
1. Introduction
Severe air pollution continues to plague a few regions around the world, e.g., China and India (Fu & 
Li, 2020; Guo et al., 2019; Krotkov et al., 2016; Li et al., 2017; Wang & Hao, 2012), with most haze pollution 
events occurring in winter and late fall (Li, Hu, Ma, et al., 2019; Li, Hu, Shi, et al., 2019; Miao et al., 2015). 
Various instruments (including both in-situ and remote sensors) and numerical models are used to mon-
itor and examine air quality (e.g., Ding et al., 2013; Ji et al., 2014; Sun et al., 2015; Wang, Wei, et al., 2014; 
Wang, Li, et al., 2014). Serving as a numerical laboratory and integrating our knowledge on how physical 
and chemical processes affect pollutant concentrations, the grid-based Eulerian models are widely used to 
investigate air pollution (Russell, 1997); however, the uncertainties within the model simulations cannot 
be overlooked. Given model errors/uncertainties associated with both meteorological and chemical pro-
cesses/inputs, substantial uncertainties of a single deterministic simulation with one air quality model are 
always of concern when examining impact of emission abatement (Leibensperger et  al.,  2011), climate 
change effects (Tai et al., 2012), aerosol radiative effects (Gao et al., 2020), health and agriculture impacts 
of air pollution (Ahmadov et  al.,  2007), regional to continental transport (Dong et  al.,  2018; Galmarini 
et al., 2017), as well as conducting air quality forecasting (Hu, 2015; Li, J., Nagashima, et al., 2019). A multi-
model approach instead has been shown more beneficial to investigate these air pollution issues, which can 
constitute an envelope of realizations of the scenario that adequately represents our understanding of the 
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and multimodels (including WRF-Chem and WRF-CO2) to investigate a severe air pollution event on 
December 9, 2016 over eastern China. During this episode, a strong cold front moved southward. At the 
leading edge of the front, WRF-CO2 simulates an enhanced XCO2 belt while WRF-Chem simulates a belt 
of high PM2.5 concentration. The XCO2 and PM2.5 belts are generally colocated, due to coemission of CO2 
and pollutants (or their precursors). Satellite observations including MODIS AOD, OCO-2 XCO2, OMPS 
NO2, AIRS CO, and surface data confirm the simulated pollution and XCO2 belts. Later on, the front 
became distorted due to terrain blocking and mountain channel flows. Both observations and simulations 
show that the channel winds between Mountains Dabie and Huang transport the haze plume into Jiangxi 
province, enhancing pollution in the region. It is concluded that the multisensor (including space-based 
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processes involved (Colette et al., 2011, 2012, 2017; Fiore et al., 2009; Kim et al., 2019; Sokhi et al., 2008; Tai 
et al., 2012). These multimodel investigations (e.g., Liu et al., 2018; Ma et al., 2019; Solazzo et al., 2017) use 
a variety of air quality models, including the Community Multiscale Air Quality (CMAQ) Modeling System 
(Binkowski & Roselle, 2003; Byun & Schere, 2006), and Comprehensive Air quality Model with extensions 
(CAMx), which are commonly used by the U.S. Environmental Protection Agency (EPA) and other plan-
ning organizations for formulating emission control strategies. For air quality simulations in China, as other 
regions in the world, the primary uncertainties stem from emission inputs (Bouarar et al., 2019; Chen, Liu, 
Ban, et al., 2019; Kong et al., 2020; Zhao et al., 2019), as well as physical/chemical schemes (Hu et al., 2008; 
Li, Wang, et al., 2019). Uncertainties of emissions of certain species (e.g., CO, NH3) in China reach as large 
as a factor of 2 (Kong, Tang, et al., 2019; Lu et al., 2019) and even larger at certain regions (Kong, Lin, 
et al., 2019). Given the large model uncertainties, a multimodel approach is desirable for examining air 
quality issues, as well as monitoring and predicting air pollution in China.

Complementing numerical model simulations and conventional surface in-situ measurements, satel-
lite retrievals of pollutants, such as aerosol optical depth (AOD) from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) (Donkelaar et al., 2010; Ma et al., 2016; Wei et al., 2019; Xie et al., 2019; Xu, 
Han, et al., 2019; Yu et al., 2008), Ozone (O3) from the Tropospheric Emission Spectrometer (TES) and the 
Ozone Monitoring Instrument (OMI) (Zhang et  al.,  2010), CO from the Atmospheric Infrared Sounder 
(AIRS), and Measurements of Pollution in the Troposphere (MOPITT) sensors (Kopacz et al., 2010; Lowry 
et al., 2016; Yurganov et al., 2008), NO2 from the Ozone Mapping Profiler Suite (OMPS) (Lin et al., 2019; 
Yang et al., 2014), play an important role in air quality monitoring, prediction, and inversion.

Pollutants (or their precursors) and carbon dioxide (CO2, a primary greenhouse gas) are often coemitted and 
their colocated mixing ratios (as well as their spatiotemporal variations) often show a linear relationship, 
e.g., between CO and CO2, and between nitrogen oxides (NOy) and CO2 (Brioude et al., 2012, 2013; Konov-
alov et al., 2014; Lindenmaier et al., 2014; Reuter et al., 2019; Turnbull et al., 2011; Wunch et al., 2009; Yang 
et al., 2019). The linear relationship between those coemitted species has been used in many atmospheric 
chemistry studies, including constraining one species’ emissions given observations of the other species 
(Brioude et al., 2012; Palmer et al., 2006; Wang et al., 2009). The relationship between CO2 and haze pollu-
tion at regional to urban scales, however, is not examined to our best knowledge.

Anthropogenic CO2 emissions, including fossil fuel burning and net land use change (Ciais et al., 2014), 
contribute significantly to global carbon budget. While fossil fuel CO2 (FFCO2) emissions at national scales 
are generally well constrained with uncertainties of 5–20% (±4% for USA), uncertainties of FFCO2 emis-
sions at urban scales are larger (Andres et al., 2014; Gurney et al., 2019; Oda et al., 2019). Given the sparse-
ness of surface CO2 observations, particularly in urban areas, carbon-observing satellites provide valuable 
information of spatial distribution of column-averaged dry air mole fractions of CO2 (XCO2), which can be 
used to constrain anthropogenic CO2 emissions. A few CO2 satellites have been launched, including the 
Japanese Greenhouse gases Observing SATellite (GOSAT, Yokota et al., 2009) in orbit 2009, and NASA's 
Orbiting Carbon Observatory-2 (OCO-2, Crisp et al., 2004, 2008, 2017) in orbit 2014. When overpassing 
urban areas, satellite XCO2 data can capture urban CO2 plumes (Wu et al., 2018, 2020; Ye et al., 2020), and 
also more remote power plants (Nassar et al., 2017). Wu et al. (2018) carried out inverse modeling using a 
Lagrangian model together with OCO-2 XCO2 data to quantify CO2 emissions from Riyadh. Ye et al. (2020) 
used OCO-2 XCO2 data, together with a Eulerian atmospheric transport model (i.e., the Weather Research 
and Forecasting (WRF) model), to constrain FFCO2 emissions from four urban areas, including Riyadh 
(Saudi Arabia), Cairo (Egypt), Los Angeles (USA), and the Pearl River Delta metropolitan region in China. 
Despite these exemplary studies using satellite XCO2 data to derive urban plume of greenhouse gases (Wu 
et al., 2018; Ye et al., 2020), the applications of satellite XCO2 data for air quality purpose are not explored 
to the best of our knowledge.

Research of haze pollution in China mostly focused on a few most severe regions, including the north China 
Plains (Hu, Ma, et al., 2014, 2016), Yangtze River Delta Region (Hu, J., Li, et al., 2018; Huang et al., 2020; 
Li, Wang, et al., 2019; Xu, Tie, et al., 2019), Pearl River Delta region (Li et al., 2018), Sichuan Basin (Jia 
et al., 2019; Ning et al., 2019; Zhou et al., 2019), and northeast China (Li, Hu, Ma, et al., 2019; Li, Hu, Shi, 
et al., 2019). Jiangxi province, located between the Yangtze River and Pearl River Delta region and con-
nected with Anhui province through the channel between Mountains Dabie and Huang (Figure 1), has not 
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received much attention in air quality studies (Li et al., 2018; Zhao et al., 2017). As the air pollution exacer-
bated in recent years in the region, particularly in its capital city, Nanchang with more than 5 million resi-
dents, more investigation of its source of pollution is warranted (Liao et al., 2015; Zhang, Yuan, et al., 2014). 
While limited studies focused on local sources of pollution in Jiangxi province, including vehicles, indus-
tries, waste burning, and dust (Yang et al., 2017; Zhao et al., 2017), contribution from regional transport was 
not previously studied in detail.

Using surface in-situ observations and model simulations with the WRF model with Chemistry (WRF-
Chem), Li, Wang, et al.  (2019) investigated the worst haze pollution in China in 2016 occurred over the 
North China Plains and Yangtze River Delta Region during December 2–8, which was found to be caused 
by poor dispersion condition and prominent formation of secondary inorganic aerosols. The severe haze 
pollution (with a PM2.5 concentration of ∼200 μg m−3) actually persisted until early morning on December 
9 at Shanghai and late afternoon at Hangzhou (see the relevant locations marked in Figure 1b). The late 
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Figure 1. Domain configuration and anthropogenic CO2 emission in (a) the first domain and (b) the second domain 
with relevant locations marked. The Yangtze river is marked with a blue line.
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persistence of this severe haze pollution and its dissipation, as well as its impact on surrounding regions 
such as Jiangxi province, were not discussed by Li, Wang, et al. (2019).

In this study, the severe haze event on December 9, 2016 over eastern China is examined using a multimodel 
and multisensor approach, utilizing simulations with the WRF-Chem and WRF-CO2 systems, and observa-
tions from surface sites, as well as AOD from MODIS, XCO2 from OCO-2, NO2 from OMPS, and CO from 
AIRS. The purpose of this study is to demonstrate that using such a multimodel and multisensor approach, 
we can better monitor, and predict air pollution events, particularly with additional information of CO2. We 
will illustrate, for the first time, OCO-2 XCO2 data and WRF-CO2 simulations can be used to help monitor/
assess/predict haze pollution, particularly in terms of its spatial distribution. We will also highlight the 
importance of regional transport on the pollution formation in eastern China, while detailed atmospheric 
chemistry is not the focus of this study. In the latter case, models with specialty in air chemistry such as 
CMAQ and CAMx may be more desired. In this study, the WRF-Chem and the WRF-CO2 system are ade-
quate and used for the objectives described above.

The rest of this paper is organized as follows. Section 2 describes the selected air pollution episode, obser-
vations, and design of WRF-Chem and WRF-CO2 simulations. Section 3 examines the air pollution event 
using the two model simulations and various observations. Section 4 discusses caveats of using satellite 
XCO2 data to help monitor air pollution. Conclusions are summarized in Section 5.

2. Data and Methods
2.1. Episode and Observational Data

The worst haze pollution in China in 2016 occurred over the North China Plains and Yangtze River Delta 
Region during December 2–9. While Li et al. (2019) focused on the formation mechanism of this haze pol-
lution between December 2 and 8, this study will focus on the late persistence of this severe haze pollution 
and its dissipation, as well as its impact on surrounding region such as Jiangxi province on December 9. On 
December 8, a surface cold front accompanied by an upper trough approached the North China Plain (Fig-
ure S1 in Supporting Information). The cold and dry airmass behind the cold front (identified in Figure 2 
from negative temperature change, positive pressure change, low dew point) kept pushing southward and 
affected the air quality over eastern China on December 9, 2016.

In addition to the surface in-situ measurements at the national air quality monitoring sites (Hu, Wang, 
et  al.,  2014; Zhang et  al.,  2015) and a regional atmospheric background station in Lin'an, Hangzhou 
(30.30°N, 119.75°E) (recording CO2 and pollutants), satellite remote-sensing data are used to monitor this 
pollution event, including AOD from MODIS, NO2 from OMPS, CO from AIRS, as well as XCO2 from OCO-
2 (Table 1). The OCO-2 satellite (Eldering et al., 2017) was launched in 2014, and has been collecting data 
since then in a sun-synchronous orbit with a local overpass solar time of about 1:30 PM. OCO-2 measures 
reflected sunlight in three bands, and the resultant spectra are used to infer XCO2. The data are bias cor-
rected and filtered using ancillary retrieved parameters (Wunch et al., 2017). In this work, we utilize the 
OCO-2 Version 9r (Kiel et al., 2019, retrieved from https://co2.jpl.nasa.gov/#mission=OCO-2). The random 
errors of XCO2 data are ∼0.4 ppmv evaluated against a primary ground-based validation network (Eldering 
et al., 2017; O'Dell et al., 2018). The high measurement precision of the OCO-2 XCO2 data allows detection 
of urban CO2 plumes (Wu et al., 2018, 2020; Ye et al., 2020).

In addition to CO2, other pollutants (aerosol particles, CO, NO2), measured from a series of sun-synchro-
nous polar-orbiting satellites, are used to characterize the spatial distribution of this pollution event. AOD 
product from the MODIS instrument on the Aqua satellite is used in this study. Specifically, we utilize the 
level 2 collection 6 AOD retrieval at 550-nm wavelength over land with nadir spatial resolution of 3 km 
(available from https://ladsweb.modaps.eosdis.nasa.gov/). The 3-km product applies the similar Dark Tar-
get algorithm to the standard MODIS 10-km resolution product (Remer et al., 2013) but captures aerosol 
spatial gradients on a fine-scale, which is needed for air quality research (Munchak et al., 2013). Although 
artificially high AOD can be found from 3-km product over bright or urban surface (Remer et al., 2013), 
previous studies show good agreement between MODIS 3-km good quality AOD and AErosol RObotic NET-
work (AERONET) AOD in eastern China (Gupta et al., 2018; He et al., 2017). Therefore, only good quality 
retrievals from MODIS 3-km product are included in the following analysis.
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The CO vertical column density retrieval from the Atmospheric InfraRed Sounder (AIRS) instrument 
on the Aqua satellite is also investigated. AIRS retrieves CO by observing thermal emission around the 
4.7 μm vibrational fundamental band (Susskind et al., 2003). The instrument has a spatial resolution of 
13.5 × 13.5 km, but the reported data are degraded to 45 × 45 km due to the cloud-clearing processes used 
in the retrieval algorithm, which can significantly increase the spatial coverage (Susskind et al., 2003). The 
AIRS level 2 version 6 retrieval product, which includes vertical profiles of CO, is used in this study and can 

be obtained from Goddard Earth Sciences Data and Information Center 
(GES-DISC, https://disc.gsfc.nasa.gov/). The thermal-infrared measure-
ment from AIRS yields a CO vertical sensitivity broadly peaking in the 
midtroposphere (300–700 mb) (Warner et al., 2007; Worden et al., 2013). 
In this study, only CO retrievals from the midtroposphere (500-mb layer) 
are considered due to the strong vertical sensitivity of AIRS CO retrievals 
at this level, as suggested by the AIRS team for air quality assessment 
(personal communication, 2020). As a consequence, a limitation in the 
application of AIRS CO retrievals is that some variations in the retrieved 
CO (e.g., moderately different from surface CO distribution) can be asso-
ciated with the nonuniform vertical distribution of the CO abundance.

The NO2 data used in this study are from the Ozone Mapping Profiler 
Suite (OMPS) Nadir Mapper onboard the Suomi National Polar Part-
nership (SNPP) satellite with a local ascending equator crossing time at 

HU ET AL.

10.1029/2020JD033538

5 of 24

Figure 2. Surface weather maps at 0800 local time on December 9, 2016 based on observation data archived in the 
Meteorological Information Comprehensive Analysis and Process (MICAPS) system operated by China Meteorological 
Administration. The blue lines are isobars. Red, blue, and green numbers represent temperature change, pressure 
change in the past 24 h, and dew point.

Pollutant/
species Instrument/satellite Product

Spatial 
resolution 
(km × km)

CO2 Spectrometer/OCO-2 Level 2 version 9r 2.25 × 1.29

AOD550 MODIS/Aqua Level 2 collection 6 3 × 3

CO AIRS/Aqua Level 2 version 6 45 × 45

NO2 OMPS/SNPP Level 2 50 × 50

Note. All of them have a local overpassing time of ∼1:30  PM. MODIS 
product can be found from https://ladsweb.modaps.eosdis.nasa.gov/. All 
other products can be found from https://disc.gsfc.nasa.gov/.

Table 1 
List of the Four Satellite Data Used in This Study

https://disc.gsfc.nasa.gov/
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1:30 PM. The OMPS is a hyperspectral UV spectrometer measuring backscattered UV radiance spectra from 
300-nm to 380-nm wavelength, providing daily global coverage with a nadir pixel size of 50 × 50 km (Yang 
et al., 2013, 2014). The amount of total column NO2 can be first estimated by using a direct vertical column 
fitting algorithm, and the stratospheric and tropospheric amounts can be further separated by applying a 
new spatial technique (Yang et al., 2014). In this study, we utilize the OMPS Nadir Mapper level 2 product of 
tropospheric NO2 amount. Only those pixels marked as good quality and the corresponding cloud fraction 
<30% are included in the analysis. The OMPS product has recently been used to investigate the NO2 trend in 
China and agrees well with the measurement from Ozone Monitoring Instrument (OMI) onboard another 
sun-synchronous orbit satellite (Lin et al., 2019).

2.2. Air Quality Simulation With WRF-Chem

The WRF-Chem (Fast et al., 2006; Grell et al., 2005; Skamarock & Klemp, 2008) version 3.8.1 is employed 
for air quality simulation in this study. Two one-way nested domains are used with a 20-km grid spacing 
in the first domain over China and a 4-km grid spacing in the second domain focusing on eastern China 
(Figure 1). Forty-eight vertical layers extend from the surface to 10 hPa. The WRF-Chem simulation period 
spans from December 6 to 11, 2016 with hourly model outputs. The NCEP Final Global Forecast System 
Operational Analysis (FNL) data are used to provide the initial and boundary conditions of meteorolog-
ical variables. The chemical initial and lateral boundary conditions are extracted from the global chemi-
cal transport Model for Ozone And Related chemical Tracers (MOZART) (Emmons et al., 2010; Horowitz 
et al., 2003). The Multiresolution Emission Inventory for China (MEIC) (http://www.meicmodel.org/) of 
December 2016 is applied for the anthropogenic emissions. The MEIC only has single layer monthly mean 
emission information, thus does not have vertical distribution or diurnal variation of the emissions. When 
preparing hourly emissions for WRF-Chem, MEIC emissions are vertical distributed in the boundary lay-
er and a diurnal variation profile is applied following previous studies (Chen, Zhu, et  al.,  2019; Zhang 
et al., 2018). Biogenic emissions are generated online by the Model of Emissions of Gas and Aerosols from 
Nature (MEGAN) (Guenther et al., 2006). The physical parameterizations include the Noah land-surface 
model (Tewari et al., 2004), Mesoscale Model (MM5) similarity surface layer, Yonsei University (YSU) plan-
etary boundary layer (PBL) scheme (Hong et al., 2006), RRTMG shortwave and longwave radiation schemes 
(Iacono et  al.,  2008), Morrison double-moment microphysics scheme (Morrison et  al.,  2009), and new 
Grell cumulus parameterization (Grell & Dévényi, 2002). The CBMZ gas-phase chemical mechanism (Fast 
et al., 2006) combined with the MADE/SORGAM aerosol model (Ackermann et al., 1998; Schell et al., 2001) 
is employed to represent atmospheric chemistry.

2.3. CO2 Simulations With the WRF-CO2 System

In 2007, an online CO2 simulation system was developed within the WRF model framework (referred to 
as the WRF-CO2 system hereafter), considering both anthropogenic CO2 emissions and biospheric CO2 
fluxes and their subsequent atmospheric transport/dispersion (Ahmadov et al., 2007). In this system, bio-
genic CO2 fluxes are calculated online using the Vegetation Photosynthesis and Respiration Model (VPRM) 
(Mahadevan et al., 2008; Xiao et al., 2004). In the past few years, this WRF-CO2 system has been further 
developed by coupling with the CarbonTracker global simulation (Peters et al., 2007, with updates doc-
umented at http://carbontracker.noaa.gov) and incorporating optimized VPRM parameters (Hu, Zhang, 
et al., 2018, 2020, 2021). Simulation with this WRF-CO2 system was previously used to investigate regional 
transport during an air pollution event in northeast China (Li, Hu, Ma, et al., 2019), given the similar spatial 
distribution of anthropogenic emissions of CO2 and pollutants (Figure 3).

By using a multimodel approach to investigate the air pollution event on December 9, 2016, we try to derive 
the most common and robust information of this event in presence of current plausible model uncertain-
ties. If using the same model configuration in each model, the spread of predicted meteorology and the 
subsequent species/pollutants would be small, which might lead to a smaller model spread comparing to 
model errors, an undesired outcome for ensemble/multimodel investigation. In contrast, in an ensemble 
forecasting practice, the use of multiple models/physics may better sample the uncertainty space (not all 
physics are biased in the same direction, Thomas et al., 2019) so that ensemble simulations offer more ac-
curate/less uncertain solution. Thus, we do not intent to use the same configuration for both WRF-Chem 
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and WRF-CO2 simulations, but only ensure selecting a likely used configuration. The WRF-CO2 simulation 
conducted in this work follows a similar configuration used by our previous studies (Hu et al., 2020; Li, 
Hu, Ma, et al., 2019, 2020), but applying over a different domain configuration in this study (a 20-km grid 
spacing in the first domain and a 4-km grid spacing in the second domain, Figure 1, same as WRF-Chem). 
Different from the WRF-Chem simulation, which spans for the selected pollution episode, the WRF-CO2 
simulation is only a segment of a yearly downscaling simulation that uses spectral nudging to maintain the 
large scale forcing in the simulation domain (see Hu et al. (2020) and Li et al. (2020) for details). Thus, the 
CO2 simulation for the selected December 9 episode has been spun-up for 11 months. The NCEP/DOE R2 
data (Kanamitsu et al., 2002) provide meteorological initial and boundary conditions and the CarbonTrack-
er global simulation (version CT2017) 3° × 2° outputs (Peters et al., 2007) provide CO2 initial and boundary 
conditions. Since the investigated period is in winter, biogenic CO2 fluxes are minor and the spatiotemporal 
variation of CO2 mixing ratios are dominated by anthropogenic CO2 emissions and the subsequent trans-
port and dispersion. The monthly 0.1° × 0.1° Open-Data Inventory for Anthropogenic Carbon dioxide (ODI-
AC) (Oda et al., 2018, 2019) version 2018 (Figure 1) provides the anthropogenic CO2 emission. Since lack 
of height information of the emissions, all the ODIAC CO2 emission is put at the first model layer. ODIAC 
was prepared integrating a few data sources, including Carbon Dioxide Information Analysis Center (CDI-
AC) global and national fossil fuel emission estimates, BP statistical review of world energy, power plants 
geolocation information from the Carbon Monitoring and Action (CARMA) global power plant database, 
and satellite observed nightlight data (Lauvaux et al., 2016; Oda et al., 2019). ODIAC has been widely used 
in CO2 studies in recent years (Hedelius et al., 2018; Hu et al., 2020; Lauvaux et al., 2016; Martin et al., 2019; 
Oda et al., 2017; Ye et al., 2020). Oceanic CO2 fluxes are taken from climatological monthly values derived 
by Takahashi et al. (2009). The oceanic contribution to total CO2 concentration is negligible (Hu et al., 2020) 
comparing to the dominant anthropogenic contribution in this study.

Major model physics parameterizations selected for the WRF-CO2 simulation include the Dudhia shortwave 
radiation scheme (Dudhia, 1989), the rapid radiative transfer model (RRTM) (Mlawer et al., 1997) for long-
wave radiation, the Noah land-surface model (Chen & Dudhia, 2001), the Grell-3 cumulus scheme (Grell & 
Dévényi, 2002), the Morrison microphysics scheme (Morrison et al., 2009), and the YSU PBL scheme (Hong 
et al., 2006).

Two additional single-domain short WRF-CO2 simulations are conducted with turning on/off anthropogen-
ic CO2 emissions over the North China Plain (NCP, north of 34°N) for the December 6–9 episode, in order to 
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Figure 3. Spatial distribution of (a) NO emission used by the WRF-Chem simulation and (b) CO2 emission used by the WRF-CO2 simulation. Note that 
pollutant emissions over China are derived from the Multiresolution Emission Inventory for China (MEIC) (http://www.meicmodel.org/) and emissions outside 
of China are derived from Hu, Ma, et al., 2014. CO2 emissions are derived from the Open-Data Inventory for Anthropogenic Carbon dioxide (ODIAC).
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quantitatively estimate the contribution of regional transport of NCP emissions to pollution in the middle 
and lower reaches of the Yangtze River region.

3. Results
Li, Wang, et al. (2019) investigated the haze pollution over eastern China during December 2–8, 2016 and 
briefly mentioned that on the last two days of this episode, i.e., on December 7–8, the air pollution in the 
region experienced the rapid formation and dissipation stages. The severe haze pollution (with a PM2.5 
concentration of ∼200 μg m−3) actually persisted until December 9 in the Yangtze River Delta Region, e.g., 
until early morning at Shanghai, noon at Ningbo/Hangzhou, and late afternoon at Jinhua (Figures 4a–4d). 
Meanwhile, a surface CO2 site in the region, at Linan, Hangzhou recorded an elevated CO2 concentration 
(Figure 4e).

The PM2.5 peak gradually delayed at sites from north to south in eastern China on December 8–9, 2016 (Fig-
ure 4), consistent with the southward movement of a frontal system. On December 9, a trough at 850 hPa 
moved off the coast of northeast China and the northwesterly wind dominated over northeast China and 
North China Plains (Figure S1 in Supporting Information). Correspondingly, at surface the high-pressure 
system with a cold front at the leading edge penetrated over the North China Plains and Yangtze River Delta 
Region, and northerly surface winds persisted in the region (Figure 2).

Both models (WRF-Chem and WRF-CO2) reproduce the southward penetration of the cold front (Figures 5 
and 6) and simulate elevated PM2.5 and XCO2 concentrations at the leading edge of the front (Figures 5b, 5c, 
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Figure 4. Time series of PM2.5 at four sites in the Yangtze River Delta Region, (a) Shanghai, (b) Ningbo, (c) Jinhua, and 
(d) LinAn, Hangzhou (see their locations in Figure 1(b), and (e) CO2 at LinAn, Hangzhou. Nighttime is shaded.
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5e, and 5f). Simulated PM2.5 are evaluated using surface air quality station data and hourly statistic metrics 
are calculated (Table 2). The performance of simulated PM2.5 are comparable to previous WRF-Chem air 
quality simulations (e.g., Hu, 2008), e.g., in terms of correlation coefficient (r), and normalized mean bias 
(NMB). The model shows higher r and lower NMB on 9 December 2016 (Table 2 and Figure S2 in Support-
ing Information) when the horizontal gradient of pollutants is prominent when the cold front is present 
in the domain, which indicates that model captures the spatial variability better when such variability is 
significant and has large scale characteristics.

Note that the meteorological fields from the WRF-Chem and WRF-CO2 simulations are similar in terms 
of synoptic meteorology and boundary layer structures (Figure 7), which are most relevant to transport/
dispersion of atmospheric constituents discussed in this study. Thus, only meteorological fields from the 
WRF-Chem simulation are shown (Figures 5, 6 and 8). Ahead of the front, strong stability near the surface 
(as indicated by the potential temperature inversion in Figure 7) leads to low boundary layer height, e.g., at 
Nanchang and Quzhou (Figures 7c and 7d). Behind the front, stronger wind induces stronger mechanical 
turbulence, reducing the stability and enhancing boundary layer height, e.g., at Sheyang and Shanghai 
(Figures 6 and 7a, 7b). More discussion regarding boundary layer structure/heights, and thermal stability 
over China during winter can be found in Miao and Liu (2019). The surface temperature contrast across 
the front (Figure 6a) is not as crisp and clear as the contrast of equivalent potential temperature (e) in the 
boundary layer (Figures 5a and 5d) likely because the large disturbance of heterogeneity of land surface, as 
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Figure 5. Simulated (a, d) equivalent potential temperature (e) at 1 km above sea level, (b, e) surface PM2.5 by WRF-
Chem, and (c, f) XCO2 by WRF-CO2 over East Asia at (left) 0100 and (right) 0600 local time (LT) on December 9, 2016.
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well as terrain height difference in the region (Figure 1). The contrast of boundary layer height across the 
front (Figure 6b) is also more prominent than that of surface temperature (Figure 6a) because boundary 
layer height has a larger footprint (i.e., affected by more upstream air mass) and is less affected by local 
surface heterogeneity.

The cold front sweeps and cleans up the North China Plains and all the emitted species (and some sec-
ondary pollutants) are accumulated at the leading edge, including PM2.5 and XCO2 (Figure 5). Bands of 
elevated pollutant concentrations along frontal edges have also been reported previously (Hu et al., 2019). 
Since CO2 and some primary pollutants (e.g., NOx  =  NO  +  NO2, SO2, CO, and soot particles) are often 
coemitted (Konovalov et al., 2016; Lopez et al., 2013; Silva & Arellano, 2017; Tang et al., 2019), their spatial 
distributions (e.g., between CO2 and NO) are similar (Figure 3). The correlation between emissions of CO2 
and NO varies between 0.77 and 0.86 at grid spacings of 40–100 km. Note that even though both NO and 
NO2 are produced from combustion process, most air quality emission inventories, including the one used 
in this study, assign most NOx emission into NO. NOx, SO2, and soot particles are all important precursors/
components of PM2.5 in the region (Li, Wang, et al., 2019). As a result of similar emission distribution, the 
band region with elevated concentrations of PM2.5 and XCO2 ahead of the front resemble each other (Fig-
ure 5). Thus, adding an WRF-CO2 simulation to a conventional WRF-Chem air quality simulation could 
provide additional/corroborating information regarding air pollution events (particularly in terms of spatial 
distribution), serving similar purposes as the multimodel approach used in other air quality studies, which 
include deriving the most robust information in presence of all sorts of model errors (Fiore et al., 2009; 
Leibensperger et al., 2011).

The different physics configurations between WRF-Chem and WRF-CO2 simulation are radiation 
schemes. While WRF-Chem simulation used RRTMG shortwave and longwave radiation schemes (Iacono 
et al., 2008), WRF-CO2 simulation used Dudhia shortwave radiation scheme (Dudhia, 1989), and the rapid 
radiative transfer model (RRTM) (Mlawer et  al.,  1997) for longwave radiation. We repeat the WRF-CO2 
simulation with RRTMG shortwave and longwave radiation schemes to be consistent with the WRF-Chem 
simulation. Despite the slight sensitivity to radiation schemes (Figure S3 in Supporting Information), the 
WRF-CO2 simulations with both radiation configurations, are able to capture the sharp rise of CO2 asso-
ciated with the cold front passage (Figure S4 in Supporting Information), coincident with the sharp rise 
of PM2.5 (Figure 4). Thus, this additional simulation further corroborates our conclusion: WRF-CO2 sim-
ulation, despite with its own uncertainties associated with physics parameterizations, can be used to help 
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Figure 6. Spatial distribution of (a) simulated 2-m temperature (T2) and 10-m wind vectors with the National Climatic 
Data Center (NCDC) Global Hourly Surface Data overlaid using shaded circles, and (b) simulated PBL height by WRF-
Chem at 1700 local time on December 9, 2016.
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 forecast and  investigate air pollution events, collectively with other air quality sim-
ulations and observations.

After reaching the Yangtze River Delta Region, the leading edge of the cold front 
was partially blocked by terrain, and hence separated when further penetrat-
ing southward (Figure 8). At 0400 local time on December 9, 2016, the NO and 
XCO2 bands are still relatively smooth and undisturbed over a flat terrain region 
(Figures 8b and 8c). Later on, the southward-penetrating front is blocked by the 
Mountains Huang and Dabie. At 1600 local time, a channel flow (also referred to 
as gap winds at times, e.g., Overland & Walter, 1981) between Mountain Huang 
and Mountain Dabie is prominent, while the rest of the front appears stalled (Fig-
ure  8d). The channel winds accelerate along the channel and reach maximum 
near the southern end of the channel following the Bernoulli principle, i.e., total 
pressure (sum of static pressure and dynamic pressure (expressed as a function 
of square of wind speeds)) is conserved in a surface streamline (Hitzl et al., 2020; 
Zhang et al., 2005):


  2 2

0
Δ2 ,pu u (1)

where 0u  and u are the initial and exit wind speed along the gap, Δp is the pressure 
change,   is air density. High static pressure resides over the North China Plains 
and the Yangtze River Delta Region on this day (Figure 2). Thus, the static pres-
sure is higher when the flow enters the channel and decreases along the channel 
(Figure  S2). Consequently, wind speeds increase along the channel according to 
the Bernoulli conservation. As a quantitative example, at 1800 local time, the ini-
tial wind is ∼8 m s−1, and pressure changes by 2 hPa along the gap. According to 
Equation 1, the wind at the exit of the gap is about to increase by 12 m s−1. However, 
surface drag and vertical entrainment can reduce the acceleration by almost 50% 
(Zhang et al., 2005). The simulated wind speed at the exit of the gap ∼13–14 m s−1 
matches well with the Bernoulli theory (Figure S5 in Supporting Information).

The channel flow brings plume of pollutants (e.g., NO, Figure 8e, AOD, Figure 9a) 
from the North China Plains and Yangtze River Delta Region into Jiangxi province, 
contributing to the air pollution in the region. This regional transport is confirmed 
by the WRF-CO2 simulation (Figure 8f), as well as a few satellite sensors (Figure 9). 
Three satellite retrieval products, MODIS AOD, OMPS NO2, and AIRS CO, all illus-
trate a stalled band of elevated pollutant concentrations along the Yangtze River 
Delta Region and this pollution plume only leaks into the Jiangxi province through 
the narrow Dabie-Huang channel as indicated by the AOD data with a resolution 
of 3  × 3 km2. Interestingly, the penetration/leaking is visible in the elevated AOD 
and XCO2 concentration bands, despite being column integrated quantities. OMPS 
NO2 and AIRS CO have lower resolutions (∼50  × 50 km2), thus do not resolve the 
channel transport as well as the MODIS AOD data, with AIRS CO still showing a 
discernable plume extending into Jiangxi through the Dabie-Huang channel (Fig-
ure 9d). MOPITT aboard the Terra satellite observes CO with a higher resolution 
(22 × 22 km2), but at a different overpassing time from the other satellite data used 
in this study, thus is not used here. Note that we use AIRS CO at ∼500 mb where the 
retrieval is the most sensitive. Frontal structure (as well as constituents) at ∼500 mb 
may not exactly align with the surface front (Hu et al., 2020), which further explains 
why the detected elevated CO concentration band is relatively diffuse.

Such a regional transport pathway is further illustrated using simulated and ob-
served surface PM2.5 as well as simulated CO (Figure 10). PM2.5 concentration at 
Jiujiang peaks at 1800 local time, about 2 h later after PM2.5 peaking at Anqing, a site 
north to Jiujiang between the Dabie-Huang channel, corroborating the southward 
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transport of the haze plume through the Dabie-Huang channel. At 2000 local time, the pollution plume (as 
indicated by both CO and PM2.5) farther penetrates southward and reaches Nanchang, contributing to the 
haze pollution in the region (Figure 10). Thus, while previous studies pointed out the importance of local 
sources on air quality in Jiangxi province, including vehicles, industries, waste burning, and dust (Yang 
et al., 2017; Zhao et al., 2017), this study illustrates that air pollution in Jiangxi province may be affected 
by pollutants transported from the North China Plain and Yangtze River Delta Region through the Da-
bie-Huang channel. In such scenarios, monitoring the air pollution at sites along the Dabie-Huang channel 
(e.g., Anqing and Jiujiang) may be indicative and informative for the air quality prediction in the rest of the 
Jiangxi province.

Corroborating evidence from observed and simulated pollutants, simulated XCO2 also reveals the regional 
transport characteristics. The spatial distributions of simulated XCO2 and MODIS AOD are consistent (Fig-
ures 9a and 9b) with a correlation of 0.8 (Figure 11). Note that some of the AOD over the western domain is 
not available due to the presence of cloud (figure not shown) or poor retrieval quality. The high correlation 
between simulated XCO2 and MODIS AOD is comparable to previously reported correlation between simu-
lated and observed AOD (Basart et al., 2012; Hu, 2008; Matthias, 2008; Pere et al., 2010; Roy et al., 2007). The 
comparable correlations imply that the uncertainties in air quality simulations when simulating aerosol 
and AOD may be comparable to the spread of simulated concentrations of different but coemitted species. 
This also illustrates that WRF-CO2 simulations can help constrain air pollution prediction uncertainties, at 
least for AOD to a quite high extent for this studied case.

To more quantitatively estimate the contribution of regional transport to the pollution in the middle and 
lower reaches of the Yangtze River region, WRF-CO2 tracer simulations are conducted with turning on/
off anthropogenic CO2 emissions over the North China Plain (NCP) for the December 6–9 episode. The 
emissions over the NCP contributes ∼20 ppm CO2 at the leading edge of the front (Figure 12b), accounting 
for up to 70% of total anthropogenic CO2, particularly in rural areas in the middle and lower reaches of the 
Yangtze River region (Figure 12c). Over the ocean east of the Yangtz Delta region, the contribution from 
NCP emissions exceeds 95% because the CO2 plume over the ocean was swept off the NCP on December 
8 and transported southward on December 9. Over the large emission sources (e.g., Shanghai, Suzhou, 
Nanjing, and Huainan) and the downwind regions, the contribution of regional transport of NCP emissions 
decreases to <50%. The contribution of regional transport of NCP emissions to the area south of Hangzhou 
becomes insignificant (<10%). For PM2.5, the contribution of regional transport is more complex since sec-
ondary aerosols are involved, thus needs more careful examination (Li, Wang, et al., 2019; Sun et al., 2020).
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Figure 7. Observed and simulated profiles at (a, b) Sheyang and Shanghai (behind of the front) and (c, d) Nanchang 
and Quzhou (ahead of the front) at 1900 local time on December 9, 2016.
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The synoptic condition of December 9, 2016 falls into the Type 1 synoptic pattern classified by Xiao 
et al. (2020), which is characterized by northerly prevailing winds transporting polluted air from the North 
China Plains to the middle and lower reaches of the Yangtze River region from Wuhan to Shanghai. Such a 
synoptic pattern accounts for 31.8% of time in a year (Xiao et al., 2020).

On December 9, OCO-2 passed through the Shanghai-Hangzhou metropolitan area. The XCO2 data at 
1:30 PM local time capture the plume in the Hangzhou metropolitan area, showing a good agreement with 
the WRF-CO2 simulation and thus providing confidence in the simulated XCO2 (Figure 9b). Given the high 
correlation, satellite XCO2 data can thus provide an extra and corroborating technique to monitor air pollu-
tion, in addition to existing surface networks and other remote-sensing instruments.

In addition to the case of December 9, 2016, Figure 13 shows four other CO2 plumes in the Yangtze River 
Delta Region captured by OCO-2 XCO2 data, with different plume characteristics, on April 29, 2016, March 
15, 2017, February 5, and March 9, 2018. During the first two cases, OCO-2 XCO2 captures the plumes 
around the Shanghai metropolitan area, with the plumes blown into different directions. During the last 
two cases, OCO-2 XCO2 captures the plumes emanated from Nanjing and Yangzhou, also with different pre-
vailing winds (westerly on February 5 and northerly on March 9, 2018) as indicated by the plume directions. 
These cases corroborate that even though XCO2 variation caused by anthropogenic activities (about a few 
ppmv) is very small comparing to the large background value (on the order of 400 ppmv) (Shim et al., 2019), 
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Figure 8. Spatial distribution of simulated (a, d) surface wind speed, and (b, e) NO by WRF-Chem, and (c, f) XCO2 by 
WRF-CO2 at (left) 0400 and (right) 1600 local time on December 9, 2016.
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high-precision OCO-2 XCO2 data are able to capture these regional to urban scale anthropogenic CO2 
plumes (Eldering et al., 2017; O'Dell et al., 2018). Thus, OCO-2 XCO2 can be used as a proxy variable to 
monitor other coemitted species, as well as secondary pollutants such as PM2.5; together with other observa-
tions and simulations, OCO-2 XCO2 can collectively provide useful information to monitor and predict haze 
pollutions that plague China and other regions over the world.

4. Discussion on Using XCO2 Data to Capture Urban CO2 Plumes
As shown above, the OCO-2 XCO2 data can be used to collectively monitor and predict air pollution with 
other instruments and models, particularly when the gradient of air pollution is large in the meridi-
onal direction. OCO-2 collects soundings at 0.333-s intervals across a narrow swath with a footprint of 
2.25 × 1.29 km2, thus proving a high frequency coverage along the meridional direction. However, its long 
repeat cycle (16 days) in terms of longitude coverage and a few other factors limit wide application of OCO-2 
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Figure 9. (a) MODIS AOD, (b) simulated XCO2 overlaid with OCO-2 observation, (c) OMPS NO2, and (d) AIRS CO on December 9, 2016.
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XCO2 data. On any given day, adjacent OCO-2 tracks are separated by ∼25° of longitude. After each 16-days 
cycle, the gaps between OCO-2 tracks are ∼1.6 (25/16)° (Crisp et al., 2017; Kulawik, Crowell, et al., 2019). In 
addition, OCO-2 retrieval of XCO2 becomes unreliable and not usable in presence of clouds, as with many 
other satellite products (O'Dell et al., 2018). Thus OCO-2 XCO2 coverage in longitude direction is sparse and 
may not pass over certain urban areas on a given day, which limits its wide application for detecting urban 
scale pollutions. Instead, regional scale pollution covering a wider range of longitude may be more likely 
captured by the OCO-2 XCO2 data. However, in the upcoming years, emerging wider coverage of XCO2 
satellite data (e.g., from OCO-3) will provide more frequent urban pollution information (Wu et al., 2020).

Also, OCO-2 XCO2 retrieval can be interfered by presence of aerosol (O'Dell et al., 2018), which may cause 
an interfere error of 0.2–1.0 ppmv (Chen, Liu, Yang, et al., 2019). The regional enhancement of XCO2 in 
the Yangtze River Delta Region is ∼7 ppmv for the December 9 episode examined in this study (Figure 9b). 
Other studies (e.g., Shim et al., 2019) estimate the regional enhancement of XCO2 in the metropolitan ar-
eas such as South Korea to be around 7.3–10.7 ppmv. Thus, at least in these regions, the regional to urban 
enhancement of XCO2 is much larger than the interference error associated with aerosols, thus won't be 
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Figure 10. Spatial distribution of (left) CO and (right) PM2.5 simulated by WRF-Chem overlaid with surface observation of PM2.5 at (top) 1400 and (bottom) 
2000 local time, on December 9, 2016. Open circles mean PM2.5 values <100 μg m−3. Hourly statistic metrics of PM2.5 evaluated using surface observations are 
marked, including correlation coefficient (r), and normalized mean bias (NMB).
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Figure 11. Correlation between MODIS AOD and simulated XCO2 at 1:30 PM on December 9, 2016.

Figure 12. Spatial distribution of (a) total anthropogenic CO2 and (b) contribution from emissions from the North China Plain (NCP), and (c) contribution 
percentage over the middle and lower reaches of the Yangtze River region at 1400 local time on December 9, 2016. Four cities with large anthropogenic CO2 
emissions in the Yangtze River region (from east to west), Shanghai, Suzhou, Nanjing, and Huainan, are marked with stars.
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masked by the interference error. Nevertheless, an optimized XCO2 retrieval algorithm to reduce XCO2 un-
certainties associated with aerosols is warranted (Chen, Liu, Yang, et al., 2019; Kulawik, O'Dell, et al., 2019).

5. Conclusions and Discussion
A severe haze pollution event on December 9, 2016 in the Yangtze River Delta Region is investigated us-
ing multisensors (including satellites MODIS, OCO-2, AIRS, OMPS, as well as surface instruments) and 
multimodels, including WRF-Chem and WRF-CO2. On this day, a cold front penetrated southward from 
the North China Plain to the Yangtze River Delta Region. While this front cleaned the North China Plain, 
pollutants accumulated at its leading edge (as well as the greenhouse gas CO2), which exacerbated air pol-
lution over the Yangtze River Delta Region. While most previous studies emphasized that frontal  systems 
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Figure 13. Simulated XCO2 overlaid with OCO-2 data for four additional cases with OCO-2 passing over the urban 
plumes in the Yangtze River Delta Region. Anqing, Nanjing, Yangzhou, and Shanghai (from left to right) are marked 
with stars.
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 associated with midlatitude baroclinic cyclones replace polluted continental air with cleaner air, thus 
improving air quality (Leibensperger et al., 2008; Liu et al., 2017), this study calls attention for pollution 
around the leading edge of fronts. Such a pollution mechanism also provides a plausible explanation for 
the heavy pollutions observed in central China at times, where emissions are relatively less heavy (Xiao 
et al., 2020; Yu et al., 2020). A similar mechanism for air pollution formation was previously reported by Hu 
et al. (2019) over the South Great Plains.

Later on December 9, the front became distorted due to terrain blocking. The channel winds between 
Mountains Dabie and Huang pushed the front forward and transported the haze plume into Jiangxi prov-
ince, enhancing the pollution in the region. This pollution event in terms of its spatial coverage and re-
gional transport characteristics was corroborated by observations from multiple satellite sensors, including 
MODIS AOD, OCO-2 XCO2, OMPS NO2, and AIRS CO, as well as surface air quality sites.

This air pollution event is well reproduced by the WRF-Chem simulation, particularly in terms of its spatial 
coverage. CO2 simulated by WRF-CO2 also indicates a similar spatial distribution, because CO2 is often 
coemitted with other pollutants (or precursors) and thus their distributions have high correlations. Giv-
en the limitations in the spatial coverage of surface air quality sites and instrumental errors, as well as 
uncertainties of emissions and air quality models, monitoring and prediction of air pollution events in 
China are less confident than in data-richer regions such as the United States. This study demonstrates that 
using more sensors, particularly satellite sensors (including XCO2 spectrometer) together with WRF-CO2 
simulations, in addition to conventional in-situ measurements and air quality simulations, can collectively 
better monitor bulk anthropogenic activity, examine and predict air pollution events, particularly in terms 
of their spatial distribution and regional transport. To the best of our knowledge, this study is the first one 
to demonstrate that satellite XCO2 data and WRF-CO2 simulation can be used to help monitor and predict 
air quality (e.g., in terms of urban plumes and transboundary pollution), given that CO2 emissions have a 
similar distribution as emissions of pollutants.

In this study, CO2 and air pollutants are simulated separately using WRF-CO2 and WRF-Chem, respectively. 
If the VPRM model and other modifications in WRF-CO2 are also implemented into WRF-Chem, the result-
ing system can then be used to simulate CO2 together with other chemical species pertaining to air quality. 
Simulating CO2 and air pollutants simultaneously in one modeling system is appealing and warranted given 
that CO2 and some pollutants are coemitted, and they have similar spatiotemporal variations as demonstrat-
ed in this study. Such an implementation can be pursued in the future.

For the first time, we illustrate that pollutants may be transported from the North China Plain and Yangtze 
River Delta Region to Jiangxi province through the Dabie-Huang channel, contributing to the air pollution 
in the region. Thus, monitoring chemical and meteorological variables along the Dabie-Huang channel is 
important for predicting air quality in Jiangxi province. More quantitative estimation of contribution from 
such regional transport is warranted for air quality assessment and design of emission abatement strategy 
in Jiangxi. Such a quantitative estimation needs to be conducted with air quality simulations with accurate 
calculation of secondary inorganic aerosols, particularly sulfate, nitrate, and ammonium, due to their sig-
nificant contribution (Li, Wang, et al., 2019; Sun et al., 2020).

Data Availability Statement
The reanalysis data set was downloaded from https://rda.ucar.edu/, the CT2017 data were provided by 
NOAA ESRL, Boulder, Colorado, USA from the website at http://carbontracker.noaa.gov. MODIS AOD is 
downloaded from https://ladsweb.modaps.eosdis.nasa.gov/ and other satellite data are downloaded from 
https://disc.gsfc.nasa.gov/. The NCDC data used for model evaluation are downloaded from http://www7.
ncdc.noaa.gov/CDO/cdo, and the radiosonde data are archived by the China Metrological Administration 
(CMA). Danhua Zhai provided the weather map in Figure 2. Model data produced from this study have 
been archived at the Luster NSF projects data server at the San Diego Supercomputer Center, /expanse/
luster/projects/uok114/xhu2.
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