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A diagnostic pressure equation constraint has been incorporated into a storm-scale three-dimensional variational (3DVAR) data
assimilation system.This diagnostic pressure equation constraint (DPEC) is aimed to improve dynamic consistency among different
model variables so as to produce better data assimilation results and improve the subsequent forecasts. Ge et al. (2012) described
the development of DPEC and testing of it with idealized experiments. DPEC was also applied to a real supercell case, but only
radial velocity was assimilated. In this paper, DPEC is further applied to two real tornadic supercell thunderstorm cases, where
both radial velocity and radar reflectivity data are assimilated. The impact of DPEC on radar data assimilation is examined mainly
based on the storm forecasts. It is found that the experiments using DPEC generally predict higher low-level vertical vorticity than
the experiments not using DPEC near the time of observed tornadoes.Therefore, it is concluded that the use of DPEC improves the
forecast of mesocyclone rotation within supercell thunderstorms. The experiments using different weighting coefficients generate
similar results. This suggests that DPEC is not very sensitive to the weighting coefficients.

1. Introduction

A dynamic consistent initial condition is very important for
making a quality storm-scale numerical weather prediction
(NWP) forecast. For this purpose, a large number of studies
have been focused on utilizing high-resolution radar data
to provide better storm-scale initial conditions (e.g., [1–
7]). Since radars primarily observe the radial velocity and
reflectivity, most state variables have to be “retrieved” in the
data assimilation (DA) process. This makes the assimilation
of radar data a very challenging problem.

Three-dimensional variational (3DVAR), four-dimen-
sional variational (4DVAR), and ensemble Kalman filter
(EnKF) methods have been applied to the previously men-
tioned radar DA problem. The 4DVAR method uses a NWP
model as a strong constraint and hence naturally produces
a dynamically consistent analysis. Sun and Crook [8, 9] and
Sun [10] have shown encouraging results using a 4DVAR

cloud model. However, it is very difficult to develop and
maintain complex adjoint codes for NWP models. Com-
plex ice microphysics, which are important for storm-scale
applications but contain discontinuities and strong nonlin-
earities, introduce more difficulties in this situation. All of
these difficulties limit the adoption of the 4DVAR method
in storm-scale NWP operations. The EnKF technique is
expected to generate similar analysis quality as 4DVAR but
avoids the coding of an adjoint model. Many EnKF-based
radar DA studies have been carried out in recent years
(e.g., [11–24]). These studies have shown great potential for
the EnKF method. However, EnKF is not as mature as the
variational methods and so far successful applications to real
data assimilation problems are still limited. Computationally
it has similar cost as the 4DVAR approach.

The 3DVAR method is more efficient than 4DVAR and
EnKF in terms of computation cost. For this reason, 3DVAR
has been applied in many real-time applications. Past studies
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(e.g., [4–6, 25]) have used 3DVAR to assimilate radar data
for the prediction of tornadic supercell storms.The advanced
regional prediction system (ARPS, [26–28]) 3DVAR system,
and its cloud analysis package have been used to make
continental-US-scale real-time weather predictions at up to
1 km resolution [29, 30]. However, the 3DVARmethod is still
challenged by its theoretical suboptimality due to the use of a
static diagonal background error covariance matrix and the
lack of suitable balances among model variables. Research
has been done to address this problem. For example, hybrid
approaches (e.g., [31–35]) have been proposed to provide
flow-dependent background covariances obtained from a
forecast ensemble, for the variational system. Because of
the use of an ensemble, the method is still computationally
expensive and requires further research.

Suitable weak constraints can also be built into the
3DVAR cost function to improve the balance among model
variables and help spread observational information to state
variables which are not directly observed. Gao et al. [36–38],
Hu et al. [4, 5], andHu andXue [39] incorporated an anelastic
mass continuity equation into theARPS 3DVAR system in the
form of a weak constraint to couple three wind components.
Ge et al. [7] further incorporated the diagnostic pressure
equation into the 3DVAR cost function in addition to the
previously mentioned mass continuity equation constraint
(MCEC). The main goal of this diagnostic pressure equation
constraint (DPEC) is to improve the consistency between
dynamic and thermodynamic fields. Ge et al. [7] demon-
strated, using observational system simulation experiments
(OSSEs), that DPEC can improve the data assimilation results
slightly after a given period of data assimilation.The applica-
tion of DPEC to a real tornadic supercell thunderstorm case
showed that DPEC can improve the forecast in terms of the
general evolution of storm cells and mesocyclone rotation
near the time of the observed tornado.

For the real case study by Ge et al. [7], only radial
velocity data was assimilated. In this paper, we will further
examine the impact of DPEC by applying it to two real
tornadic supercell thunderstorm cases by assimilating the
radial velocity and radar reflectivity data together. The rest
of the paper is organized as follows. Section 2 will brief the
updated ARPS 3DVAR system with the implementation of
DPEC. Section 3 applies the updated system to the 5 May
2007 Greensburg, Kansas tornadic supercell thunderstorm
case, while Section 4 applies the system to the 8 May 2003
Oklahoma City tornadic supercell thunderstorm case. The
summary and future work will be presented in Section 5.

2. The Scheme for the 3DVAR System

A 3DVAR system within the ARPS model framework [26–
28] has been developed and applied to the assimilation of
weather radar and other data [4–6, 29, 36, 38, 39]. The
system consists of two components: one is the 3DVAR sub-
system, whose purpose is to assimilate radar radial velocity
data as well as other conventional observations in a three-
dimensional variational framework; the other is the cloud
analysis subsystem whose purpose is to assimilate the radar

reflectivity data based mainly on semiempirical rules. The
cloud analysis system not only updates the hydrometeor
fields, but also can adjust the in-cloud temperature and water
vapor fields.

2.1.The 3DVARSubsystem. In the 3DVAR subsystem, the cost
function, 𝐽, is written as the sum of the background (𝐽𝑏) and
observational (𝐽𝑜) terms plus a penalty or equation constraint
term (𝐽𝑐):

𝐽 (𝑥) = 𝐽𝑏 + 𝐽𝑜 + 𝐽𝑐,

𝐽𝑏 =
1

2
(x − x𝑏)

𝑇

B−1 (x − x𝑏) ,

𝐽𝑜 =
1

2
[𝐻 (x) − y𝑜]𝑇R−1 [𝐻 (x) − y𝑜] .

(1)

Following the standard notion of Ide et al. [40], x and x𝑏
are the analysis and background state vectors, and y𝑜 is the
observation vector. B and R are the background and obser-
vation error covariance matrices, respectively. 𝐻(x) is the
nonlinear observation operator. To improve the conditioning
of the 𝐽 minimization problem and avoid the need for the
inverse of B, a new control variable k is introduced, which
is related to the analysis increment 𝛿x = x − x𝑏 according to

𝛿x = B1/2k, (2)

where B1/2 is the square root of B; that is, B = (B1/2)𝑇(B1/2).
In terms of k, the background term becomes

𝐽𝑏 = (
1

2
) k𝑇k. (3)

Consequently, the minimization is performed in the space
of k. The recursive filter proposed by Purser et al. [41, 42] is
used to model the effect of the background error covariance,
or more precisely, the square root of B. Currently, in our
3DVAR system, the background state vector, x𝑏, can be
provided by a sounding profile, a previous ARPS model
forecast, or a forecast fromanothermodel.The analysis vector
x contains the three wind components (𝑢, V, and𝑤), potential
temperature (𝜃), pressure (𝑝), and water vapor mixing ratio
(𝑞V). The observations include Doppler radar radial velocity,
single-level (such as surface observations), andmultiple-level
conventional observations (such as those of rawinsondes and
wind profilers). For the study in this paper, only Doppler
radial velocity data is used by the 3DVAR subsystem and a
2m s−1 observation error variance is assumed for the data.

Term 𝐽𝑐 in (1) includes any penalty or equation constraint
terms. Currently, it includes two terms as defined in the
following:

𝐽𝑐 = 𝐽MC + 𝐽DP. (4)

The first term 𝐽MC is intended to minimize the 3D anelas-
tic mass divergence so as to provide the key coupling among
the three wind components.The definition and impact of this
constraint have been investigated byGao et al. [36, 38] andHu
et al. [5].
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The second term 𝐽DP is the DPEC term defined as follows:

𝐽DP = 𝑃(x)
𝑇A−1
𝑃
𝑃 (x) , (5)

𝑃 ≡ ∇ ⋅ �⃗� ≡ −∇
2
𝑝
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(6)

where
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,

�⃗� = �̂�𝑢 + 𝑗V + �̂�𝑤,

�⃗� = �̂� (𝜌𝑓V − 𝜌𝑓𝑤) − 𝑗 (𝜌𝑓𝑢) + �̂� (𝜌𝑓𝑢) ,

�⃗� = �̂�𝐷𝑢 + 𝑗𝐷V + �̂�𝐷𝑤.

(7)

The vector �⃗� is the forcing term of the vector Euclidian
momentum equation. The 𝑞liquid+ice includes hydrometeor
mixing ratios.The �̂�, 𝑗, and �̂� are unit vectors in the 𝑥, 𝑦, and 𝑧
directions. The overbar represents base state and the primed
variables are perturbations from a base state, 𝑐𝑠 is the acoustic
wave speed, and 𝜀 is the ratio of the gas constants for dry air
and water vapor. The Coriolis coefficients are 𝑓 = 2Ω sin𝜙
and 𝑓 = 2Ω cos𝜙, where Ω is the angular velocity of the
earth and 𝜙 is latitude. The terms 𝐷𝑢, 𝐷V, and 𝐷𝑤 contain
the subgrid scale turbulence and computationalmixing terms
in the 𝑥, 𝑦, and 𝑧 directions, respectively. When the mass
continuity equation is applied, (6) becomes 𝑃 = 0 where 𝑃
represents the right-hand side (R.H.S) of (6).

Equation (6) is derived by applying the divergence oper-
ator to the three momentum equations of the ARPS model
[26]:
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(8)

The A𝑃 in (5) is the error covariance matrix associated
with the DPEC constraint, which is assumed to be diagonal
with empirically defined constant diagonal elements as the
variances. The inverse of A𝑃 is called the weighting coeffi-
cient and determines the relative importance of the DPEC

constraint and its optimal value can be determined through
numerical experiments, similar to the way to determine
certain weights in cloud-scale variational data assimilation
systems (e.g., [3]). Usually, the constraint terms with their
weights should be of similar orders of magnitude as other
terms in 𝐽 for them to be effective.

2.2. The Cloud Analysis Subsystem. The cloud analysis sub-
system is based on the local analysis and prediction system
(LAPS, [43]) with significant modifications by Zhang et
al. [44], Brewster [45], and Hu et al. [4]. It is used to
assimilate radar reflectivity data into themodel. It updates the
following model fields: rain water mixing ratio, snow mixing
ratio, hail mixing ratio, cloud ice mixing ratio, cloud water
mixing ratio, water vapor mixing ratio, and temperature. The
general procedure is as follows. For each model grid point
inside an area with observed reflectivity, a precipitation type
(rain, snow, or hail) is first determined according to the
reflectivity observation and the background state. After the
precipitation type is determined, its mixing ratio is computed
using reflectivity equations that link the precipitation species
with reflectivity data. The cloud water and cloud ice mixing
ratios are estimated by assuming that air parcels ascend
moist-adiabatically from cloud base to cloud top. The water
vapor mixing ratio is adjusted so that the air is saturated in
precipitation area. The temperature field is also changed in
order to make the in-cloud temperature consistent with the
changed cloud fields. Readers can refer to Hu et al. [4] for
more details.

2.3. Connection between the Two Subsystems. Under the
context of ingesting radar data alone (radial wind and reflec-
tivity), the analysis variables in the 3DVAR subsystem are the
three wind components 𝑢, V, 𝑤, and the analysis variables in
the cloud analysis subsystem can be potential temperature 𝜃,
water vapor mixing ratio 𝑞V, rain water mixing ratio 𝑞𝑟, snow
watermixing ratio 𝑞𝑠, hailmixing ratio 𝑞ℎ, cloudwatermixing
ratio 𝑞𝑐, and ice mixing ratio 𝑞𝑖. Currently, the cloud analysis
subsystem is a follow-up step after the 3DVAR subsystem
finished running. These two subsystems are separate from
each other and there is no suitable coupling between the wind
fields and the thermodynamic fields. Therefore, there may be
inconsistencies between the different model variables in the
data analysis. These inconsistencies may harm the quality of
subsequent data assimilation cycles and the ensuing forecast.

To alleviate these kinds of inconsistencies, we propose
that the cloud analysis subsystem is done first when it is
used in the assimilation runs. The results from the cloud
analysis package will then be treated as pseudoobservations
and be ingested, as well as the radar radial velocity data,
by the 3DVAR subsystem. DPEC will then act to couple all
model variables so as to help improve the balance between
the dynamic and thermodynamic fields. In this way, it is
expected that a more dynamically consistent analysis will
be achieved and the following data assimilation cycles and
the subsequent forecast will be improved. In practice, the
hydrometeors are updated directly by the cloud analysis
subsystem. The temperature and water vapor mixing ratio
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fields are updated in the 3DVAR subsystem by treating the
corresponding results obtained from the cloud analysis sub-
system as pseudoobservations. The assumed error variances
for the pseudoobservations 𝜃 and 𝑞V are 0.5 K and 5 ×

10
−4 g (kg)−1, respectively.

3. The 5 May 2007 Greensburg Tornadic
Supercell Storm Case

The 5 May 2007 Greensburg, Kansas (KS) tornadic thunder-
storm complex produced 18 tornadoes in the Dodge City area
and additional 47 tornado reports in Kansas, Nebraska, and
Missouri. One tornado was the strongest observed in recent
years. This tornado started moving through Greensburg at
0245 UTC 5May 2007 (2145 CDT 4May) and destroyed over
90% of the town. The tornado damage was rated at EF5—the
highest rating on the Enhanced Fujita scale [46]. A detailed
description of the supercell that spawned this tornado and
its environmental setting can be found in Bluestein [47] and
Stensrud and Gao [6].

For this real data case, we used a 3 km grid spacing with
200 × 200 grid points in the horizontal. The ARPS model
domain is shown in Figure 1. The domain was selected with
sufficient coverage to contain the principal features of interest
whilemaintaining somedistance between the primary storms
and the lateral boundaries. The model uses 47 terrain fol-
lowing vertical layers with nonlinear vertical stretching via
a hyperbolic tangent function that yields a spacing of 100m
at the ground and expands to approximately 800m at the top
of the domain. The Lin three-ice microphysical scheme [48]
was used together with a 1.5-order turbulent kinetic energy
subgrid parameterization. A wave radiation condition was
applied at the top boundary and rigid-wall conditions were
applied to the bottom boundary.

The impact of the DPEC will be discussed in terms of the
quality of ensuing forecasts instead of the analysis because no
truth or high-resolution observation is available for verifica-
tion of the analysis. Four experiments were conducted for this
case (Table 1). The first experiment did not include DPEC in
𝐽 and will be referred to as experiment NoDP1. The second
experiment used DPEC with the DP weighting coefficient
of 1.0E8 and is referred to as experiment DP1. The third
and fourth experiments were similar to DP1 except that the
DP weighting coefficients were multiplied and divided by 5,
respectively. They are referred to as experiments DP1m5 and
DP1d5, respectively. In all of the previously four experiments
the mass continuity equation constraint was used with the
MC weighting coefficient of 1.0E8.

For all the previously mentioned four experiments, data
from five radars at Dodge City, Kansas (KDDC), Vance Air
Force Base, Oklahoma (KVNX), Wichita, Kansas (KICT),
Oklahoma City, Oklahoma (KTLX), and Amarillo, Texas
(KAMA), was used (Figure 1). A quality control procedure
was applied before the use of the radar data, which included
clutter removal and velocity dealiasing using SOLOII soft-
ware from the National Center for Atmospheric Research
(NCAR). The initial analysis background and the boundary
conditions came from the mean of a mesoscale ensemble

KDDC

KVNX

KICTGreensburg

KAMA KTLX

Figure 1: The model domain with county boundaries for the 5 May
2007 Greensburg tornadic supercell thunderstorm case study. The
five radars as well as their 230 km range circles are also shown. The
black dot shows the location of the town of Greensburg. The black
bold inner box illustrates the domain coverage in Figure 2.

Table 1: List of data assimilation experiments (DP stands for “diag-
nostic pressure equation”).

Case name Experiment name DP weighting coefficient

5 May 2007
Greensburg case

NODP1 0
DP1 1𝐸8

DP1d5 2𝐸7

DP1m5 5𝐸8

8 May 2003
OKC case

NODP2 0
DP2 1𝐸8

DP2d5 2𝐸7

DP2m5 5𝐸8

assimilation system run at 30 km grid spacing [6]. While
Stensrud and Gao [6] performed a 3DVAR analysis at only
one time before the launch of the forecast, the present
study performed cycled 3DVAR analyses with a 1 h long
assimilation period before the forecast. A five-minute ARPS
forecast followed each analysis, and this process was repeated
until the end of the 1 h assimilation period. From the final
analysis, a 1 h forecast was launched. In this way, each
experiment consisted of a 1 h assimilation period (from 0130
and 0230UTC) and a 1 h forecast period (0230–0330UTC).

We now focus the discussion on the dominant supercell
thunderstorm at the southernmost portion of the storm
complex, which produced the EF-5 tornado that hit the
Greensburg area between 0245UTC–0305UTC.Ahook echo
signature was evident at 0230UTC. As the storm reached
Greensburg, the hook echo signature became less prominent
due to the tornado moving in a more northerly direction
and toward the storm’s main core. During this period, the
radar velocity observations indicated strong cyclonic rotation
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Figure 2: Observed radar reflectivity mosaic (dBZ) at 2 kmMSL from KDDC, KICT, KVNX, KAMA, and KTLX Doppler radars valid at (a)
0230, (b) 0250, (c) 0310, and (d) 0330UTC; simulated radar reflectivity (dBZ), horizontal winds, and vertical vorticity (contours staring at
0.005 s−1 with an interval of 0.005 s−1) at 2 kmMSL fromNoDP1 valid at (e) 0230, (f) 0250, (g) 0310, and (h) 0330UTC, and fromDP1 valid at
(i) 0230, (j) 0250, (k) 0310, and (l) 0330UTC. The duration 0230–0330UTC covers the 1 h forecast period. The black dots in (a)–(d) indicate
the location of the town of Greensburg. The maximum vertical vorticity is shown for NoDP1 and DP1 experiments with the unit of 10−5 s−1.

associatedwith the violent tornado.The entire storm complex
moved gradually toward the northeast. After passing the town
of Greensburg, a second tornado, rated EF-3, developed at
the end of the Greensburg tornado’s path just northeast of
the town [46]. A radar reflectivity mosaic was created from
the aforementioned five WSR-88D radars by interpolating
reflectivity data from all radars onto model grid points and
keeping the largest reflectivity value for each grid point. The
reflectivitymosaic was then used for forecast verification.The
evolution of the storm as indicated by the radar reflectivity
mosaic at 2 kmMSL is shown in Figure 2 from 0230 to
0330UTC every twenty minutes. Note that the hook echo is
not evident in these figures due to the use of 3 km resolution
and a smoothing procedure applied in the mosaic generating
process.

To demonstrate the impact of DPEC, we investigated
these data assimilation experiments ingesting both the radial
velocity data and reflectivity data. Figures 2(e)–2(l) show the
reflectivity, horizontal wind vector, and vertical vorticity at

𝑧 = 2 kmMSL from0230UTC to 0330UTC every 20minutes
for the NoDP1 and DP1 experiments. It is shown that after 1
hour of data assimilation (Figures 2(e) and 2(i)), the storm
had already spun up in terms of the reflectivity pattern. The
reflectivity pattern, strength, and location agree well with the
observed values (Figure 2(a)). A rotating circulation and a
strong vertical vorticity column are collocated at the observed
hook-echo region. The storm then moves gradually toward
the northeast, which also agrees with the observations. After
0300UTC, the predicted storm moves faster than what was
observed. In spite of this, both NODP1 and DP1 still made
reasonable forecasts in terms of the general evolution of
the major storm. DP1d5 and DP1m5 produced very similar
forecasts as DP1 and are therefore not shown in Figure 2.

In Figure 2, in terms of the reflectivity pattern, there is
no significant difference in the general evolution of the storm
between the NODP1 and DP1 experiments. The computed
forecast scores (not presented here) also show little difference,
consistent with the previous result. However, there is some



6 Advances in Meteorology

2:30 2:40 2:50 3:00 3:10 3:20 3:30
Time (UTC)

0.005

0.01

0.015

0.02

0

0.025

NoDP1 DP1
DP1d5 DP1m5

Ve
rt

ic
al

 v
or

tic
ity

 (s
−
1
)

Figure 3: The time series of maximum vertical vorticity below two kilometers from 0230 UTC to 0330 UTC 5 May 2007 every one minute.
The horizontal axis shows the time in UTC; the vertical axis shows the vertical vorticity values in units of s−1. The black line is for experiment
NoDP1, the red line for experiment DP1, the blue line for DP1m5, and the green line for DP1d5.
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Figure 4: The vertical vorticity (in units of 10−5 s−1) at the vertical cross-section through the center of the major storm at 𝑦 = 253.5 km at
0250UTC 5 May 2007 for the (a) NoDP1, (b) DP1, (c) DP1d5, and (d) DP1m5.
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Figure 5: The damage path map for the 8 May 2003 Oklahoma City Area Tornadoes (National Weather Service, Norman).

difference in the predicted low-level mesocyclone rotation
as indicated by larger maximum vertical vorticity in Figures
2(j), 2(k), and 2(l) than that in Figures 2(f), 2(g), and 2(h).
As a further demonstration, Figure 3 shows the time series
of the maximum vertical vorticity below two kilometers
every minute from 0230 UTC to 0330UTC for all four
experiments. It is illustrated in Figure 3 that beginning at
0245UTC and through the end of the forecast, the low-level
maximum vertical vorticity from the experiments applying
DPEC (the red, blue and green lines) is much larger than that
from the NODP1 experiment (the black line). Our detailed
examinations show that larger low-level vertical vorticity
corresponds to a better-definedmesocyclone vortex, which is
stronger and deeper than those with smaller values of vertical
vorticity. This kind of behavior is very similar to findings in
Ge et al. [7]. As an example, Figure 4 presents the vertical
vorticity at the vertical cross-section through the center of the
major storm at 𝑦 = 259.5 km at 0250UTC 5 May 2007. It is
noticeable that the experiments using DPEC (Figures 4(b),
4(c), and 4(d)) predicted stronger and deeper rotation than
the “NODP1” experiment (Figure 4(a)). Therefore, it can be
concluded that, for the experiments here, although the use of
DPEC does not evidently improve the forecast of the general
evolution of the major storm in terms of the reflectivity
pattern, it does help improve the forecast of the mesocyclone
rotation associated with the observed Greensburg tornado.

4. The 8 May 2003 Oklahoma City Tornadic
Supercell Storm Case

During the late afternoon on 8 May 2003, a major tornado
hit the southernOklahomaCitymetropolitan area (Figure 5).
It first touched down at Moore, a suburban city close to
and south of Oklahoma City, then traveled east north-
east through south of Oklahoma City to Choctaw. The life
span of the tornado was about 28 minutes from 2210UTC
to 2238UTC. It caused up to F4 (Fujita scale) damages
but no deaths. The tornado is hereafter referred to as the
OKC tornado and the parent storm as the OKC tornadic
thunderstorm.

The synoptic environment on 8May 2003 over Oklahoma
was very favorable for the development of supercell storms
and even tornadoes, as discussed by Hu and Xue [39] and
Romine et al. [49]. The low-level flow was southerly over
Oklahoma all day. A meridionally oriented dryline moved
eastward approaching Moore, Oklahoma. A large amount
of potential instability with 4004 J kg−1 convective available
potential energy (CAPE), 1 J kg−1 convective inhibition (CIN)
and about 25m s−1 vertical shear over the lowest 6 km was
present in the 1800UTC 8 May Norman, Oklahoma (OUN)
sounding. All of these conditions indicated that there was
a high possibility for tornadic supercell thunderstorms to
develop.
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Figure 6: Observed radar reflectivity mosaic (dBZ) at 2 kmMSL from KTLX, KVNX, KFDR, and KINXDoppler radars valid at (a) 2200, (b)
2220, (c) 2240, and (d) 2300UTC; simulated radar reflectivity (dBZ), horizontal winds, and vertical vorticity (contours starting at 0.004 s−1
with an interval of 0.002 s−1) at 2 km MSL from NoDP2 valid at (e) 2200, (f) 2220, (g) 2240, and (h) 2400UTC, and from DP2 valid at (i)
2200, (j) 2220, (k) 2240, and (l) 2300UTC. The duration 2200–2300UTC covers the 1 h forecast period.

At about 2030UTC, the first sign of the OKC tornadic
storm showed up as a weak echo in the KTLX radar
reflectivity field. By 2101UTC, the storm had developed into
a strong cell. In the following hour, the storm grew rapidly
andmoved northeastward. By 2201UTC, the storm displayed
an obvious hook echo signature at its southwestern end.
The hook echo at this time was located just northwest of
Moore, only several miles away from the center of the city.
The pronounced hook echo signature was present until at
least 2235UTC while the parent supercell storm propagated
east northeastward.The storm beganweakening at 2240UTC
and dissipated by 0020UTC 9 May. In addition to the OKC
tornadic thunderstorm, there were three other short-lived
storms (not shown). Here, we will just focus on the dominant
thunderstorm. Figures 6(a), 6(b), 6(c), and 6(d) show the
general evolution of the major thunderstorm every twenty
minutes from 2200UTC to 2300UTC represented by the
radar reflectivity mosaic at 2 kmMSL.

All experiments were conducted with a horizontal reso-
lution of 3 km. There were 195 grid points in both 𝑥 and 𝑦
directions. In the vertical direction, a stretched grid scheme
was used. It contained 53 layers with an average grid spacing
of 400m, stretching from about 20m at the surface to 770m
at the model top. The model domain is shown in Figure 7.

It covers nearly the entire state of Oklahoma. The evolution
of the 8 May 2003 Oklahoma City tornadic supercell thun-
derstorm was roughly at the center of the domain. The four
WSR-88D radars KTLX, KVNX, KINX, and KFDR and their
associated coverage region are also shown in Figure 7. The
outline near the KTLX radar is the damage path of the 8 May
2003 OKC tornado.

The ARPS system was used as the prediction model. The
parameterization schemes and vertical boundary conditions
used in Section 3 were adopted for the present experiments.
The initial first guess and the lateral boundaries were pro-
vided by a 9 km data assimilation experiment. This 9 km
experiment was done in the same way as in Hu and Xue [39].
It assimilates rawinsonde data and wind profiler data every
hour for a total of six hours. The Eta model analysis and
forecast provide the background and lateral boundaries for
the 9 km experiment.

Similar to before, four experiments (Table 1), that is,
NODP2, DP2, DP2d5, and DP2m5, were conducted in order
to examine the impact of DPEC and the sensitivity of
DPEC to different weighting coefficients. The assimilation
experiments start at 2100UTC and assimilate radial velocity
data and radar reflectivity data every 5 minutes in a cycled
manner similar to the procedure described in Section 3.
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Figure 7:The model domain with county boundaries for the 8 May
2003 OKC tornadic supercell thunderstorm case. The five radars as
well as their 230 km range circles are also shown. The outline near
KTLX radar illustrates the damage path of the 8 May 2003 OKC
tornado.

The assimilation window was 1 h long and the final analysis
was at 2200UTC. From the final analysis, a 1 h free forecast
(2200UTC–2300UTC) was made.

Figures 6(e)–6(l) show the reflectivity, horizontal wind
vector, and vertical vorticity at 𝑧 = 2 kmMSL from2200UTC
to 2300UTC every 20 minutes for the NODP2 and DP2
experiments. After 1 h of data assimilation, the storm had
been successfully spun up (Figures 6(e) and 6(i) versus
Figure 6(a)). The area of strong vertical vorticity is located
where a hook echo is observed. The storm then moves east-
northeastward. The direction and speed of the predicted
storm are very close to what was observed (Figures 6(f),
6(g), 6(h) and 6(j), 6(k), and 6(l) versus 6(b), 6(c), and
6(d)). Therefore, both NODP2 and DP2 performed well in
predicting the general evolution of the storm. DP2d5 and
DP2m5 made similar forecasts to DP2 (not shown).

Comparing Figures 6(j), 6(k), and 6(l) (for DP2) with
Figures 6(f), 6(g), and 6(h) (for NODP2), we can see that
DP2predicted larger low-level vertical vorticity thanNODP2.
This is further confirmed by examining the evolution of
low-level vertical vorticity. Figure 8 shows the time series
of the maximum vertical vorticity below two kilometers
every one minute from 2200UTC to 2300UTC for all four
experiments. It is illustrated in Figure 8 that after 22:17UTC
and until the end of the forecast, the low-level maximum
vertical vorticity from the experiments applying DPEC (the
red, blue, and green lines) was generally larger than that
from the NODP2 experiment (the black line). As mentioned
before, larger low-level vertical vorticity corresponds to a
better-defined mesocyclone vortex, which is stronger and
deeper. As an example, Figure 9 presents the vertical vor-
ticity at the vertical cross-section through the center of the
storm at 𝑦 = 301.5 km at 2220UTC, which is during the
tornado touchdown period. The experiments using DPEC
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Figure 8: The time series of maximum vertical vorticity below two
kilometers from 2200UTC to 2300UTC 8 May 2003 every one
minute.The horizontal axis shows the time in UTC; the vertical axis
shows the vertical vorticity values in units of s−1.The black line is for
experiment NoDP2, the red line for experiment DP2, the blue line
for DP2m5, and the green line for DP2d5.

(Figures 9(b), 9(c), and 9(d)) predict a deeper column of
high vertical vorticity (>0.008 s−1), extending from as low
as 1.0 kilometers to as high as 8.5 kilometers. The region of
high vertical vorticity (>0.008 s−1) predicted by the NODP2
experiment is mainly in the middle part of the atmosphere,
roughly from 2.4 kilometers to 6.0 kilometers. Therefore, it
can be concluded that the use of DPEC helps make a better
forecast of low-level mesocyclone rotation.

5. Summary and Conclusions

A diagnostic pressure equation was added into the ARPS
3DVAR system as a weak constraint with the goal of
coupling the dynamic and thermodynamic variables so as
to improve the analysis of convective storms and their
subsequent forecast. The updated ARPS 3DVAR system was
tested using OSSEs in Ge et al’s. [7] and applied to a real
tornadic supercell case where only radial velocity has been
assimilated. This study further applied the newly updated
ARPS 3DVAR system to tornadic supercell thunderstorm
studies by assimilating both the radial velocity and radar
reflectivity data.

For both the 5 May 2007 Greensburg tornadic supercell
storm case and the 8 May 2003 Oklahoma City tornadic
supercell storm case, four data assimilation experiments were
conducted with three of them using different DP weighting
coefficients and the other one without DPEC.The four exper-
iments assimilated the same amount of observations from
multiple Doppler radars and imposed the mass continuity
equation constraint.

After 1 h of intermittent data assimilation, it was found
that DPEC did affect the final analysis. However, since there
is no reliable high-resolution analysis of the storm, it is not
easy to tell directly which analysis is better. The evaluation of
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Figure 9: The vertical vorticity (in units of 10−5 s−1) at the vertical cross section through the center of the major storm at 𝑦 = 301.5 km at
2220UTC 8 May 2003 for the (a) NoDP2, (b) DP2, (c) DP2d5, and (d) DP2m5.

the benefit of DPEC to radar data assimilation in these real
cases is examined mainly based on the ensuing forecasts.

It was demonstrated that the experiments using DPEC
generally predict larger low-level vertical vorticity than
the experiments not using DPEC. Therefore, it is con-
cluded that the use of DPEC improves the forecast of
supercell mesocyclone rotation of the major thunderstorm.
The experiments using different weighting coefficients gen-
erated similar results. This suggests that DPEC is not very
sensitive to the weighting coefficients, although very small
values should still be avoided as found in Ge et al’s. [7].

Overall, the addition of DPEC in the ARPS 3DVAR
system had a positive impact on storm-scale 3DVAR data

assimilation of Doppler radar data and on the subsequent
forecast. In the future, the systemneeds to be testedwithmore
real data cases, including tornadic supercell thunderstorms
and other storm-scale phenomena, to further demonstrate
the robustness of these conclusions.
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