (Hu, 2025) have been archived at CAPS website https://caps.
ou.edu/micronet/SouthernOcean.html and the Luster NSF projects data server at the San Diego Supercomputer
Center,/expanse/luster/projects/uok114/xhu2.
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