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ABSTRACT

The Advanced Regional Prediction System (ARPS) three-dimensional variational (3DVAR) system is

enhanced to include the analysis of radar-derived refractivity measurements. These refractivity data are most

sensitive to atmospheric moisture content and provide high-resolution information on near-surface moisture

that is important to convective initiation (CI) and precipitation forecasting. Observing system simulation

experiments (OSSEs) are performed using simulated refractivity data. The impacts of refractivity on CI and

subsequent forecasts are investigated in the presence of varying observation error, radar location, data

coverage, and different uncertainties in the background field. Cycled refractivity assimilation and forecasts

are performed and the results compared to the truth. In addition to the perfect model experiments, imperfect

model experiments are performed where the forecasts use the Weather Research and Forecasting (WRF)

model instead of the ARPS. A simulation for the 19 May 2010 central plain convection case is used for the

OSSEs. It involves a large storm system, large convective available potential energy, and little convective

inhibition, allowing for CI along a warm front in northern Oklahoma and ahead of a dryline later to the

southwest. Emphasis is placed on the quality of moisture analyses and the subsequent forecasts of CI. Results

show the ability of refractivity assimilation to correct low-level moisture errors, leading to improved CI

forecasts. Equitable threat scores for reflectivity are generally higher when refractivity data are assimilated.

Tests show small sensitivity to increased observational error or ground clutter coverage, and greater sensi-

tivity to the limited data coverage of a single radar.

1. Introduction

One of the most important variables related to

convective-scale forecasting is the near-surface moisture

field. The timing and location of convective initiation (CI)

is often highly sensitive to moisture within the boundary

layer (BL). Variations as small as 1 g kg21 in specific

humidity, which are typical of boundary layer moisture

(Weckwerth et al. 1996), can make the difference in

whether or not storm initiation occurs. Xue and Martin

(2006a,b) performed a high-resolutionmodeling study of

the 24 May 2002 dryline CI case during the International

H2O Project (IHOP_2002; Weckwerth et al. 2004).

Results of their assimilation and forecast experiments

show a strong link between the low-level moisture

pattern and the CI location and timing. Several studies

have discussed and shown that high spatial resolution

and accuracy in low-level moisture is key to CI fore-

casting, and the absence of suchmeasurements is a major

obstacle (e.g., Crook 1996; Dabberdt and Schlatter 1996;

Emanuel et al. 1995; Koch et al. 1997; Weckwerth 2000).

Weckwerth (2000) concluded that 100-m spatial and

10-min temporal resolutions are required for moisture
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measurements to sufficiently sample boundary layer phe-

nomena that lead to CI.

High-resolution observations of moisture are, however,

notoriously difficult to measure. Surface observation net-

works, such as the Oklahoma Mesonet (hereafter Meso-

net; Brock et al. 1995; McPherson et al. 2007), provide

mesoscale observations on the order of 20–30-km spatial

resolution at best. Measurements at even higher resolu-

tions will typically require remote sensing approaches,

because of the costs and practical limitations deploying

very dense in situ observing instruments.

Fabry et al. (1997) developed a technique for obtaining

atmospheric refractivity measurements from radar using

phase measurements of stationary ground clutter targets.

Since refractivity is most sensitive to moisture during

the warm season, it is often used as a proxy for moisture

(Bodine et al. 2011; Fabry 2004; Fabry et al. 1997; Gao

et al. 2008). Processed refractivity data from radar gen-

erally have a resolution of about 2–4 km spatially and

4–10min temporally, depending on radar type, scan strat-

egy, and clutter target density. Given the high demand

for high-resolution moisture measurements, studies have

been conducted concerning the meteorological applica-

tions of refractivitymeasurements (e.g., Bodine et al. 2009,

2011; Fabry 2004; Weckwerth et al. 2005). In particular,

IHOP_2002 contained a convective initiation component

(Weckwerth and Parsons 2006) that also exploited the

utilities of radar refractivity data. Weckwerth et al. (2005)

showed for IHOP_2002 cases good correlations between

the refractivity-based moisture measurements and surface

station observations. In particular, they showed that re-

fractivity measurements were representative of the lower

boundary layer (approximately the lowest 250m), espe-

cially under well-mixed conditions.

Studies examining the impact of refractivity data on

numerical prediction of convective storms have been lim-

ited. Refractivity-derived mixed layer moisture was used

to initialize a cloud model in Montmerle et al. (2002) and

was believed to lead to more vigorous storm development

that was in a better agreement with observations. In the

review article of Sun (2005), the impact of including re-

fractivity data on the 30-min prediction of a convective

storm was briefly discussed. It was suggested that both

the increased magnitude and variation of humidity due to

refractivity data contributed to the initiation of part of

a convective storm in the case presented. These represent

preliminary studies examining the impact of refractivity

data on convective storm initiation and prediction.

The current study focuses on the assimilation of re-

fractivity measurements directly in a numerical weather

prediction (NWP) framework, building upon the results

of a simpler 2D framework by Shimose et al. (2013). The

focus is to determine the potential impact of assimilating

refractivity observations on CI and subsequent storm

forecasts in an NWP model. The Advanced Regional

Prediction System (ARPS; Xue et al. 2000, 2001, 2003) is

used to create the truth simulation. During the data as-

similation cycle and the ensuring forecast, either the

ARPS or the Weather Research and Forecasting (WRF)

model (Skamarock et al. 2005) is used, depending on

whether the observing system simulation experiment

(OSSE) uses a perfect (the same as that of truth simu-

lation) model or an imperfect (different from the truth

simulation) model. Both models are run using the Lin

ice microphysics scheme (Lin et al. 1983). The plane-

tary boundary layer (PBL) parameterization in the

ARPS is based on a 1.5-order turbulent kinetic energy

(TKE) scheme (Deardorff 1980) with special vertical

mixing length treatment within the convective bound-

ary layer after Sun and Chang (1986). WRF forecasts

use the Mellow–Yamada–Janji�c (MYJ) PBL scheme

(Janji�c 1990). As an initial effort, we chose to use simu-

lation refractivity data through OSSEs, in order to test

the sensitivity to a number of aspects related to re-

fractivity measurements, such as instrument error and

data coverage. With OSSEs, the known and complete

truth state also allows unambiguous evaluation of quality

and sensitivity. The ARPS three-dimensional variational

(3DVAR; Gao et al. 2004) system is used for the data

assimilation because of its simplicity and low cost. This

system has been applied successfully to the assimilation

of radar radial velocity and reflectivity data in many

studies (e.g., Hu et al. 2006a,b; Schenkman et al.

2011a,b), but it is the first time that it is applied the re-

fractivity data assimilation problem. To do that, an ob-

servation operator for radar refractivity measurements

is developed and added to the ARPS 3DVAR. OSSEs

are then performed using data created from the truth

simulation using the same observation operator. Impacts

of refractivity assimilation are also evaluated in terms of

the forecasts produced by the ARPS and WRF models,

in so-called perfect model and imperfect model forecast

experiments, respectively.

The rest of this paper is organized as follows. In sec-

tion 2, refractivity measurements are defined and the

3DVAR system and its configurations are described.

The OSSE design is explained in section 3, and results

are presented in section 4. The summary and conclu-

sions are given in section 5.

2. Radar refractivity assimilation using ARPS
3DVAR

a. Refractivity measurements

Doppler weather radars send out electromagnetic

pulses that travel through the atmosphere at roughly the
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speed of light c, modified only by the atmosphere’s re-

fractive index n. Although the refractive index is nearly

constant at 1.003, deviations on the order of 1026 near

the surface are related to temperature, pressure, and

water vapor pressure variations. For convenience, Bean

and Dutton (1968) define refractivity N in terms of re-

fractive index n, which is related to meteorological

variables as follows:

N5 (n2 1)3 1065 77:6
P

T
1 3:733 105

e

T2
, (1)

where T is temperature (K), P is atmospheric pressure

(hPa), and e is water vapor pressure (hPa). The units of

refractivity are typically referred to as ‘‘N units,’’ though

they are nondimensional in nature. At higher tempera-

tures, refractivity is most sensitive tomoisture (see Fig. 2

of Fabry et al. 1997) and is often used as a proxy for near-

surface moisture.

Fabry et al. (1997) andFabry (2004) describe in detail the

basic concept and application of using Doppler weather

radars to retrieve measurements of refractivity from the

atmosphere, discussed in brief here. Radar refractivity re-

trievals are obtained from path-averaged phase measure-

ments f between the radar and ground clutter targets.

Absolute phasemeasurementswrap every 5 cm for a 10-cm

wavelength S-band radar, which presents a problem for

obtainingmeaningful measurements at typical range gate

distances. To help mitigate this issue, reference phase

measurements are taken at a reference observation time

tref when the atmosphere is relatively spatially homoge-

neous and can, in principle, be measured quite accurately

by surface stations so that absolute refractivity can later

be obtained. Given the refractivity at the reference time,

subsequent measurements are the phase changes from the

reference rather than the absolute phase. Since phase

changes are usually much smaller than the absolute phase,

phase wrapping will occur much less frequently. Taking

a difference of phase measurements from some observa-

tion time t and reference time tref yields a phase change1

measurement df,

df(r)5f(r, t)2f(r, tref)

5210264pf

c

ðr
0
[N(r 0, t)2N(r 0, tref)] dr

0 , (2)

in terms of the phase change that is typically much smaller

than the absolute phase [see also discussion in Shimose

et al. (2013)]. Refractivity change measurements dN can

be obtained by taking a range derivative of these df,

dN(r)5N(r, t)2N(r, tref)52106
�

c

4pf

�
›

›r
[df(r)] ,

(3)

where f is the radar transmit frequency. These refractivity

measurements are path-averaged quantities from radar

to target site. One problem in applying (3) with a radar is

that range r in the measurement space is not continuous;

phase change measurements are sampled at range gates.

To get around this problem, Fabry (2004) showed that

this derivative can be estimated using finite differences of

phase changemeasurements between consecutive targets

at ranges R1 and R2 according to

dN(R1,R2)5 dN(R2)2 dN(R1)

’2106
�

c

4pf

�
df(R2)2 df(R1)

R22R1

. (4)

The two targets and the radar should be aligned along

the same straight line for (4) to work; however, real

ground clutter targets do not have this property natu-

rally, meaning the phase change difference measure-

ments can be very noisy. Additional sources of noise

include differing clutter target heights within one range

gate (e.g., building, trees); during times with high ver-

tical refractivity gradients, target sway from vegetation,

propagation delay of the radar beam, etc. (see, e.g.,

Bodine et al. 2011). Fabry (2004) found that vegetation

sway is one of the largest error sources, possibly affect-

ing refractivity from a single target by as much as 610

N-units. Additional data processing techniques are

required to reduce the noise and obtain reliable mea-

surements, such as smoothing and censoring of bad-

quality targets.

Absolute refractivity can be determined by summing

a reference field of refractivity with the refractivity dif-

ference measurements. The refractivity algorithm used

at the University of Oklahoma, developed by Cheong

et al. (2008), uses an objective analysis of Mesonet data

for a reference refractivity field, chosen from a time

when the low-level refractivity is nearly homogeneous

(,5-N-unit range over radar domain), the wind speed is

low (,5m s21), and there is no rainfall, for at least 10

consecutive radar scans to roughly ensure a steady state

(Bodine et al. 2011). Even with these conditions, refer-

ence measurements may still yield poor-quality refer-

ence maps because of variations in clutter coverage.

Prior to processing the PCD measurements into re-

fractivity, a phase unwrapping procedure is applied. The

algorithm includes censoring of poor-quality clutter targets

1As in Shimose et al. (2013), we use the term phase change to

refer to the difference in phase of a target between two different

times and phase change difference (PCD) to refer to the phase

difference between two consecutive targets aligned along the same

radial.
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and smoothing to reduce noise, such that the final re-

fractivity measurements have a spatial resolution of ap-

proximately 4 km, similar to that presented inWeckwerth

et al. (2005).

b. Three-dimensional variational analysis

In this study, ARPS is used as the simulation and fore-

cast model. ARPS is a compressible nonhydrostatic storm-

scale NWPmodel, and the system includes a 3DVARdata

assimilation package developed by Gao et al. (2004).

The ARPS 3DVAR minimizes a cost function J that

includes background, observation, and mass continuity

constraint terms. Following standard convention de-

fined in Ide et al. (1997), the cost function used in this

work can be written as

J(x)5
1

2
(x2 xb)

TB21(x2 xb)

1
1

2
[yo 2H(x)]TR21[yo2H(x)] . (5)

The first term is the background term Jb containing the

difference between state vector x and background vector

xb, weighted by the inverse of the background error co-

variance matrix B. The second term is the observation

term, containing the differences between observation vec-

tor yo and the state vector projected to the observation

space, H(x), weighted by the inverse of observation er-

ror covariance matrix R which contains instrumental

as well as representativeness errors. In this study, state

vector x includes the threewind components (u, y, andw),

potential temperature u, pressureP, and specific humidity

qy. Here, the observation term includes only refractivity,

JN 5
1

2
[No 2H(x)]TR21

N [No 2H(x)] , (6)

where No is the vector of absolute refractivity observa-

tions from radar andRN is the error covariancematrix of

N measurements. Additionally, the gradient of the N

cost function component needed by the ARPS 3DVAR

is given in an incremental form,

$JN(dx)5HTR21
N (Hdx2 dNo) , (7)

where dx5 x2 xb is the incremental state vector; dNo5
No 2H(xb) is the N observation innovation vector;H is

the linearized version for observation operator, H; and

HT is its transpose or adjoint. The proper specifications

ofRN andB are important to the 3DVAR analysis;RN is

often composed of only observation error variances as

diagonal elements; off-diagonal covariance elements are

commonly assumed to be zero, based on the assumption

that observation errors are uncorrelated. In the ARPS

3DVAR system, the spatial correlation elements of B

are modeled using recursive filters applied in each of the

three directions. The spatial covariance is assumed to

be Gaussian, isotropic, and spatially homogeneous. The

reader is referred to Gao et al. (2004) for details of the

recursive filter used in ARPS 3DVAR, as well as cost

function minimization and preconditioning of the con-

trol variables.

Because refractivity depends on P, T, and e, according

to (1), the analysis of refractivity will directly influence

those three variables. In ARPS 3DVAR, pressure P,

potential temperature u, and specific humidity qy are used

as control variables that are linked to P, T, and e through

observation operator. For the current study, because no

link exists between those three state variables and the

wind field in the 3DVAR system, wind is not changed

by the 3DVAR analysis directly, but changed through

mutual adjustments in the assimilation cycles. Gradient

checks were formed to ensure the new added codes for

N are correct.

3. OSSE experimental design

Before being entangledwith uncertainties and unknown

sources of error of refractivity observations, which has

proven to be a significant issue (Bodine et al. 2011), we

perform OSSEs (e.g., Atlas 1997; Lord et al. 1997) first,

by creating simulated refractivity data frommodel fields

of some ‘‘truth’’ or ‘‘nature run’’ simulation. Knowledge

of the reference truth allows for unambiguous assess-

ment of the quality of 3DVAR analyses and the sub-

sequent model forecasts. The case of 19 May 2010 is

chosen for our OSSEs. It was a day of widespread severe

weather for much of Oklahoma and included several

storms initiating ahead of a warm front and dryline.

One advantage of OSSEs is the ability to study indi-

vidual components in the data assimilation and prediction

system that may affect the analysis and subsequent fore-

cast. In our case, sensitivities to observation error, domain

coverage, and data discontinuity via realistic clutter fields

are examined. Since this is a sensitivity study of CI to near-

surface moisture, differing background moisture fields are

used as the first guess in the 3DVAR analysis. Knowledge

of the reference truth allows for direct calculation of ver-

ification statistics, such as root-mean-square error (RMSE)

and the equitable threat score (ETS).

a. Case overview, numerical simulation setup, and
truth simulation

19 May 2010 was a day of severe weather outbreak in

western and central Oklahoma, as there were more than

70 Storm Prediction Center (SPC) severe weather re-

ports, including 16 tornadoes in Oklahoma alone. A
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large deep-layer cyclone moved through the central and

southern Great Plains, with an upper-level low pressure

tracking through central Kansas. A well-defined warm

front, dryline, and cold front are all evident by this time,

with a clear triple-point intersection in west-central

Oklahoma by 2100UTC (all times will be inUTC, which

will be omitted hereafter). An overnight mesoscale con-

vective system left an outflowboundary that aidedCI from

the dryline–cold front triple point and along the warm

front. With afternoon diabatic heating, surface tempera-

ture in the warm sector rose to 258–308C with dewpoint

temperatures of 158–208C.Little convective inhibition (less
than 25 Jkg21) and large surface-based CAPE values (as

high as 3000 Jkg21) provided a favorable environment for

convective initiation. As such, storms were initiated near

the triple point between 1930 and 2030, with additional

storm development east along the warm front and ahead

of the dryline later on between 2130 and 2230.

The truth simulation uses the same configurations as

those used by the Center for Analysis and Prediction of

Storms (CAPS) for rapidly updated real-time forecasts

(Brewster et al. 2010, 2008) for the Engineering Research

Center (ERC) for Collaborative Adaptive Sensing of the

Atmosphere (CASA; McLaughlin et al. 2009). It was

initialized at 1930 from an ARPS 3DVAR analysis in-

cluding available surface and Mesonet observations as

well as available CASA and Next Generation Weather

Radar (NEXRAD) data, using a temporally and spa-

tially interpolated National Centers for Environmental

Prediction (NCEP) operational North American Meso-

scale Model (NAM) 12-km analysis as the background.

The domain is 450 km 3 420 km and has a horizontal

resolution of 1 km. In the vertical, a stretched grid is

used with a resolution of 20m near the surface and

800m at the model top, and an average vertical grid

spacing of 400m. The lateral boundary conditions used

for the truth simulation were also taken from the NAM

12-km analysis and forecasts every 3 h. The truth sim-

ulation is run for five forecast hours, up until 0030 on

20 May 2010.

Figure 1 shows the moisture and reflectivity fields of

the truth simulation between 2030 and 2330. The storm

shown at 2030 is a cell that initiated within the first

15min of the simulation; thus, it will be analyzed as

a preexisting storm in subsequent assimilation experi-

ments. Additional points of initiation occur in the model

to the west-southwest of the preexisting storm between

2130 and 2200. The storm located within the red box in

Fig. 1b is a single cell whose evolution is supercellular,

and it initiates at about 2105, making it the first point of

CI in the truth field (aside from the preexisting storm).

This storm initiates close to, but ultimately ahead of, the

dryline, in an area of enhanced moisture convergence

because of abundant moisture (above 15 g kg21) com-

bined with localized wind convergence (not shown).

b. Generation of simulated refractivity data

Simulated refractivity measurements are generated

by simply calculating radar refractivity according to (1)

from themodel truth fields at the surface. The resolution

of simulated data is 4 km, taken every four grid points,

which is similar to the effective resolution of the final

processed radar refractivity measurements from radar

sites KTLX and KFDR by Cheong et al. (2008). For

single radar, refractivity is assumed to be available

within a 50-km radius of radar, and the coverage is as-

sumed to be continuous (Fig. 2). The addition of error

and other uncertainty will be discussed in conjunction

with sensitivity experiments.

c. OSSEs

A set of experiments with cycled analysis and fore-

casting are conducted, each following the general as-

similation setup given in Fig. 3. The truth simulation is

run for an hour to allow for the model fields to ‘‘spin

up,’’ that is, to develop more complex structures in all

model fields (especially moisture) as permitted by the

high-resolution model, prior to introducing uncertainty

and performing assimilation experiments.

For comparison purposes, a pair of ‘‘baseline fore-

casts’’ without data assimilation, NoNd and NoNm (d

for dry and m for moist; see Table 1), are initialized at

2030 from the error-containing analysis backgrounds

and run for 4 h. The pair of analysis backgrounds used as

the first guess for 3DVAR analysis at 2030 are created

by introducing near-surface moisture error to the truth.

The procedure includes three steps:

1) Smooth surface qy 50 times using a 25-point smoother;

2) Add or subtract 2 g kg21 to surface qy everywhere;

3) Introduce error into the boundary layer by spreading

the specified surface error vertically according to the

following equation:

qy 5 qy,truth1 (12 z/D)2(qsfcy 2 qsfcy,truth) . (8)

Here, qsfcy is the surface moisture after step 2,

subscript ‘‘truth’’ denotes the truth field, z is height

above ground, and D is set to 4 km. For z .D, qy 5
qy,truth. Therefore, the moisture error decreases qua-

dratically with height and becomes zero at 4 kmAGL.

Most of the error is confined below 1km AGL. All

other variables in the initial background are set to the

values of the truth.

The background errors created above contain smaller-

scale errors of random nature due to the smoothing
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applied in the first step. Step 2 creates horizontally cor-

related error of significant magnitude at the surface,

while step 3 creates vertically correlated error in the

lower atmosphere. These errors are representative of ran-

dom errors, synoptic-scale horizontally correlated error,

and boundary layer vertically correlated error, respec-

tively. Because our experiments focus on the impact of

refractivity data, no other types of observations are in-

cluded; therefore, we have no way of correcting error

in the upper atmosphere. For this reason, we limit the

background moisture error to the lower atmosphere.

Also, because we do not have other observations while

the refractivity measurement is most sensitive to mois-

ture, we limit the simulated background error to the

moisture field only. These are caveats of the current

study that a reader should keep in mind, and more so-

phisticated experiments with additional observation types

using more advanced data assimilation methods should be

explored in the future. As the first OSSE study, we choose

to start with a relatively simple setup here.

The ARPS 3DVAR system assumes Gaussian error

background covariance (e.g., Huang 2000; Liu and Xue

2006), and the spatial decorrelation scale L in the Guas-

sian correlation model is specified by the user (Gao et al.

2004). In practice, L is often chosen to be comparable

to the mean spacing of the observation network. Experi-

ments indicated an optimal horizontal decorrelation

length scale of 8 km in the horizontal (not shown) for

FIG. 1. Composite reflectivity (colored, dBZ) and surface specific humidity (lines and gray shaded contours, g kg21) for the truth model

simulation of 19 May 2010 at (a) 2030, (b) 2130, (c) 2230, and (d) 2330 UTC. Red box in (b) represents a verification subdomain used for

ETS calculations, located around the supercell that initiates at roughly 2105 in the truth simulation.
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our refractivity data, in general agreement with Shimose

et al. (2013). Additionally, the optimal vertical decorre-

lation length was found to be six vertical grid levels, or

roughly 1 km, for the model configuration used.

From the assimilation experiments, cycled analysis

and forecasts are performed for an hour between 2030

and 2130 at 10-min intervals,2 yielding a total of seven

analyses. From the analysis at 2130, a 3-h forecast is run,

and the results are compared to the baseline forecasts

and the truth. Table 1 summarizes each of these OSSE

experiments. With two background fields with plus and

minus surface error, respectively, there are two control

experiments, CNTLd and CNTLm. They are idealized

experiments where the entire domain is completely cov-

ered by overlapping radars (Fig. 4a) and refractivity ob-

servations are available every 4 km and contain Gaussian

errors with a 0.5-N-unit standard deviation. The value

of 0.5 N-units was chosen in part due to assuming pre-

processing using the algorithm of Cheong et al. (2008)

censors out bad-quality target data. Some data are left

with higher error, and for this reason sensitivity experi-

ments with increasing standard deviation of error are

included (explained below). The control experiments

(CNTLd and CNTLm) are compared to their respective

baseline experiments with no data assimilation (NoNd

and NoNm) and verified against the truth fields.

Other experiments listed in Table 1 are sensitivity

experiments. We examine four kinds of sensitivities: (i)

sensitivity to background field, (ii) sensitivity to obser-

vation error, (iii) sensitivity to realistic clutter coverage,

and (iv) sensitivity to radar domain coverage. For (ii),

there are three cases in which observation errors were

randomly drawn from a zero-mean Gaussian distribu-

tion having standard deviations 0.5, 1.0, and 2.0 N-units,

respectively. For (iii), realistic clutter coverage is ap-

plied to the full radar (FRAD) tests to study the effect of

data discontinuity. First, a typical KTLX clutter domain

is remapped to a Cartesian 4-km grid. This clutter do-

main is used for each radar in the full domain, with the

addition of random rotation to avoid regular patterns in

the clutter field. The resulting data domain coverage is

roughly 50%–60% of the continuous full domain cov-

erage (Fig. 4b). For sensitivity to radar coverage, ex-

periments include an isolated radar with 50-km radius

refractivity coverage as in Fig. 2, and the radar is placed

near the supercell initiation point (see Fig. 1b).

Because the truth simulation is produced by the same

model used in the assimilation and forecasting experiments,

the OSSEs described so far are considered perfect model

experiments. To avoid the caveats of such ‘‘identical twin’’

experiments that often lead to too optimistic conclusions, a

second set of imperfectmodel experiments are conducted—

one for each experiment in Table 1. For the imperfect ex-

periments, theWRF serves as the forecast model within the

assimilation cycles as well as for the final free forecast. Since

the 3DVAR analysis is native to the ARPS system, this re-

quires extra steps of interpolating the model fields from the

ARPS grid to the WRF grid and back within each analysis

cycle; because the setups of the horizontal grids ofWRFand

ARPS are identical, interpolation and variable conversion

occur only in the vertical direction (WRF uses mass-based

vertical coordinates, while ARPS uses height-based vertical

coordinates). Because a different model is used, the forecast

model WRF is considered to contain ‘‘error’’ compared to

the truth simulation model, which is the ARPS.

d. Verification methods—RMSE and ETS

Adistinct advantage ofOSSEs is the knowledge of the

truth, which allows for direct calculation of verification

statistics such as RMSE and ETS. RMSE can be calcu-

lated against the truth according to

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

i51

(xi,est2 xi,truth)
2

n

vuuut
, (9)

FIG. 2. Simulated refractivity data for a single radar with 50-km

continuous data coverage centered near the CI location of the iso-

lated supercell, valid 2030 UTC 19 May 2010. This hypothetical ra-

dar is centered at horizontal grid point pair (i, j)5 (200, 200), which

is less than 50km north of CASA radar KCYR (Cyril, OK).

2Note that the short 10-min assimilation cycles have the potential

of introducing imbalance noise that may take longer than 10min to

settle down in the forecast model, although convective-scale data

assimilation studies (e.g., Hu and Xue 2007) have successfully used

such short intervals. A digital filter (Lynch and Huang 1992) can be

applied in the forecasting step to reduce potential noise.
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where x is somemodel variable (specific humidity qy in this

case), subscript i refers to the grid point index, and n is the

number of grid points for which RMSE is calculated over.

To compare results of multiple sensitivity experiments,

ETS (Schaefer 1990) is used as verification on the com-

posite reflectivity fields. ETS is given by

ETS5
hits2 chance

hits1misses1 false alarms2 chance
, (10)

where hits are simultaneous forecast and observed events,

misses are observed events that were not forecasted, false

alarms are forecasted events that are not observed, and

TABLE 1. List of OSSE experiments. For abbreviations, FRAD refers to Full RADar domain (data available everywhere at 4-km

resolution; see Fig, 4a); CNTL refers to CoNTroL experiments; NoN refers to no data assimilation experiments; 1RD refers to experi-

ments with a single, isolated radar; ‘‘d’’ and ‘‘m’’ refer to backgrounds with 2 g kg21 subtracted or added (respectively); and numbers

0.5, 1.0, and 2.0 refer to homogeneous standard deviation error amounts added to all refractivity observations. FRADCLUT refers to full

radar experiments with realistic CLUTter coverage (see Fig. 4b).

Expt name

Refractivity

assimilated?

Obs error

(N units)

Add or subtract 2.0 g kg21

for background qy
at 2030 UTC

Radar domain

coverage

Realistic

clutter coverage

(data discontinuity)?

CNTLd or FRADd0.5 Yes 0.5 Subtract (dry) Full No

CNTLm or FRADm0.5 Yes 0.5 Add (moist) Full No

NoNd No N/A Subtract (dry) N/A N/A

NoNm No N/A Add (moist) N/A N/A

FRADd1.0 Yes 1.0 Subtract (dry) Full No

FRADd2.0 Yes 2.0 Subtract (dry) Full No

FRADm1.0 Yes 1.0 Add (moist) Full No

FRADm2.0 Yes 2.0 Add (moist) Full No

FRADCLUTd0.5 Yes 0.5 Subtract (dry) Full Yes

FRADCLUTd1.0 Yes 1.0 Subtract (dry) Full Yes

FRADCLUTm0.5 Yes 0.5 Add (moist) Full Yes

FRADCLUTm1.0 Yes 1.0 Add (moist) Full Yes

1RDd0.5 Yes 0.5 Subtract (dry) Isolated No

1RDm0.5 Yes 0.5 Add (moist) Isolated No

FRADd-20Z Yes 0.5 Subtract qy error at

2000 UTC, then forecast

for 30min to 2030 UTC

using ARPS

Full No

FRADm-20Z Yes 0.5 Add qy error at 2000 UTC,

then forecast for 30min

to 2030 UTC using

ARPS

Full No

FIG. 3. Cycled assimilation and forecast experiment design. Truth model is initialized from

a 3DVAR analysis without refractivity data at 1930 UTC and allowed to spin up for the first

hour to give more complex structure to the moisture field. At 2030 UTC, the background is

produced for refractivity assimilation experiments. Cycling window is an hour long, with

analysis frequency of 10min. At 2130UTC, a forecast is run. Results of refractivity assimilation

experiments are compared with forecast experiments without data assimilation (NoNd and

NoNm in Table 1), which serve as baselines.
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chance is the number of hits one would get by random

chance, defined as

chance5
(hits1misses)(hits1false alarms)

hits1misses1false alarms1correct negatives
.

(11)

The ETS is a common verification score used in meteo-

rology, where a score of 0 shows no skill and a score of 1 is

a perfect forecast.

4. Results

a. Results of baseline and control experiments

The impacts of refractivity assimilation in CNTLd

and CNTLm are best evaluated relative to their re-

spective no-N-assimilation baseline experiments, NoNd

and NoNm. Figure 5 shows time series plots of RMSEs

of specific humidity at the surface. The baseline fore-

casts NoNd (Fig. 5a) and NoNm (Fig. 5b) show similar

characteristics—the RMSE starts at ;2 g kg21 because

of the design of the first guess but through forecast

decreases—to about 1 gkg21 after roughly 90min. This

reduction occurs because of convective mixing in the

boundary layer, as can be seen in Fig. 6, because errors

higher up are smaller. This surface error begins to in-

crease again only within the last 30–60min or in the

fourth hour of forecast.

With 10-min 3DVAR analysis cycles in the control

experiments, the time series plots of RMSEs in Fig. 5

look similar to typical ‘‘sawtooth’’ plots seen in radar

data assimilation studies using the ensemble Kalman

filter (e.g., Tong and Xue 2005). Looking at the analysis

cycling results in each of CNTLd and CNTLm, they

show similar downward trends. Both CNTLd (Fig. 5a)

and CNTLm (Fig. 5b) reduce the moisture errors well

below their respective background values in the first

analysis at 2030, although in CNTLd it takes a second

cycle to reducemost of the error and prevent much error

growth in the subsequent forecast. Both control exper-

iments reduce the RMSEs to;0.1 g kg21, a full order of

magnitude smaller than the baseline error. With the free

forecast beginning from final analysis at 2130, theRMSE

begins to grow; however, assimilating refractivity causes

the forecast error to remain below the corresponding

baseline forecast. Two hours into the forecast, CNTLd

and CNTLm have errors about 0.4 g kg21 less than in

NoNd and NoNm, at which point the error growth be-

comes faster. In CNTLd, the forecast error exceeds that

of the corresponding baseline about 3 h into the forecast,

while in CNTLm the error remains lower throughout.

Refractivity assimilation has thus a positive impact on

moisture for at least 2–3 hours past the final analysis time.

To further assess the impact of N on the moisture

analysis, Fig. 6 shows vertical profiles of RMSE in mois-

ture for the control and baseline experiments. Because of

the error correlation in the vertical, the 3DVAR is able to

correct moisture error throughout the boundary layer

with a proper vertical background error correlation scale.

In CNTLd and CNTLm, the moisture error is reduced to

FIG. 4. (a) Depiction of the domain completely filled with radar coverage, for both control experiments as well as the FRAD exper-

iments. (b) Clutter field corresponding to each ‘‘radar’’ in (a), where dark gray refers to points where refractivity is available from each

radar, used for FRADCLUT sensitivity experiments. OSSE denoted in (b) refers to the location of the single radar for 1RD experiments

(example data in Fig. 2).
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less than 0.25 gkg21 at all levels at 2030, after the first

analysis. This quite uniform reduction of the error in the

vertical from surface observations benefited from our

knowledge about the initial background error structure—

the errorwas strongly correlatedwith the surface error.At

2130, the surface error remains low, but the errors away

from the surface are larger, having a maximum of about

0.7 g kg21 at 1.5 km AGL. The less effective removal of

error in the later cycles is a result of less accuratemodeling

of the background error.During the assimilation cycles, the

vertical error correlation structure is no longer simple—

the static Gaussian covariance now works less effectively.

FIG. 5. RMSEs of the specific humidity field (g kg21) for sensitivity experiments listed in Table 1: (a),(b)

for sensitivity to observation error experiments; (c),(d) for sensitivity to realistic clutter domain experiments; and

(e),(f) for sensitivity to isolated radar experiments. Note that in (a)–(d), RMSEs were calculated over the whole

domain, and in (e),(f) RMSEs were calculated only over the 50-km radius of the isolated radar.
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Despite that, the RMSEs of the control experiments are

0.5–1.0 gkg21 below the corresponding baseline RMSE

errors at 2130. A similar difference remains at the lower

levels even after an hour of free forecast, at 2230. Above

1.5 km AGL, however, we begin to see some differences

in the dry experiments versus the moist experiments. The

RMSE in CNTLd (Fig. 6a) remains about 0.3 g kg21 less

than the RMSE of NoNd even at 2230. However, the

errors of NoNm (Fig. 6b) converge with those of CNTLm

by 2130 at the higher levels, mainly because ofmuch slower

error growth in NoNm than in its dry counterpart. Because

of the limited ability of the refractivity data in directly

correcting errors at the upper levels beyond the vertical

error decorrelation scale (which is approximately 1km in

the boundary layer), the errors found at the upper levels

contain accumulated effects of forecast error growth, and

propagation of errors initially found at the lower levels. The

vertical error propagation is also directly linked to con-

vection within the model domain.

The effect of refractivity assimilation on predicted

storms is shown in Fig. 7 for 2200. The preexisting storm

from Fig. 1a has grown into a large multicell feature,

with several points of new storm initiation to the west

and south, including the single supercell that initiates

just ahead of the dryline near the center of the domain.

Figures 7b and 7c show the baseline forecasts for NoNd

and NoNm, respectively. There is a clear contrast in

these two experiments. As we expect, the dry baseline

shows reduced convection, while the moist baseline

shows enhanced convection. In particular, the differ-

ences seem to be mainly in new points of initiation, not

in the preexisting storm. Whereas there are several new

points of initiation in the truth within the northwest

portion of the domain, NoNd does not capture these

storms. Reducing the moisture near the surface effec-

tively suppresses these new storms, most notably the

supercell in the center of the domain. Only a couple of

new initiations occur in NoNd between 2215 and 2230

near (x, y) 5 (150 km, 270 km); however, these storms

are 30–45min late in initiation timing compared to the

truth and quickly dissipate within an hour. Contrast this

with NoNm (Fig. 7c), where not only are all points of

initiation captured, but the storms have evolved more

aggressively and there are several new points of spurious

convection, especially near the supercell. Additionally,

many points of CI occur earlier than in their respective

locations in the truth, by asmuch as 30min. The supercell

area shows several points of CI that occur starting at 2055

in NoNm, which is 15min early.

Figures 7d and 7e show the corresponding control

forecasts from CNTLd and CNTLm. Both CNTLd and

CNTLm show results that are qualitatively closer to the

truth than either baseline experiment NoNd or NoNm.

There are still a few points of spurious convection in

CNTLm, though not nearly as many as in NoNm. Ex-

periment CNTLd has recaptured the points of initiation

to the west of the preexisting storm. The supercells in

CNTLd and CNTLm are a bit different in general shape

and size, with the supercell in CNTLm covering a larger

area than in CNTLd; however, neither is clearly sub-

jectively closer to the truth. All in all, refractivity as-

similation has shown considerable positive impact on

correctly capturing new points of initiation, to within

less than 10min of timing error.

FIG. 6. RMSE vertical profiles of specific humidity at 2030 UTC (first analysis, no marker), 2130 UTC (final

analysis, dashed marker) and 2230 UTC (1-h forecast, square marker) for the control (black) and no-data-assimilation

(gray) experiments: (a) CNTLd, NoNd and (b) CNTLm, NoNm.
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b. Results of perfect model sensitivity experiments

1) SENSITIVITY TO OBSERVATION ERROR

In the presence of observation error (Figs. 5a,b), the

results of moisture analysis cycling and forecast show

significantly reduced RMSE compared to the baseline

fields. For example, at 0.5 N-units of standard deviation

error for the N observations, the RMSE of CNTLd at

2100 is 0.1 g kg21. For 1.0N-units it is 0.15 g kg21 and for

2.0 N-units it is 0.24 g kg21. Each of these RMSE values

is an order of magnitude less than the baseline.

What do the error amounts of 0.5, 1.0, and 2.0N-units

mean in terms of moisture? To answer this question, we

start with a formula converting standard deviation er-

rors in model variables to the error of refractivity, as-

suming model variables P, T, and e are uncorrelated:

s2
N 5

�
›N

›P

�2

s2
P 1

�
›N

›T

�2

s2
T 1

�
›N

›e

�2

s2
e . (12)

Equation (14) is a first-order Taylor series approxima-

tion of the propagation of error, considering each dis-

tribution is approximately normal. It is rearranged to

solve for vapor pressure deviation se, assuming T and P

errors are zero. Using saturation vapor pressure, this value

can be converted to RH error sRH. For a warm-season T

of 208C, RH errors of 0.5%, 1%, and 2% are approxi-

mately 0.5, 1.0, and 2.0 N-units, respectively, in terms of

refractivity. Compared to typical NWP background errors

in RH often are well above 5%, these error amounts are

very small. Thus, observation errors up to 2N-units should

yield accurate analyses of moisture.

As expected, with increased observation error the

analysis is unable to reduce RMSE as much as the con-

trol experiments; however, they still are significantly re-

duced over the baseline experiments NoNd and NoNm

(Figs. 5a,b). Additionally, after just 30min of forecast

starting from the 2130 analyses, the RMSE curves con-

verge to nearly the same values. So, increasing observa-

tion error up to 2 N-units has little detrimental effect on

the moisture analysis and forecast. There are, however,

some times when the 3DVAR analysis increases RMSE

slightly in later cycles, such as FRADd2.0 at 2100

(Fig. 5a). In general, if 3DVAR is working properly this

should not happen, assuming all errors are specified cor-

rectly. However, in these experiments the background

error in moisture was kept at a static value of 20%, which

is not valid after a few cycles of refractivity assimilation

FIG. 7. Composite reflectivity (color fill, dBZ) and specific humidity (gray contours, g kg21) for (a) the truth field and perfect model

experiments, (b) NoNd, (c) NoNm, (d) CNTLd, and (e) CNTLm, valid 2200 UTC 19 May 2010.
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because with subsequent cycling the background error

should decrease as its accuracy increases. This is a gen-

eral drawback of 3DVAR—the inability to dynamically

update background error covariances with each new

analysis.

Figure 8a shows reflectivity ETSs for the 30-dBZ re-

flectivity threshold of control experiment CNTLd, as

well as experiments with greater error added to obser-

vations, FRADd1.0 and FRADd2.0, calculated over the

entire domain. Each ETS starts at a perfect 1.0 because

hydrometeor fields in the initial background had no er-

ror with the preexisting storm. All experiments show

higher scores than the baseline. There are only minor

differences among the different assimilation experi-

ments, no more than 0.1 in terms of ETSs. The results

are similar for the moist experiments in Fig. 8b. Gen-

erally, CNTLd tends to have the best ETSs (though not

always), likely because of its relatively low amount of

observation error, while FRADd2.0 has lower ETSs

(though still well above that of NoNd). The forecast of

the supercell seems to be insensitive to increased ob-

servation error of up to 2 N-units, and all assimilation

experiments show improvement over the corresponding

no-data-assimilation experiment in terms of ETSs.

2) SENSITIVITY TO REALISTIC CLUTTER

COVERAGE

The sensitivity of analysis and forecast to realistic clut-

ter coverage, through experiments FRADCLUTd and

FRADCLUTm, is shown in Figs. 5c and 5d in terms of

analysis and forecast RMSEs. The error evolutions look

very similar to corresponding ones in Figs. 5a and 5b.With

realistic ground clutter having incomplete coverage, the

RMSE is increased by;0.1 gkg21 but the error converges

after a short time in the forecast to the control experiment

values. The effect of incomplete data coverage on the final

RMSE by 2130 is slightly higher than the effect of in-

creased observation error but, in general, realistic clutter

coverage has little to no detrimental effect on themoisture

analysis and forecast.

ETSs in Fig. 8 are lower for FRADCLUTd0.5, by

roughly 0.1 point for the entire domain. However, the

scores are still consistently above the baseline forecast,

meaning that the use of realistic clutter coverage does not

significantly impact the subsequent forecast. The ETS re-

sults are similar for FRADCLUTm0.5. The worst scores

occur with FRADCLUTd1.0 and FRADCLUTm1.0,

though the differences are still relatively minor. The

FIG. 8. ETS time series calculated using threshold of composite reflectivity at 30dBZ for

sensitivity experiments listed inTable 1: (a) dry-bias experiments and (b)moist-bias experiments.

ETS is calculated over the entire domain, and includes preexisting storm at initial time. Dashed

vertical line indicates final analysis time at 2130 UTC used to initialize a 3-h free forecast.
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results of realistic clutter coverage experiments tend to

follow the general results of observation error experi-

ments. Although a forecaster may be thrown off by the

discontinuous appearance of clutter domain refrac-

tivity coverage at KTLX and KFDR, the data assimi-

lation system is rather robust from a data assimilation

and numerical forecasting standpoint. The caveat is

that inevitably a real storm may initiate within a region

where there is no clutter coverage, and then the impact

of the data gaps may be larger.

3) SENSITIVITY TO ISOLATED RADAR DOMAIN

COVERAGE

The RMSEs of the single isolated radar (1RD) ex-

periments are shown in Figs. 5e and 5f. The RMSE

calculations were done only over the actual coverage of

the isolated radar. Experiments 1RDm0.5 and 1RDd0.5

have nearly identical RMSEs as their corresponding

control experiment, having the same observation error.

However, during the subsequent forecast the error curves

of 1RD experiments increase sharply, muchmore so than

those of the CNTL and NoN experiments (either dry or

moist). From 2300 on, 1RDm0.5 shows greater errors

than baseline experiment NoNm. This indicates some

negative effects of having only partial radar domain

coverage; large gradients at the edge of the data coverage

can cause structure differences in the simulated storms.

Figure 9a depicts the ETSs for the dry isolated radar

experiments compared to the control and baseline ex-

periments for the verification subdomain near the su-

percell. The 1RDd experiments show scores comparable

to the CNTLd experiments, which are improved over the

no-skill baseline. For the same experiments using amoist-

biased background field (Fig. 9b), the scores are much

lower and more comparable to NoNm than to CNTLm.

To look into this problem further, Fig. 10 plots re-

flectivity for the dry experiments CNTLd and 1RDd0.5

in 15-min intervals, starting at 2115 (approximate CI

time of truth). Experiment 1RDd0.5 recaptures the

specific CI location and timing of the truth pretty closely,

FIG. 9. ETS time series calculated over the verification subdomain (red box in Fig. 1b) for

single-radar coverage experiments in Table 1: (a) dry-bias experiments and (b) moist-bias

experiments. Control and no-data-assimilation experiments plotted for reference. Dashed

vertical line indicates final analysis time at 2130 UTC as in Fig. 8.
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within 10 km and less than 10min late. Only minor dif-

ferences in CI timing and location can be seen between

experiments 1RDd0.5 andCNTLd, both close to the truth.

However, the evolutions of the storms are quite different.

In 1RDd0.5, the storm does not grow as large as in CNTLd

or the truth, owing to less moisture available near the

surface outside the radar range. As such, it develops

more slowly and takes a northern path. Additionally, in

experiment 1RDd0.5, there are two additional spurious

points of initiation to the west and southwest of the su-

percell. This spurious activity appears to be related to

the discontinuity found in the analysis at the edge of

FIG. 10. Composite reflectivity (color fill, dBZ) and specific humidity (gray contours, g kg21) for (a)–(d) the truth field, (e)–(h) baseline

experiment NoNd, (i)–(l) CNTLd experiment, and (m)–(p) 1RDd0.5. Plotted over verification subdomain in Fig. 1b (red box). Each

column is valid at the same time, starting from 2115UTC 19May 2010 in the first column to 2245UTC in the last column, plotted at 30-min

intervals.

FIG. 11. (a) Time series RMSE of moisture for experiments FRADm-20Z and CNTLm. (b) Vertical profile of

moisture RMSE for experiments FRADm-20Z and CNTLm, plotted at initial analysis time (2030 UTC); final

analysis time (2130 UTC); and 1 h into the free forecast off of the final analysis (2230 UTC).
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radar data coverage. These results suggest that complete

data coverage is much preferred and when complete

coverage is unavailable, efforts should bemade to reduce

the effects of data edges in creating artificial moisture

gradients that can cause forecast deterioration. Further-

more, a complete coverage has an equally important

benefit of allowing for the correction of moisture error in

the entire domain.

Overall, there are some improvements by isolated

radar data coverage over the baseline, especially for the

dry-biased experiments, but the impact is complicated

by the gradient issue and a much smaller impact is ob-

tained with the moist-biased case. The conclusion is that

the storm forecast with assimilation of refractivity is

most sensitive to isolated radar domain coverage.

c. Results of experiments with time-evolved forecast
background

The analysis background used in the experiments up

to 1RDm0.5 in Table 1 was artificially constructed to

mimic typical errors in a well-mixed convective bound-

ary layer, and the error is limited to the moisture field

only. The error is mostly removed by refractivity as-

similation after just one cycle. Two additional experi-

ments, FRADd-20Z and FRADm-20Z, are introduced

to include more realism to the background error (see

Table 1). For these experiments, initial error in the mois-

ture field is introduced the same way as in the earlier ex-

periments, as described in section 3, though 30min earlier

at 2000. The ARPS model is integrated from this initial

FIG. 12. Composite reflectivity (colored, dBZ) and surface specific humidity (lines and gray shaded contours, g kg21) for experiments

(a),(b) FRADd-20Z and (c),(d) FRADm-20Z are valid at (a),(c) 2130 and (b),(d) 2330 UTC 19 May 2010.
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background for 30min until 2030, and this forecast serves

as the new initial background for data assimilation starting

at 2030 for the two new experiments. Such a time-evolved

background would contain errors in other fields in addi-

tion to moisture due to error propagation through model

integration. Experiments FRADd-20Z and FRADm-20Z

are otherwise the same as experiments CNTLd and

CNTLm, respectively.

For experiment FRADm-20Z, the surface RMSEs of

moisture both during cycling and the free forecast are

comparable in order of magnitude to the corresponding

control experiment CNTLm (Fig. 11a). However with

the added uncertainty in the forecast background, ex-

periment FRADm-20Z contains about 0.1 g kg21 more

error throughout the cycling window and free forecast,

though interestingly the error becomes lower than in

CNTLm after roughly 2345. While the analysis at the

surface is consistent with other assimilation experiments,

greater differences exist in the vertical profiles (Fig. 11b).

By the end of the cycling window at 2130, experiment

FRADm-20Z shows as much as 0.4 gkg21 greater error

than in CNTLm in the vertical profile. Compared to ex-

periment NoNm, however, there is still a significant im-

provement in the vertical profile of BL moisture up to

about 1.5 km even an hour into the forecast (cf. to NoNm

in Fig. 6b). Experiment FRADd-20Z exhibits similar

characteristics as FRADm-20Z in moisture error (not

shown).

Figure 12 shows the reflectivity at the final analysis

time (2130) as well as 2 h into the forecast (2330) for

FRADd-20Z and FRADm-20Z. Unlike CNTLd and

CNTLm, even after assimilation some effects of the

background error remain in the predicted storm. In

other words, FRADd-20Z (Fig. 12a) and FRADm-20Z

(Fig. 12c) show less and more convection, respectively,

than in the truth at 2130 (Fig. 1b). Though the preex-

isting storm complex develops similarly as the truth, the

isolated supercell (Fig. 1b) is not captured at all in

FRADd-20Z, which is different from the results of

CNTLd (Fig. 7d). Clearly, errors in more fields can af-

fect the impact of refractivity assimilation. On the other

hand, in FRADm-20Z, refractivity assimilation does

show a positive impact for the isolated supercell. Even

before the refractivity assimilation window, the positive

bias in moisture caused many spurious cell initiation

points south of the preexisting storm. However, these

cells quickly weakened during the cycling window to the

point where by 2330 (Fig. 12d) only a single developed

FIG. 13. Composite reflectivity (color fill, dBZ) and specific humidity (gray contours, g kg21) for (a) the truth field and imperfect model

(usingWRF) experiments (b) NoNd, (c) NoNm, (d) CNTLd, and (e) CNTLm, valid at 2230UTC 19May 2010 (1 h intoWRF forecast run

launched from final refractivity 3DVAR analysis).
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supercell remained. This supercell is roughly 30–40 km

south of the supercell in the truth (Fig. 1d) but otherwise

appears to show similar shape and strength.

d. Results of imperfect model experiments

Results from the imperfect model assimilation cycles

and forecasts show similar tendencies of improvement

because of refractivity assimilation as in the perfect

model forecasts, but with some important differences. In

the reflectivity plots of Fig. 13, an hour into the forecast,

the general shape of the convective complex in control

experiments is similar to that of the truth. The baseline

experiments NoNd (Fig. 13b) and NoNm (Fig. 13c)

show significantly reduced and increased convection,

respectively, as compared to the truth (Fig. 13a). There

are many more locations of convection east and south of

this complex than were present in the truth simulation

for all imperfect model experiments, and in general the

storms do not develop as strongly as in the truth. Com-

paring the RMSEs of moisture for the WRF forecasts in

Fig. 14 to RMSEs of perfect model forecasts in Fig. 5, it

is clear that forecast error growth is up to 2–3 times

faster in the WRF forecasts than in the ARPS forecasts,

especially within the first 30min. The errors of the re-

fractivity data assimilation experiments in Fig. 14 do,

however, tend to stay below their respective baseline

forecast throughout the 3-h forecast period, despite this

large error growth.

ETSs of reflectivity calculated over the full domain

(Fig. 15a) show similar levels for full-domain refractivity

assimilation experiments, decreasing from 0.7 to 0.8 at

the initial forecast time (2130) to about 0.4 an hour into

the forecast. By 0000, the experiments score at or below

0.3, an indication that the effect of refractivity assimi-

lation on convection is lost after roughly 90–120 forecast

minutes. Baseline experiment NoNd shows generally

lower scores from around 0.7 at the initial time down

to 0.2 an hour into the forecast. NoNm shows initially

the lowest scores at 0.1–0.2 until 2330, because of the

widespread spurious convection caused by the positive

FIG. 14. RMSEs of the specific humidity field (g kg21) for the imperfect model cycled analysis and forecast sen-

sitivity experiments listed in Table 1. Note that theWRF forecast was initialized at 2130UTC from the final 3DVAR

analysis (a),(b) for sensitivity to observation error experiments, and (c),(d) for sensitivity to isolated radar experi-

ments. Note that in (a),(b)RMSEswere calculated over thewhole domain and in (c),(d)RMSEswere calculated only

over the 50-km radius of the isolated radar.
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moisture bias in the background. The ETSs for imper-

fect model CNTL experiments are slightly lower than

those of perfect model forecast in Fig. 8. The results for

forecast experiments of increased observational error

are consistent with the perfect model forecast results.

ETSs calculated over the subverification domain of

Fig. 1b near the isolated supercell in the truth (Fig. 15b)

are lower in general. Both baseline experiments remain

near 0 throughout the forecast, as neither captures the

supercell initiation and development and have many

spurious cells. Single-radar experiment 1RD0.5m shows

the lowest impact on the forecast above the baselines, as

ETS remains around 0.1 throughout. Since the assimi-

lation only covers a 50-km radius of a single radar, the

bias of high moisture in the rest of the field outside data

coverage still dominates the forecast, causing widespread

aggressive storm development. Thus, the impact of assim-

ilating refractivity is significantly reduced in experiment

1RD0.5m. Dry-bias single-radar experiment 1RD0.5d

shows higher scores closer to 0.2. Both single-radar ex-

periments score generally lower than their corresponding

control experiments, an indication of the impact of the

loss in refractivity data coverage.

To further look into what is occurring within these

imperfect model experiments near the isolated super-

cell, Fig. 16 plots composite reflectivity over the box in

Fig. 1b for dry-bias experiments NoNd, CNTLd, and

1RDd0.5. As in the perfect model experiments, the

imperfect model forecasts of CNTLd and 1RDd0.5 show

similar development of the supercell as in the truth at

2145 (recall the supercell initiates at 2105 in the truth),

whereas the baseline NoNd does not show correspond-

ing initiation. However, 30min later significant differ-

ences begin to appear, as the imperfect model shows

increased spurious convection, even in baseline NoNd.

CNTLd shows a strong supercell that is similar to that in

the truth, though it has a broader area of high reflec-

tivity. Experiment 1RDd0.5 also shows a storm that

appears to be similar to the supercell in the truth, though

its supercell characteristics are unclear and it is not as

large. The spurious storm development may be affecting

the growth of the single supercell in 1RDd0.5. Positive

FIG. 15. ETS time series of imperfect (WRF) model analysis and forecast experiments. (a) For

NoN, CNTL, and FRAD experiments, calculated over the whole domain; and (b) for NoN, CNTL,

and single radar (1RD) experiments, calculated over the verification subdomain shown in Fig. 1b.

OCTOBER 2013 GASPERON I ET AL . 2299



impacts can be seen initially, but model error grows

larger than the differences because of initial conditions,

masking the impact later on. In imperfect forecasts, the

impact of refractivity assimilation on convection lasts no

longer than 30–60min, whereas in perfect model fore-

casts the impact lasts for at least an hour, and in some

experiments up to 3 h.

5. Summary and conclusions

The main goal of this study was to develop and test a

method to assimilate radar-derived refractivity measure-

ments. The ARPS 3DVAR system was enhanced to in-

clude the assimilation of refractivitymeasurements directly.

Observing system simulation experiments (OSSEs) were

conducted using simulated refractivity data from radar

networks to assess their impact on the analysis and fore-

cast of convective storms, including their initiation and

subsequent evolution. The assimilation experiments were

performed in pairs, using a background containing positive

or negative 2gkg21 near-surface moisture error. Analysis

experiments were conducted with simulated observations

of differing error statistics and data coverage, withmoisture

RMSE and reflectivity ETSs calculated against the truth for

both analysis and forecast periods. The analysis period in-

cluded cycling of 3DVAR and ARPS forecasts every

10min for an hour, with a 3-h ARPS forecast initialized

from the final analysis. The main results are as follows:

d Control experiments assimilated idealized refractivity

available every 4 km in the entire domain with random

errors of 0.5-N-unit standard deviation. Analyses of

the control experiment reduced the moisture RMSE

by about one to two orders of magnitude after just one

analysis. The RMSEs of forecast moisture remained

below those of the baseline experiments for the

duration of the forecast, and the forecast reflectivity

ETSs are higher overall.
d Sensitivity experiments with increased observational

error and more realistic data discontinuities due to

ground clutter coverage yielded only minor degrada-

tions in analysis and forecast quality compared to the

control experiments.
d Experiments assimilating refractivity from a single

isolated radar show similar RMSE downward trends

in the analysis period to control experiments over the

radar domain; however, the forecast period error

growth is much faster. Additionally, the timing and

location of CI are captured well, but the storm evolution

FIG. 16. Composite reflectivity (color fill, dBZ) and specific humidity (gray contours, g kg21) for (a)–(d) the truth field, (e)–(h) imperfect

model baseline experiment NoNd, (i)–(l) imperfect model control CNTLd experiment, and (m)–(p) imperfect model experiment

1RDd0.5. Plotted over verification subdomain in Fig. 1b (red box). Each column is valid at the same time, starting from 2145UTC 19May

2010 in the first column to 2315 UTC in the last column, plotted at 30-min intervals.
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showed ETSs that did not remain above the no-data-

assimilation experiments. This should be due to the lack

of observations outside the single-radar coverage area.
d Generally, a larger benefit was seen in refractivity as-

similation experiments where the background moisture

is low biased than when the background moisture is high

biased.
d When the initial analysis background contains errors

in other fields in addition to the moisture field, the

impact of assimilating refractivity is somewhat re-

duced, but still evident.
d Imperfect model OSSEs—where the assimilation and

forecasting model used is completely different from

the truth simulation model—show more limited ben-

efit of refractivity assimilation, particularly with the

high-moisture-biased experiments. This is because

in the imperfect model experiments, forecast errors

due to model error tend to become dominant after

30–60min of integration, overwhelming the improve-

ments from refractivity data assimilation. Still, posi-

tive impacts of refractivity data are present.

In brief, this proof-of-concept study using OSSEs dem-

onstrated a positive potential for refractivity data to im-

prove CI forecasts, a precursor for studying the impact

of real refractivity data. Dense radar networks, such as

that of CollaborativeAdaptive Sensing of theAtmosphere

(CASA), should be most advantageous, since they can

provide continuous refractivity data coverage over large

areas. Given that the refractivity data impact can be case

dependent, more case studies should be examined to fully

determine the general impact of the data. The assimilation

can also benefit from using more advanced data assimi-

lation methods, such as the ensemble Kalman filter or

the 4DVAR technique, that allow for better multivariate

analysis and adjustments tomodel fields not directly linked

to refractivity. These can be topics for future research.
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