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ABSTRACT

This paper investigates the impacts of assimilating measurements of different state variables, which can be

potentially available from various observational platforms, on the cycled analysis and short-range forecast of

supercell thunderstorms by performing a set of observing system simulation experiments (OSSEs) using

a storm-scale three-dimensional variational data assimilation (3DVAR) method. The control experiments

assimilate measurements every 5 min for 90 min. It is found that the assimilation of horizontal wind Vh can

reconstruct the storm structure rather accurately. The assimilation of vertical velocity w, potential temper-

ature u, or water vapor qy can partially rebuild the thermodynamic and precipitation fields but poorly retrieves

the wind fields. The assimilation of rainwater mixing ratio qr can build up the precipitation fields together with

a reasonable cold pool but is unable to properly recover the wind fields. Overall, Vh data have the greatest

impact, while qy have the second largest impact. The impact of qr is the smallest. The impact of assimilation

frequency is examined by comparing results using 1-, 5-, or 10-min assimilation intervals. When Vh is as-

similated every 5 or 10 min, the analysis quality can be further improved by the incorporation of additional

types of observations. When Vh are assimilated every minute, the benefit from additional types of observa-

tions is negligible, except for qy . It is also found that for Vh, w, and qr measurements, more frequent as-

similation leads to more accurate analyses. For qy and u, a 1-min assimilation interval does not produce

a better analysis than a 5-min interval.

1. Introduction

Numerical weather prediction (NWP) of severe thun-

derstorms is very important for saving lives and proper-

ties. To get a good prediction of thunderstorms, the initial

condition from which a forecast starts is expected to be

as accurate as possible. In recent years, much research

has been done to improve initial conditions for storm-

scale NWP. There are generally two ways to do so: 1)

develop and improve NWPmodels and data assimilation

techniques to make the best use of available obser-

vations and background information, and 2) design

and deploy additional high-resolution observing sys-

tems to improve the quality and coverage of atmospheric

observations.

Currently, Doppler radars can routinely provide one

component of the storm-scale three-dimensional wind

field (radial velocity). The full horizontal wind field can

be retrieved to some degree of accuracy using multiple

Doppler radars, provided good multi-Doppler coverage

can be obtained. Rainfall information (rainwater mixing

ratio, snow water mixing ratio, hail mixing ratio) can be

derived from observed radar reflectivity (including dual-

polarization observations), satellite imagery data, and

surface cloud reports. In the future, it is expected that
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the vertical velocity field will be observed in high res-

olution by spaceborne or airborne high-frequency Dopp-

ler radar. The water vapor field can be derived at high

resolution from next-generation Geostationary Opera-

tional Environmental Satellite (GOES) observations,

radar refractivity observations, and observations by a

dense network of ground-based global positioning system

(GPS) receivers. The temperature field can also be pro-

filed in high resolution by next-generation GOES.

Even as more data assimilation and observing system

studies are performed, some fundamental questions re-

main to be answered. What are the impacts of assimi-

lating measurements of various state variables on storm

analysis and short-range forecast? How does the model

respond to the assimilation of individual types of mea-

surements? How quickly can a quality initial condition

be obtained using intermittent data assimilation? Will

more frequent assimilation (rapid updates) necessarily

yield good results?

Weygandt et al. (1999) performed experiments to

study the relative importance of different data fields in

a numerically simulated convective storm by sequen-

tially withdrawing information from each model vari-

able and rerunning the simulation. The perturbation

horizontal velocity was found to have the greatest in-

fluence on the evolution of the simulated convective

storm. Park and Droegemeier (2000) examined the

sensitivity of a supercell storm simulation to errors in

model fields in the context of four-dimensional varia-

tional data assimilation. They concluded that the forecast

error is most sensitive to the inaccuracy of temperature,

followed by pressure and water vapor. Weygandt et al.

(2002a,b) conducted several sensitivity tests and found

that their supercell storm simulation was greatly de-

pendent on initial moisture fields, especially the water

vapor field. Sun (2005) studied the relative importance

of different initial fields on the forecast of an observed

supercell storm by resetting a given initial field to its

base state. Wind, water vapor, and temperature pertur-

bation fields showed the largest sensitivities. Nascimento

and Droegemeier (2006) examined, using an idealized

simulation of a bow-echo convective system, the nature

of the dynamic adjustment that occurred after resetting

a given model data field to its base state. Horizontal

wind fields were found to be crucial for an accurate

simulation. Fabry and Sun (2010) and Fabry (2010)

studied the propagation of initial condition errors in

mesoscale convections using four-dimensional varia-

tional data assimilation (4DVAR), finding that error in

midlevel moisture (humidity) has the greatest impact

on the quality of the forecast. Zhang et al. (2004) con-

ducted some sensitivity tests on the observing frequency

and data coverage for convective-scale data assimilation

using an ensemble Kalman filter (EnKF). They found

that low-level observations are important for the cap-

ture of the storms and that frequent observations can

improve the data assimilation in the early stage (during

the first half-hour). Tong and Xue (2005) studied the

impact of radial velocity and radar reflectivity on the

data assimilation for an idealized supercell thunderstorm

using EnKF, finding that the best results are obtained

when both types of data are assimilated into the model.

All the above studies contribute to our understanding

of the relative importance of different state variables for

mesoscale/storm-scale data assimilation and prediction.

However, because of their different contexts and dif-

ferent focuses, there are differences among the conclu-

sions of these studies. These differences call for more

research on this issue. Furthermore, the manner in which

model fields adjust at the storm scale in response to the

assimilation of different observations after a cold start is

not explicitly investigated. In this study, we performmore

than a dozen idealized experiments to study the impact

of assimilating measurements of different state variables

on storm-scale analyses and short-range forecasts in the

context of a three-dimensional variational data assimila-

tion (3DVAR) system. Unlike the data-denial method

or sensitivity method used in many previous studies

(e.g., Weygandt et al. 1999; Sun 2005; Nascimento and

Droegemeier 2006), we will examine the relative impor-

tance of different data fields by assimilating the mea-

surements of them into the model. For each observing

system simulation (OSS) data assimilation experiment,

we examine whether it can successfully reproduce the

storm structures (dynamic, thermodynamic, and pre-

cipitation structures), how long is required to achieve

a successful recovery, and how accurate are the final

analyses. The impact of assimilation frequency will also

be examined.

This paper is organized as follows: section 2 will cover

the methodology and the design of experiments, section

3 will discuss the results from these experiments, and

conclusions will be provided in section 4.

2. Methodology and experimental design

a. The 3D variational formulation

Based on Bayesian probability theory and assuming

Gaussian error distributions, Lorenc (1986) derived the

standard formulations of the variational data assimila-

tion problem. A variational method determines the op-

timal analysis by directly minimizing a cost function. The

cost function of the Advanced Regional Prediction Sys-

tem (ARPS; Xue et al. 2000, 2001, 2003) 3DVAR system

(Gao et al. 2004) is written as
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J(X)5 JB1 JO 1 JC 5
1

2
(X2Xb)

T(B21)(X2Xb)

1
1

2
[H(X)2 yo]

TR21[H(X)2 yo]1 JC , (1)

where JB measures the departure of the analysisX from

the backgroundXb, and is weighted by the inverse of the

background error covariance matrix B; JO measures the

departure of H(X), the projection of the analysis X into

observational space, fromobservations yo and isweighted

by the inverse of the observational error covariance ma-

trix R. The quantity JC is the penalty or equation con-

straint term, which can be used to build linkages among

model variables by using the mass continuity equation

and/or a diagnostic pressure equation (Ge et al. 2012).

Although equation constraints can help spread ob-

servation information to some unobserved model vari-

ables, they also complicate the data impact problem. This

study focuses on the data impact of individual model

fields or their combinations, as well as themodel response

from cold start to the ingestion of observations; therefore,

in this study, JC is not used. Furthermore, in this study,

pseudo-observations are directly drawn from the model

variables, so no projection or interpolation is needed.

These conditions result in a simpler cost function:

J(X)5 JB1 JO 5
1

2
(X2Xb)

TB21(X2Xb)

1
1

2
(X2Xo)

TB21(X2Xo) . (2)

The goal of obtaining an analysis is to find a state Xa

for which J is minimized. At its minimum, the derivative

of J becomes zero; therefore, the cost function of Xa

satisfies =J(x) 5 B21(X 2 Xb) 1 R21(X 2 Xo) 5 0. In

the ARPS 3DVAR system (Gao et al. 2004), the back-

ground error covariance B is assumed to be spatially

homogeneous with isotropic Gaussian spatial correla-

tions. The actual effects of B are realized through re-

cursive filters (Purser and McQuiqq 1982; Hayden and

Purser 1995) as described in Gao et al. (2004). The error

variances for each of the state variables will be provided

in the next section. It is realized that this B is not flow

dependent, as is the case with most 3DVAR systems.

As a result, the assimilation of observations of individual

state variables may not be as effective as would be the

case when using other more advanced data assimilation

methods such as EnKF and 4DVAR, where the co-

variance B is explicitly or implicitly flow dependent. In

the current 3DVAR systems, dynamic consistency among

the state variables is achieved mostly through model

adjustment during the high-frequency assimilation cycles.

Given that the main goal of this study is to investigate the

relative importance of the measurements of different

state variables, the conclusions should not depend too

much on the assimilation method.

b. The prediction model and truth simulation

In this study, we use simulated data from a classic

supercell storm on 20 May 1977 in Del City, Oklahoma

(Ray et al. 1981). The ARPS system is used to simulate

this storm within a 64 km 3 64 km 3 16 km physical do-

main comprising 673 673 35 grid points. Horizontal grid

spacing of 1 km and vertical grid spacing of 0.5 km are

used, with the first scalar model level located at 250 m

above ground level (AGL). The truth simulation is run

for 3 h, and is initialized from a modified real sounding

plus a 14-K ellipsoidal thermal bubble centered at x 5
48 km, y5 16 km, and z5 1.5 km, with radii of 10 km in

the x and y directions and 1.5 km in the vertical di-

rection. The Kessler (1969) warm rain microphysical

scheme is used together with a 1.5-order turbulent kinetic

energy–based subgrid parameterization. Open condi-

tions are used at the lateral boundaries and a wave ra-

diation boundary condition is applied at the top boundary.

A free-slip boundary condition is applied at the bottom.

A constant wind of u 5 3 m s21 and y 5 14 m s21 is

subtracted from the observed sounding to keep the pri-

mary storm cell near the center of model domain.

The evolution of the simulated storms is similar to that

documented in Xue et al. (2001) and is shown in Fig. 1.

The initial convective cell strengthens over the first 20 min

and begins to split into two cells at around 55 min. The

right-moving cell is dominant, travelingnorth-northeastward

while remaining near the center of domain. The left-

moving cell travels northwestward, reaching the northwest

corner of the domain 2 h into the simulation.

c. Experimental design

After creating the truth simulation of the tornadic

thunderstorms, pseudo-observations are directly taken

from the simulated model state variables. The pseudo-

observations used are horizontal windVh, vertical velocity

w, potential temperature u, water vapor mixing ratio qy,

and rainwater mixing ratio qr. Gaussian noise is added to

the above data fields to mimic observation error. The

standard deviations for the error fields of the observations

so and the background sb are given in Table 1.

Pseudo observations are collected from the truth

simulation between 30 and 120 min after it is initialized.

The assimilation experiments start with a horizontally

homogeneous background initialized using the same

sounding used in the truth run. At the initial time, the

assimilation experiments have no storm information at

all. Starting at 30 min, available pseudo observations

are assimilated into the model, followed by a short
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forecast (the length of which is varied in different ex-

periments); this assimilation-forecast cycle is repeated

until 120 min (a 90-min assimilation period).

A total of 36 data assimilation experiments are per-

formed; 12 experiments for each of 3 different assimila-

tion frequencies (Table 2). For each set of 12 experiments,

the first 5 assimilate only one type of observations, and

are intended to examine 1) how the model responds to

the assimilation of different types of observations, and

2) which type of observations exert greater impact on

the model analysis. The next four experiments assimi-

late horizontal wind components and one more type of

observations. The last three experiments assimilate both

horizontal and vertical wind components and one more

type of observations. The goal of the latter seven ex-

periments is to examine the impact of assimilating ob-

servations in different combinations. Each experiment is

named by listing the types of observations assimilated

followed by the assimilation time interval, separated by an

underscore. For example, experiment VhWPt_5 assimi-

lates Vh, w, and u every 5 min. In these names, the first

letter of each variable is capitalized and u is replaced by Pt.

To evaluate the performance of different observing

system simulation experiments (OSSEs), we compute

RMS error statistics of the model variables between the

experiments and the truth simulation as follows (Ge

et al. 2010):

RMS Vh 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

i51

(u2 usimu)
2
i
1 �

N

i51

(y2 ysimu)
2
i

2N

vuuut
, (3)

and

RMS s5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

i51

(s2 ssimu)
2
i

N

vuuut
, (4)

FIG. 1. (a)–(c) The quantities V0
h (vectors), u0(contours every 1 K), and reflectivity (shaded) at z 5 250 m AGL. (d)–(f) V0

h (vectors),

w (contours every 6 m s21), and q0y(shaded) at z 5 5 km AGL from the simulation run every 30 min from 50 to 110 min into the truth

simulation. (a),(d) t 5 50 min; (b),(e) t 5 80 min; (c),(f) t 5 110 min.

TABLE 1. Standard deviations of observation error so and

background error sb.

so sb

Vh (m s21) 1 3

w (m s21) 0.667 2

u (K) 0.667 2

qy (g kg21) 0.25 0.75

qr (g kg21) 0.1 0.3
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where N is the total number of grid points used in the

calculation; u and y are the horizontal wind compo-

nents in x and y directions, respectively; s stands for

scalar model variable; and subscript simu indicates data

from the truth simulation. In this study, we compute

RMS error statistics forV0
h,w, u

0, q0y, and qr, which can be

regarded as five performance indices. The change of these

indices over time can be used to illustrate how different

model fields evolve during the assimilation process.

To make the performance evaluation more conve-

nient, we compute the energy difference (ED), follow-

ing Fabry and Sun (2010), between the experiments and

the truth simulation. Three types of energy differences

are defined here—the kinetic energy difference (KED),

the thermal energy difference (TED), and the latent

energy difference (LED):

KED5
1

2

ð
D
(Du21Dy21Dw2) dD , (5)

TED5
cp

2Tr

ð
D
DT2 dD , (6)

and

LED5
L2
p

2cpTr

ð
D
Dq2y dD , (7)

where D stands for the integration domain, D(�) in-

dicates a difference calculation, cp is the specific heat, L

is the latent heat of vaporization, and Tr is a reference

temperature of 270 K, chosen following Ehrendorfer

and Errico (1995). Fabry and Sun (2010) computed the

summation of all ED terms. Similarly, we compute the

summation of KED, TED, and LED; we note, however,

that KED dominates the sum, limiting the effectiveness

of the summation for evaluating and delineating the

experiments when considering dynamic, thermody-

namic, and precipitation structures together. For this

reason we introduce scaled EDs (i.e., SKED, STED,

and SLED) computed by dividing the EDs by their

respective values at the beginning of the data assimi-

lation period. The average of the three scaled EDs

(ASED) is then used as an index to evaluate the ac-

curacy of analyzed storms.

For hydrometeors, it is hard to define an ED similar to

those described above. In this study, we use the RMS

error in simulated reflectivity (RMSZ) as a proxy index

for the difference in rainwater mixing ratio between

the experiments and the truth simulation. This index is

straightforward because the simulated reflectivity directly

shows the location, shape, and structure of the storms.

Used together, ASED and RMSZ provide a convenient

and efficient basis for comparing the performance of

different assimilation experiments.

To measure how quickly different experiments suc-

cessfully recover the simulated storms, successfully re-

covery time (SRT) is defined as the length of time

required for an experiment to achieve scaled EDs of less

than 0.2 and an RMSZ of less than 10 dBZ. To measure

how accurate the recovered storms are at the end of data

assimilation, ASED andRMSZ at the final analysis time

are computed and compared among different experi-

ments. It should be noted that when calculating theRMS

errors and EDs, only grid points that are located in

cloudy regions, defined as regions where simulated re-

flectivity $ 10 dBZ, are included.

3. Results of experiments

In this study, 12 data assimilation experiments are

conducted for each assimilation frequency (every 1, 5,

TABLE 2. The list of experiments assimilating measurements, their corresponding SRT (minutes), ASED, and RMSZ (dBZ) at the end of

90-min data assimilation.

Every minute Every 5 min Every 10 min

Obs SRT ASED RMSZ SRT ASED RMSZ SRT ASED RMSZ

Vh 32 0.001 0.3 70 0.067 4.1 0.210 6.7

w 84 0.141 4.7 0.706 12.6 0.934 20.1

u 1.963 11.4 0.847 12.6 0.896 17.6

qy 0.180 6.94 0.371 7.3 0.587 9.4

qr 1.402 5.1 1.268 11.4 0.891 14.3

VhW 29 0.002 0.4 36 0.004 0.9 71 0.076 3.6

VhPt 30 0.038 1.7 28 0.042 2.1 43 0.057 5.2

VhQv 19 0.018 2.0 18 0.008 1.5 25 0.020 2.0

VhQr 29 0.004 2.7 46 0.025 2.1 81 0.101 3.6

VhWPt 27 0.018 0.7 24 0.030 1.2 31 0.105 2.8

VhWQv 18 0.028 2.8 20 0.006 1.3 21 0.008 1.4

VhWQr 25 0.008 2.7 27 0.007 1.5 51 0.037 2.5
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and 10 min). Hence, there are a total of 36 data assim-

ilation experiments. For each experiment, the SRT, final

ASED, and final RMSZ are determined according to the

criteria described in the previous section; the results are

listed in Table 2. When SRT is left blank, this indicates

that the ‘‘successful recovery’’ criteria were not met dur-

ing the assimilation period.

a. Experiments assimilating a single type
of observations

The experiments assimilating a single type of obser-

vations are suitable for investigating the response of the

model, initialized from a cold start, to the assimilation

of individual type of observations. In these experiments,

starting from the analysis of the first cycle (i.e., at the

beginning of data assimilation window), a 5-min-long

forecast is launched and themodel state is output at each

time step (i.e., every 6 s) to allow for a close examina-

tion. In the following subsections we will focus on the

model responses from cold start to different types of ob-

servations, as well as addressing and comparing the im-

pacts of different types of observations. We will focus

here on experiments using the 5-min assimilation fre-

quency; results obtained using other assimilation fre-

quencies will be discussed later.

1) ASSIMILATING HORIZONTAL WINDS

When both horizontal wind components are assimi-

lated, vertical velocity, potential temperature, and water

vapor mixing ratio are the model fields that are most

strongly impacted during the first assimilation cycle. In

Fig. 2, horizontal wind divergence (DIV), vertical ve-

locity w, perturbation potential temperature u0, and

perturbation water vapor mixing ratio q0y from experi-

ment Vh_5 are shown at 4 kmAGL at 0, 6, 12, and 300 s

after the first observations are assimilated. At t5 0 s, the

assimilation of horizontal wind observations produces

horizontal wind divergence/convergence (Fig. 2a);

meanwhile w, u0, and q0y remain practically unchanged

(Figs. 2b–d). After one integration time step (t 5 6 s),

DIV decreases (Figs. 2e vs 2a). At the same time, an up-

draft center with a maximum value of 6.277 m s21 and

several weaker downdraft centers appear in the w field

(Fig. 2f). The updraft and downdraft centers are col-

located with convergence and divergence centers, re-

spectively (cf. Fig. 2a). At t5 6 s, u0 and q0y fields remain

virtually unchanged (Figs. 2g,h). After one more in-

tegration time step (t 5 12 s), weak perturbations start

to appear in u0 and q0y fields (Figs. 2k,l). As the model

integrates forward further, u0 and q0y further increase

and become more organized while DIV and w decrease

and become less organized (Figs. 2o,p vs 2m,n).

From this examination of the changes to the model

fields immediately following the first analysis, we can

conclude that, from a cold start, the model responds to

the assimilation of horizontal wind observations by pro-

ducing horizontal wind convergence–divergence. This

initial convergence and divergence induces updrafts

and downdrafts that, once established, perturb the po-

tential temperature and water vapor fields. As the model

integrates forward, the magnitude of perturbations of the

horizontal winds and vertical velocity decrease while

those of perturbation water vapor and perturbation po-

tential temperature fields increase.

Such data impact is reinforced as new horizontal wind

observations are assimilated into themodel in subsequent

data assimilation cycles. The adjustments to dynamic and

thermodynamic fields resulting from assimilation of hori-

zontal wind observations will eventually induce con-

vection and precipitation.

In Fig. 3, perturbation horizontal winds, perturba-

tion potential temperature, and radar reflectivity at z 5
250 m AGL, as well as perturbation horizontal winds,

vertical velocity, and perturbation water vapor fields at

5 kmAGLare shown at 20, 50, and 80 min after the start

of data assimilation (i.e., 50, 80, and 110 min after ini-

tialization of the truth simulation). After four assimila-

tion cycles (20 min into the assimilation), small areas of

precipitation have appeared (Fig. 3a). The vertical ve-

locity and water vapor fields have also been partially

reconstructed (Fig. 3d). As the assimilation cycles con-

tinue, the precipitation becomes stronger and spreads to

wider areas (Fig. 3b), and the vertical velocity and per-

turbation water vapor fields become closer to those of the

truth simulation (Figs. 3e vs 1e). After 80 min of assimi-

lation of horizontal wind observations, the recovered

storm cells closely resemble those of the truth simulation

in terms of temperature (Fig. 3c, contours), reflectivity

(Fig. 3c, shaded), vertical velocity (Fig. 3f, contours), and

water vapor fields (Fig. 3f, shaded). According to the

SRT criterion defined earlier, the dynamic, thermody-

namic, and precipitation structures of the storms are

successfully retrieved after 70 min of assimilation.

Supplemental experiments (not shown) were con-

ducted assimilating measurements of only one of the

horizontal wind components (either u or y). The model

response in these supplemental experiments is similar

to that in Vh_5. However, the magnitude of response is

much smaller and assimilating only one component can-

not successfully recover storm structures after 90 min of

cycled data assimilation. This result may be related to the

limited ability of the 3DVAR to directly ‘‘retrieve’’

nonobserved wind components when only one compo-

nent is measured; in such cases more advanced methods

such as 4DVAR or EnKF may perform better.
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2) ASSIMILATING VERTICAL VELOCITY

When w observations are assimilated into the model

at the first assimilation cycle, other model fields are

perturbed by the upward or downward advection induced

by the assimilated w observations as model integrates

forward (not shown). Warm, moist air from near the

surface is brought upward, eventually reaching saturation,

resulting in condensation. Other dynamic and thermody-

namic fields in the model adjust accordingly. As with the

assimilation of horizontal wind observations, this data

impact is reinforced in subsequent data assimilation cycles.

Figure 4 shows the perturbation horizontal winds, per-

turbation potential temperature, and radar reflectivity at

FIG. 2. (left to right) The horizontal wind divergence field, vertical velocity, perturbation potential temperature, perturbation water

vapor mixing ratio for experiment Vh_5 at z 5 4 km AGL. (a)–(d) At t 5 0 s into the assimilation run; (e)–(h) at t 5 6 s into the

assimilation run; (i)–(l) at t 5 12 s into the assimilation run; (m)–(p) at t 5 300 s into the assimilation run. (k),(l) Contour intervals are

different that those in (o),(p). The horizontal axis starts from 20 km and the vertical axis starts from 10 km.
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250 m AGL, and perturbation horizontal winds, verti-

cal velocity, and perturbation water vapor fields at 5 km

AGL at 20, 50, and 80 min after the start of data assim-

ilation (i.e., 50, 80, and 110 min ofmodel time in the truth

simulation). In terms of reflectivity, the storm cell near

the center of domain is recovered reasonably well by the

end of the assimilation window (Fig. 4c). The water vapor

field (Fig. 4f) for the dominant cell is very similar to that

of the truth simulation. The storm cell in the northwest

corner of the model domain is also partially rebuilt.

On the other hand, noticeable discrepancies still exist

in the horizontal wind (Figs. 4c,f, vectors), perturbation

potential temperature (Fig. 4c, contours), and pertur-

bation water vapor (Fig. 4f, shaded) fields, especially for

the northwest storm. Furthermore, the reflectivity pat-

tern for the northwest storm is not very similar to that of

the truth simulation. Using the SRT criterion, this ex-

periment fails to achieve a successful recovery.

3) ASSIMILATING POTENTIAL TEMPERATURE

When u observations are assimilated, the direct impact

on the model is to adjust the buoyancy; these changes

to buoyancy subsequently induce vertical motion. As

integration continues, horizontal wind and water vapor

fields change accordingly, and rainfall is gradually pro-

duced with further assimilation cycles.

In Fig. 5, perturbation horizontal winds, perturba-

tion potential temperature, and radar reflectivity at z5
250 m AGL and perturbation horizontal wind, vertical

velocity, and perturbation water vapor fields at z 5
5 km AGL are shown 20, 50, and 80 min after the start

of data assimilation. Near the end of assimilation win-

dow, the recovered reflectivity (Fig. 5c) is comparable

to that of the truth simulation (Fig. 1c). Both storm cells

are correctly located and are relatively accurate in terms

of intensity. However, some differences from the truth

run remain in areas with reflectivity between 15 and

25 dBZ. The mid- to upper-level wind and water vapor

fields (Fig. 5f) are also substantially different from the

truth simulation (Fig. 1f). Near the end of the assimila-

tion window, the horizontal wind circulation around the

northwest storm cell differs greatly from that of the truth

simulation (Figs. 5f vs 1f, vectors). Several spurious water

vapor areas are produced (Fig. 5f, shaded), and updraft

cores are weaker than those in the truth simulation and

are wrongly oriented (Figs. 5f vs 1f, contours).

FIG. 3. As in Fig. 1, but for experiment Vh_5 every 30 min from 20 to 80 min into the assimilation run (corresponding to 50–110 min into

the truth simulation). (a),(d) t 5 20 min; (b),(e) t 5 50 min; (c),(f) t 5 80 min.
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The RMS error statistics from experiment Pt_5 are

presented in Fig. 6. The impact of assimilating u obser-

vations is primarily seen in the recovery of the storm

precipitation structure. The vertical velocity field is only

partially recovered, and the horizontal wind and water

vapor fields are poorly retrieved. Overall, this experi-

ment also fails to recover the simulated thunderstorms

after 90 min of intermittent data assimilation.

4) ASSIMILATING WATER VAPOR

When qy observations are assimilated into the model

at the beginning of data assimilation window, the initial

response in the model is the production of cloud water

(Fig. 7h) through condensation, which heats the air (Fig.

7f). The change in buoyancy due to perturbations in the

water vapor field is another cause of model response but

this effect is much smaller. This can be confirmed by Fig.

7g, which shows little change in the vertical velocity. A

scale analysis (not shown) of the buoyancy terms in-

dicates that the contribution to buoyancy from pertur-

bation of thewater vapor field is on the order of 0.01 m s22

near the storm center; in contrast, the contribution of

perturbation potential temperature is on the order of

0.1 m s22. Therefore, the direct buoyancy response from

the assimilation of qy observations is rather small com-

pared to the impact of induced condensation and asso-

ciated latent heating. The changed temperature induces

vertical motion in the w field in subsequent integration

time steps (Fig. 7k). As the model continues to integrate

forward, more condensation and latent heating are pro-

duced (Figs. 7n,p) and w increases in magnitude.

The recovery of reflectivity is quite successful in this

experiment (Fig. 8). As early as at 50 min (Fig. 8b) into

the assimilation period, the reflectivity pattern has be-

come very similar to that of the truth simulation. Near

the end of the assimilation window (Fig. 8c), the reflec-

tivity pattern is even closer to the truth. The final RMS

error for simulated reflectivity at 90 min into the assimi-

lation is 7.3 dBZ, well below the 10-dBZmaximum error

level set by the SRT criterion. Recovery of the temper-

ature field is also successful. The cold pool is reasonably

reestablished around both storm cells (Fig. 8c), with lo-

cation and coverage similar to those in the truth simula-

tion. On the other hand, the mid- to upper wind fields are

not well recovered even at the end of the assimilation

period (Fig. 8f). The wind circulations around the storm

cells (Fig. 8f, vectors) are not as strong as those in the

truth simulation (Fig. 1f, vectors). The updraft cores

FIG. 4. As in Fig. 3, but for experiment W_5 .
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(Fig. 8f, contours) are also wrongly oriented compared

to the truth simulation (Fig. 1f, contours). This poor

performance in retrieving the wind fields, especially the

horizontal wind fields, can also be inferred from the very

limited decrease in the RMS errors for horizontal wind

fields (Fig. 9). Therefore, using the SRT criterion, this

experiment fails to successfully recover the simulated

thunderstorms.

5) ASSIMILATING RAINWATER

When qr observations are assimilated, the major im-

pact on the model is to change the buoyancy through

water loading, leading to the development of downward

vertical motion (Figs. 10e,h). Evaporative cooling is an-

other noticeable impact (Figs. 10f,i), which also tends

to induce downdrafts. The wind and water vapor fields

subsequently adjust in response to these processes.

With continued assimilation of qr observations, the

cold pool is rebuilt well (Figs. 11b,c), although notable

differences remain in its strength and distribution. The

mid- to upper-level temperature field (not shown), how-

ever, is not retrieved well. The surface horizontal winds

are too strong along the gust front (Figs. 11c vs 1c, vec-

tors), and mid- to upper-level circulation centers and the

updraft cores are located incorrectly (Figs. 11f vs 1f,

vectors and contours). The water vapor field is also very

different from the truth simulation (Figs. 11f vs 1f, shaded).

Using the SRT criterion, this experiment also fails to

successfully recover the simulated thunderstorms.

6) SUMMARY

Among the experiments assimilating a single type of

observations at 5-min intervals, only experiment Vh_5

successfully recovers the simulated thunderstorms, having

a SRT of 70 min (see Table 2). At the end of the data as-

similation window, Vh_5 yields a very low ASED (0.067)

and RMSZ (4.1 dBZ); these values are much smaller

than those of experiments W_5, Pt_5, Qv_5, and Qr_5.

These results indicate that the assimilation of hori-

zontal wind components have the largest impact on the

supercell storm analysis and short-range forecast. This

conclusion is consistent with the findings of Weygandt

et al. (1999), Sun (2005), andNascimento andDroegemeier

(2006), all of whom found that horizontal winds play a

key role in the evolution of convective storms. Weygandt

et al. (2002b) also found that the prediction of a supercell

thunderstorm is most sensitive to the perturbation hori-

zontal velocity. Park and Droegemeier (2000), Fabry

and Sun (2010), and Fabry (2010) demonstrated that

errors in temperature and moisture fields have the

FIG. 5. As in Fig. 3, but for the experiment Pt_5.
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greatest impact on the quality of the forecast. The focus

of these studies is on the error propagation from the

initial condition; this topic is beyond the scope of this

study. However, it is a very important issue and merits

further study in the future.

Among the other experiments (W_5, Pt_5, Qv_5, and

Qr_5) that assimilate w, u, qy , or qr data individually

without horizontal winds, Qv_5 yields the smallest

ASED (0.371) and RMSZ (7.3 dBZ), suggesting that

water vapor is the second most important type of ob-

servation for accurate retrieval. A similar conclusion

was drawn in Sun (2005); furthermore, Weygandt et al.

(2002a,b) also indicate that a simulated supercell storm

is strongly affected by the water vapor field. Observa-

tions of qy are very effective in rebuilding the pre-

cipitation field, and to some extent the thermodynamic

fields, but they are poor at recovering wind fields. Ob-

servations of w are the third most important for a suc-

cessful retrieval, as indicated by the ASED and RMSZ

statistics of experiment W_5 compared to Pt_5 and

Qr_5. Observations of qr have the least impact; when qr
is assimilated alone, the result is poorly recovered dy-

namic and thermodynamic structures. It should be noted

that limited impact of the qr observations may be due to

the fact that the assimilation of qr does not have a direct

impact on temperature andmoisture fields in the 3DVAR

analysis. In a system where temperature and moisture

fields are adjusted directly by qr observations through

qr observations may have more impact (e.g., a semi-

empirical cloud analysis procedure, or as a result of

using a more advanced data assimilation method such

as 4DVAR or EnKF).

b. Experiments assimilating horizontal wind
components and one more type of observations

Experiment Vh_5 yields a SRT of 70 min (Table 2),

indicating that assimilation of horizontal wind compo-

nents alone is effective for storm retrieval. The 70 min

required for Vh_5 to reach a successful recovery, how-

ever, is quite long considering the life cycle of a typical

FIG. 6. The RMS errors of analyses (at 5-min intervals) and of forecasts every minute for experiment Pt_5 for (top, left to right)V0
h, w, u

0

and (bottom, left to right) qr, q
0
y , and reflectivity. The horizontal axis shows the minutes into the truth run.
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convective storm and the operational need for quick

delivery of storm-scale forecasts.

Assimilating one more type of observations in addi-

tion to horizontal wind components may help alleviate

this problem. Table 2 lists SRT for experiments assimi-

lating horizontal winds and one other type of observa-

tions. All such experiments reduce the SRT compared to

Vh_5: VhW_5 has an SRT of 36 min; VhPt_5, 28 min;

VhQv_5, 18 min; and VhQr, 46 min. These results

confirm that assimilating another type of observations

alongside the horizontal wind can accelerate the suc-

cessful recovery of simulated storms, when measure-

ments are assimilated every 5 min. Similar results were

obtained in Tong and Xue (2005), Hu et al. (2006b), and

Zhao and Xue (2009), where the assimilation of radar

reflectivity data in addition to radial velocity data

was found to improve storm-scale data assimilation

results.

FIG. 7. As in Fig. 2, but for the perturbation water vapor mixing ratio, perturbation potential temperature, vertical velocity, and cloud

water mixing ratio for experiment Qv_5.
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Among VhW_5, VhPt_5, VhQv_5, and VhQr_5, ex-

periment VhQv_5 yields the smallest SRT (28 min).

This again confirms that water vapor measurements are

the second most important type of observation after

horizontal wind measurements. With the availability of

horizontal winds, additional u observations result in

faster recovery than additional w observations (SRT of

28 min for VhPt_5 vs 36 min for VhW_5). The finding

that temperature observations add more useful in-

formation to the analysis than observations of the ver-

tical wind can be attributed to the fact that the vertical

velocity is more closely correlated to horizontal wind

divergence than temperature; therefore, the latter offers

more independent information.

Experiment VhQr_5 yields the largest SRT of 46 min

among VhW_5, VhPt_5, VhQv_5, and VhQr_5. This

further confirms that qr observations have less impact

than qy, w, and u observations on the storm-scale anal-

yses performed in this study.

c. Experiments assimilating all three wind
components and one more type of observations

The experiment that assimilates all three wind com-

ponents yields a SRT of 36 min, which is much smaller

than when assimilating only the horizontal wind com-

ponents (Vh_5 has an SRT of 70 min). This indicates

that for storm-scale data assimilation, efforts should be

made to obtain measurements of all three wind com-

ponents that are as accurate as possible. Experiments

VhWPt_5, VhWQv_5, and VhWQr_5 all perform better

than VhW_5 in terms of SRT, suggesting that assimi-

lating one more type of observations in addition to the

three wind components can further improve data assim-

ilation results.Among those three experiments,VhWQv_5

has the smallest SRT value and VhWQr_5 has the

largest one, again confirming that after the horizontal

wind measurements, water vapor is the next most im-

portant type of observation and qr is the least important.

d. Impacts of assimilation frequency

The experiments assimilating observations every 5 min

all have smaller SRTs than the corresponding experi-

ments assimilating the same types of observations every

10 min (Table 2).As expected, themodel performs better

when more observations are assimilated. When model

variables are updated more frequently, the model state

variables are impactedmore strongly by the observations,

the data impacts are usually better maintained, and the

FIG. 8. As in Fig. 3, but for experiment Qv_5.
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model storms are recovered in a shorter time. This finding

is consistent with the results of Zhang et al. (2004), Xue

et al. (2006), and Hu and Xue (2007), which also exam-

ined, using either EnKF or 3DVAR, the impacts of as-

similation frequency on the analysis of convective storms.

Zhang et al. (2004) found that more frequent observa-

tions (every 2 min vs every 5 min) improved the data

assimilation in the early stage (first half-hour) although

the benefit diminished later in the assimilation period.

Xue et al. (2006) showed that faster radar volume scans

(faster than 5-min intervals) can improve the quality of

the analysis. Hu and Xue (2007) reported that assimila-

tion at 5-min intervals yielded better analyses and fore-

casts than assimilation at 10-min intervals.

The above findings naturally lead to a question: since

a higher assimilation frequency can produce better re-

sults, should we therefore assimilate observations at the

highest frequency possible (e.g., every model time step

at which data are available) in order to obtain better

analyses? Our experiments suggest that, in practice,

assimilating data with extremely high frequency is not

necessarily desirable. Assimilating observations every

minute does not result in substantial improvement over

assimilating observations every 5 min (Fig. 12 and

Table 2). The SRTs of VhWQv_1 and VhWQr_1 are

only 2 min shorter than the corresponding SRTs of

VhWQv_5 and VhWQr_5. Such a small improvement

does not merit the greatly increased costs in computa-

tion and data collection required to obtain and assimi-

late observations at 1-min intervals. Moreover, VhPt_1

and VhWPt_1 actually have somewhat larger SRTs than

VhPt_5 and VhWPt_5 as a result of larger LED values

(whose computation is based on the water vapor field)

in VhPt_1 and VhWPt_1 than VhPt_5 and VhWPt_5.

FIG. 9. As in Fig. 6, but for experiment Qv_5.
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We attribute this behavior to the following: the pseu-

domeasurements of potential temperature are assumed

to be available at the grid points and they contain added

random noise. When assimilated into the model very

frequently, the increased noise level can have a negative

impact on the precipitation forecast. The model needs

time to adjust and damp out such noise. One minute of

model integration may be insufficient for the model to

completely remove the noise. These results suggest that,

in some situations (as with temperature measurements

in this case), assimilating observations too frequently

may hurt the analysis. On the other hand, experiments

assimilating Vh and/or w observations every minute

show benefits from the more frequent assimilation,

suggesting that it is generally beneficial to assimilate

wind observations often.

In section 3b, we noted that assimilating another type

of observations in addition to horizontal wind components

FIG. 10. (left to right) The rainwater mixing ratio, vertical velocity, and perturbation potential temperature from experiment Qr_5, at

z 5 4 km AGL. (a)–(c) At t 5 0 s into the assimilation run; (d)–(f) at t 5 6 s into the assimilation run; (g)–(i) at t 5 12 s into

the assimilation run. The horizontal axis starts from 20 km and the vertical axis starts from 10 km.
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can accelerate the successful recovery of simulated

storms whenmeasurements are assimilated every 5 min.

The same conclusion can be drawn when assimilating

data every 10 min (see Table 2). However, when assimi-

lating observations every minute, the SRTs from VhW_1,

VhPt_1, and VhQr_1 are not much reduced compared to

Vh_1. The ASEDs and RMSZs from those three experi-

ments increase slightly compared to Vh_1. At the same

time, the SRT of VhQv_1 is smaller than that of Vh_1.

Therefore, when assimilating horizontal wind observa-

tions every minute, the benefits from using an additional

type of observations are not evident except for water

vapor observations. This is presumably because assimi-

lating wind observations at 1-min intervals is already

very effective in recovering the model storm; additional

measurements thus have only a small effect. This is also

true when all three wind components are assimilated;

little additional improvement is obtained when the

three wind components are already assimilated at a

1-min interval.

4. Summary and conclusions

In this study, we examined the impacts of assimilating

measurements of different state variables and the impacts

of data assimilation frequency through a series of OSSEs

using a three-dimensional variational data assimilation

system. Different types of pseudo-observations are as-

similated into a storm-scale NWP model individually or

in various combinations. The model responses (from a

cold start) to the assimilation of individual types of

FIG. 11. As in Fig. 3, but for experiment Qr_5.

FIG. 12. Bar chart of the SRT values from experiments assimi-

lating two and three types of measurements. The vertical axis

shows the SRT values in minutes; the horizontal axis shows dif-

ferent observation combinations. For each observation combina-

tion, three bars are plotted, which represents the SRT values (left

to right) from 10-, 5-, and 1-min assimilation interval experiments,

respectively.
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observations are investigated in detail to help us un-

derstand the impacts of the different observation types.

A criterion for ‘‘successful recovery’’ of the storm is

defined using the energy difference and the RMS error

of simulated radar reflectivity between the assimilation

run and truth run.Whenmet, this criterion indicates that

the dynamic, thermodynamic, and precipitation struc-

tures of the storm in the analysis are sufficiently close to

those in the truth simulation. The criterion is used to

evaluate the performance of different data assimilation

experiments so that the impacts of different types of ob-

servations and assimilation frequencies can be quantified.

The primary model response to the assimilation of

horizontal wind observations is to force vertical motions

through horizontal wind divergence/convergence, which

in turn induces temperature and humidity perturbations

through upward and downward motions. In subsequent

assimilation cycles, storm dynamic and thermodynamic

structures are spun up gradually. When vertical velocity

observations are assimilated, other model variables are

directly perturbed by the upward and downward ad-

vection. Temperature, humidity and precipitation fields

can then be recovered to some extent in subsequent

assimilation cycles, but the horizontal wind components

are poorly recovered. When potential temperature ob-

servations are assimilated, the direct adjustment in the

model is change of the air buoyancy, inducing vertical

motion. Precipitation fields can be spun up to some ex-

tent, but the horizontal wind, vertical velocity, and hu-

midity fields are retrieved very poorly. When the model

assimilates water vapor observations, cloud water is pro-

duced through condensation and heating is resulted

from latent heat release. The changed temperature then

induces vertical motion. This makes water vapor obser-

vations effective at reconstructing temperature, precip-

itation and, to some extent, vertical velocity fields, but

ineffective at recovering horizontal winds. For rainwater

observations, which lack a direct impact on the temper-

ature and moisture fields in the 3DVAR analysis, the

direct influence is limited to changing the air buoyancy

through water loading and subsequent evaporative cool-

ing, enhancing downdrafts. As a result, the rainwater

observations can help establish the correct precipitation

field and cold pool, but are poor at rebuilding storm

dynamic and thermodynamic structures. Earlier studies

using the ARPS 3DVAR system to assimilate reflec-

tivity data through an empirical cloud analysis scheme,

which includes in-cloud temperature adjustments (e.g.,

Hu et al. 2006a) showed a much larger impact of the

radar reflectivity data. Similar results are found when

reflectivity data is assimilated using an EnKF method

in which temperature and moisture fields are adjusted

through flow-dependent cross covariance (e.g., Tong and

Xue 2005). Using a 4DVAR system, the assimilation of

qr data also tends to have a greater impact (e.g., Sun and

Crook 1997).

Among all types of measurements, horizontal wind

observations have the greatest impact on the storm anal-

yses and short-range forecasts in this study; assimilation

of horizontal wind observations is very effective at re-

covering other model fields. Therefore, in practice, con-

siderable effort should be made to obtain as many wind

observations as possible with the highest accuracy pos-

sible. One way this can be achieved through the assim-

ilation of radial velocity measurements from multiple

Doppler radars. Schenkman et al. (2011) and Snook et al.

(2011, 2012) showed that assimilating multiple Center

for Collaborative and Adaptive Sensing of the Atmo-

sphere (CASA) radar radial velocity data in addition to

Weather Surveillance Radar-1988 Doppler (WSR-88D)

data improves analyses and forecasts of a mesoscale

convective system. The finding also suggests that im-

portance of further developing advanced velocity re-

trieval schemes from single- or multiple-Doppler radar

data. For example, Shapiro et al. (2009) reported that

including a vorticity equation constraint in a 3D var-

iational framework could improve dual-Doppler wind

analyses.

The impact of water vapor observations is the second

largest. Currently, obtaining storm-scale water vapor

observations is a difficult task. However, some water

vapor information can be derived from near-surface

refractivity measurements by radars (Fabry et al. 1997;

Bodine et al. 2010); these data have been successfully

assimilated into NWP models (Gasperoni et al. 2013).

In the future, water vapor information may be avail-

able at high resolution because of the advances in the

observing systems such as next-generation GOES sat-

ellites and dense ground-based GPS receiver networks

(Wolfe and Gutman 2000; Liu and Xue 2006; Ho et al.

2007; Liu et al. 2007). The assimilation of such dense

observations is expected to significantly improve storm-

scale NWP.

The relative importance of vertical velocity and po-

tential temperaturemeasurements is somewhat dependent

on data assimilation frequency. When assimilating data

every minute, vertical velocity observations exert a

larger impact than potential temperature observations.

On the other hand, when assimilated every 5 or 10 min,

potential temperature observations are more effective

than vertical velocity observations. Rainwater obser-

vations show the least impact.

The impact of data assimilation frequency is also ex-

amined. In general, the assimilation frequency has a

substantial impact on the quality of the resulting con-

vective storm analysis. In this study, results obtained
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using 1-, 5-, and 10-min assimilation intervals are com-

pared. When assimilating horizontal wind observations

every 5 or 10 min, including additional types of obser-

vations in the assimilation process will improve the

analysis and subsequent short-range forecast. However,

when the horizontal wind observations or all three wind

components are assimilated every minute, the benefits

from additional observation types become negligible

except for water vapor measurements. This appears to

be because the results from assimilating the wind com-

ponents at such a high frequency are already very good;

additional observations, therefore, cannot impart much

further help. For measurements of horizontal wind,

vertical velocity, rainwater, or their combinations, 1-min

assimilation frequency produces the best results. For

measurements of potential temperature, water vapor,

or a combination of these measurements with wind

measurements, 1-min data assimilation frequency does

not produce better analysis than 5-min frequency. The

time needed for the model to adjust and damp out noise

introduced by the frequent assimilation is believed to be

the cause.

While the above findings can provide guidance for

the design and/or improvement of storm-scale observing

systems and storm-scale data assimilation practice, and

the key findings appear to be consistent with findings

obtained using the more advanced EnKF data assimi-

lation method, we do note that the conclusions obtained

here are based on simulations of a single idealized super-

cell storm using a particular univariate data assimila-

tion method. Whether these conclusions apply to other

cases and other data assimilation methods requires

further study. In the future, the experiments presented

in this study can be repeated with the more sophisti-

cated version of the ARPS 3DVAR system, which in-

cludes equation constraints designed to couple dynamic

and thermodynamic fields (Ge et al. 2012), and also a

cloud analysis package designed to help spread rainwater

information to temperature and moisture fields. Similar

studies could also be carried out using more advanced

assimilation methods, such as EnKF and 4DVAR.
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